JPH0418674B2 - - Google Patents

Info

Publication number
JPH0418674B2
JPH0418674B2 JP60031413A JP3141385A JPH0418674B2 JP H0418674 B2 JPH0418674 B2 JP H0418674B2 JP 60031413 A JP60031413 A JP 60031413A JP 3141385 A JP3141385 A JP 3141385A JP H0418674 B2 JPH0418674 B2 JP H0418674B2
Authority
JP
Japan
Prior art keywords
zinc
weight
negative electrode
active material
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60031413A
Other languages
Japanese (ja)
Other versions
JPS61193362A (en
Inventor
Nobuyori Kasahara
Toyohide Uemura
Keiichi Kagawa
Ryoji Okazaki
Kanji Takada
Akira Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60031413A priority Critical patent/JPS61193362A/en
Publication of JPS61193362A publication Critical patent/JPS61193362A/en
Publication of JPH0418674B2 publication Critical patent/JPH0418674B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の分野) 本発明は亜鉛アルカリ電池に関し、詳しくは亜
鉛と共存することにより亜鉛の水素過電圧を高め
る、あるいはアルカリ電解液中での亜鉛の腐食を
抑制する作用を有する、鉛、インジウム、タリウ
ム、カドミウム、スズ、ビスマス、ガリウム、ア
ルミニウム、銀、タンタルから選択される1種以
上と、リチウム、ナトリウム、カリウム等のアル
カリ金属の1種以上をそれぞれ特定範囲で含有し
た亜鉛合金を汞化して電池用負極活物質として用
いた亜鉛アルカリ電池に関する。 (発明の背景) 亜鉛を負極活物質として用いたアルカリ電池等
においては、水酸化カリウム水溶液等の強アルカ
リ性電解液を用いるため、電池を密閉しなければ
ならない。この電池の密閉は電池の小型化を図る
際には特に重要であるが、同時に電池保存中の亜
鉛の腐食により発生する水素ガスを閉じ込めるこ
とになる。従つて長期保存中に電池内部のガス圧
が高まり、密閉が完全なほど爆発等の危険が伴な
う。 その対策として、負極活物質である亜鉛の腐食
を防止して、電池内部の水素ガス発生を少なくす
ることが研究され、水銀添加により亜鉛の水素過
電圧を高めた汞化亜鉛を負極活物質として用いる
ことが専ら行なわれている。このため、今日市販
されているアルカリ電池の負極活物質は5〜10重
量%程度の多量の水銀を含有しており、社会的ニ
ーズとして、より低水銀のもの、あるいは無水銀
の電池の開発が強く要望されるようになつてき
た。 そこで、電池内の水銀含有量を低減させるべ
く、亜鉛に各種金属を添加した亜鉛合金粉末に関
する提案が種々なされている。例えば亜鉛に鉛を
添加した亜鉛合金粉末、あるいは本発明者等によ
る亜鉛に鉛とインジウムを添加した亜鉛合金粉末
(特開昭58−181266号公報)等がある。しかし、
これらの亜鉛合金粉末はある程度のガス発生抑制
効果を奏するが、まだ十分とは言えない。例え
ば、亜鉛に鉛とインジウムを添加した亜鉛合金粉
末については、これを水銀含有率1重量%程度の
低汞化とした場合、ガス発生試験の初期において
は非常にガス発生が抑制されていが、長時間とな
ると次第にガス発生速度が増大する傾向が見られ
た。 このように、負極活物質である亜鉛合金粉末を
低汞化としつつ、水素ガス発生量を低減し、しか
も電池性能である放電性能を高い水準に維持する
電池は未だ得られていない。 (発明の目的) 本発明はかかる現状に鑑み、水銀の含有率を著
しく減少させつつ、水素ガス発生を抑制し、しか
も放電性能を高い水準に維持する負極活物質を用
いた亜鉛アルカリ電池を提供することを目的とす
る。 (発明の経緯) 本発明者らは、この目的に沿つて鋭意研究した
結果、亜鉛からなる負極活物質において、亜鉛の
水素過電圧を高める作用をもつ元素である、鉛、
インジウム、タリウム、カドミウム、スズ、ビス
マス、ガリウム、アルミニウム、銀、タンタルよ
り選ばれる1種以上を特定範囲で含有させ、さら
にリチウム等のアルカリ金属の1種以上を特定範
囲で含有させることにより、これら添加元素の相
乗的な効果によつて、従来の低汞化した亜鉛合金
粉末よりも大幅に水素ガス発生量を低減化し、し
かも放電性能においても優れた亜鉛アルカリ電池
が得られることを見出し本発明に到達した。 (発明の構成) すなわち本発明は、鉛、インジウム、タリウ
ム、カドミウム、スズ、ビスマス、ガリウム、ア
ルミニウム、銀、タンタルより選ばれる1種以上
を0.01〜0.5重量%、アルカリ金属の1種以上を
0.00005〜1.0重量%、水銀を5.0重量%未満と、残
部が亜鉛からなる汞化亜鉛合金を負極活物質とし
て用いたことを特徴とする亜鉛アルカリ電池であ
る。 本発明において、上述のように亜鉛の水素過電
圧を高める、あるいはアルカリ電解液中での亜鉛
の腐食を抑制する作用を有する鉛等の元素とアル
カリ金属元素を特定範囲で含有させた亜鉛合金を
汞化した後に負極活物質として用いる。汞化する
場合の水銀含有率は、従来の負極活物質の水銀含
有率よりも少ない量、すなわち5.0重量%未満で
あるが、より汞化率を低くし、低公害性を考慮す
