JPS61153950A - Zinc alkaline storage battery - Google Patents

Zinc alkaline storage battery

Info

Publication number
JPS61153950A
JPS61153950A JP59273757A JP27375784A JPS61153950A JP S61153950 A JPS61153950 A JP S61153950A JP 59273757 A JP59273757 A JP 59273757A JP 27375784 A JP27375784 A JP 27375784A JP S61153950 A JPS61153950 A JP S61153950A
Authority
JP
Japan
Prior art keywords
weight
zinc
active material
electrode active
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59273757A
Other languages
Japanese (ja)
Other versions
JPH0371738B2 (en
Inventor
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Ryoji Okazaki
良二 岡崎
Kanji Takada
寛治 高田
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP59273757A priority Critical patent/JPS61153950A/en
Publication of JPS61153950A publication Critical patent/JPS61153950A/en
Publication of JPH0371738B2 publication Critical patent/JPH0371738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the performance of a battery while the generation of hydrogen gas is being suppress by using a zinc alloy that contains indium, calcium, and one or more elements selected from bismuth and tellurium in a specific range as the negative electrode active material. CONSTITUTION:A zinc alloy that contains 0.01 to 0.05 weight % of indium, 0.005 to 0.5 weight % of calcium, and a total of 0.01 to 0.5 weight % of one or more elements selected from bismuth and tellurium is used as the negative electrode active material. Or after the zinc alloy is changed into a mercury-type one, it is obtained as the negative electrode active material. Then, a zinc alkaline storage battery is formed by combining the negative electrode active material 4, positive electrode active material 2 that uses manganese dioxide and such, and an electrolytic solution made of an alkaline aqueous solution whose principal components are caustic potash and such. As a result, the content of mercury can be removed or exceedingly be reduced by the activation of an additive element and the discharge performance can be maintained on high levels while the generation of hydrogen gas is being suppressed.

Description

【発明の詳細な説明】 (発明の分野) 本発明は亜鉛アルカリ電池に関し、詳しくはインジウム
とカルシウムとビスマス、テルルより選ばれる1種以上
を特定範囲で含有した亜鉛合金をそのまま、もしくは汞
化して電池用負極活物質として用いた亜鉛アルカリ電池
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a zinc alkaline battery, and more specifically, a zinc alloy containing one or more selected from indium, calcium, bismuth, and tellurium within a specific range, either as it is or in the form of a starch. This invention relates to a zinc-alkaline battery used as a negative electrode active material for batteries.

(発明の背景) 亜鉛を負極活物質として用いたアルカリ電池等において
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、電池を密閉しなければならない。この電池の
密閉は電池の小型化を図る際には特に重要であるが、同
時に電池保存中の亜鉛の腐食により撞生ずる水素ガスを
閉じ込めることになる。従って長期保存中に電池内部の
ガス圧が高まり、密閉が完全なほど爆発等の危険が伴な
う。
(Background of the Invention) In alkaline batteries and the like that use zinc as a negative electrode active material, the batteries must be sealed tightly because a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas produced by corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion.

その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀の水素過電圧を利用した未化亜鉛を負極活物質
として用いることが専ら行なわれている。このため、今
日市販されているアルカリ電池の負極活物質は5〜10
重量%程度の多1!の水銀を含有しており、社会的ニー
ズとして、より低水銀のもの、あるいは無水銀の電池の
開発が強く期待されるようになってきた。
As a countermeasure, research has been conducted to prevent the corrosion of zinc, which is an anode active material, and to reduce the generation of hydrogen gas inside the battery. It is being done. For this reason, the negative electrode active material of alkaline batteries commercially available today is 5 to 10
About 1% by weight! Due to social needs, there are strong expectations for the development of lower mercury or mercury-free batteries.

そこで、電池内の水銀含有量を低減させるべく、亜鉛に
各種金、属を添加した亜鉛合金粉末に関する提案が種々
なされている。例えば、亜鉛に鉛を添加した亜鉛合金粉
末、あるいは本発明者等による亜鉛に鉛とインジウムを
添加した亜鉛合金粉末(特開昭58−181266号公
報)等がある。しかし、これらの亜鉛合金粉末はある程
度のガス発生抑制効果を奏するが、まだ十分とは言えな
い。
Therefore, in order to reduce the mercury content in batteries, various proposals have been made regarding zinc alloy powders in which various metals and metals are added to zinc. For example, there is a zinc alloy powder made by adding lead to zinc, or a zinc alloy powder made by the present inventors by adding lead and indium to zinc (Japanese Unexamined Patent Publication No. 181266/1983). However, although these zinc alloy powders have a certain degree of gas generation suppressing effect, it is still not sufficient.

