JPS61290654A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS61290654A
JPS61290654A JP60131639A JP13163985A JPS61290654A JP S61290654 A JPS61290654 A JP S61290654A JP 60131639 A JP60131639 A JP 60131639A JP 13163985 A JP13163985 A JP 13163985A JP S61290654 A JPS61290654 A JP S61290654A
Authority
JP
Japan
Prior art keywords
weight
zinc
aluminum
cobalt
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60131639A
Other languages
Japanese (ja)
Other versions
JPH0619994B2 (en
Inventor
Nobuyori Kasahara
笠原 暢順
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Ryoji Okazaki
良二 岡崎
Kanji Takada
寛治 高田
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60131639A priority Critical patent/JPH0619994B2/en
Publication of JPS61290654A publication Critical patent/JPS61290654A/en
Publication of JPH0619994B2 publication Critical patent/JPH0619994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To retard hydrogen gas evolution in addition to the reduction of mercury content by using zinc alloy obtained by adding a specified amount of indium, thallium, cobalt, and aluminum to zinc as a negative active material of zinc alkaline battery. CONSTITUTION:A zinc alloy containing 0.01-0.5wt% indium and/or thallium, 0.01-0.5wt% cobalt, and 0.005-0.5wt% aluminum is used as it is or after amalgamation as a negative active material to form a negative electrode 4. The negative electrode 4 is combined with a positive electrode 2 mainly comprising manganese dioxide, and a separator 3 to form a zinc alkaline battery. By the synergistic effect of the elements added, hydrogen overvoltage is increased and local corrosion is retarded to reduce hydrogen gas evolution. Therefore, battery performance is increased in addition to the remarkable reduction of mercury content.

Description

【発明の詳細な説明】 (発明の分野) 本発明は亜鉛アルカリ電池に関し、詳しくはインジウム
、タリウムより選ばれる1種以上とコバルトとアルミニ
ウムを特定範囲で含有した亜鉛合金をそのまま、もしく
は汞化して電池用負極活物質として用いた亜鉛アルカリ
電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a zinc alkaline battery, and more specifically, a zinc alloy containing one or more selected from indium and thallium, cobalt, and aluminum within a specific range, either as is or in the form of a This invention relates to a zinc-alkaline battery used as a negative electrode active material for batteries.

(発明の背景) 亜鉛を負極活物質どして用いたアルカリ電池等において
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、電池を密閉しなければならない。この電池の
密閉は電池の小型化を図る際には特に重要であるが、同
時に電池保存中の亜鉛の腐食により発生する水素ガスを
閉じ込めることになる。従って長期保存中に電池内部の
ガス圧が高まり、密閉が完全なほど爆発等の危険が伴な
う。
(Background of the Invention) In alkaline batteries and the like that use zinc as a negative electrode active material, the batteries must be sealed tightly because a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas generated due to corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion.

その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀の水素過電圧を利用した汞化亜鉛を負極活物質
として用いることが専ら行なわれている。このため、今
1日市販されているアルカリ電池の負極活物質は5〜1
0重量%程度の多聞の水銀を含有しており、社会的ニー
ズとして、より低水銀のもの、あるいは無水銀の電池の
開発が強く期待されるようになってきた。
As a countermeasure, research has been conducted to prevent corrosion of zinc, which is an active material for the negative electrode, and to reduce the generation of hydrogen gas inside the battery. It is being done. For this reason, the negative electrode active material of alkaline batteries commercially available today is 5 to 1
It contains a large amount of mercury, about 0% by weight, and as a social need, there are strong expectations for the development of lower mercury or mercury-free batteries.

そこで、電池内の水銀含有量を低減させるべく、亜鉛に
各種金属を添加した亜鉛合金粉末に関する1開業が種々
なされている。例えば、亜鉛に鉛を添加した亜鉛合金粉
末、あるいは本発明者等による亜鉛に鉛とインジウムを
添加した亜鉛合金粉末(特開昭58−181266号公
報)等がある。しかし、これらの亜鉛合金粉末はある程
度のガス発生抑制効果を奏するが、まだ十分とは言えな
い。
Therefore, in order to reduce the mercury content in batteries, various efforts have been made regarding zinc alloy powders in which various metals are added to zinc. For example, there is a zinc alloy powder made by adding lead to zinc, or a zinc alloy powder made by the present inventors by adding lead and indium to zinc (Japanese Unexamined Patent Publication No. 181266/1983). However, although these zinc alloy powders have a certain degree of gas generation suppressing effect, it is still not sufficient.

