JPH0371737B2 - - Google Patents

Info

Publication number
JPH0371737B2
JPH0371737B2 JP59196741A JP19674184A JPH0371737B2 JP H0371737 B2 JPH0371737 B2 JP H0371737B2 JP 59196741 A JP59196741 A JP 59196741A JP 19674184 A JP19674184 A JP 19674184A JP H0371737 B2 JPH0371737 B2 JP H0371737B2
Authority
JP
Japan
Prior art keywords
weight
zinc
indium
aluminum
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59196741A
Other languages
Japanese (ja)
Other versions
JPS6177259A (en
Inventor
Toyohide Uemura
Keiichi Kagawa
Ryoji Okazaki
Kanji Takada
Akira Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP59196741A priority Critical patent/JPS6177259A/en
Publication of JPS6177259A publication Critical patent/JPS6177259A/en
Publication of JPH0371737B2 publication Critical patent/JPH0371737B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の分野) 本発明は亜鉛アルカリ電池に関し、詳しくはイ
ンジウムとアルミニウムとビスマス、カルシウ
ム、テルルより選ばれる1種以上を特定範囲で含
有した亜鉛合金をそのまま、もしくは汞化して電
池用負極活物質として用いた亜鉛アルカリ電池に
関する。 (発明の背景) 亜鉛を負極活物質として用いたアルカリ電池等
においては、水酸化カリウム水溶液等の強アルカ
リ性電解液を用いるため、電池を密閉しなければ
ならない。この電池の密閉は電池の小型化を図る
際には特に重要であるが、同時に電池保存中の亜
鉛の腐食により発生する水素ガスを閉じ込めるこ
とになる。従つて長期保存中に電池内部のガス圧
が高まり、密閉が完全なほど爆発等の危険が伴な
う。 その対策として、負極活物質である亜鉛の腐食
を防止して、電池内部の水素ガス発生を少なくす
ることが研究され、水銀の水素過電圧を利用した
汞化亜鉛を負極活物質として用いることが専ら行
なわれている。このため、今日市販されているア
ルカリ池の負極活物質は5〜10重量%程度の多量
の水銀を含有しており、社会的ニーズとして、よ
り低水銀のもの、あるいは無水銀の電池の開発が
強く期待されるようになつてきた。 そこで、電池内の水銀含有量を低減させるべ
く、亜鉛に各種金属を添加した亜鉛合金粉末に関
する提案が種々なされている。例えば、亜鉛に鉛
を添加した亜鉛合金粉末、あるいは本発明者等に
よる亜鉛に鉛とインジウムを添加した亜鉛合金粉
末(特開昭58−181266号公報)等がある。しか
し、これらの亜鉛合金粉末はある程度のガス発生
抑制効果を奏するが、まだ十分とは言えない。例
えば、亜鉛に鉛とインジウムを添加した亜鉛合金
粉末についてはこれを水銀含有率1重量%程度の
低汞化とした場合、ガス発生試験の初期において
は非常にガス発生が抑制されているが、長期間と
なると次第にガス発生速度(ml/g・day)が増
大する傾向が見られた。 このように、負極活物質である亜鉛合金粉末を
低汞化としつつ、水素ガス発生量を低減し、しか
も電池性能である放電性能を高い水準に維持する
電池は未だ得られていない。 (発明の目的) 本発明はかかる現状に鑑み、水銀の含有率を著
しく減少させつつ、水素ガス発生を抑制し、しか
も放電性能を高い水準に維持する負極活物質を用
いた亜鉛アルカリ電池を提供することを目的とす
る。 (発明の経緯) 本発明者らはこの目的に沿つて鋭意研究の結
果、亜鉛からなる負極活物質において、インジウ
ムとアルミニウムとビスマス、カルシウム、テル
ルより選ばれる1種以上とを特定範囲の量添加す
ることにより、これら添加元素の相乗的な効果に
よつて、従来の低汞化した亜鉛合金粉末よりも更
に水素ガス発生量を低下させ、しかも放電性能に
優れた亜鉛アルカリ電池が得られることを見出し
本発明に到達した。 (発明の構成) すなわち本発明は、インジウムを0.01〜0.5重
量%、アルミニウムを0.005〜0.5重量%、ビスマ
ス、カルシウム、テルルより選ばれる1種以上を
合計0.005〜0.5重量%含有する亜鉛合金を負極活
物質として用いたことを特徴とする亜鉛アルカリ
電池にある。 本発明において、インジウムとアルミニウムと
ビスマス、カルシウム、テルルより選ばれる1種
以上とを特定量添加した亜鉛合金は、そのまま負
極活物質として用いるか、亜鉛合金を汞化した後
に負極活物質として用いる。汞化する場合の水銀
含有率は、従来の負極活物質の水銀含有率よりも
少ない量、すなわち、5.0重量%未満であるが、
より汞化率を低くし、低公害性を考慮すると3.0
重量%以下である。また、1.0重量%前後または
それ以下の少量であつてもガス発生を抑制するこ
とが可能である。特に、排気機構を備えた空気電
池や水素吸収機構を備えた亜鉛アルカリ電池等に
おいては、水素ガスの発生許容量は比較的大きい
ので、このような電池に本発明を適用する場合
は、1.0重量%以下の低汞化率または無汞化の亜
鉛合金が負極活物質として好ましく用いられる。 この負極活物質に用いられる亜鉛合金のインジ
