JPS61290653A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS61290653A
JPS61290653A JP60131638A JP13163885A JPS61290653A JP S61290653 A JPS61290653 A JP S61290653A JP 60131638 A JP60131638 A JP 60131638A JP 13163885 A JP13163885 A JP 13163885A JP S61290653 A JPS61290653 A JP S61290653A
Authority
JP
Japan
Prior art keywords
zinc
weight
nickel
cobalt
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60131638A
Other languages
Japanese (ja)
Other versions
JPH0619993B2 (en
Inventor
Nobuyori Kasahara
笠原 暢順
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Ryoji Okazaki
良二 岡崎
Kanji Takada
寛治 高田
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60131638A priority Critical patent/JPH0619993B2/en
Publication of JPS61290653A publication Critical patent/JPS61290653A/en
Publication of JPH0619993B2 publication Critical patent/JPH0619993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To retard hydrogen gas evolution in addition to the reduction of mercury content by using zinc alloy obtained by adding a specified amount of indium, thallium, cobalt, and nickel to zinc as a negative active material of zinc alkaline battery. CONSTITUTION:A zinc alloy containing 0.01-0.5wt% indium and/or thallium, 0.01-0.5wt% cobalt, and 0.01-0.5wt% nickel is used as it is or after amalgamation as a negative active material to form a negative electrode 4. The negative electrode 4 is combined with a positive electrode 2 mainly comprising manganese dioxide, and a separator 3 to form a zinc alkaline battery. By the synergistic effect of the elements added, hydrogen overvoltage is increase and local corrosion is retarded to reduce hydrogen gas evolution. Therefore, battery performance is increased in addition to the remarkable reduction of mercury content.

Description

【発明の詳細な説明】 (発明の分野) 本発明は亜鉛アルカリ電池に関し、詳しくはインジウム
、タリウムより選ばれる1種以上とコバルトとニッケル
を特定範囲で含有した亜鉛合金をそのまま、もしくは汞
化して電池用負極活物質と1ノで用いた亜鉛アルカリ電
池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a zinc alkaline battery, and more specifically, a zinc alloy containing one or more selected from indium and thallium, cobalt and nickel within a specific range, either as is or in the form of a The present invention relates to negative electrode active materials for batteries and the zinc-alkaline battery used in No. 1.

(発明の背景) 亜鉛を負極活物質として5用いたアルカリ電池等におい
ては、水酸化カリウム水溶液等の強アルカリ性電解液を
用いるため、電池を密閉しなければならない。この電池
の密閉は電池の小型化を図る際には特に重要であるが、
同時に電池保存中の亜鉛の腐食により発生する水素ガス
を閉じ込めることになる。従って長期保存中に電池内部
のガス圧が高まり、密団が完全なほど爆発等の危険が伴
なう。
(Background of the Invention) In alkaline batteries using zinc as a negative electrode active material, a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used, so the battery must be sealed. Sealing the battery is especially important when trying to downsize the battery.
At the same time, hydrogen gas generated by corrosion of zinc during battery storage is trapped. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more densely packed the battery is, the greater the risk of explosion.

その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀の水素過電圧を利用した汞化亜鉛を負極活物質
として用いることが専ら行なわれている。このため、合
口市販されているアルカリ電池の負極活物質は5〜10
重量%程度の多聞の水銀を含有しており、社会的ニーズ
として、より低水銀のもの、あるいは無水銀の電池の開
発が強く期待されるようになってきた。
As a countermeasure, research has been conducted to prevent corrosion of zinc, which is an active material for the negative electrode, and to reduce the generation of hydrogen gas inside the battery. It is being done. For this reason, the negative electrode active material of commercially available alkaline batteries is 5 to 10
They contain a large amount of mercury, on the order of % by weight, and as a social need, there are strong expectations for the development of lower mercury or mercury-free batteries.

そこで、電池内の水銀含有量を低減させるべく、亜鉛に
各種金属を添加した亜鉛合金粉末に関する提案が種々な
されている。例えば、亜鉛に鉛を添加した亜鉛合金粉末
、あるいは本発明者等による亜鉛に鉛とインジウムを添
加した亜鉛合金粉末(特開昭58−181266号公報
)等が坐る。しかし、これらの亜鉛合金粉末はある程度
のガス発生抑制効果を奏するが、まだ十分とは言えない
Therefore, various proposals have been made regarding zinc alloy powders in which various metals are added to zinc in order to reduce the mercury content in batteries. For example, a zinc alloy powder made by adding lead to zinc, or a zinc alloy powder made by the present inventors by adding lead and indium to zinc (Japanese Unexamined Patent Publication No. 181266/1983) is used. However, although these zinc alloy powders have a certain degree of gas generation suppressing effect, it is still not sufficient.