このように、負極活物質である亜鉛合金粉末を低汞化と
しつつ、水素ガス発生面を低減し、しかも電池性能であ
る放電性能を高い水準に維持する電池は未だ得られてい
ない。
As described above, a battery has not yet been obtained in which the zinc alloy powder, which is the negative electrode active material, has a low flux, the hydrogen gas generation surface is reduced, and the discharge performance, which is the battery performance, is maintained at a high level.

(発明の目的) 本発明はかかる現状に鑑み、水銀の含有率を著しく減少
させつつ、水素ガス発生を抑制し、しかも放電性能を高
い水準に維持する負極活物質を用いた亜鉛アルカリ電池
を提供することを目的とする。
(Object of the Invention) In view of the current situation, the present invention provides a zinc-alkaline battery using a negative electrode active material that significantly reduces mercury content, suppresses hydrogen gas generation, and maintains discharge performance at a high level. The purpose is to

(発明の経緯) 本発明者らはこの目的に沿って鋭意研究の結果、亜鉛か
らなる負極活物質において、インジウム、タリウムより
選ばれる 1種以上とコバルトとアルミニウムを特定範
囲のω添加することにより、これら添加元素の相乗的な
効果によって、従来の低汞化した亜鉛合金粉末よりも更
に水素ガス発生日を低下させ、しかも放電性能に優れた
亜鉛アルカリ電池が得られることを見出し本発明に到達
した。
(Background of the invention) As a result of intensive research in line with this purpose, the present inventors found that by adding one or more selected from indium and thallium, cobalt, and aluminum within a specific range to a negative electrode active material made of zinc, The inventors discovered that the synergistic effect of these additive elements makes it possible to obtain a zinc-alkaline battery that reduces the hydrogen gas generation time even more than conventional zinc alloy powders with reduced flux and has excellent discharge performance, resulting in the present invention. did.

(発明の構成) すなわち本発明は、インジウム、タリウムより選ばれる
1種以上を0.01〜0.5重量%、コバルトを0.0
1〜0.5重量%、アルミニウムを0.005〜0.5
重量%含有する亜鉛合金を負極活物質として用いたこと
を特徴とする亜鉛アルカリ電池にある。
(Structure of the Invention) That is, the present invention contains 0.01 to 0.5% by weight of one or more selected from indium and thallium, and 0.0% by weight of cobalt.
1-0.5% by weight, aluminum 0.005-0.5%
A zinc-alkaline battery characterized by using a zinc alloy containing % by weight as a negative electrode active material.

本発明において、インジウム、タリウムより選ばれ、る
1種以上とコバルトとアルミニウムを特定量添加した亜
鉛合金は、そのまま負極活物質として用いるか、亜鉛合
金を汞化した後に負極活物質として用いる。汞化する場
合の水銀含有率は、従来の負極活物質の水銀含有率より
も少ない量、すなわち5.0重量%未満であるが、より
汞化率を低くし、低公害性を考慮すると3.0重1%以
下である。また、1.0重量%前俊またはそれ以下の少
量であってもガス発生を抑制することが可能である。
In the present invention, a zinc alloy to which one or more selected from indium and thallium, cobalt, and aluminum are added in specific amounts is used as a negative electrode active material as it is, or is used as a negative electrode active material after the zinc alloy is made into a starch. The mercury content when it is converted into water is lower than the mercury content of conventional negative electrode active materials, that is, less than 5.0% by weight. .0 weight 1% or less. Further, even if the content is as small as 1.0% by weight or less, it is possible to suppress gas generation.

特に、排気機構を備えた空気電池や水素吸収機構を備え
た亜鉛アルカリ電池等においては、水素ガスの発生許容
量は比較的大きいので、このような電池に本発明を適用
する場合は、1.0重量%以下の低汞化率または無汞化
の亜鉛合金が負極活物質として好ましく用いられる。
In particular, in air batteries equipped with an exhaust mechanism, zinc-alkaline batteries equipped with a hydrogen absorption mechanism, etc., the permissible amount of hydrogen gas generated is relatively large, so when applying the present invention to such batteries, 1. Zinc alloys with a low or non-grading rate of 0% by weight or less are preferably used as the negative electrode active material.