このように、負極活物質である亜鉛合金粉末を低汞化と
しつつ、水素ガス発生量を低減し、しかも電池性能であ
る放電性能を高い水準に維持する電池は未だ得られてい
ない。
As described above, a battery has not yet been obtained in which the zinc alloy powder, which is the negative electrode active material, has a low resistance, reduces the amount of hydrogen gas generated, and maintains the discharge performance, which is the battery performance, at a high level.

(発明の目的) 本発明はかかる現状に鑑み、水銀の含有率を著しく減少
させつつ、水素ガス発生を抑制し、しかも放電性能を高
い水準に維持する負極活物質を用いた亜鉛アルカリ電池
を提供することを目的とする。
(Object of the Invention) In view of the current situation, the present invention provides a zinc-alkaline battery using a negative electrode active material that significantly reduces mercury content, suppresses hydrogen gas generation, and maintains discharge performance at a high level. The purpose is to

(発明の経緯) 本発明者らはこの目的に沿って鋭意研究の結果、亜鉛か
らなる負極活物質において、インジウムとカルシウムと
ビスマス、テルルより選ばれる1種以上を特定範囲の量
添加することにより、これら添加元素の相乗的な効果に
よって、従来の低汞化した亜鉛合金粉末よりも更に水素
ガス発生量を低下させ、しかも放電性能に優れた亜鉛ア
ルカリ電池が得られることを見出し本発明に到達した。
(Background of the invention) As a result of intensive research in line with this purpose, the present inventors found that by adding one or more selected from indium, calcium, bismuth, and tellurium in a specific range to a negative electrode active material made of zinc, It was discovered that the synergistic effect of these additive elements enables a zinc-alkaline battery to be obtained which further reduces the amount of hydrogen gas generated than conventional low-strength zinc alloy powders and has excellent discharge performance, resulting in the present invention. did.

(発明の構成) すなわち本発明は、インジウムを0.01〜0.5重量
%、カルシウムを0.005〜0.5重量%、ビスマス
、テルルより選ばれる1種以上をo、oi〜0.5重量
%含有する亜鉛合金を負極活物質として用いたことを特
徴とする亜鉛アルカリ電池にある。
(Structure of the Invention) That is, the present invention contains 0.01 to 0.5% by weight of indium, 0.005 to 0.5% by weight of calcium, and one or more selected from bismuth and tellurium. A zinc-alkaline battery is characterized in that a zinc alloy containing 5% by weight is used as a negative electrode active material.

本発明において、インジウムとカルシウムとビスマス、
テルルより選ばれる1種以上を特定量添加した亜鉛合金
は、そのまま負極活物質として用いるか、亜鉛合金を汞
化した後に負極活物質として用いる。汞化する場合の水
銀含有率は、従来の負極活物質の水銀含有率よりも少な
い?、すなわち5.0重量%未満であるが、より汞化率
を低くし、低公害性を考慮すると3.0重量%以下であ
る。また、1.0重量%前後またはそれ以下の少量であ
ってもガス発生を抑制することが可能である。特に、排
気機構を備えた空気電池や水素吸収機構を備えた亜鉛ア
ルカリ電池等においては、水素ガスの発生許容量は比較
的大きいので、このような電池に本発明を適用する場合
は、1.0重量%以下の低永化率または無汞化の亜鉛合
金が負極活物質として好ましく用いられる。
In the present invention, indium, calcium and bismuth,
A zinc alloy to which a specific amount of one or more selected from tellurium is added is used as a negative electrode active material as it is, or is used as a negative electrode active material after the zinc alloy is made into a starch. Is the mercury content in the case of oxidation lower than that of conventional negative electrode active materials? That is, it is less than 5.0% by weight, but when considering lowering the filtration rate and low pollution, it is 3.0% by weight or less. Further, even if the content is as small as around 1.0% by weight or less, it is possible to suppress gas generation. In particular, in air batteries equipped with an exhaust mechanism, zinc-alkaline batteries equipped with a hydrogen absorption mechanism, etc., the permissible amount of hydrogen gas generated is relatively large, so when applying the present invention to such batteries, 1. A zinc alloy with a low aging rate of 0% by weight or less or no aging rate is preferably used as the negative electrode active material.