このように、負極活物質である亜鉛合金粉末を低汞化と
しつつ、水素ガス発生mを低減し、しかも電池性能であ
る放電性能を高い水準に維持する電池は未だ得られてい
ない。
As described above, a battery that reduces hydrogen gas generation m while maintaining a high level of discharge performance, which is the battery performance, while making the zinc alloy powder, which is the negative electrode active material, low in temperature has not yet been obtained.

(発明の目的) 本発明はかかる現状に鑑み、水銀の含有率を著しく減少
させつつ、水素ガス発生を抑制し、しかも放電性能を高
い水準に維持する負極活物質を用いた亜鉛アルカリ電池
を提供することを目的とする。
(Object of the Invention) In view of the current situation, the present invention provides a zinc-alkaline battery using a negative electrode active material that significantly reduces mercury content, suppresses hydrogen gas generation, and maintains discharge performance at a high level. The purpose is to

(発明の軽緯) 本発明者らはこの目的に沿って鋭意研究の結果、亜鉛か
らなる負極活物質において、インジウム、タリウムより
選ばれる 1種以上とコバルトとニッケルを特定範囲の
旧添加することにより、これら添加元素の相乗的な効果
によって、従来の低水化した亜鉛合金粉末よりも更に水
素ガス発生量を低下させ、しかも放電性能に優れた亜鉛
アルカリ電池が得られることを見出し本発明に到達した
(Background of the invention) As a result of intensive research in line with this purpose, the present inventors have found that one or more selected from indium and thallium, cobalt, and nickel are added in a specific range to a negative electrode active material made of zinc. The inventors discovered that the synergistic effect of these additive elements makes it possible to obtain a zinc-alkaline battery that further reduces the amount of hydrogen gas generated than conventional zinc alloy powders with low water content and has excellent discharge performance. Reached.

(発明の構成) すなわち本発明は、インジウム、タリウムより選ばれる
1種以上を0.01〜0.5重量%、コバルトを0.0
1〜0.5重置%、ニッケルを0.01、〜0.5重置
%含有する亜鉛合金を負極活物質として用いたことを特
徴とする亜鉛アルカリ電池にある。    ′本発明に
おいて、インジウム、タリウムより選ばれる1種以上と
コバルトとニッケルを特定量添加し、た亜鉛合金は、そ
のまま負極活物質として用いるか、亜鉛合金を汞化した
後に負極活物質としで用いる。汞化する場合の水銀含有
率は、従来の負極活物質の水銀含有率よりも少ない量、
すなわち5.0重量%未満であるが、より水化率を低く
し、低公害性を考慮すると3.0重量%以下である。ま
た、1.01ff1%前後またはそれ以下の少量であっ
でもガス発生を抑制することが可能である。特に、排気
機構を備えた空気電池や水素吸収機構を備えた亜鉛アル
カリ電池等においては、水素ガスの発生許容量は比較的
大きいので、このような電池に本発明を適用する場合は
、1.0重間%以下の低木化率または無汞化の亜鉛合金
が負極活物質として好ましく用いられる。
(Structure of the Invention) That is, the present invention contains 0.01 to 0.5% by weight of one or more selected from indium and thallium, and 0.0% by weight of cobalt.
A zinc-alkaline battery characterized in that a zinc alloy containing 1 to 0.5% of nickel and 0.01 to 0.5% of nickel is used as a negative electrode active material. 'In the present invention, the zinc alloy to which one or more selected from indium and thallium, cobalt, and nickel are added in specific amounts can be used as a negative electrode active material as it is, or used as a negative electrode active material after the zinc alloy has been converted into a liquid. . The mercury content in the case of oxidation is smaller than the mercury content in conventional negative electrode active materials.
In other words, it is less than 5.0% by weight, but when considering lower hydration rate and low pollution, it is 3.0% by weight or less. Further, gas generation can be suppressed even with a small amount of around 1.01ff1% or less. In particular, in air batteries equipped with an exhaust mechanism, zinc-alkaline batteries equipped with a hydrogen absorption mechanism, etc., the permissible amount of hydrogen gas generated is relatively large, so when applying the present invention to such batteries, 1. A zinc alloy with a bushing rate of 0% by weight or less or a zinc alloy with no growth rate is preferably used as the negative electrode active material.