ると3.0重量%以下である。特に本発明の合金組
成においては、その添加成分の組合せによる相乗
効果は極めて大きく、1.0重量%前後またそれ以
下の水銀含有率であつても、水素ガス発生を抑制
することが可能である。 本発明の負極活物質に用いられる亜鉛合金に
は、鉛、インジウム、カドミウム、スズ、ビスマ
ス、ガリウム、アルミニウム、銀、タンタルより
選ばれる1種以上が0.01〜0.5重量%の範囲で含
有されることによつて、得られる亜鉛合金の水素
過電圧を高め、亜鉛合金の腐食抑制作用を示す。
この含有量が001重量%未満では所期の添加効果
が得られず、0.5重量%を越えると、電池の自己
放電が促進し、またガス発生抑制および放電性能
にとつて良好な結果が得られない。なお、これら
の元素を適当量の範囲で添加した亜鉛合金は、既
に実際の電池に実用化され、一応の評価を得てい
るが、最近の低銀化に対する社会的ニーズに対応
するには未だ不十分である。 従つて、本発明者等は、さらに研究を重ね、上
述の鉛等の元素を添加した合金組成に対して、さ
らに新たに微量のアルカリ金属を添加することに
よつて、ガス発生の抑制に著しく効果があること
を見出したものである。 ここ用いられるアルカリ金属(水素を除く周期
率表IA族)としては、リチウム、ナトリウム、
カリウムが入手も容易で好ましいが、その他ルビ
ジウム、セシウムも使用可能である。このアルカ
リ金属の含有量は0.00005〜1.0重量%(0.5〜
10000重量ppm)含有されること必要であり、実
用的には0.50〜0.0001重量%の範囲であることが
好ましい。この含有量が0.00005重量%未満では、
十分な水素ガス発生抑制効果が期待できず、また
1.0重量%を越える量を含有させてもそれ以上の
効果は得られない。 従来、亜鉛に対して微量のリチウムを添加し
て、耐クリープ性等の物理的性能を改善する試み
は知られているが、亜鉛中の微量のアルカリ金属
が何故化学的反応であるガス発生を抑制する作用
を有するかは、今までの知見からは明らかでな
い。強いて推論すれば、その強い還元作用によ
り、鉛、インジウムなどの水素過電圧を高める添
加物の作用を長期にわたつて維持させるのではな
いかと考えられる。そして、本発明のごとく、負
極活物質用の低汞化の亜鉛合金においては、アル
カリ金属を添加した例は従来においてはなかつ
た。 このように、本発明の亜鉛アルカリ電池は、電
解液に苛性カリ、苛性ソーダ等を主成分とするア
ルカリ水溶液を用い、負極活物質に上記した亜鉛
合金または汞化した亜鉛合金、正極活物質に二酸
化マンガン、酸化銀、酸素等を用いることにより
得られる。 (実施例の説明) 以下、実施例および比較例に基づいて本発明を
具体的に説明する。 実施例1〜8ならびに比較例1〜2 純度99.997%以上の亜鉛地金を約500℃で溶融
し、これに第1表に示すごとく、鉛とインジウム
がそれぞれ0.05重量%含有するように添加し、次
いでアルゴンガス雰囲気中で、第1表に示すごと
くナトリウムを0.05重量%含有するように、撹拌
しながら素早く添加して溶解させた。このように
して得た亜鉛合金をルツボ細孔より550℃の温度
で流出させ、加圧空気(噴出圧3Kg/cm2)を用
い、通常のアトマイズ方法により噴霧し粉末状亜
鉛合金粉を作成した。次に、10%の水酸化カリウ
ム水溶液中にて上記粉末に含有率が1.0重量%に
なるように水銀を撹拌しながら添加して、汞化処
理を行ない汞化亜鉛合金粉末(実施例1)を得
た。 また、第1表に示すごとく、下記の組成でそれ
ぞれ (1) 鉛0.10重量%、タリウム0.04重量%、リチウ
ム0.0005重量%(実施例2)、 (2) 鉛0.20重量%、インジウム0.10重量%、ガリ
ウム0.10重量%ナトリウム0.002重量%(実施
例3)、 (3) インジウム0.01重量%、タリウム0.005重量
%、スズ0.05重量%カリウム0.05重量%(実施
例4)、 (4) インジウム0.05重量%、カドミウム0.30重量
%、ビスマス0.05重量%、セシウム0.001重量
%(実施例5)、 (5) インジウム0.30重量%、アルミニウム0.20重
量%、リチウム0.01重量%(実施例6)、 (6) タリウム0.05重量%、銀0.05重量%、リチウ
ウム0.01重量%(実施例7)、 (7) カドミウム0.005重量%、タンタル0.005重量
%、リチウム0.01重量%(実施例8)、 (8) 鉛0.05重量%(比較例1)、 (9) 鉛0.05重量%、インジウム0.05重量%(比較
例2)、 からなる亜鉛合金をそれぞれ作成し、これを前記
と同様な方法で粉体化し、汞化処理を行なつて、
実施例2〜8では水銀含有率が1.0重量%の亜鉛
合金粉末を、比較例1〜2では水銀含有率が2.0
重量%の亜鉛合金粉末を得た。 このようにして得られた亜鉛合金粉末を使つて
水素ガス発生試験を行ない、その結果を第2表に
示す。なお、ガス発生試験は、電解液として濃度
40重量%の水酸化カリウム水溶液に酸化亜鉛を飽
和させたものを5mlを用い、亜鉛合金粉末を10g
加えて45℃で50日間のガス発生量(ml/g)を測
定した。 また、これらの亜鉛合金粉末を負極活物質とし
て第1図に示すアルカリマンガン電池を用いて電
池性能を評価した。第1図のアルカリマンガン電
池は、正極缶1、正極2、セパレーター3、亜鉛
合金粉末をカルボキシメチルセルロースでゲル化
した負極4、負極集電体5、ゴムパツキン6、押
さえ板7で構成されている。このアルカリマンガ
ン電池を用いて放電負荷4Ω、20℃の放電条件に
より終止電圧0.9Vまでの放電持続時間を測定し、
従来の負極活物質を用いた比較例2の測定値を
100とした指数で示した。結果を第2表に示す。
