JPS6164074A - Zinc alloy powder for the negative electrode of a mercury-free alkaline battery and its manufacture - Google Patents

Zinc alloy powder for the negative electrode of a mercury-free alkaline battery and its manufacture

Info

Publication number
JPS6164074A
JPS6164074A JP59185414A JP18541484A JPS6164074A JP S6164074 A JPS6164074 A JP S6164074A JP 59185414 A JP59185414 A JP 59185414A JP 18541484 A JP18541484 A JP 18541484A JP S6164074 A JPS6164074 A JP S6164074A
Authority
JP
Japan
Prior art keywords
zinc alloy
zinc
alloy powder
negative electrode
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59185414A
Other languages
Japanese (ja)
Other versions
JPH0355023B2 (en
Inventor
Hirohito Teraoka
浩仁 寺岡
Kazuo Furushima
古嶋 和夫
Nobuaki Chiba
千葉 信昭
Kojiro Miyasaka
宮坂 幸次郎
Kazumasa Yoshida
和正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP59185414A priority Critical patent/JPS6164074A/en
Publication of JPS6164074A publication Critical patent/JPS6164074A/en
Publication of JPH0355023B2 publication Critical patent/JPH0355023B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the amount of corrosion of the negative electrode and reduce the amount of hydrogen gas generation by preparing the negative electrode from a zinc alloy powder which contains zinc, tin and an alkali metal as essential components and at least a specified percentage of which consists of a powder with specific configurational characteristics. CONSTITUTION:A zinc alloy containing zinc, tin and an alkali metal as essential components is molten and atomized in an atmosphere containing at most 0.4vol% of oxygen. It is preferable to use sodium, potassium or lithium as the alkali metal. It is preferable to adjust the contents of the alkali metal and tin to within the ranges of 0.001-2.0wt% and 0.0.5-0.8wt% respectively. At least 50wt% of the thus prepared zinc alloy powder consists of ellipsoidal, cocoon-like or teardrop-like particles having a long axis length of at most 0.3mm and a short axis length of at least 0.05mm. By the means mentioned above, a short circuit current can be abundantly produced. Additionally, because there are no projections on the surface of the particles, hydrogen gas generation is suppressed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、水銀無添加アルカリ電池の負極として有用な
亜鉛合金粉末及びその製造方法に関し、更に詳しくは、
負極として用いたとき、腐食減量及びそのばらつきが小
さく、シかも水素ガス発生が少なく、優れた放電特性の
電池を得ることができる無水化亜鉛合金粉末とその製造
方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a zinc alloy powder useful as a negative electrode of a mercury-free alkaline battery and a method for producing the same.
The present invention relates to an anhydrous zinc alloy powder that, when used as a negative electrode, can produce a battery with small corrosion loss and variation, little hydrogen gas generation, and excellent discharge characteristics, and a method for producing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から、密封型アルカリ電池の負極には、通常、空気
中での溶融噴霧法で製造した微細な亜鉛粉末に6〜10
重量%の水銀を添加して成る粉末が用いられてきた。こ
こで水銀添加の理由は、亜鉛粉末の表面をアマルガム化
してその水素過電圧を高め、水素ガスの発生を抑制する
ことによって自己溶解を防止するためである。そのこと
により、電池貯蔵中若しくは使用中におけるガス発生と
それに伴う電池内圧の上昇を抑制し、電池の保存性が高
められる。
Conventionally, the negative electrode of a sealed alkaline battery is usually made of fine zinc powder produced by melting and spraying in the air.
Powders with added weight percent mercury have been used. The reason for adding mercury here is to prevent self-dissolution by amalgamating the surface of the zinc powder to increase its hydrogen overvoltage and suppressing the generation of hydrogen gas. This suppresses gas generation and the accompanying increase in battery internal pressure during battery storage or use, and improves battery storage stability.

しかしながら、水銀は有害物質であるため、最近では肛
池中の水銀が新たな公害源として問題視されるようにな
っている。
However, since mercury is a harmful substance, mercury in anal ponds has recently come to be seen as a new source of pollution.