この負極活物質に用いられる亜鉛合金のインジウムの含
有率は0.01〜0.5重量%、カルシウムは0.00
5〜0.5重量%、ビスマス、テルルより選ばれる1種
以上の含有率は0.01〜0.5重量%と少量で添加効
果が発揮される。インジウムとカルシウムとビスマス、
テルルより選ばれる1種以上の含有率がそれぞれ下限未
満では本発明の効果が得られず、上限を越えると、不純
物を含有した亜鉛のように、自己放電が進み、ガス発生
抑制および放電性能にとって良好な結果が得られない。
The indium content of the zinc alloy used in this negative electrode active material is 0.01 to 0.5% by weight, and the calcium content is 0.00% by weight.
The content of one or more selected from bismuth and tellurium is as small as 0.01 to 0.5% by weight, and the effect of addition is exhibited. indium, calcium and bismuth,
If the content of one or more types selected from tellurium is below the lower limit, the effect of the present invention cannot be obtained, and if it exceeds the upper limit, self-discharge progresses like zinc containing impurities, which is detrimental to gas generation suppression and discharge performance. Favorable results cannot be obtained.

なお、カルシウムの含有率は0.005〜0.2重量%
の範囲が特に好ましく、0.2重量%を越えた場合には
それほどの含有効果は見られない。
In addition, the content of calcium is 0.005 to 0.2% by weight.
It is particularly preferable that the content exceeds 0.2% by weight, and no significant effects are observed.

これら各添加元素の作用機構は充分に解明されていない
が、推定するに、亜鉛合金中に含まれているインジウム
、ビスマス、テルルは水素過電圧を高める作用を有し、
一方、カルシウムは亜鉛合金表面を平滑化させる効果が
あり、これによって反応表面積を減少させ、耐食性の向
上に役立つと考えられる。従って、本発明は、これら各
作用の相乗効果により、放電特性を劣化させることなく
、耐食性のよい亜鉛合金が得られたものである。
Although the mechanism of action of each of these additive elements has not been fully elucidated, it is presumed that indium, bismuth, and tellurium contained in the zinc alloy have the effect of increasing hydrogen overvoltage.
On the other hand, calcium has the effect of smoothing the zinc alloy surface, thereby reducing the reaction surface area and is thought to be useful for improving corrosion resistance. Therefore, in the present invention, due to the synergistic effect of these respective actions, a zinc alloy with good corrosion resistance is obtained without deteriorating the discharge characteristics.

このように本発明の亜鉛アルカリ電池は、電解液に苛性
カリ、苛性ソーダ等を主成分とするアルカリ水溶液を用
い、負極活物質に上記した亜鉛合金または汞化した亜鉛
合金、正極活物質に二酸化マンガン、酸化銀、酸素等を
用いることにより得られる。
As described above, the zinc-alkaline battery of the present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main component as an electrolyte, the above-mentioned zinc alloy or aqueous zinc alloy as a negative electrode active material, and manganese dioxide, as a positive electrode active material, Obtained by using silver oxide, oxygen, etc.

(実施例の説明) 以下、実施例および比較例に基づいて本発明を具体的に
説明する。
(Description of Examples) The present invention will be specifically described below based on Examples and Comparative Examples.

施例1〜11および比較 1〜14 純度99.997%以上の亜鉛地金を約500℃で溶融
し、これに第1表に示すごとくインジウムとカルシウム
とビスマスの含有率がそれぞれ0.05重量%となるよ
うに添加して亜鉛合金を作成し、これを高圧アルゴンガ
ス(噴出圧5に’j / cti )を使って粉体化し
た。次に水酸化カリウム10%のアルカリ性溶液中にて
上記粉末に 1.0重量%になるように水銀を添加して
、汞化処理を行ない亜鉛合金粉末(実施例1)を得た。
Examples 1 to 11 and Comparisons 1 to 14 Zinc ingots with a purity of 99.997% or more were melted at about 500°C, and the contents of indium, calcium, and bismuth were each 0.05 weight by weight as shown in Table 1. % to create a zinc alloy, which was pulverized using high-pressure argon gas (injection pressure 5'j/cti). Next, mercury was added to the above powder to give a concentration of 1.0% by weight in an alkaline solution containing 10% potassium hydroxide, and a hydrochloric treatment was performed to obtain a zinc alloy powder (Example 1).