(Field of the Invention) The present invention relates to a zinc-alkaline battery, and more particularly, lead, indium, and thallium, which have the effect of increasing the hydrogen overvoltage of zinc or suppressing corrosion of zinc in an alkaline electrolyte, when coexisting with zinc. , cadmium, tin, bismuth, gallium, aluminum, silver, tantalum, and one or more alkali metals such as lithium, sodium, potassium, etc., each containing a specific range of a zinc alloy. This invention relates to a zinc-alkaline battery used as a negative electrode active material. (Background of the Invention) In alkaline batteries and the like that use zinc as a negative electrode active material, the batteries must be sealed tightly because a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas generated due to corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion. As a countermeasure, research has been conducted to prevent the corrosion of zinc, which is an active material for the negative electrode, and to reduce the generation of hydrogen gas inside the battery.Zinc hydride, which has increased the hydrogen overvoltage of zinc by adding mercury, is used as the active material for the negative electrode. This is done exclusively. For this reason, the negative electrode active materials of alkaline batteries commercially available today contain a large amount of mercury, approximately 5 to 10% by weight, and there is a social need to develop lower mercury or mercury-free batteries. It has become strongly demanded. Therefore, various proposals have been made regarding zinc alloy powders in which various metals are added to zinc in order to reduce the mercury content in batteries. For example, there is a zinc alloy powder made by adding lead to zinc, or a zinc alloy powder made by the present inventors by adding lead and indium to zinc (Japanese Patent Laid-Open No. 181266/1983). but,
Although these zinc alloy powders have a certain degree of gas generation suppressing effect, it is still not sufficient. For example, when a zinc alloy powder made by adding lead and indium to zinc has a low mercury content of about 1% by weight, gas generation is extremely suppressed at the beginning of a gas generation test; There was a tendency for the gas generation rate to gradually increase over a long period of time. As described above, a battery has not yet been obtained in which the zinc alloy powder, which is the negative electrode active material, has a low resistance, reduces the amount of hydrogen gas generated, and maintains the discharge performance, which is the battery performance, at a high level. (Object of the Invention) In view of the current situation, the present invention provides a zinc-alkaline battery using a negative electrode active material that