このため、水銀を添加しない電池(水銀無添加電池)の
研究が活発に進められ、すでにその一部は実用化されつ
つある。
For this reason, research into batteries without the addition of mercury (mercury-free batteries) is actively underway, and some of them are already being put into practical use.

そのような電池で使用されている負極としては、タリウ
ム、インジリム、ガリウム、鉛、スズ、カドミウムの1
種又は2種以上を含む無水化亜鉛合金の粉末が知られて
いる(特開昭58−218760号参照)。これは、ア
マルガム化した亜鉛粉末と同程度の特性を有した負極で
ある。
The negative electrodes used in such batteries include thallium, indilim, gallium, lead, tin, and cadmium.
Anhydrous zinc alloy powder containing one or more species is known (see JP-A-58-218760). This is a negative electrode with properties comparable to those of amalgamated zinc powder.

しかしながら、従来知られている無水化亜鉛合金粉末は
、その合金化の過程、若しくは溶融噴霧の過程で、不純
物混入の影響又は表面酸化の影響を受けて、添加した各
元素本来の機能が発揮されず、水素ガス発生の増量を招
いたシ、表面酸化層が急放電時に拡散阻害層として作用
することにより放電特性が低下するという不都合な事態
を招いている。
However, conventionally known anhydrous zinc alloy powders are affected by impurities or surface oxidation during the alloying process or melt spraying process, making it difficult for each added element to perform its original function. First, the amount of hydrogen gas generated is increased, and the surface oxidation layer acts as a diffusion inhibiting layer during rapid discharge, resulting in an inconvenient situation in which the discharge characteristics are deteriorated.

また、この無氷化亜鉛合金粉末の製造時においては、ベ
ース亜鉛に溶解せしめる鉛などの添加成分の亜鉛に対す
る固溶度が極端に小さいので、これら添加成分が亜鉛に
均一分散しない。そのため、得られた亜鉛合金の粉末で
は不可避的に局部腐食が発生する。また、ガリウム、イ
ンジウムを亜鉛に添加した場合には、その添加量と合金
化したときの含有量との間に若干の不一致が生じ、その
結果、得られた亜鉛合金粉末の腐食挙動にばらつきが生
じ品質上の安定性に欠ける。
Furthermore, during the production of this ice-free zinc alloy powder, the solid solubility of additive components such as lead dissolved in the base zinc in zinc is extremely low, so these additive components are not uniformly dispersed in the zinc. Therefore, local corrosion inevitably occurs in the obtained zinc alloy powder. Additionally, when gallium or indium is added to zinc, there is a slight discrepancy between the amount added and the content when alloyed, resulting in variations in the corrosion behavior of the resulting zinc alloy powder. and lack stability in terms of quality.

〔発明の目的〕[Purpose of the invention]

本発明は、無水化亜鉛合金粉末に関する上記したような
問題点を解消し、負極として用いたとき、腐査減量及び
そのばらつきが小さく、水素ガス発生量が少なくなり、
犬″きな短絡電流を取り出せて放1!特性が向上した電
池の製造に資する負極用亜鉛合金粉末とその製造方法の
提供を目的とする。
The present invention solves the above-mentioned problems regarding anhydrous zinc alloy powder, and when used as a negative electrode, the corrosion loss and its variation are small, and the amount of hydrogen gas generated is small.
The purpose of the present invention is to provide a zinc alloy powder for a negative electrode and a method for producing the same, which contributes to the production of a battery that can extract a large short-circuit current and has improved discharge characteristics.

〔発明の概要〕[Summary of the invention]

本発明の水銀熱温アルカリ電池の負極用亜鉛合金粉末は
、亜鉛と、スズと、アルカリ金属とを必須成分として含
有する亜鉛合金粉末であって、該粉末には、短軸長0.
05111111以上、長軸長0.31!m以下の形状
特性を有する粉末が50重量%以上含まれていることを
特徴とし、その製造方法は、亜鉛と、スズと、アルカリ
金属とを必須成分として含有する亜鉛合金を、酸素濃度
0.4容!R%以下の雰囲気中で溶融噴霧することを特
徴とする。
The zinc alloy powder for a negative electrode of a mercury thermothermal alkaline battery of the present invention is a zinc alloy powder containing zinc, tin, and an alkali metal as essential components, and the powder has a minor axis length of 0.
05111111 or more, major axis length 0.31! It is characterized by containing 50% by weight or more of powder having a shape characteristic of less than 4 volumes! It is characterized by melting and spraying in an atmosphere of R% or less.

