JPS61290651A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS61290651A
JPS61290651A JP60131636A JP13163685A JPS61290651A JP S61290651 A JPS61290651 A JP S61290651A JP 60131636 A JP60131636 A JP 60131636A JP 13163685 A JP13163685 A JP 13163685A JP S61290651 A JPS61290651 A JP S61290651A
Authority
JP
Japan
Prior art keywords
weight
zinc
cobalt
indium
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60131636A
Other languages
Japanese (ja)
Other versions
JPH0619991B2 (en
Inventor
Nobuyori Kasahara
笠原 暢順
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Ryoji Okazaki
良二 岡崎
Kanji Takada
寛治 高田
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60131636A priority Critical patent/JPH0619991B2/en
Publication of JPS61290651A publication Critical patent/JPS61290651A/en
Publication of JPH0619991B2 publication Critical patent/JPH0619991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To retard hydrogen gas evolution in addition to the reduction of mercury content by using zinc alloy obtained by adding a specified amount of indium, cobalt, and calcium to zinc as a negative active material of zinc alkaline battery. CONSTITUTION:A zinc alloy containing 0.01-0.5wt% indium, 0.01-0.5wt% cobalt, and 0.005-0.5wt% at least one of calcium, strontium, and magnesium is used as it is or after amalgamation as a negative active material to form a negative electrode 4. The negative electrode 4 is combined with a positive electrode 2 mainly comprising manganese dioxide, and a separator 3 to form a zinc alkaline battery. By the synergistic effect of the elements added, hydrogen overvoltage is increased and local corrosion is retarded to reduce hydrogen gas evolution. Therefore, battery performance is increased in addition to the remarkable reduction of mercury content.

Description

【発明の詳細な説明】 (発明の分野) 本発明は亜鉛アルカリ電池に関し、詳しくはインジウム
とコバルトとカルシウム、ストロンチウム、マグネシウ
ムより選ばれる1種以上を特定範囲で含有した亜鉛合金
をそのまま、もしくは汞化して電池用負極活物質として
用いた亜鉛アルカリ電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a zinc-alkaline battery, and more specifically, a zinc alloy containing one or more selected from indium, cobalt, calcium, strontium, and magnesium within a specific range can be used as is or as a battery. This invention relates to a zinc-alkaline battery which is used as a negative electrode active material for batteries.

(発明の背景) 亜鉛を負極活物質として用いたアルカリ電池等において
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、電池を密閉しなければならない。この電池の
密閉は電池の小型化を図る際には特に重要であるが、同
時に電池保存中の亜鉛の腐食により発生する水素ガスを
閉じ込めることになる。従って長期保存中に電池内部の
ガス圧が高まり、密閉が完全なほど爆発等の危険が伴な
う。
(Background of the Invention) In alkaline batteries and the like that use zinc as a negative electrode active material, the batteries must be sealed tightly because a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas generated due to corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion.

その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀の水素過電圧を利用した汞化亜鉛を負極活物質
として用いることが専ら行なわれている。このため、今
日市販されているアルカリ電池の負極活物質は5〜io
mi%程度の多量の水銀を含有しており、社会的ニーズ
として、より低水銀のもの、あるいは無水銀の電池の開
発が強く期待されるようになってきた。
As a countermeasure, research has been conducted to prevent corrosion of zinc, which is an active material for the negative electrode, and to reduce the generation of hydrogen gas inside the battery. It is being done. For this reason, the negative electrode active materials of alkaline batteries commercially available today are 5 to io
It contains a large amount of mercury, on the order of mi%, and as a social need, there are strong expectations for the development of lower mercury or mercury-free batteries.