また、第1表に示すごとく、下記の組成でそれぞれ 1)インジウム0.05重量%、カルシウム0.05重
量%、テルル0.05重量%(実施例2)、2)インジ
ウム0.01重量%、カルシウム0.00505重量ビ
スマス0.01重量%(実施例3)3)インジウム0.
01 重1%、カルシウムo、oos重量%、テルル0
.01重量%(実施例4)、4)インジウム0.5重最
%、カルシウム0.2重量%、ビスマス0.5重量%(
実施例5)、5)インジウム0.5重量%、カルシウム
0.2重量%、テルル0.5重量%(実施例6)、6)
インジウム0.05重量%、カルシウム0.05重量%
、ビスマス0.05重量%、テルル0.05重量%(実
施例7)、 7)インジウム0.011iΦ%、カルシウム0.01
重量%、ビスマス0.01重量%、テルル0.01重量
%(実施例8)、 8)インジウム0.5重量%、カルシウム0.2重量%
、ビスマス0.3重量%、テルル0.2重量%(実施例
9)、 9)インジウム0.5重量%、カルシウム0.5重量%
、ビスマス0.5重量%(実施例10)、10)インジ
ウム0.5重1%、カルシウム0.5重量%、テルル0
.5重量%(実施例11)、11)インジウム0.05
重量%(比較例1)、12)インジウム0.0511%
、カルシウム0.05重量%(比較例2)、 13)インジウム0.05重量%、ビスマス0.05重
量%(比較例3)。
In addition, as shown in Table 1, the following compositions were used: 1) 0.05% by weight of indium, 0.05% by weight of calcium, 0.05% by weight of tellurium (Example 2), 2) 0.01% by weight of indium. , Calcium 0.00505wt Bismuth 0.01wt% (Example 3) 3) Indium 0.01wt%
01 weight 1%, calcium o, oos weight%, tellurium 0
.. 01% by weight (Example 4), 4) 0.5% by weight of indium, 0.2% by weight of calcium, 0.5% by weight of bismuth (
Example 5), 5) Indium 0.5% by weight, Calcium 0.2% by weight, Tellurium 0.5% by weight (Example 6), 6)
Indium 0.05% by weight, calcium 0.05% by weight
, bismuth 0.05% by weight, tellurium 0.05% by weight (Example 7), 7) Indium 0.011iΦ%, calcium 0.01%
wt%, bismuth 0.01 wt%, tellurium 0.01 wt% (Example 8), 8) indium 0.5 wt%, calcium 0.2 wt%
, 0.3% by weight of bismuth, 0.2% by weight of tellurium (Example 9), 9) 0.5% by weight of indium, 0.5% by weight of calcium
, bismuth 0.5% by weight (Example 10), 10) Indium 0.5% by weight, calcium 0.5% by weight, tellurium 0
.. 5% by weight (Example 11), 11) Indium 0.05
Weight% (Comparative Example 1), 12) Indium 0.0511%
, 0.05% by weight of calcium (Comparative Example 2), 13) 0.05% by weight of indium, 0.05% by weight of bismuth (Comparative Example 3).