この負極活物質に用いられる亜鉛合金のインジウム、タ
リウムより選ばれる1種以上の含有率は0.01〜0.
5重量%、コバルトの含有率は0.01〜0.5重量%
、アルミニウムの含有率はo、oos〜0.5重量%と
少量で添加効果が発揮される。インジウム、タリウムよ
り選ばれる1種以上とコバルトとアルミニウムの含有率
がそれぞれ下限未満では本発明の効果が得られず、上限
を越えると、不純物を含有した亜鉛のように、自己放電
が進み、ガス発生抑制および放電性能にとって良好な結
果が1qられない。なお、アルミニウムの含有率はo、
oos〜0.2重措%の範囲が特に好ましく、0.2重
量%を越えた場合にはそれほどの含有効果は見られない
The content of one or more selected from indium and thallium in the zinc alloy used in this negative electrode active material is 0.01 to 0.
5% by weight, cobalt content 0.01-0.5% by weight
The effect of addition is exhibited when the content of aluminum is as small as o, oos to 0.5% by weight. If the content of one or more selected from indium and thallium, cobalt, and aluminum is below the respective lower limits, the effects of the present invention cannot be obtained, and if the upper limits are exceeded, self-discharge progresses as in the case of zinc containing impurities, and gas Good results for generation suppression and discharge performance cannot be achieved. Note that the aluminum content is o,
A range of from oos to 0.2% by weight is particularly preferable, and if it exceeds 0.2% by weight, no significant effect will be observed.

これら各添加元素の作用効果は充分に解明されていない
が、推定するに、亜鉛合金中に含まれているインジウム
、タリウムは水素過電圧を高める作用を有し、コバルト
はそれ自体耐食性のある金属であることは知られている
が、亜鉛と溶体化した場合にも局部腐食反応の抑制に役
立つと考えられる。また、アルミニウムは亜鉛合金表面
を平滑化させる効果があり、これによって反応表面積を
減少させ、耐食性の向上に役立つと考えられる。
Although the effects of each of these additive elements have not been fully elucidated, it is presumed that indium and thallium contained in zinc alloys have the effect of increasing hydrogen overvoltage, and cobalt itself is a corrosion-resistant metal. Although it is known that zinc exists, it is thought that it also helps to suppress local corrosion reactions when it is dissolved in zinc. Additionally, aluminum has the effect of smoothing the surface of the zinc alloy, which is thought to reduce the reaction surface area and help improve corrosion resistance.

本発明は、これら各作用の相乗効果により、放電特性を
劣化させることなく、耐食性のよい亜鉛合金が得られた
ものである。
In the present invention, due to the synergistic effect of these respective actions, a zinc alloy with good corrosion resistance is obtained without deteriorating the discharge characteristics.

このように本発明の亜鉛アルカリ電池は、電解液に苛性
カリ、苛性ソーダ等を主成分とするアルカリ水溶液を用
い、負極活物質に上記した亜鉛合金または汞化した亜鉛
合金、正極活物質に二酸化マンガン、酸化銀、酸素等を
用いることにより得られる。
As described above, the zinc-alkaline battery of the present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main component as an electrolyte, the above-mentioned zinc alloy or aqueous zinc alloy as a negative electrode active material, and manganese dioxide, as a positive electrode active material, Obtained by using silver oxide, oxygen, etc.

(実施例の説明) 以下、実施例および比較例に基づいて本発明を具体的に
説明する。
(Description of Examples) The present invention will be specifically described below based on Examples and Comparative Examples.

実f 1〜10および 較例1〜11 純度99,997%以上の亜鉛地金を約500℃で溶融
し、これに第1表に示すごとくインジウム、コバルト、
アルミニウムの含有率がそれぞれ0.05重量%となる
ように添加して亜鉛合金を作成し、これを高圧アルゴン
ガス(噴出圧5Kg/aI)を使って粉体化した。次に
水酸化カリウム10%のアルカリ性溶液中にて上記粉末
に 1.0重量%になるように水銀を添加して、汞化処
理を行ない亜鉛合金粉末(実施例1)を得た。
Actual f 1 to 10 and Comparative Examples 1 to 11 A zinc ingot with a purity of 99,997% or more is melted at about 500°C, and indium, cobalt,
A zinc alloy was prepared by adding aluminum at a content of 0.05% by weight, and this was pulverized using high-pressure argon gas (ejection pressure: 5 kg/aI). Next, mercury was added to the above powder to give a concentration of 1.0% by weight in an alkaline solution containing 10% potassium hydroxide, and a hydrochloric treatment was performed to obtain a zinc alloy powder (Example 1).