そこで、電池内の水銀含有量を低減させるべく、亜鉛に
各種金属を添加した亜鉛合金粉末に関する提案が種々な
されている。例えば、亜鉛に鉛を添加した亜鉛合金粉末
、あるいは本発明者等による亜鉛に鉛とインジウムを添
加した亜鉛合金粉末(特開昭58−181266号公報
)等がある。しかし、これらの亜鉛合金粉末はある程度
のガス発生抑制効果を奏するが、まだ十分とは言えない
Therefore, various proposals have been made regarding zinc alloy powders in which various metals are added to zinc in order to reduce the mercury content in batteries. For example, there is a zinc alloy powder made by adding lead to zinc, or a zinc alloy powder made by the present inventors by adding lead and indium to zinc (Japanese Unexamined Patent Publication No. 181266/1983). However, although these zinc alloy powders have a certain degree of gas generation suppressing effect, it is still not sufficient.

このように、負極活物質である亜鉛合金粉末を低汞化と
しつつ、水素ガス発生量を低減し、しかも電池性能であ
る放電性能を高い水準に維持する電池は未だ得られてい
ない。
As described above, a battery has not yet been obtained in which the zinc alloy powder, which is the negative electrode active material, has a low resistance, reduces the amount of hydrogen gas generated, and maintains the discharge performance, which is the battery performance, at a high level.

(発明の目的) 本発明はかかる現状に鑑み、水銀の含有率を著しく減少
させつつ、水素ガス発生を抑制し、しがも放電性能を高
い水準に維持する負極活物質を用いた亜鉛アルカリ電池
を提供することを目的とする。
(Object of the Invention) In view of the current situation, the present invention provides a zinc-alkaline battery using a negative electrode active material that significantly reduces mercury content, suppresses hydrogen gas generation, and maintains discharge performance at a high level. The purpose is to provide

(発明の経緯) 本発明者らはこの目的に沿って鋭意研究の結果、亜鉛か
らなる負極活物質において、インジウムとコバルトとカ
ルシウム、ストロンチウム、マグネ・シウムより選ばれ
る1種以上を特定範囲の量添加することにより、これら
添加元素の相乗的な効果によって、従来の低汞化した亜
鉛合金粉末よりも更に水素ガス発生量を低下させ、しか
も放電性能に優れた亜鉛アルカリ電池が得られることを
見出し本発明に到達した。
(Background of the invention) As a result of intensive research in line with this purpose, the present inventors have found that a negative electrode active material made of zinc contains one or more selected from indium, cobalt, calcium, strontium, and magnesium in a specific range. It was discovered that by adding these elements, due to the synergistic effect of these additive elements, the amount of hydrogen gas generated was further reduced than that of conventional low-rate zinc alloy powders, and a zinc-alkaline battery with excellent discharge performance could be obtained. We have arrived at the present invention.

(発明の構成) すな、わら本発明は、インジウムを0.01〜0.5重
量%、コバルトを0.01〜0.5重量%、カルシウム
、ストロンチウム、マグネシウムより選ばれる1種以上
をo、oos〜0.5重量%含有する亜鉛合金を一負極
活物質と−して用いたことを特徴とする亜鉛アルカリ電
池にある。
(Structure of the Invention) In short, the present invention contains 0.01 to 0.5% by weight of indium, 0.01 to 0.5% by weight of cobalt, and one or more selected from calcium, strontium, and magnesium. , oos to 0.5% by weight of a zinc alloy is used as one negative electrode active material.