significantly reduces mercury content, suppresses hydrogen gas generation, and maintains discharge performance at a high level. The purpose is to (Background of the invention) As a result of intensive research in line with this purpose, the present inventors found that lead, an element that has the effect of increasing the hydrogen overvoltage of zinc, in a negative electrode active material made of zinc.
By containing one or more selected from indium, thallium, cadmium, tin, bismuth, gallium, aluminum, silver, and tantalum in a specific range, and further containing one or more alkali metals such as lithium in a specific range, these It was discovered that the synergistic effect of the additive elements can significantly reduce the amount of hydrogen gas generated than conventional zinc alloy powders with reduced flux, and it is possible to obtain a zinc-alkaline battery with excellent discharge performance.The present invention reached. (Structure of the Invention) That is, the present invention contains 0.01 to 0.5% by weight of one or more selected from lead, indium, thallium, cadmium, tin, bismuth, gallium, aluminum, silver, and tantalum, and one or more alkali metals.
This is a zinc-alkaline battery characterized by using a zinc chloride alloy consisting of 0.00005 to 1.0% by weight, less than 5.0% by weight of mercury, and the balance being zinc as a negative electrode active material. In the present invention, as mentioned above, a zinc alloy containing elements such as lead and alkali metal elements in a specific range, which have the effect of increasing the hydrogen overvoltage of zinc or suppressing the corrosion of zinc in an alkaline electrolyte, is used. It is used as a negative electrode active material. The mercury content when converted into water is lower than the mercury content of conventional negative electrode active materials, that is, less than 5.0% by weight, but if the mercury content is lowered and low pollution is considered, it is 3.0% by weight. It is as follows. In particular, in the alloy composition of the present invention, the synergistic effect of the combination of the added components is extremely large, and hydrogen gas generation can be suppressed even at a mercury content of around 1.0% by weight or less. The zinc alloy used in the negative electrode active material of the present invention contains one or more selected from lead, indium, cadmium, tin, bismuth, gallium, aluminum, silver, and tantalum in a range of 0.01 to 0.5% by weight. This increases the hydrogen overvoltage of the resulting zinc alloy and exhibits a corrosion inhibiting effect on the zinc alloy.