また、第1表に示すごとく、下記の組成でそれぞれ、 1):タワ960.05重量%、コバルト0.05重量
%、アルミニウム0.05重量%(実施例2)、2ン:
インジウム0.01重量%、コバルト0.01重量%、
アルミニウム0.01重量%(実施例3)、 3):インジウム0.5重量%、コバルト0.5重量%
、アルミニウム0.2重量%(実施例4)、4):タリ
ウム0.01重量%、コバルト0.01重量%、アルミ
ニウム0.005重口%(実施例5)、5):タリウム
0.5重量%、コバルト0.5重量%、アルミニウム0
.2重量%(実施例6)、6):インジウムO,OS重
量%、タリウム0.05重量%、コバルト 0.051
1i量%、アルミニウム0.05重量%(実施例7)、 1):インジウム0.2重量%、タリウム0.3重量%
、コバルト0.53i1%、アルミニウム0.21量%
゛(実施例8)、 a)2429960.05重量%、コバルト0.05重
量%、アルミニウム0.2重量%(実施例9)、 9):インジウム0.51量%、コバルト0.51量%
、アルミニウム0.53111%(実施例10)、10
)2429960.05重量%(比較例1)、11):
タワ960.05重量%(比較例2)、12):インジ
ウム0.05 III%、コバルト0.05重量%(比
較例3)、 13)2429960.05重量%、アルミニウム0.
05重量%(比較例4)、 14):コバルト0.05重量%、アルミニウム0.0
5重量%(比較例5)、 15)ニインジウム 1,031i11%、コバルト0
.05重量%、アルミニウム0.05重量%(比較例6
)、16):インジウム0.005重量%、コバルト0
.05重口%、アルミニウム0.05重量%(比較例7
)、 17):インジウム0.05 重量%、コバルトo、o
os重量%、アルミニウム0.05重量%(比較例8)
、 18):インジウム0.05重量%、コバルト0.1重
量%、アルミニウム0.05重量%(比較例9)、19
):インジウム0.05343%、コバルト0.05重
量%、アルミニウム0.001重量%(比較例10)、 20)2429960.05重量%、コバルト0.05
重量%、アルミニウム1,0重量%(比較例からなる亜
鉛合金をそれぞれ作成し、これを前記と同様な方法で粉
体化し、汞化処理を行なって水銀含有率が1.0重量%
の亜鉛合金粉末(実施例2〜10および比較例1〜11
)を得た。
In addition, as shown in Table 1, the following compositions were used: 1): 960.05% by weight of tower, 0.05% by weight of cobalt, 0.05% by weight of aluminum (Example 2), 2):
Indium 0.01% by weight, Cobalt 0.01% by weight,
Aluminum 0.01% by weight (Example 3), 3): Indium 0.5% by weight, Cobalt 0.5% by weight
, 0.2% by weight of aluminum (Example 4), 4): 0.01% by weight of thallium, 0.01% by weight of cobalt, 0.005% by weight of aluminum (Example 5), 5): 0.5% by weight of thallium wt%, cobalt 0.5 wt%, aluminum 0
.. 2 wt% (Example 6), 6): Indium O, OS wt%, thallium 0.05 wt%, cobalt 0.051
1i amount%, aluminum 0.05% by weight (Example 7), 1): indium 0.2% by weight, thallium 0.3% by weight
, cobalt 0.53i1%, aluminum 0.21% by weight
(Example 8), a) 2429960.05% by weight, 0.05% by weight of cobalt, 0.2% by weight of aluminum (Example 9), 9): 0.51% by weight of indium, 0.51% by weight of cobalt
, aluminum 0.53111% (Example 10), 10
) 2429960.05% by weight (Comparative Example 1), 11):
Tower 960.05% by weight (Comparative Example 2), 12): Indium 0.05% III, Cobalt 0.05% by weight (Comparative Example 3), 13) 2429960.05% by weight, Aluminum 0.
05% by weight (Comparative Example 4), 14): 0.05% by weight of cobalt, 0.0% by weight of aluminum
5% by weight (Comparative Example 5), 15) Niindium 1,031i 11%, Cobalt 0
.. 05% by weight, aluminum 0.05% by weight (Comparative Example 6
), 16): Indium 0.005% by weight, Cobalt 0
.. 05% by weight, aluminum 0.05% by weight (Comparative Example 7
), 17): Indium 0.05% by weight, Cobalt o, o
os weight%, aluminum 0.05 weight% (Comparative Example 8)
, 18): Indium 0.05% by weight, Cobalt 0.1% by weight, Aluminum 0.05% by weight (Comparative Example 9), 19
): Indium 0.05343%, Cobalt 0.05% by weight, Aluminum 0.001% by weight (Comparative Example 10), 20) 2429960.05% by weight, Cobalt 0.05
wt%, aluminum 1.0 wt% (a zinc alloy consisting of a comparative example was prepared, powdered in the same manner as above, and subjected to a filtration treatment to have a mercury content of 1.0 wt%)
Zinc alloy powder (Examples 2 to 10 and Comparative Examples 1 to 11)
) was obtained.