この負極活物質に用いられる亜鉛合金のインジウム、タ
リウムより選ばれる1種以上の含有率は0.01〜0.
5重口%、コバルトの含有率はo、oi〜0.5重置%
、ニッケルの含有率は0.01〜0.5重量%と少量で
添加効果が発揮される。インジウム、タリウムより選ば
れる1種以上とコバルトとニッケルの含有率がそれぞれ
下限未満では本発明の効果が得られず、上限を越えると
、不純物を含有した亜鉛のように、自己放電が進み、ガ
ス発生抑制および放電性能にとって良好な結果が得られ
ない。
The content of one or more selected from indium and thallium in the zinc alloy used in this negative electrode active material is 0.01 to 0.
5% by weight, cobalt content is o, oi ~ 0.5% by weight
The effect of adding nickel is exhibited even when the content of nickel is as small as 0.01 to 0.5% by weight. If the content of one or more selected from indium and thallium, cobalt, and nickel is below the respective lower limits, the effects of the present invention cannot be obtained, and if the upper limits are exceeded, self-discharge progresses as in the case of zinc containing impurities, and gas Good results cannot be obtained in terms of generation suppression and discharge performance.

これら各添加元素の作用効果は充分に解明されていない
が、推定するに、亜鉛合金中に含まれているインジウム
、タリウムは水素過電圧を高める作用を有し、コバルト
およびニッケルについてはそれ自体耐食性のある金属で
あることは知られているが、亜鉛と溶体化した場合にも
局部腐食反応の抑制に役立つと考えられる。また、亜鉛
合金を゛表面から水化した場合、水銀と親和性の小さい
コバルトおよびニッケルが亜鉛合金内部への水銀の拡散
を抑制し、亜鉛合金表面の水銀濃度を高く維持すること
により耐食性の向上に役立つと考えられる。
Although the effects of each of these additive elements have not been fully elucidated, it is estimated that indium and thallium contained in zinc alloys have the effect of increasing hydrogen overvoltage, and cobalt and nickel themselves have the effect of increasing corrosion resistance. Although it is known that zinc is a certain metal, it is thought that it also helps to suppress local corrosion reactions when it is dissolved in zinc. In addition, when a zinc alloy is hydrated from the surface, cobalt and nickel, which have a low affinity for mercury, suppress the diffusion of mercury into the zinc alloy, and maintain a high mercury concentration on the surface of the zinc alloy, improving corrosion resistance. It is thought that it will be useful.

本発明は、これら各作用の相乗効果により、放電特性を
劣化させることなく、耐食性のよい亜鉛合金が得られた
ものである。
In the present invention, due to the synergistic effect of these respective actions, a zinc alloy with good corrosion resistance is obtained without deteriorating the discharge characteristics.

このように本発明の亜鉛アルカリ電池は、電解液に苛性
カリ、苛性ソーダ等を主成分とするアルカリ水溶液を用
い、負極活物質に上記した亜鉛合金または汞化した亜鉛
合金、正極活物質に二酸化マンガン、酸化銀、酸素等を
用いることにより得られる。
As described above, the zinc-alkaline battery of the present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main component as an electrolyte, the above-mentioned zinc alloy or aqueous zinc alloy as a negative electrode active material, and manganese dioxide, as a positive electrode active material, Obtained by using silver oxide, oxygen, etc.

(実施例の説明) 以下、実施例および比較例に基づいて本発明を具体的に
説明する。
(Description of Examples) The present invention will be specifically described below based on Examples and Comparative Examples.

−1〜8および 較例1〜10 純度99.997%以上の亜鉛地金を約500℃で溶融
し、これに第1表に示すごとくインジウム、コバルト、
ニッケルの含有率がそれぞれ0.05重量%となるよう
に添加して亜鉛合金を作成し、これを高圧アルゴンガス
(噴出圧5Ny/cd)を使って粉体化した。次に水酸
化カリウム10%のアルカリ性溶液中にて上記粉末に1
.0重量%になるように水銀を添加して、汞化処理を行
ない亜鉛合金粉末(実施例1)を得た。
-1 to 8 and Comparative Examples 1 to 10 A zinc ingot with a purity of 99.997% or more was melted at about 500°C, and indium, cobalt,
A zinc alloy was prepared by adding nickel so that the content thereof was 0.05% by weight, and this was pulverized using high-pressure argon gas (ejection pressure: 5 Ny/cd). Next, in an alkaline solution of 10% potassium hydroxide, add 1
.. Mercury was added to the mixture to give a concentration of 0% by weight, and a hydrogenation treatment was performed to obtain a zinc alloy powder (Example 1).