ウムの含有率は0.01〜0.5重量%、アルミニウム
の含有率は0.005〜0.5重量%、ビスマス、カルシ
ウム、テルルより選ばれる1種以上の含有率は
0.005〜0.5重量%と少量で添加効果が発揮され
る。インジウムとアルミニウムとビスマス、カル
シウム、テルルより選ばれる1種以上の含有率が
それぞれ下限未満では本発明の効果が得られず、
上限を越えると不純物を含有した亜鉛のように、
自己放電が進み、ガス発生抑制および放電性能に
とつて良好な結果が得られない。なお、アルミニ
ウムの含有率は0.005〜0.2重量%の範囲が特に好
ましく、0.2重量%を越えた場合にはそれほどの
含有効果が見られない。また、カルシウムの含有
率も0.005〜0.2重量%の範囲が特に好ましく、0.2
重量%を越えた場合にはそれほどの含有効果が見
られない。 このように本発明の亜鉛アルカリ電池は、電解
液に苛性カリ、荷性ソーダ等を主成分とするアル
カリ水溶液を用い、負極活物質に上記した亜鉛合
金または汞化した亜鉛合金、正極活物質に二酸化
マンガン、酸化銀、酸素等を用いることにより得
られる。 (実施例の説明) 以下、実施例および比較例に基づいて本発明を
具体的に説明する。 実施例 1〜14 純度99.997%以上の亜鉛地金を約500℃で溶融
し、これに第1表に示すごとくインジウムとアル
ミニウムとビスマスの含有率がそれぞれ0.05重量
%となるように添加して亜鉛合金を作成し、これ
を高圧アルゴンガス(噴出圧 5Kg/cm2)を使つ
て粉体化した。次に水酸化カリウム10%のアルカ
リ性溶液中にて上記粉末に1.0重量%になるよう
に水銀を添加して、汞化処理を行ない亜鉛合金粉
末(実施例1)を得た。 また、第1表に示すごとく、下記の組成でそれ
ぞれ、 (1):インジウム0.05重量%、アルミニウム0.05重
量%、カルシウム0.05重量%、 (2):インジウム0.05重量%、アルミニウム0.05重
量%、テルル0.05重量%、 (3):インジウム0.01重量%、アルミニウム0.01重
量%、ビスマス0.01重量%、 (4):インジウム0.5重量%、アルミニウム0.5重量
%、ビスマス0.5重量%、 (5):インジウム0.01重量%、アルミニウム0.01重
量%、カルシウム0.01重量%、 (6):インジウム0.5重量%、アルミニウム0.5重量
%、カルシウム0.5重量%、 (7):インジウム0.01重量%、アルミニウム0.01重
量%、テルル0.01重量%、 (8):インジウム0.5重量%、アルミニウム0.5重量
%、テルル0.5重量%、 (9):インジウム0.05重量%、アルミニウム0.05重
量%、ビスマス0.05重量%、カルシウム0.05重
量%、 (10):インジウム0.5重量%、アルミニウム0.5重量
%、ビスマス0.1重量%、カルシウム0.2重量
%、テルル0.2重量%、 (11):インジウム0.5重量%、アルミニウム0.2重量
%、ビスマス0.5重量%、 (12):インジウム0.5重量%、アルミニウム0.2重量
%、カルシウム0.2重量%、 (13):インジウム0.5重量%、アルミニウム0.2
重量%、テルル0.5重量%、 からなる亜鉛合金をそれぞれ作成し、これを前記
と同様な方法で粉体化し、汞化処理を行なつて水
銀含有率が1.0重量%の亜鉛合金粉末(実施例2
〜14)を得た。 このようにして得られた亜鉛合金粉末を使つて
水素ガス発生試験を行ない、その結果を第1表に
示す。なお、ガス発生試験は、電解液として濃度
40重量%の水酸化カリウム水溶液に酸化亜鉛を飽
和させたものを5mlを用い、亜鉛合金粉末を10g
を用いて45℃で50日間のガス発生量(ml/g)を
測定した。 また、これらの亜鉛合金粉末を負極活物質とし
て第1図に示すアルカリマンガン電池を用いて電
池性能を評価した。第1図のアルカリマンガン電
池は、正極缶1、正極2、セパレーター3、亜鉛
合金粉末をカルボキシメチルセルロースでゲル化
した負極4、負極集電体5、ゴムパツキン6、押
さえ板7で構成されている。このアルカリマンガ
ン電池を用いて放電負荷4Ω、20℃放電条件によ
り終止電圧0.9Vまでの放電持続時間を測定し、
従来の負極活物質を用いた後述する比較例2の測
定値を100とした指数で示した。結果を第1表に
示す。 比較例 1〜2 実施例1と同様の方法で亜鉛に鉛を0.05重量%
添加した汞化亜鉛合金粉末(比較例1)と亜鉛に
鉛を0.05重量%、インジウムを0.05重量%添加し
た汞化亜鉛合金粉末(比較例2)を得た。 これを実施例1と同様の方法で水素ガス発生試
験と電池性能試験を行ない、その結果を第1表に
示した。
(Field of the Invention) The present invention relates to zinc-alkaline batteries, and more specifically, a zinc alloy containing indium, aluminum, and one or more selected from bismuth, calcium, and tellurium within a specific range is used as a negative electrode active material for batteries, either as it is or in the form of aqueous solution. This paper relates to a zinc-alkaline battery used as a battery. (Background of the Invention) In alkaline batteries and the like that use zinc as a negative electrode active material, the batteries must be sealed tightly