14)インジウム0.05重量%、テルル0.05重量
%(比較例4)、 15〉カルシウム0.05重量%、ビスマス0.05重
量%(比較例5)、 16)カルシウム0,05重量%、テルル0,05重量
%(比較例6)、 17)インジウム1.0重量%、カルシウムo、os 
  ’重量%、ビスマス0.05重量%(比較例7)、
18)インジウム0.005重量%、カルシウム0.0
5重量%、ビスマス0.05重量%(比較例8)19)
インジウム0.05重量%、カルシウム1.0重量%、
ビスマス0.05重量%(比較例9)、20)インジウ
ム0.05重量%、カルシウム0.001重量%、ビス
マス0.05重量%(比較例10)21)インジウム0
.05重量%、カルシウム0.05重量%、ビスマス1
.0重量%(比較例11)、22)インジウム0.05
重量%、カルシウムo、os重量%、ビスマスo、oo
s重量%(比較例12)23)インジウム0.0511
H%、カルシウム0.05重量%、テルル1.0重量%
(比較例13)、24)インジウム0.05重量%、カ
ルシウム0.05重量%、テルルo、oos重量%(比
較例14)、からなる亜鉛合金をそれぞれ作成し、これ
を前記と同様な方法で粉体化し、汞化処理を行なって水
銀含有率が1.0重量%の亜鉛合金粉末(実施例2〜1
1および比較例1〜14)を得た。
14) Indium 0.05% by weight, tellurium 0.05% by weight (Comparative Example 4), 15> Calcium 0.05% by weight, Bismuth 0.05% by weight (Comparative Example 5), 16) Calcium 0.05% by weight , Tellurium 0.05% by weight (Comparative Example 6), 17) Indium 1.0% by weight, Calcium o, os
'wt%, bismuth 0.05 wt% (Comparative Example 7),
18) Indium 0.005% by weight, calcium 0.0
5% by weight, bismuth 0.05% by weight (Comparative Example 8) 19)
Indium 0.05% by weight, calcium 1.0% by weight,
Bismuth 0.05% by weight (Comparative Example 9), 20) Indium 0.05% by weight, Calcium 0.001% by weight, Bismuth 0.05% by weight (Comparative Example 10) 21) Indium 0
.. 05% by weight, calcium 0.05% by weight, bismuth 1
.. 0% by weight (Comparative Example 11), 22) Indium 0.05
weight%, calcium o, os weight%, bismuth o, oo
s weight% (Comparative Example 12) 23) Indium 0.0511
H%, calcium 0.05% by weight, tellurium 1.0% by weight
(Comparative Examples 13) and 24) Zinc alloys consisting of 0.05% by weight of indium, 0.05% by weight of calcium, and 0.05% by weight of tellurium and oos (comparative example 14) were prepared, and then processed in the same manner as above. Zinc alloy powder with a mercury content of 1.0% by weight (Examples 2 to 1)
1 and Comparative Examples 1 to 14) were obtained.

このようにして得られた亜鉛合金粉末を使って水素ガス
発生試験を行ない、その結果を第1表に示す。なお、ガ
ス発生試験は、電解液として濃度40重量%の水酸化カ
リウム水溶液に酸化亜鉛を飽和させたものを5−を用い
、亜鉛合金粉末を1017を用いて45℃で50日間の
ガス発生m (I!t1/a )を測定した。
A hydrogen gas generation test was conducted using the zinc alloy powder thus obtained, and the results are shown in Table 1. In the gas generation test, 5- was used as an electrolyte in which zinc oxide was saturated in a potassium hydroxide solution with a concentration of 40%, and 1017 was used as a zinc alloy powder. (I!t1/a) was measured.

また、これらの亜鉛合金粉末を負極活物質として第1図
に示すアルカリマンガン電池を用いて電池性能を評価し
た。第1図のアルカリマンガン電池は、正極缶1、正極
2、セパレーター3、亜鉛合金粉末をカルボキシメチル
セルロースでゲル化した負極4.9極集電体5、ゴムパ
ツキン6、押さえ板7で構成されている。このアルカリ
マンガン電池を用いて放電負荷4Ω、20℃の放電条件
により終止電圧0.9vまでの放電持続時間を測定し、
従来の負極活物質を用いた後述する比較例15の測定値
を100とした指数で示した。結果を第1表に示す。
Further, battery performance was evaluated using an alkaline manganese battery shown in FIG. 1 using these zinc alloy powders as a negative electrode active material. The alkaline manganese battery shown in Fig. 1 is composed of a positive electrode can 1, a positive electrode 2, a separator 3, a negative electrode 4 made of zinc alloy powder gelled with carboxymethylcellulose, an electrode current collector 5, a rubber packing 6, and a holding plate 7. . Using this alkaline manganese battery, we measured the discharge duration to a final voltage of 0.9V under discharge conditions of 4Ω discharge load and 20°C.
The values are expressed as an index with the measured value of Comparative Example 15, which will be described later, using a conventional negative electrode active material set as 100. The results are shown in Table 1.