また、第1表に示すごとく、下記の組成でそれぞれ、 1):タリウム0.05重量%、コバルト0.05重鑓
%、ニッケル0.05重量%(実施例2)、2):イン
ジウム0.01重量%、コバルト0.01重量%、ニッ
ケル0.01重播%(実施例3)3):タリウム0.0
1重量%、コバルト0.01重量%、ニッケル0.01
重口%(実施例4)、4):インジウム0.5重量%、
コバルト0.5重量%、ニッケル0.5重量%(実施例
5)、5):タリウム0.5重量%、コバルト0.5重
量%、ニッケル0.5重量%(実施例6)、6)212
2960.05重量%、タリウム0.05重量%、コバ
ルト0.05重量%、ニッケル0.05重量%(実施例
7)、 7):インジウム0.2重量%、タリウム0.3重」%
、コバルト0.5重量%、ニッケル0.5重′量%(実
施例8)、 8):インジウム0.05型開%(比較例1)、9):
タリウム0.05重量%(比較例2)、10)2122
960.05重量%、コバルト  10、α5重量%(
比較例3)、 11):インジウムo、os am%、ニッケル0.0
5重量%(比較例4)、 12):インジウム1.0重量%、コバルト0.05重
量%、ニッケル0.05重量%(比較例5)、13):
インジウム0.005重量%、コバルト0.05重量%
、ニッケル0.05重量%(比較例6)14)2122
960.05重量%、コバルト 1.0重器%、ニッケ
ル0.05重世%(比較例7)、15):インジウム0
.0511%、コバルトo、oos重量%、ニッケル0
.05重量%(比較例8)16):インジウム0.05
11%、コバルト0.05重間%、ニッケル1.0重曲
%(比較例9)、11):インジウム0.05 El量
%、コバルト0.05重量%、ニッケル0.005重量
%(比較例10)からなる亜鉛合金をそれぞれ作成し、
これを前記と同様な方法で粉体化し、汞化処理を行なっ
て水銀含有率が1.0重堡%の亜鉛合金粉末(実施例2
〜8 J3よび比較例1〜10)を得た。
In addition, as shown in Table 1, the following compositions were used: 1): 0.05% by weight of thallium, 0.05% by weight of cobalt, 0.05% by weight of nickel (Example 2), 2): 0% indium .01% by weight, cobalt 0.01% by weight, nickel 0.01% by weight (Example 3) 3): Thallium 0.0
1% by weight, cobalt 0.01% by weight, nickel 0.01%
Weight% (Example 4), 4): Indium 0.5% by weight,
0.5% by weight of cobalt, 0.5% by weight of nickel (Example 5), 5): 0.5% by weight of thallium, 0.5% by weight of cobalt, 0.5% by weight of nickel (Example 6), 6) 212
2960.05% by weight, 0.05% by weight of thallium, 0.05% by weight of cobalt, 0.05% by weight of nickel (Example 7), 7): 0.2% by weight of indium, 0.3% by weight of thallium.
, Cobalt 0.5% by weight, Nickel 0.5% by weight (Example 8), 8): Indium 0.05% by weight (Comparative Example 1), 9):
Thallium 0.05% by weight (Comparative Example 2), 10) 2122
960.05% by weight, cobalt 10, α5% by weight (
Comparative example 3), 11): Indium o, os am%, nickel 0.0
5% by weight (Comparative Example 4), 12): Indium 1.0% by weight, Cobalt 0.05% by weight, Nickel 0.05% by weight (Comparative Example 5), 13):
Indium 0.005% by weight, cobalt 0.05% by weight
, nickel 0.05% by weight (Comparative Example 6) 14) 2122
960.05% by weight, cobalt 1.0%, nickel 0.05% (Comparative Example 7), 15): Indium 0
.. 0511%, cobalt o, oos wt%, nickel 0
.. 05% by weight (Comparative Example 8) 16): Indium 0.05
11%, cobalt 0.05% by weight, nickel 1.0% by weight (comparative example 9), 11): indium 0.05% by weight, cobalt 0.05% by weight, nickel 0.005% by weight (comparison) Example 10) A zinc alloy consisting of
This was powdered in the same manner as described above, and subjected to a filtration treatment to form a zinc alloy powder with a mercury content of 1.0% by weight (Example 2).
~8 J3 and Comparative Examples 1 to 10) were obtained.