because a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas generated due to corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion. As a countermeasure, research has been conducted to prevent corrosion of zinc, which is an active material for the negative electrode, and to reduce the generation of hydrogen gas inside the battery. It is being done. For this reason, the negative electrode active materials for alkaline ponds that are commercially available today contain a large amount of mercury, approximately 5 to 10% by weight, and there is a social need to develop batteries with lower mercury or without mercury. It has become highly anticipated. Therefore, various proposals have been made regarding zinc alloy powders in which various metals are added to zinc in order to reduce the mercury content in batteries. For example, there is a zinc alloy powder made by adding lead to zinc, or a zinc alloy powder made by the present inventors by adding lead and indium to zinc (Japanese Patent Laid-Open No. 181266/1983). However, although these zinc alloy powders have a certain degree of gas generation suppressing effect, it is still not sufficient. For example, when zinc alloy powder is made by adding lead and indium to zinc and the mercury content is reduced to about 1% by weight, gas generation is extremely suppressed at the beginning of the gas generation test. There was a tendency for the gas generation rate (ml/g·day) to gradually increase over a long period of time. As described above, a battery has not yet been obtained in which the zinc alloy powder, which is the negative electrode active material, has a low resistance, reduces the amount of hydrogen gas generated, and maintains the discharge performance, which is the battery performance, at a high level. (Object of the Invention) In view of the current situation, the present invention provides a zinc-alkaline battery using a negative electrode active material that significantly reduces mercury content, suppresses hydrogen gas generation, and maintains discharge performance at a high level. The purpose is to (Background of the invention) As a result of intensive research in line with this purpose, the present inventors have found that indium, aluminum, and one or more selected from bismuth, calcium, and tellurium are added in a specific range of amounts to a negative electrode active material made of zinc. By doing so, we have shown that the synergistic effect of these additive elements allows us to obtain a zinc-alkaline battery that has an even lower hydrogen gas generation amount