このようにして得られた亜鉛合金粉末を使って水素ガス
発生試験を行ない、その結果を第1表に示す。なお、ガ
ス発生試験は、電解液として濃度40重量%の水酸化カ
リウム水溶液に酸化亜鉛を飽和させたものをSid用い
、亜鉛合金粉末を1017を用いて45℃で50日間の
ガス発生ff1(ati!/1ll)を測定した。
A hydrogen gas generation test was conducted using the zinc alloy powder thus obtained, and the results are shown in Table 1. In the gas generation test, an aqueous solution of potassium hydroxide with a concentration of 40% by weight was saturated with zinc oxide as the electrolytic solution (Sid), and a zinc alloy powder of 1017 was used to conduct the gas generation test at 45°C for 50 days. !/1ll) was measured.

また、これらの亜鉛合金粉末を負極活物質として第1図
に示すアルカリマンガン電池を用いて電池性能を評価し
た。第1図のアルカリマンガン電池は、正極缶1、正極
2、セパレーター3、亜鉛合金粉末をカルボキシメヂル
セルロースでゲル化した負極4、負極集電体5、ゴムパ
ツキン6、押さえ板7で構成されている。このアルカリ
マンガン電池を用いて放電負荷4Ω、20℃の放電条件
により終止電圧0.9Vまでの放電持続時間を測定し、
従来の負極活物質を用いた復述する比較例12の測定値
を100とした指数で示した。結果を第1表に示す。
Further, battery performance was evaluated using an alkaline manganese battery shown in FIG. 1 using these zinc alloy powders as a negative electrode active material. The alkaline manganese battery shown in Fig. 1 is composed of a positive electrode can 1, a positive electrode 2, a separator 3, a negative electrode 4 made of zinc alloy powder gelled with carboxymethyl cellulose, a negative electrode current collector 5, a rubber packing 6, and a holding plate 7. There is. Using this alkaline manganese battery, we measured the discharge duration to a final voltage of 0.9V under discharge conditions of 4Ω discharge load and 20°C.
It is expressed as an index with the measured value of Comparative Example 12, which will be described again, using a conventional negative electrode active material set as 100. The results are shown in Table 1.

嵐tUヱ 実施例1と同様の方法で亜鉛に水銀を5.0重量%添加
した従来より用いられている汞化亜鉛合金粉末(比較例
12)を得た。これを実施例1と同様の方法で水素ガス
発生試験と電池性能試験を行ない、その結果を第1表に
示した。
A conventionally used zinc chloride alloy powder (Comparative Example 12) in which 5.0% by weight of mercury was added to zinc was obtained in the same manner as in Example 1. This was subjected to a hydrogen gas generation test and a battery performance test in the same manner as in Example 1, and the results are shown in Table 1.

第1表 第1表に示されるごとく、亜鉛にインジウム、タリウム
より選ばれる1種以上とコバルトとアルミニウムを特定
m添加して汞化させた汞化亜鉛合金粉末を負極活物質に
用いた実施例1〜10は、比較例1〜11や亜鉛に水銀
のみを添加した従来より用いられている汞化亜鉛合金粉
末を負極活物質に用いた比較例12に比べて、水素ガス
発生抑制効果が大きく、放電性能も優れていることがわ
かる。
Table 1 As shown in Table 1, an example in which a zinc oxide alloy powder obtained by adding a specific amount of one or more selected from indium and thallium, cobalt, and aluminum to zinc to form a oxide was used as a negative electrode active material. Examples 1 to 10 have a greater effect of suppressing hydrogen gas generation than Comparative Examples 1 to 11 and Comparative Example 12 in which the conventionally used zinc hydride alloy powder, in which only mercury was added to zinc, was used as the negative electrode active material. It can be seen that the discharge performance is also excellent.