If the content is less than 0.01% by weight, the desired addition effect cannot be obtained, and if it exceeds 0.5% by weight, the self-discharge of the battery will be accelerated, and good results will be obtained in gas generation suppression and discharge performance. do not have. Zinc alloys containing these elements in appropriate amounts have already been put into practical use in actual batteries and have received some praise, but they are still insufficient to meet the recent social needs for low silver. Not enough. Therefore, the present inventors conducted further research and found that by adding a small amount of alkali metal to the alloy composition to which elements such as lead were added, gas generation could be significantly suppressed. It has been found to be effective. The alkali metals (group IA of the periodic table excluding hydrogen) used here include lithium, sodium,
Potassium is preferred because it is easily available, but rubidium and cesium can also be used. The content of this alkali metal is 0.00005~1.0% by weight (0.5~
(10,000 ppm by weight), and practically it is preferably in the range of 0.50 to 0.0001% by weight. If this content is less than 0.00005% by weight,
A sufficient hydrogen gas generation suppression effect cannot be expected, and
Even if it is contained in an amount exceeding 1.0% by weight, no further effect can be obtained. Previous attempts have been made to improve physical properties such as creep resistance by adding a small amount of lithium to zinc. It is not clear from the knowledge so far whether it has a suppressive effect. If we were to force a guess, it would be thought that due to its strong reducing action, the effect of additives that increase hydrogen overvoltage, such as lead and indium, may be maintained over a long period of time. As with the present invention, there has never been an example of adding an alkali metal to a low-fragility zinc alloy for use as a negative electrode active material. As described above, the zinc-alkaline battery of the present invention uses an alkaline aqueous solution mainly composed of caustic potash, caustic soda, etc. as the electrolyte, the above-mentioned zinc alloy or aqueous zinc alloy as the negative electrode active material, and manganese dioxide as the positive electrode active material. , silver oxide, oxygen, etc. (Description of Examples) The present invention will be specifically described below based on Examples and Comparative Examples. Examples 1 to 8 and Comparative Examples 1 to 2 Zinc ingots with a purity of 99.997% or higher were melted at about 500°C, and lead and indium were added to the melt to contain 0.05% by weight each as shown in Table 1. Then, in an argon gas atmosphere, sodium was quickly added and dissolved with stirring so that it contained 0.05% by weight as shown in Table 1. The zinc alloy thus obtained was flowed out from the pores of the crucible at a temperature of 550°C, and atomized using pressurized air (ejection pressure 3 Kg/cm 2 ) by a normal atomization method to create a powdered zinc alloy powder. . Next, mercury was added to the above powder in a 10% potassium hydroxide aqueous solution with stirring so that the content was 1.0% by weight, and a hydrochloric acid treatment was carried out to form a hydrochloric zinc alloy powder (Example 1). I got it. In addition, as shown in Table 1, the following compositions (1) 0.10% by weight of lead, 0.04% by weight of thallium, 0.0005% by weight of lithium (Example 2), (2) 0.20% by weight of lead, 0.10% by weight of indium, Gallium 0.10% by weight Sodium 0.002% by weight (Example 3), (3) Indium 0.01% by weight, Thallium 0.005% by weight, Tin 0.05% by weight Potassium 0.05% by weight (Example 4), (4) Indium 0.05% by weight, Cadmium 0.30% by weight, bismuth 0.05% by weight, cesium 0.001% by weight (Example 5), (5) 0.30% by weight indium, 0.20% by weight aluminum, 0.01% by weight lithium (Example 6), (6) 0.05% by weight thallium, 0.05% by weight of silver, 0.01% by weight of lithium (Example 7), (7) 0.005% by weight of cadmium, 0.005% by weight of tantalum, 0.01% by weight of lithium (Example 8), (8) 0.05% by weight of lead (Comparative Example 1) , (9) A zinc alloy consisting of 0.05% by weight of lead and 0.05% by weight of indium (Comparative Example 2) was prepared, and this was powdered in the same manner as above, and subjected to a filtration treatment,
In Examples 2 to 8, zinc alloy powder with a mercury content of 1.0% by weight was used, and in Comparative Examples 1 to 2, a mercury content of 2.0% was used.