than conventional low-strength zinc alloy powders and has excellent discharge performance. Heading The present invention has been arrived at. (Structure of the Invention) That is, the present invention uses a zinc alloy containing 0.01 to 0.5% by weight of indium, 0.005 to 0.5% by weight of aluminum, and 0.005 to 0.5% by weight of one or more selected from bismuth, calcium, and tellurium as a negative electrode. A zinc-alkaline battery is characterized in that it is used as an active material. In the present invention, a zinc alloy to which specific amounts of indium, aluminum, and one or more selected from bismuth, calcium, and tellurium are added is used as a negative electrode active material as it is, or is used as a negative electrode active material after the zinc alloy is made into a starch. The mercury content in the case of oxidation is lower than the mercury content of conventional negative electrode active materials, that is, less than 5.0% by weight.
3.0 by lowering the oxidation rate and considering low pollution.
% by weight or less. In addition, gas generation can be suppressed even with a small amount of around 1.0% by weight or less. In particular, in air batteries equipped with an exhaust mechanism or zinc-alkaline batteries equipped with a hydrogen absorption mechanism, the hydrogen gas generation capacity is relatively large, so when applying the present invention to such batteries, 1.0 weight Zinc alloys with a low or non-grading rate of less than 10% are preferably used as the negative electrode active material. The content of indium in the zinc alloy used in this negative electrode active material is 0.01 to 0.5% by weight, the content of aluminum is 0.005 to 0.5% by weight, and the content of one or more types selected from bismuth, calcium, and tellurium is 0.01 to 0.5% by weight.
The effect of addition is exhibited at a small amount of 0.005 to 0.5% by weight. If the content of one or more selected from indium, aluminum, bismuth, calcium, and tellurium is below the lower limit, the effects of the present invention cannot be obtained,
If the upper limit is exceeded, like zinc containing impurities,
Self-discharge progresses, and good results cannot be obtained in terms of gas generation suppression and discharge performance. Note that the content of aluminum is particularly preferably in the range of 0.005 to 0.2% by weight, and if it exceeds 0.2% by weight, no significant effect will be seen. In addition, the content of calcium is particularly preferably in the range of 0.005 to 0.2% by weight, and 0.2% by weight.