本発明において、インジウムとコバルトとカルシウム、
ストロンチウム、マグネシウムより選ばれる1種以上と
を特定量添加した亜鉛合金は、そのまま負極活物質とし
て用いるか、亜鉛合金を汞化した後に負極活物質として
用いる。汞化する場合の水銀含有率は、従来の負極活物
質の水銀含有率よりも少ない量、すなわち5.0重量%
未満であるが、より汞化率を低くし、低公害性を考慮す
ると3.0重量%以下である。また、1.0重量%前後
またはそれ以下の少量であってもガス発生を抑制するこ
とが可能である。特に、排気機構を備えた空気電池や水
素吸収機構を備えた亜鉛アルカリ電池等においては、水
素ガスの発生許容量は比較的大きいので、このような電
池に本発明を適用する場合は、1.0重量%以下の低汞
化率または無汞化の亜鉛合金が負極活物質として好まし
く用いられる。
In the present invention, indium, cobalt and calcium,
A zinc alloy to which a specific amount of one or more selected from strontium and magnesium is added is used as a negative electrode active material as it is, or used as a negative electrode active material after the zinc alloy is made into a hydrogen atom. The mercury content in the case of oxidation is smaller than the mercury content of conventional negative electrode active materials, that is, 5.0% by weight.
However, in consideration of lowering the filtration rate and reducing pollution, it is 3.0% by weight or less. Further, even if the content is as small as around 1.0% by weight or less, it is possible to suppress gas generation. In particular, in air batteries equipped with an exhaust mechanism, zinc-alkaline batteries equipped with a hydrogen absorption mechanism, etc., the permissible amount of hydrogen gas generated is relatively large, so when applying the present invention to such batteries, 1. Zinc alloys with a low or non-grading rate of 0% by weight or less are preferably used as the negative electrode active material.

この負極活物質に用いられる亜鉛合金のインジウムの含
有率は0.01〜0.5重量%、コバルトの含有率は0
.01〜0.5重量%、カルシウム、ストロンチウム、
マグネシウムより選ばれる1種以上の含有率は0.00
5〜0.5重量%と少量で添加効果が発揮される。イン
ジウムとコバルトとカルシウム、ストロンチウム、マグ
ネシウムより選ばれる1種以上の含有率がそれぞれ下限
未満では本発明の効果が得られず、上限を越えると、不
純物を含有した亜鉛のように、自己放電が進み、ガス発
生抑制および放電性能にとって良好な結果が得られない
。なお、カルシウム、ストロンチウム、マグネシウムよ
り選ばれる1種以上の含有率はo、oos〜0.2重量
%の範囲が特に好ましく、0.2重量%を越えた場合に
はそれほどの含有効果は見られない。
The indium content of the zinc alloy used in this negative electrode active material is 0.01 to 0.5% by weight, and the cobalt content is 0.
.. 01-0.5% by weight, calcium, strontium,
The content rate of one or more types selected from magnesium is 0.00
The effect of addition is exhibited at a small amount of 5 to 0.5% by weight. If the content of one or more selected from indium, cobalt, calcium, strontium, and magnesium is less than the lower limit, the effect of the present invention cannot be obtained, and if it exceeds the upper limit, self-discharge progresses as in the case of zinc containing impurities. , good results for gas generation suppression and discharge performance cannot be obtained. In addition, the content of one or more selected from calcium, strontium, and magnesium is particularly preferably in the range of o, oos to 0.2% by weight, and if it exceeds 0.2% by weight, no significant effect of the content is observed. do not have.

これら各添加元素の作用機構は充分に解明されていない
が、推定するに、亜鉛合金中に含まれているインジウム
は水素過電圧を高める作用を有し、コバルトはそれ自体
耐食性のある金属であることは知られているが、亜鉛と
溶体化した場合にも局部腐食反応の抑制に役立ち、一方
力ルシウム、ストロンチウム、マグネシウムについては
亜鉛合金表面を平滑化させる効果があり、これによって
反応表面積を減少させ、耐食性の向上に役立つと考えら
れる。
The mechanism of action of each of these additive elements is not fully understood, but it is assumed that indium contained in zinc alloy has the effect of increasing hydrogen overvoltage, and cobalt itself is a corrosion-resistant metal. It is known that lucium, strontium, and magnesium have the effect of smoothing the surface of the zinc alloy, thereby reducing the reaction surface area. , is thought to be useful for improving corrosion resistance.

本発明は、これら各作用の相乗効果により、放電特性を
劣化させることなく、耐食性のよい亜鉛合金が得られた
ものである。
In the present invention, due to the synergistic effect of these respective actions, a zinc alloy with good corrosion resistance is obtained without deteriorating the discharge characteristics.