このようにして得られた亜鉛合金粉末を使って水素ガス
発生試験を行ない、その結果を第1表に示す。なお、ガ
ス発生試験は、電解液として濃度40重世%の水酸化カ
リウム水溶液に酸化亜鉛を飽和させたものを5Id用い
、亜鉛合金粉末を10 gを用いて45℃で50日間の
ガス発生fil (td/Q )を測定した。
A hydrogen gas generation test was conducted using the zinc alloy powder thus obtained, and the results are shown in Table 1. The gas generation test was conducted using 5Id of potassium hydroxide aqueous solution saturated with zinc oxide with a concentration of 40% as the electrolyte and 10 g of zinc alloy powder at 45°C for 50 days. (td/Q) was measured.

また、これらの亜鉛合金粉末を負極活物質として第1図
に示すアルカリマンガン電池を用いて電池性能を評価し
た。第1図のアルカリマンガン電池は、正極缶1、正極
2、セパレーター3、亜鉛合金粉末をカルボキシメチル
セルロースでゲル化した負極4、負極集電体5、ゴムパ
ツキン6、押さえ板7で構成されている。このアルカリ
マンガン電池を用いて放電負荷4Ω、20℃の放電条件
により終止電圧0.9Vまでの放電持続時間を測定し、
従来の負極活物質を用いた後述する比較例11の測定値
を100とした指数で示した。結果を第1表に示す。
Further, battery performance was evaluated using an alkaline manganese battery shown in FIG. 1 using these zinc alloy powders as a negative electrode active material. The alkaline manganese battery shown in FIG. 1 is composed of a positive electrode can 1, a positive electrode 2, a separator 3, a negative electrode 4 made of zinc alloy powder gelled with carboxymethyl cellulose, a negative electrode current collector 5, a rubber packing 6, and a pressing plate 7. Using this alkaline manganese battery, we measured the discharge duration to a final voltage of 0.9V under discharge conditions of 4Ω discharge load and 20°C.
The values are expressed as an index with the measured value of Comparative Example 11, which will be described later, using a conventional negative electrode active material set as 100. The results are shown in Table 1.

匿屡」1ユ 実施例1ど同様の方法で亜鉛に水銀を5.0重量%添加
した従来より用いられている汞化亜゛鉛合金粉末(比較
例11)を得た。これを実施例1と同様の方法で水素ガ
ス発生試験と電池性能試験を行ない、その結果を第1表
に示した。
A conventionally used zinc oxide alloy powder (Comparative Example 11) in which 5.0% by weight of mercury was added to zinc was obtained in the same manner as in Example 1. This was subjected to a hydrogen gas generation test and a battery performance test in the same manner as in Example 1, and the results are shown in Table 1.

第1表 第1表に示されるごとく、亜鉛にインジウム、タリウム
より選ばれる1種以上とコバルトとニッケルを特定量添
加して汞化させた汞化亜鉛合金粉末を負極活物質に用い
た実施例1〉8は、比較例1〜10や亜鉛に水銀のみを
添加した従来より用いられている汞化亜鉛合金粉末を負
極活物質に用いた比較例11に比べて、水素ガス発生抑
制効果が大きく、放電性能も優れていることがわかる。
Table 1 As shown in Table 1, an example in which a zinc oxide alloy powder made by adding one or more selected from indium and thallium to zinc and specific amounts of cobalt and nickel to form a oxide was used as a negative electrode active material. 1>8 has a greater hydrogen gas generation suppressing effect than Comparative Examples 1 to 10 and Comparative Example 11, which used a conventionally used zinc chloride alloy powder, in which only mercury was added to zinc, as the negative electrode active material. It can be seen that the discharge performance is also excellent.