If the content exceeds % by weight, no significant effect is observed. As described above, the zinc-alkaline battery of the present invention uses an alkaline aqueous solution containing caustic potash, fertile soda, etc. as the main components as the electrolyte, the above-mentioned zinc alloy or aqueous zinc alloy as the negative electrode active material, and carbon dioxide as the positive electrode active material. Obtained by using manganese, silver oxide, oxygen, etc. (Description of Examples) The present invention will be specifically described below based on Examples and Comparative Examples. Examples 1 to 14 Zinc ingot with a purity of 99.997% or more is melted at about 500°C, and zinc is added by adding indium, aluminum, and bismuth to a content of 0.05% by weight as shown in Table 1. An alloy was prepared and pulverized using high-pressure argon gas (ejection pressure 5 Kg/cm 2 ). Next, mercury was added to the above powder to give a concentration of 1.0% by weight in an alkaline solution containing 10% potassium hydroxide, and a hydrochloric treatment was performed to obtain a zinc alloy powder (Example 1). In addition, as shown in Table 1, the following compositions were used: (1): Indium 0.05% by weight, Aluminum 0.05% by weight, Calcium 0.05% by weight, (2): Indium 0.05% by weight, Aluminum 0.05% by weight, Tellurium 0.05%. Weight%, (3): Indium 0.01% by weight, Aluminum 0.01% by weight, Bismuth 0.01% by weight, (4): Indium 0.5% by weight, Aluminum 0.5% by weight, Bismuth 0.5% by weight, (5): Indium 0.01% by weight, Aluminum 0.01% by weight, Calcium 0.01% by weight, (6): Indium 0.5% by weight, Aluminum 0.5% by weight, Calcium 0.5% by weight, (7): Indium 0.01% by weight, Aluminum 0.01% by weight, Tellurium 0.01% by weight, (8) ): Indium 0.5% by weight, Aluminum 0.5% by weight, Tellurium 0.5% by weight, (9): Indium 0.05% by weight, Aluminum 0.05% by weight, Bismuth 0.05% by weight, Calcium 0.05% by weight, (10): Indium 0.5% by weight, 0.5% by weight of aluminum, 0.1% by weight of bismuth, 0.2% by weight of calcium, 0.2% by weight of tellurium, (11): 0.5% by weight of indium, 0.2% by weight of aluminum, 0.5% by weight of bismuth, (12): 0.5% by weight of indium, 0.2% by weight of aluminum wt%, calcium 0.2 wt%, (13): indium 0.5 wt%, aluminum 0.2
% by weight, 0.5% by weight of tellurium, and 0.5% by weight of tellurium, which were pulverized in the same manner as described above, and subjected to a filtration treatment to produce zinc alloy powder with a mercury content of 1.0% by weight (Example 2
~14) was obtained. A hydrogen gas generation test was conducted using the zinc alloy powder thus obtained, and the results are shown in Table 1. In addition, in the gas generation test, the concentration of electrolyte was
Using 5 ml of 40% by weight potassium hydroxide aqueous solution saturated with zinc oxide, add 10 g of zinc alloy powder.
The amount of gas generated (ml/g) was measured at 45°C for 50 days using the following. Further, battery performance was evaluated using an alkaline manganese battery shown in FIG. 1 using these zinc alloy powders as a negative electrode active material. The alkaline manganese battery shown in FIG. 1 is composed of a positive electrode can 1, a positive electrode 2, a separator 3, a negative electrode 4 made of zinc alloy powder gelled with carboxymethyl cellulose, a negative electrode current collector 5, a rubber packing 6, and a pressing plate 7. Using this alkaline manganese battery, we measured the discharge duration to a final voltage of 0.9V under a discharge load of 4Ω and a discharge condition of 20℃.
The values are expressed as an index with the measured value of Comparative Example 2, which will be described later, using a conventional negative electrode active material set as 100. The results are shown in Table 1. Comparative Examples 1-2 0.05% by weight of lead in zinc using the same method as in Example 1
A zinc chloride alloy powder (Comparative Example 1) and a zinc chloride alloy powder (Comparative Example 2) in which 0.05% by weight of lead and 0.05% by weight of indium were added to zinc were obtained. This was subjected to a hydrogen gas generation test and a battery performance test in the same manner as in Example 1, and the results are shown in Table 1.