このように本発明の亜鉛アルカリ電池は、電解液に苛性
カリ、苛性ソーダ等を主成分とするアルカリ水溶液を用
い、負極活物質に上記した亜鉛合金または汞化した亜鉛
合金、正極活物質に二酸化マンガン、酸化銀、酸素等を
用いることにより得られる。
As described above, the zinc-alkaline battery of the present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main component as an electrolyte, the above-mentioned zinc alloy or aqueous zinc alloy as a negative electrode active material, and manganese dioxide, as a positive electrode active material, Obtained by using silver oxide, oxygen, etc.

(実施例の説明) 以下、実施例および比較例に基づいて本発明を具体的に
説明する。
(Description of Examples) The present invention will be specifically described below based on Examples and Comparative Examples.

−1〜12および   1〜12 純度99.997%以上の亜鉛地金を約500℃で溶融
し、これに第1表に示すごとくインジウム、コバルト、
カルシウムの含有率がそれぞれ0.05重量重量%とな
るように添加して亜鉛合金を作成し、これを高圧アルゴ
ンガス(噴出圧5Ny/Ii)を使って粉体化した。次
に水酸化カリウム10%のアルカリ性溶液中にて上記粉
末に1.0重量%になるように水銀を添加して、汞化処
理を行ない亜鉛合金粉末(実施例1)を得た。
-1 to 12 and 1 to 12 A zinc ingot with a purity of 99.997% or more is melted at about 500°C, and indium, cobalt,
A zinc alloy was prepared by adding calcium at a content of 0.05% by weight, and this was pulverized using high-pressure argon gas (ejection pressure: 5 Ny/Ii). Next, mercury was added to the above powder to give a concentration of 1.0% by weight in an alkaline solution containing 10% potassium hydroxide, and a hydrochloric treatment was performed to obtain a zinc alloy powder (Example 1).