比較例15 実施例1と同様の方法で亜鉛に水銀を5.0重量%添加
した従来より用いられている水化亜鉛合金粉末(比較例
15)を得た。これを実施例1と同様の方法で水素ガス
発生試験と電池性能試験を行ない、その結果を第1表に
示した。
Comparative Example 15 A conventionally used zinc hydrate alloy powder (Comparative Example 15) in which 5.0% by weight of mercury was added to zinc was obtained in the same manner as in Example 1. This was subjected to a hydrogen gas generation test and a battery performance test in the same manner as in Example 1, and the results are shown in Table 1.

第1表に示されるごとく、亜鉛にインジウムとカルシウ
ムとビスマス、テルル 以上を特定最添加して汞化させた汞化亜鉛合金粉末を負
極活物質に用いた実施例1〜11は、比較例1〜14や
亜鉛に水銀のみを添加した従来より用いられている汞化
亜鉛合金粉末を負極活物質に用いた比較例15に比べC
、水素ガス発生抑制効果が大きく、放電性能も優れてい
ることがわかる。
As shown in Table 1, Examples 1 to 11 in which the negative electrode active material was a zinc chloride alloy powder obtained by specifically adding indium, calcium, bismuth, and tellurium or more to zinc, were compared to Comparative Example 1. ~14 and Comparative Example 15 in which the conventionally used zinc chloride alloy powder, in which only mercury was added to zinc, was used as the negative electrode active material.
It can be seen that the hydrogen gas generation suppressing effect is large and the discharge performance is also excellent.

(発明の効果) 以上説明のごとく、インジウムとカルシウムとビスマス
、テルルより選ばれる1種以上を特定範囲で含有した亜
鉛合金をそのまま、もしくは汞化して負極活物質として
用いた本発明の亜鉛アルカリ電池は、水素ガス発生率を
抑制しつつ、電池性能を向上させることが可能であり、
また水銀が低含有率もしくは含有しないことから、社会
的ニーズにも沿ったものである。従って、本発明の亜鉛
アルカリ電池は広範な用途に使用可能である。
(Effects of the Invention) As explained above, the zinc-alkaline battery of the present invention uses a zinc alloy containing one or more selected from indium, calcium, bismuth, and tellurium in a specific range as a negative electrode active material, either as it is or after being made into a starch. It is possible to improve battery performance while suppressing hydrogen gas generation rate,
It also meets social needs as it contains low or no mercury. Therefore, the zinc-alkaline battery of the present invention can be used in a wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるアルカリマンガン電池の断面図
を示す。 1:正極缶、2:正極、3:セパレーター、4:負極、
5:負極集電体、6:ゴムパツキン、7:押さえ板。
FIG. 1 shows a sectional view of an alkaline manganese battery according to the present invention. 1: positive electrode can, 2: positive electrode, 3: separator, 4: negative electrode,
5: Negative electrode current collector, 6: Rubber packing, 7: Pressing plate.

Claims (1)

【特許請求の範囲】 1、インジウムを0.01〜0.5重量%、カルシウム
を0.005〜0.5重量%、ビスマス、テルルより選
ばれる1種以上を合計0.01〜0.5重量%含有する
亜鉛合金を負極活物質として用いたことを特徴とする亜
鉛アルカリ電池。 2、前記亜鉛合金が汞化されている前記特許請求の範囲
第1項記載の亜鉛アルカリ電池。
[Claims] 1. 0.01 to 0.5% by weight of indium, 0.005 to 0.5% by weight of calcium, and a total of 0.01 to 0.5% of one or more selected from bismuth and tellurium. A zinc-alkaline battery characterized by using a zinc alloy containing % by weight as a negative electrode active material. 2. The zinc-alkaline battery according to claim 1, wherein the zinc alloy is made of aluminum.
JP59273757A 1984-12-27 1984-12-27 Zinc alkaline storage battery Granted JPS61153950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59273757A JPS61153950A (en) 1984-12-27 1984-12-27 Zinc alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59273757A JPS61153950A (en) 1984-12-27 1984-12-27 Zinc alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS61153950A true JPS61153950A (en) 1986-07-12
JPH0371738B2 JPH0371738B2 (en) 1991-11-14