。 (発明の効果) 以上説明のごとく、インジウム、タリウムより選ばれる
1種以上とコバルトとニッケルを特定範囲で含有した亜
鉛合金をそのまま、もしくは汞化して負極活物質として
用いた本発明の亜鉛アルカリ重油は、水素ガス発生率を
抑制しつつ、電池性能を向上させることが可能であり、
また水銀が低含有率もしくは含有しないことから、社会
的ニーズにも沿ったものである。従って、本発明の亜鉛
アルカリ電池は広範な用途に使用可能である。
. (Effects of the Invention) As explained above, the zinc alkaline heavy oil of the present invention uses a zinc alloy containing one or more selected from indium and thallium, cobalt, and nickel in a specific range as a negative electrode active material, either as it is or after being made into a starch. It is possible to improve battery performance while suppressing hydrogen gas generation rate,
It also meets social needs as it contains low or no mercury. Therefore, the zinc-alkaline battery of the present invention can be used in a wide range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わるアルカリマンガン電池の原理図
を示す。 1:正極缶、2:正極、3:セパレーター、4:負極、
5:負極集電体、6:ゴムパツキン、7:押さえ板。 特許出願人  三井金属鉱業株式会社 特許出願人  松下電器産業株式会社 代理人 弁理士 伊 東 辰 雄 代理人 弁理士 伊 東 哲 也 第 1 図
FIG. 1 shows a principle diagram of an alkaline manganese battery according to the present invention. 1: positive electrode can, 2: positive electrode, 3: separator, 4: negative electrode,
5: Negative electrode current collector, 6: Rubber packing, 7: Pressing plate. Patent applicant Mitsui Kinzoku Mining Co., Ltd. Patent applicant Matsushita Electric Industrial Co., Ltd. Agent Patent attorney Tatsuo Ito Agent Patent attorney Tetsuya Ito Figure 1

Claims (1)

【特許請求の範囲】 1、インジウム、タリウムより選ばれる1種以上を合計
0.01〜0.5重量%、コバルトを0.01〜0.5
重量%、ニッケルを0.01〜0.5重量%含有する亜
鉛合金を負極活物質として用いたことを特徴とする亜鉛
アルカリ電池。 2、前記亜鉛合金が汞化されている前記特許請求の範囲
第1項記載の亜鉛アルカリ電池。
[Claims] 1. A total of 0.01 to 0.5% by weight of one or more selected from indium and thallium, and 0.01 to 0.5% of cobalt.
1. A zinc-alkaline battery characterized in that a zinc alloy containing 0.01 to 0.5% by weight of nickel is used as a negative electrode active material. 2. The zinc-alkaline battery according to claim 1, wherein the zinc alloy is made of aluminum.
JP60131638A 1985-06-19 1985-06-19 Zinc alkaline battery Expired - Lifetime JPH0619993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60131638A JPH0619993B2 (en) 1985-06-19 1985-06-19 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131638A JPH0619993B2 (en) 1985-06-19 1985-06-19 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS61290653A true JPS61290653A (en) 1986-12-20
JPH0619993B2 JPH0619993B2 (en) 1994-03-16

Family

ID=15062734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131638A Expired - Lifetime JPH0619993B2 (en) 1985-06-19 1985-06-19 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0619993B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Also Published As

Publication number Publication date
JPH0619993B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
JPH0371737B2 (en)
JPS61153950A (en) Zinc alkaline storage battery
JPH0421310B2 (en)
JPS6177257A (en) Zinc alkaline battery
JPH0375985B2 (en)
JPS61290653A (en) Zinc alkaline battery
JPS61290655A (en) Zinc alkaline battery
JPS62123653A (en) Zinc-alkaline battery
JPS61290651A (en) Zinc alkaline battery
JPS61290652A (en) Zinc alkaline battery
JPS61153952A (en) Zinc alkaline storage battery
JPH0418674B2 (en)
JPS61290654A (en) Zinc alkaline battery
JPS61290650A (en) Zinc alkaline battery
JPS6240161A (en) Zinc alkaline battery
JPS61290657A (en) Zinc alkaline battery
JPS6240157A (en) Zinc alkaline battery
JPS6240159A (en) Zinc alkaline battery
JPS61153951A (en) Zinc alkaline storage battery
JPH0418673B2 (en)
JPH0418672B2 (en)
JPS6177256A (en) Zinc alkaline battery
JPS61290656A (en) Zinc alkaline battery
JPS6177260A (en) Zinc alkaline battery
JPS62123654A (en) Zinc-alkaline battery