また、第1表に示すごとく、下記の組成でそれぞれ、 1)毫インジウムO,OS 重量%、コバルト0.05
重量%、ストロンチウム0.05重量%(実施例2)、 2)1422960.05重量%、コバルト0305重
鐘%、マグネシウム0.05重量%(実施例3)、 3)2422960.01重量%、コバルト0.01重
量%、カルシウムo、oos重量%(実施例4)、 4)2422960.01重量%、コバルトo、oj重
量%、ストロンチウム0.0051!1%(実施例5)
、 5)2422960.01重量%、コバルト0.01重
量%、マグネシウムo、oos重量%(実施例6)、 6):インジウム0.5重量%、コバルト0.5重量%
、カルシウム0.2重量%(実施例7)、1):インジ
ウム0.5重量%、コバルト0.5重量%、ストロンチ
ウム0.2重量%(実施例8)、8):インジウム0.
5重量%、コバルト、0.5重量%、マグネシウム0.
2重置%(実施例9)、9):インジウム0.5重量%
、コバルト0.5重量%、カルシウム0.5重量%(実
施例10)、10)2422960.01重量%、コバ
ルト0.01重量%、カルシウム0.003重腿%、ス
トロンチウム0.002重量%(実施例重量)、重量)
:インジウム0.5重量%、コバルト0.5重量%、カ
ルシウム0.2重量%、ストロンチウム0.2重置%、
マグネシウム0.1重口%(実施例12)12):イン
ジウム0.05重間%(比較例1)、13)14229
60.05重量%、コバルト0.05重M%(比較例2
)、 14)1422960.05重量%、カルシウム0.0
5重命%(比較例3)、 15):インジウムO,OS 重量%、ストロンチウム
0.05重量%、(比較例4) 16):インジウムo、os tint%、マグネシウ
ム0.05重量%(比較例5)、 重量):コバルト0.05重量%、カルシウム0.05
重量%(比較例6)、 18):インジウム1.0重量%、コバルト0.05重
量%、カルシウム0.05重量%(比較例7)、19)
:インジウムo、oos重量%、コバルト0.05重量
%、カルシウム0.05重量%(比較例8)、 20):インジウム0.05里帰%、コバルト0.00
5重量%、カルシウムo、os i量%(比較例9)、 21):インジウム0.05重量%、コバルト 1.0
重量%、カルシウム0.05重量%(比較例10)、2
2):インジウム0.05 mm%、コバルト0.05
重世%、カルシウム0.001重M%(比較例重量)、 23):インジウム0.05 重ffi%、コバルトo
、os mm%、カルシウム1.0重量%(比較例12
)からなる亜鉛合金をそれぞれ作成し、これを前記と同
様な方法で粉体化し、汞化処理を行なって水銀含有率が
1.0重量%の亜鉛合金粉末(実施例2〜12および比
較例1〜12)を得た。
In addition, as shown in Table 1, the following compositions: 1) Indium O, OS wt%, cobalt 0.05
Weight%, Strontium 0.05% by weight (Example 2), 2) 1422960.05% by weight, Cobalt 0305% by weight, Magnesium 0.05% by weight (Example 3), 3) 2422960.01% by weight, Cobalt 0.01 wt%, calcium o, oos wt% (Example 4), 4) 2422960.01 wt%, cobalt o, oj wt%, strontium 0.0051!1% (Example 5)
, 5) 2422960.01% by weight, 0.01% by weight of cobalt, 0.01% by weight of magnesium o, oos (Example 6), 6): 0.5% by weight of indium, 0.5% by weight of cobalt
, Calcium 0.2% by weight (Example 7), 1): Indium 0.5% by weight, Cobalt 0.5% by weight, Strontium 0.2% by weight (Example 8), 8): Indium 0.5% by weight.
5% by weight, cobalt, 0.5% by weight, magnesium 0.
Double placement% (Example 9), 9): Indium 0.5% by weight
, cobalt 0.5% by weight, calcium 0.5% by weight (Example 10), 10) 2422960.01% by weight, cobalt 0.01% by weight, calcium 0.003% by weight, strontium 0.002% by weight ( Example weight), weight)
: indium 0.5% by weight, cobalt 0.5% by weight, calcium 0.2% by weight, strontium 0.2% by weight,
Magnesium 0.1% by weight (Example 12) 12): Indium 0.05% by weight (Comparative Example 1), 13) 14229
60.05% by weight, cobalt 0.05% by weight (Comparative Example 2
), 14) 1422960.05% by weight, calcium 0.0
5% by weight (Comparative Example 3), 15): Indium O, OS tint%, Strontium 0.05% by weight, (Comparative Example 4) 16): Indium O, OS tint%, Magnesium 0.05% by weight (Comparative Example 5), weight): cobalt 0.05% by weight, calcium 0.05
Weight% (Comparative Example 6), 18): Indium 1.0% by weight, Cobalt 0.05% by weight, Calcium 0.05% by weight (Comparative Example 7), 19)
: indium o, oos wt%, cobalt 0.05 wt%, calcium 0.05 wt% (comparative example 8), 20): indium 0.05 wt%, cobalt 0.00
5% by weight, calcium o, os i amount% (comparative example 9), 21): indium 0.05% by weight, cobalt 1.0
% by weight, calcium 0.05% by weight (Comparative Example 10), 2
2): Indium 0.05 mm%, Cobalt 0.05
% weight, calcium 0.001 weight % (comparative example weight), 23): indium 0.05 weight %, cobalt o
, os mm%, calcium 1.0% by weight (Comparative Example 12
), which were pulverized in the same manner as described above, and subjected to a filtration treatment to produce zinc alloy powders with a mercury content of 1.0% by weight (Examples 2 to 12 and Comparative Examples). 1 to 12) were obtained.