% zinc alloy powder was obtained. A hydrogen gas generation test was conducted using the zinc alloy powder thus obtained, and the results are shown in Table 2. In addition, in the gas generation test, the concentration of the electrolyte was
Using 5 ml of 40% by weight potassium hydroxide aqueous solution saturated with zinc oxide, add 10 g of zinc alloy powder.
In addition, the amount of gas generated (ml/g) at 45°C for 50 days was measured. Further, battery performance was evaluated using an alkaline manganese battery shown in FIG. 1 using these zinc alloy powders as a negative electrode active material. The alkaline manganese battery shown in FIG. 1 is composed of a positive electrode can 1, a positive electrode 2, a separator 3, a negative electrode 4 made of zinc alloy powder gelled with carboxymethyl cellulose, a negative electrode current collector 5, a rubber packing 6, and a pressing plate 7. Using this alkaline manganese battery, we measured the discharge duration to a final voltage of 0.9V under discharge conditions of 4Ω discharge load and 20℃.
The measured values of Comparative Example 2 using the conventional negative electrode active material are
It is expressed as an index set to 100. The results are shown in Table 2.

【表】【table】

【表】 第2表に示されるごとく、亜鉛に鉛、インジウ
ム、タリウム、カドミウム、スズ、ビスマス、ガ
リウム、アルミニウム、銀、タンタルより選ばれ
る1種以上を特定量含有させ、さらにアルカリ金
属を特定量含有させた汞化亜鉛合金粉末を負極活
物質として用いた実施例1〜8は、亜鉛に鉛を添
加した汞化亜鉛合金粉末を負極活物質に用いた比
較例1や亜鉛に鉛とインジウムを添加した汞化亜
鉛合金粉末を負極活物質に用いた比較例2に比べ
てその汞化量が1.0%と半量であるにもかかわら
ず、水素ガス発生抑制効果が極めて大きく、放電
性能も優れていることがわかる。 (発明の効果) 以上説明のごとく、鉛等の水素過電圧を高める
成分を特定範囲で含有させると共に、アルカリ金
属を特定範囲で含有させた本発明の亜鉛合金を汞
化して負極活物質として用いた亜鉛アルカリ電池
は、水素ガス発生率を著しく抑制しつつ、電池性
能を向上させることが可能であり、また水銀が低
含有率である。ことから、社会的ニーズにも沿つ
たものである。従つて、本発明の亜鉛アルカリ電
池は広範な用途に使用可能である。
[Table] As shown in Table 2, zinc contains a specific amount of one or more selected from lead, indium, thallium, cadmium, tin, bismuth, gallium, aluminum, silver, and tantalum, and a specific amount of alkali metal. Examples 1 to 8 in which a zinc chloride alloy powder containing lead was used as a negative electrode active material, Comparative Example 1 in which a zinc chloride alloy powder containing zinc and lead was used as a negative electrode active material, and Comparative Example 1 in which a zinc chloride alloy powder containing lead and indium was added to zinc were used as a negative electrode active material. Compared to Comparative Example 2 in which the added zinc alloy powder was used as the negative electrode active material, the amount of hydrogenation was 1.0%, which was half, but the hydrogen gas generation suppressing effect was extremely large and the discharge performance was excellent. I know that there is. (Effects of the Invention) As explained above, the zinc alloy of the present invention, which contains a component that increases hydrogen overvoltage such as lead in a specific range, and also contains an alkali metal in a specific range, is made into a starch and used as a negative electrode active material. Zinc-alkaline batteries can improve battery performance while significantly suppressing the hydrogen gas generation rate, and also have a low mercury content. Therefore, it is in line with social needs. Therefore, the zinc-alkaline battery of the present invention can be used in a wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるアルカリマンガン電池
の断面図を示す。 1:正極缶、2:正極、3:セパレーター、
4:負極、5:負極集電体、6:ゴムパツキン、
7:押さえ板。
FIG. 1 shows a sectional view of an alkaline manganese battery according to the present invention. 1: positive electrode can, 2: positive electrode, 3: separator,
4: Negative electrode, 5: Negative electrode current collector, 6: Rubber packing,
7: Pressing board.