Family

ID=17532153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59273757A Granted JPS61153950A (en) 1984-12-27 1984-12-27 Zinc alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS61153950A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0500313A2 (en) * 1991-02-19 1992-08-26 Mitsui Mining & Smelting Co., Ltd. Zinc alloy powder for alkaline cell and method to produce the same
JPH04111223U (en) * 1991-03-11 1992-09-28 古河電気工業株式会社 electrical junction box
JPH05182661A (en) * 1991-12-28 1993-07-23 Dowa Mining Co Ltd Nonlead nonamalgamated zinc alloy powder and manufacture thereof for alkaline battery
JPH05190176A (en) * 1992-01-08 1993-07-30 Dowa Mining Co Ltd Non-amalgamated zinc alloy powder for alkaline battery having small gas generation quantity
US5240793A (en) * 1988-12-07 1993-08-31 Grillo-Werke Ag Alkaline batteries containing a zinc powder with indium and bismuth
US5312476A (en) * 1991-02-19 1994-05-17 Matsushita Electric Industrial Co., Ltd. Zinc alloy powder for alkaline cell and method for production of the same
WO2008018455A1 (en) * 2006-08-10 2008-02-14 Panasonic Corporation Alkaline battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385349A (en) * 1977-01-07 1978-07-27 Matsushita Electric Ind Co Ltd Nickel zinc storage battery
JPS58218760A (en) * 1982-06-11 1983-12-20 Toshiba Battery Co Ltd Alkaline battery
JPS5994371A (en) * 1982-11-22 1984-05-31 Mitsui Mining & Smelting Co Ltd Alkaline battery and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385349A (en) * 1977-01-07 1978-07-27 Matsushita Electric Ind Co Ltd Nickel zinc storage battery
JPS58218760A (en) * 1982-06-11 1983-12-20 Toshiba Battery Co Ltd Alkaline battery
JPS5994371A (en) * 1982-11-22 1984-05-31 Mitsui Mining & Smelting Co Ltd Alkaline battery and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240793A (en) * 1988-12-07 1993-08-31 Grillo-Werke Ag Alkaline batteries containing a zinc powder with indium and bismuth
EP0500313A2 (en) * 1991-02-19 1992-08-26 Mitsui Mining & Smelting Co., Ltd. Zinc alloy powder for alkaline cell and method to produce the same
US5312476A (en) * 1991-02-19 1994-05-17 Matsushita Electric Industrial Co., Ltd. Zinc alloy powder for alkaline cell and method for production of the same
JPH04111223U (en) * 1991-03-11 1992-09-28 古河電気工業株式会社 electrical junction box
JPH05182661A (en) * 1991-12-28 1993-07-23 Dowa Mining Co Ltd Nonlead nonamalgamated zinc alloy powder and manufacture thereof for alkaline battery
JPH05190176A (en) * 1992-01-08 1993-07-30 Dowa Mining Co Ltd Non-amalgamated zinc alloy powder for alkaline battery having small gas generation quantity
WO2008018455A1 (en) * 2006-08-10 2008-02-14 Panasonic Corporation Alkaline battery

Also Published As

Publication number Publication date
JPH0371738B2 (en) 1991-11-14

Similar Documents

Publication Publication Date Title
JPH0371737B2 (en)
JPS61153950A (en) Zinc alkaline storage battery
JPH0421310B2 (en)
JPH0375985B2 (en)
JPS6177257A (en) Zinc alkaline battery
JPH0622122B2 (en) Zinc alkaline battery
JPS6240161A (en) Zinc alkaline battery
JPS61290651A (en) Zinc alkaline battery
JPS61153952A (en) Zinc alkaline storage battery
JPS61290655A (en) Zinc alkaline battery
JPS6240159A (en) Zinc alkaline battery
JPS61153951A (en) Zinc alkaline storage battery
JPS61290653A (en) Zinc alkaline battery
JPS61193362A (en) Zinc alkaline battery
JPS6240157A (en) Zinc alkaline battery
JPS62123657A (en) Zinc-alkaline battery
JPS61153949A (en) Zinc alkaline storage battery
JPS61290652A (en) Zinc alkaline battery
JPS61290654A (en) Zinc alkaline battery
JPS61290657A (en) Zinc alkaline battery
JPH0375983B2 (en)
JPS6240160A (en) Zinc alkaline battery
JPH0418672B2 (en)
JPH0375984B2 (en)
JPS62176050A (en) Zinc alkaline battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term