【表】【table】

【表】 第1表に示されるごとく、亜鉛にインジウムと
アルミニウムとビスマス、カルシウム、テルルよ
り選ばれる1種以上を特定量添加して汞化させた
汞化亜鉛合金粉末を負極活物質に用いた実施例1
〜14は、亜鉛に鉛を添加した汞化亜鉛合金粉末を
負極活物質に用いた比較例1や亜鉛に鉛とインジ
ウムを添加した汞化亜鉛合金粉末を負極活物質に
用いた比較例2に比べて、水素ガス発生抑制効果
が大きく、放電性能も優れていることがわかる。 (発明の効果) 以上説明のごとく、インジウムとアルミニウム
とビスマス、カルシウム、テルルより選ばれる1
種以上を特定範囲で含有した亜鉛合金をそのま
ま、もしくは汞化して負極活物質として用いた本
発明の亜鉛アルカリ電池は、水素ガス発生率を抑
制しつつ、電池性能を向上させることが可能であ
り、また水銀が低含有率もしくは含有しないこと
から、社会的ニーズにも沿つたものである。従つ
て、本発明の亜鉛アルカリ電池は広範な用途に使
用可能である。
[Table] As shown in Table 1, a zinc alloy powder obtained by adding a specific amount of one or more selected from indium, aluminum, bismuth, calcium, and tellurium to zinc to form a starch was used as the negative electrode active material. Example 1
~14 is Comparative Example 1 in which a zinc chloride alloy powder in which lead is added to zinc is used as the negative electrode active material, and Comparative Example 2 in which a zinc chloride alloy powder in which lead and indium are added to zinc is used as the negative electrode active material. In comparison, it can be seen that the hydrogen gas generation suppressing effect is large and the discharge performance is also excellent. (Effect of the invention) As explained above, 1 selected from indium, aluminum, bismuth, calcium, and tellurium.
The zinc-alkaline battery of the present invention, which uses a zinc alloy containing at least a certain amount of zinc in a specific range as a negative electrode active material either as it is or after it has been made into a hydrogen atom, can improve battery performance while suppressing the hydrogen gas generation rate. It also meets social needs as it contains low or no mercury. Therefore, the zinc-alkaline battery of the present invention can be used in a wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるアルカリマンガン電池
の断面図を示す。 1:正極缶、2:正極、3:セパレーター、
4:負極、5:負極集電体、6:ゴムパツキン、
7:押さえ板。
FIG. 1 shows a sectional view of an alkaline manganese battery according to the present invention. 1: positive electrode can, 2: positive electrode, 3: separator,
4: Negative electrode, 5: Negative electrode current collector, 6: Rubber packing,
7: Pressing board.

Claims (1)

【特許請求の範囲】 1 インジウムを0.01〜0.5重量%、アルミニウ
ムを0.005〜0.5重量%、ビスマス、カルシウム、
テルルより選ばれる1種以上を合計0.005〜0.5重
量%含有する悪鉛合金を負極活物質として用いた
ことを特徴とする亜鉛アルカリ電池。 2 前記亜鉛合金が汞化されている前記特許請求
の範囲第1項記載の亜鉛アルカリ電池。
[Claims] 1 0.01 to 0.5% by weight of indium, 0.005 to 0.5% by weight of aluminum, bismuth, calcium,
A zinc-alkaline battery characterized in that a bad lead alloy containing a total of 0.005 to 0.5% by weight of one or more types selected from tellurium is used as a negative electrode active material. 2. The zinc-alkaline battery according to claim 1, wherein the zinc alloy is made of aluminum.