このようにして得られた亜鉛合金粉末を使って水素ガス
発生試験を行ない、その結果を第1表に示す。なお、ガ
ス発生試験は、電解液として濃度40重量%の水酸化カ
リウム水溶液に酸化亜鉛を飽和させたものを5Ildl
用い、亜鉛合金粉末を10gを用いて45℃で50日間
のガス発生II (all/Q )を測定した。
A hydrogen gas generation test was conducted using the zinc alloy powder thus obtained, and the results are shown in Table 1. In addition, in the gas generation test, an aqueous potassium hydroxide solution with a concentration of 40% by weight was saturated with zinc oxide as an electrolytic solution.
The gas evolution II (all/Q) was measured using 10 g of zinc alloy powder at 45° C. for 50 days.

また、これらの亜鉛合金粉末を負極活物質として第1図
に示すアルカリマンガン電池を用いて電池性能を評価し
た。第1図のアルカリマンガン電池は、正極缶1、正極
2、セパレーター3、亜鉛合金粉末をカルボキシメチル
セルロースでゲル化した負極4、負極集電体5、ゴムパ
ツキン6、押さえ板7で構成されている。このアルカリ
マンガン電池を用いて放電負荷4Ω、20℃の放電条件
により終止電圧0.9Vまでの放電持続時間を測定し、
従来の負極活物質を用いた後述する比較例13の測定値
を100とした指数で示した。結果を第1表に示す。
Further, battery performance was evaluated using an alkaline manganese battery shown in FIG. 1 using these zinc alloy powders as a negative electrode active material. The alkaline manganese battery shown in FIG. 1 is composed of a positive electrode can 1, a positive electrode 2, a separator 3, a negative electrode 4 made of zinc alloy powder gelled with carboxymethyl cellulose, a negative electrode current collector 5, a rubber packing 6, and a pressing plate 7. Using this alkaline manganese battery, we measured the discharge duration to a final voltage of 0.9V under discharge conditions of 4Ω discharge load and 20°C.
The values are expressed as an index with the measured value of Comparative Example 13, which will be described later, using a conventional negative electrode active material set as 100. The results are shown in Table 1.

工l」1ユ 実施例1と同様の方法で亜鉛に水銀を5.0重量%添加
した従来より用いられている汞化亜鉛合金粉末(比較例
13)を得た。これを実施例1と同様の方法で水素ガス
発生試験と電池性能試験を行ない、その結果を第1表に
示した。
In the same manner as in Example 1, a conventionally used zinc chloride alloy powder (Comparative Example 13) in which 5.0% by weight of mercury was added to zinc was obtained. This was subjected to a hydrogen gas generation test and a battery performance test in the same manner as in Example 1, and the results are shown in Table 1.

第1表に示されるごとく、亜鉛にインジウムとコバルト
とカルシウム、ストロンチウム、マグネシウムより選ば
れる1種以上を特定量添加して汞化させた汞化亜鉛合金
粉末を負極活物質に用いた実施例1〜12は、比較例1
〜12や亜鉛に水銀のみを添加した従来より用いられて
いる汞化亜鉛合金粉末を負極活物質に用いた比較例13
に比べて、水素ガス発生抑制効果が大きく、放電性能も
優れていることがわかる。
As shown in Table 1, Example 1 in which a zinc oxide alloy powder obtained by adding a specific amount of one or more selected from indium, cobalt, calcium, strontium, and magnesium to zinc to form a oxide was used as a negative electrode active material. ~12 is Comparative Example 1
Comparative Example 13 in which the conventionally used zinc chloride alloy powder, in which only mercury was added to ~12 and zinc, was used as the negative electrode active material.
It can be seen that the effect of suppressing hydrogen gas generation is greater and the discharge performance is also superior.