(発明の効果) 以上説明のごとく、インジウム、タリウムより選ばれる
1種以上とコバルトとアルミニウムを特定範囲で含有し
た亜鉛合金をそのまま、もしくは汞化して負極活物質と
して用いた本発明の亜鉛アルカリ電池は、水素ガス発生
率を抑制しつつ、電池性能を向上させることが可能であ
り、また水銀が低含有率もしくは含有しないことから、
社会的ニーズにも沿ったものである。従って、本発明の
亜鉛アルカリ電池は広範な用途に使用可能である。
(Effects of the Invention) As explained above, the zinc-alkaline battery of the present invention uses a zinc alloy containing one or more selected from indium and thallium, cobalt, and aluminum within a specific range as a negative electrode active material, either as it is or after it has been made into a starch. It is possible to improve battery performance while suppressing the hydrogen gas generation rate, and because it contains low or no mercury,
It is also in line with social needs. Therefore, the zinc-alkaline battery of the present invention can be used in a wide range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わるアルカリマンガン電池の原理図
を示す。 1:正極缶、2:正極、3:セパレーター、4:負極、
5:負極集電体、6:ゴムパツキン、7:押さえ板。
FIG. 1 shows a principle diagram of an alkaline manganese battery according to the present invention. 1: positive electrode can, 2: positive electrode, 3: separator, 4: negative electrode,
5: Negative electrode current collector, 6: Rubber packing, 7: Pressing plate.

Claims (1)

【特許請求の範囲】 1、インジウム、タリウムより選ばれる1種以上を合計
0.01〜0.5重量%、コバルトを0.01〜0.5
重量%、アルミニウムを0.005〜0.5重量%含有
する亜鉛合金を負極活物質として用いたことを特徴とす
る亜鉛アルカリ電池。 2、前記亜鉛合金が汞化されている前記特許請求の範囲
第1項記載の亜鉛アルカリ電池。
[Claims] 1. A total of 0.01 to 0.5% by weight of one or more selected from indium and thallium, and 0.01 to 0.5% of cobalt.
1. A zinc-alkaline battery characterized in that a zinc alloy containing 0.005 to 0.5% by weight of aluminum is used as a negative electrode active material. 2. The zinc-alkaline battery according to claim 1, wherein the zinc alloy is made of aluminum.
JP60131639A 1985-06-19 1985-06-19 Zinc alkaline battery Expired - Lifetime JPH0619994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60131639A JPH0619994B2 (en) 1985-06-19 1985-06-19 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131639A JPH0619994B2 (en) 1985-06-19 1985-06-19 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS61290654A true JPS61290654A (en) 1986-12-20
JPH0619994B2 JPH0619994B2 (en) 1994-03-16

Family

ID=15062757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131639A Expired - Lifetime JPH0619994B2 (en) 1985-06-19 1985-06-19 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0619994B2 (en)

Also Published As

Publication number Publication date
JPH0619994B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
JPH0371737B2 (en)
JPH0421310B2 (en)
JPS61153950A (en) Zinc alkaline storage battery
JPS6177257A (en) Zinc alkaline battery
JPH0375985B2 (en)
JPH0622122B2 (en) Zinc alkaline battery
JPS61290654A (en) Zinc alkaline battery
JPS61290651A (en) Zinc alkaline battery
JPH0418674B2 (en)
JPS61290655A (en) Zinc alkaline battery
JPS61290652A (en) Zinc alkaline battery
JPS6240161A (en) Zinc alkaline battery
JPS61290653A (en) Zinc alkaline battery
JPS61290657A (en) Zinc alkaline battery
JPS61153951A (en) Zinc alkaline storage battery
JPS61153952A (en) Zinc alkaline storage battery
JPS6240157A (en) Zinc alkaline battery
JPS61290650A (en) Zinc alkaline battery
JPS6240159A (en) Zinc alkaline battery
JPH0418672B2 (en)
JPS61153949A (en) Zinc alkaline storage battery
JPH0375982B2 (en)
JPS6177260A (en) Zinc alkaline battery
JPH0375983B2 (en)
JPS6240160A (en) Zinc alkaline battery