JP59196741A 1984-09-21 1984-09-21 Zinc alkaline battery Granted JPS6177259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59196741A JPS6177259A (en) 1984-09-21 1984-09-21 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59196741A JPS6177259A (en) 1984-09-21 1984-09-21 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS6177259A JPS6177259A (en) 1986-04-19
JPH0371737B2 true JPH0371737B2 (en) 1991-11-14

Family

ID=16362827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59196741A Granted JPS6177259A (en) 1984-09-21 1984-09-21 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPS6177259A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013115A1 (en) 2006-07-28 2008-01-31 Panasonic Corporation Alkaline primary battery
EP1959023A1 (en) 2007-01-15 2008-08-20 Matsushita Electric Industrial Co., Ltd. Alkaline dry battery
WO2009034673A1 (en) 2007-09-10 2009-03-19 Panasonic Corporation Alkaline dry cell
WO2010029678A1 (en) 2008-09-12 2010-03-18 パナソニック株式会社 Mercury-free alkaline dry battery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1003415A6 (en) * 1989-11-10 1992-03-17 Acec Union Miniere Zinc powder for alkaline batteries.
US5312476A (en) * 1991-02-19 1994-05-17 Matsushita Electric Industrial Co., Ltd. Zinc alloy powder for alkaline cell and method for production of the same
US5108494A (en) * 1991-02-19 1992-04-28 Mitsui Mining & Smelting Co., Ltd. Zinc alloy powder for alkaline cell and method for production of the same
JPH0754705B2 (en) * 1991-10-16 1995-06-07 三井金属鉱業株式会社 Zinc alloy powder for alkaline battery and method for producing the same
JPH05182661A (en) * 1991-12-28 1993-07-23 Dowa Mining Co Ltd Nonlead nonamalgamated zinc alloy powder and manufacture thereof for alkaline battery
JPH05190176A (en) * 1992-01-08 1993-07-30 Dowa Mining Co Ltd Non-amalgamated zinc alloy powder for alkaline battery having small gas generation quantity
KR100773952B1 (en) 2006-04-07 2007-11-07 주식회사 레노스 Anode active material for mercury-free air zinc cell and mercury-free air zinc cell comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385349A (en) * 1977-01-07 1978-07-27 Matsushita Electric Ind Co Ltd Nickel zinc storage battery
JPS5994371A (en) * 1982-11-22 1984-05-31 Mitsui Mining & Smelting Co Ltd Alkaline battery and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385349A (en) * 1977-01-07 1978-07-27 Matsushita Electric Ind Co Ltd Nickel zinc storage battery
JPS5994371A (en) * 1982-11-22 1984-05-31 Mitsui Mining & Smelting Co Ltd Alkaline battery and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013115A1 (en) 2006-07-28 2008-01-31 Panasonic Corporation Alkaline primary battery
EP1959023A1 (en) 2007-01-15 2008-08-20 Matsushita Electric Industrial Co., Ltd. Alkaline dry battery
WO2009034673A1 (en) 2007-09-10 2009-03-19 Panasonic Corporation Alkaline dry cell
WO2010029678A1 (en) 2008-09-12 2010-03-18 パナソニック株式会社 Mercury-free alkaline dry battery

Also Published As

Publication number Publication date
JPS6177259A (en) 1986-04-19

Similar Documents

Publication Publication Date Title
JPH0371737B2 (en)
JPH0371738B2 (en)
JPH0421310B2 (en)
JPH0418671B2 (en)
JPH0375985B2 (en)
JPH0418674B2 (en)
JPH0418673B2 (en)
JPH0418672B2 (en)
JPS61290655A (en) Zinc alkaline battery
JPS61290651A (en) Zinc alkaline battery
JPS6240161A (en) Zinc alkaline battery
JPS61153952A (en) Zinc alkaline storage battery
JPS61290653A (en) Zinc alkaline battery
JPS61153951A (en) Zinc alkaline storage battery
JPS61290657A (en) Zinc alkaline battery
JPS61290652A (en) Zinc alkaline battery
JPS61290654A (en) Zinc alkaline battery
JPH0375982B2 (en)
JPH0375983B2 (en)
JPH0371739B2 (en)
JPS6177260A (en) Zinc alkaline battery
JPS6240160A (en) Zinc alkaline battery
JPS62123657A (en) Zinc-alkaline battery
JPS6177256A (en) Zinc alkaline battery
JPS6240159A (en) Zinc alkaline battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term