Claims (1)

【特許請求の範囲】 1 鉛、インジウム、タリウム、カドミウム、ス
ズ、ビスマス、ガリウム、アルミニウム、銀、タ
ンタルより選ばれる1種以上を0.01〜0.5重量%、
アルカリ金属の1種以上を0.00005〜1.0重量%、
水銀を0.5重量%未満と、残部が亜鉛からなる汞
化亜鉛合金を負極活物質として用いたことを特徴
とする亜鉛アルカリ電池。 2 前記アルカリ金属が、リチウム、ナトリウ
ム、カリウム、ルビジウム、セシウムである前記
特許請求の範囲第1項記載の亜鉛アルカリ電池。
[Claims] 1. 0.01 to 0.5% by weight of one or more selected from lead, indium, thallium, cadmium, tin, bismuth, gallium, aluminum, silver, and tantalum;
0.00005 to 1.0% by weight of one or more alkali metals,
A zinc-alkaline battery characterized by using a zinc chloride alloy containing less than 0.5% by weight of mercury and the balance being zinc as a negative electrode active material. 2. The zinc-alkaline battery according to claim 1, wherein the alkali metal is lithium, sodium, potassium, rubidium, or cesium.
JP60031413A 1985-02-21 1985-02-21 Zinc alkaline battery Granted JPS61193362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60031413A JPS61193362A (en) 1985-02-21 1985-02-21 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60031413A JPS61193362A (en) 1985-02-21 1985-02-21 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS61193362A JPS61193362A (en) 1986-08-27
JPH0418674B2 true JPH0418674B2 (en) 1992-03-27

Family

ID=12330568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60031413A Granted JPS61193362A (en) 1985-02-21 1985-02-21 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPS61193362A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3902650A1 (en) * 1989-01-30 1990-08-02 Varta Batterie GALVANIC PRIME ELEMENT
BE1007443A3 (en) * 1993-02-25 1995-07-04 Union Miniere Sa Zinc powder for alkaline batteries.
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164074A (en) * 1984-09-06 1986-04-02 Toshiba Battery Co Ltd Zinc alloy powder for the negative electrode of a mercury-free alkaline battery and its manufacture
JPS6164073A (en) * 1984-09-06 1986-04-02 Toshiba Battery Co Ltd Zinc alloy for negative electrode of an alkaline battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164074A (en) * 1984-09-06 1986-04-02 Toshiba Battery Co Ltd Zinc alloy powder for the negative electrode of a mercury-free alkaline battery and its manufacture
JPS6164073A (en) * 1984-09-06 1986-04-02 Toshiba Battery Co Ltd Zinc alloy for negative electrode of an alkaline battery

Also Published As

Publication number Publication date
JPS61193362A (en) 1986-08-27

Similar Documents

Publication Publication Date Title
JPH0371737B2 (en)
JPH0421310B2 (en)
JPH0371738B2 (en)
JPH0418671B2 (en)
JPH0418674B2 (en)
JPH0375985B2 (en)
JPS6240161A (en) Zinc alkaline battery
JPH0418672B2 (en)
JPS61290655A (en) Zinc alkaline battery
JPH0375983B2 (en)
JPH0418673B2 (en)
JPH0371739B2 (en)
JPH0375982B2 (en)
JPS61153952A (en) Zinc alkaline storage battery
JPH0624117B2 (en) Zinc alkaline battery
JPS6240160A (en) Zinc alkaline battery
JPS61290654A (en) Zinc alkaline battery
JPS61290651A (en) Zinc alkaline battery
JPS61153951A (en) Zinc alkaline storage battery
JPS61290652A (en) Zinc alkaline battery
JPH0619993B2 (en) Zinc alkaline battery
JPS6177260A (en) Zinc alkaline battery
JPS62176052A (en) Zinc alkaline battery
JPH0375984B2 (en)
JPS6240159A (en) Zinc alkaline battery