(発明の効果) 以上説明のごとく、インジウムとコバルトとカルシウム
、ストロンチウム、マグネシウムより選ばれる1種以上
を特定範囲で含有した亜鉛合金をそのまま、もしくは汞
化して負極活物質として用いた本発明の亜鉛アルカリ電
池は、水素ガス発生率を抑制しつつ、電池性能を向上さ
せることが可能であり、また水銀が低含有率もしくは含
有しないことから、社会的ニーズにも沿ったものである
(Effects of the Invention) As explained above, the zinc alloy of the present invention, which contains a specific range of one or more selected from indium, cobalt, calcium, strontium, and magnesium, is used as a negative electrode active material either as it is or after being made into a liquid. Alkaline batteries can improve battery performance while suppressing the hydrogen gas generation rate, and also meet social needs because they contain low or no mercury.

従って、本発明の亜鉛アルカリ電池は広範な用途に使用
可能である。
Therefore, the zinc-alkaline battery of the present invention can be used in a wide range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

、  第1図は本発明に係わるアルカリマンガン電池の
原理図を示す; 1:正極缶、2:正極、3:セパレーター、4:負極、
5:負極i電体、6:ゴムパツキン、7:押さえ板。
, FIG. 1 shows a principle diagram of an alkaline manganese battery according to the present invention; 1: positive electrode can, 2: positive electrode, 3: separator, 4: negative electrode,
5: Negative electrode i-electric body, 6: Rubber packing, 7: Pressing plate.

Claims (1)

【特許請求の範囲】 1、インジウムを0.01〜0.5重量%、コバルトを
0.01〜0.5重量%、カルシウム、ストロンチウム
、マグネシウムより選ばれる1種以上を合計0.005
〜0.5重量%含有する亜鉛合金を負極活物質として用
いたことを特徴とする亜鉛アルカリ電池。 2、前記亜鉛合金が汞化されている前記特許請求の範囲
1項記載の亜鉛アルカリ電池。
[Claims] 1. 0.01 to 0.5% by weight of indium, 0.01 to 0.5% by weight of cobalt, and a total of 0.005% of one or more selected from calcium, strontium, and magnesium.
A zinc-alkaline battery characterized in that a zinc alloy containing ~0.5% by weight is used as a negative electrode active material. 2. The zinc-alkaline battery according to claim 1, wherein the zinc alloy is made of aluminum.
JP60131636A 1985-06-19 1985-06-19 Zinc alkaline battery Expired - Lifetime JPH0619991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60131636A JPH0619991B2 (en) 1985-06-19 1985-06-19 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131636A JPH0619991B2 (en) 1985-06-19 1985-06-19 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS61290651A true JPS61290651A (en) 1986-12-20
JPH0619991B2 JPH0619991B2 (en) 1994-03-16

Family

ID=15062684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131636A Expired - Lifetime JPH0619991B2 (en) 1985-06-19 1985-06-19 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0619991B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Also Published As

Publication number Publication date
JPH0619991B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
JPH0371737B2 (en)
JPS61153950A (en) Zinc alkaline storage battery
JPH0421310B2 (en)
JPS6177257A (en) Zinc alkaline battery
JPH0375985B2 (en)
JPS61290651A (en) Zinc alkaline battery
JPH0622122B2 (en) Zinc alkaline battery
JPS61290655A (en) Zinc alkaline battery
JPS61290657A (en) Zinc alkaline battery
JPS61290652A (en) Zinc alkaline battery
JPS6240161A (en) Zinc alkaline battery
JPS61290654A (en) Zinc alkaline battery
JPS61153952A (en) Zinc alkaline storage battery
JPH0418674B2 (en)
JPS61290653A (en) Zinc alkaline battery
JPS61153951A (en) Zinc alkaline storage battery
JPS6240159A (en) Zinc alkaline battery
JPS6240157A (en) Zinc alkaline battery
JPS61290650A (en) Zinc alkaline battery
JPH0418672B2 (en)
JPS6240160A (en) Zinc alkaline battery
JPH0418673B2 (en)
JPH0375983B2 (en)
JPS61290656A (en) Zinc alkaline battery
JPS62123657A (en) Zinc-alkaline battery