本発明合金粉末の必須成分の1つとして含有されるアル
カリ金属としては、ナトリウム、カリウム、リチウム、
ルビジウム、セシウムなどをあげることができる。とく
に、入手し易すい、安価である、添加操作が容易である
、すなわち工業的適用性に富むという点からしてナトリ
ウム、カリウム、リチウムが好適である。
The alkali metals contained as one of the essential components of the alloy powder of the present invention include sodium, potassium, lithium,
Examples include rubidium and cesium. In particular, sodium, potassium, and lithium are preferred because they are easily available, inexpensive, and easy to add, that is, have high industrial applicability.

これらアルカリ金属は亜鉛合金粉末の腐食減量及びその
ばらつきを小たらしめ、もって水素ガス発生を抑制する
に資する成分であるが、その理論的根拠は必ずしも明確
ではない。おそらく、含有されているアルカリ金属が、
ベース亜鉛に含まれていて防食性を低下させる鉄、コバ
ルトのような極微量の不純物と金属間化合物をつくって
これら不純物の働きを封じこめること、亜鉛表面の水素
過電圧を上昇させること、又は鉛、ガリウム、インジウ
ムなどの元素をベース亜鉛に添加したときその均一分散
を助長して局部腐食を抑制すること、などの作用を果す
ためであろうと推定される。
These alkali metals are components that reduce the corrosion weight loss of zinc alloy powder and its dispersion, thereby suppressing hydrogen gas generation, but the theoretical basis thereof is not necessarily clear. Probably the alkali metals contained in
Creating an intermetallic compound with minute amounts of impurities such as iron and cobalt that are contained in the base zinc and reducing its corrosion resistance, and sealing off the effects of these impurities, increasing the hydrogen overvoltage on the surface of zinc, or lead. It is presumed that this is because when elements such as , gallium, and indium are added to base zinc, they promote uniform dispersion and suppress local corrosion.

これらのアルカリ金属は、それぞれ単独で又は2種以上
を適宜に選択して含有せしめてよい。
These alkali metals may be contained alone or in combination of two or more.

アルカリ金属の含有量は0.001〜2.0重量%の範
囲内に設定されることが好ましい。この含有量が上記範
囲を外れている場合には、得られた亜鉛合金粉末をアル
カリ水溶液と接触せしめたとき、亜鉛合金粉末の腐食減
量が増大する。つまりは水素ガス発生量が急激に増加す
るようになって不都合である。
The content of alkali metal is preferably set within the range of 0.001 to 2.0% by weight. If this content is out of the above range, the corrosion loss of the zinc alloy powder increases when the obtained zinc alloy powder is brought into contact with an alkaline aqueous solution. In other words, the amount of hydrogen gas generated increases rapidly, which is inconvenient.

アルカリ金属を2種以上含有せしめた場合には、それら
の含量が上記範囲を満足するようにする。
When two or more types of alkali metals are contained, the content thereof is adjusted to satisfy the above range.

第2の必須成分であるスズは、後述の製造方法において
、得られた亜鉛合金粉末の蓄積応力を小たらしめ、もっ
て腐食減量を小さくシ、シたがって水素ガス発生量を少
なくするに資する成分であるO スズの含有量は0.005〜0.8重量%の範囲内に設
定されることが好ましい。含有量がo、oos重量%未
満の場合には、上記した効果が得られず、またO、 S
重量%よシ多い場合には、亜鉛粒粒子間の反応性が落ち
て、負極としての放電特性が低下しはじめるなどの問題
が生ずるようになって不都合である。
Tin, which is the second essential component, is a component that contributes to reducing the accumulated stress of the obtained zinc alloy powder in the manufacturing method described below, thereby reducing corrosion loss, and thus reducing the amount of hydrogen gas generated. It is preferable that the tin content is set within the range of 0.005 to 0.8% by weight. If the content is less than o, oos weight%, the above effects cannot be obtained, and O, S
If the amount is greater than % by weight, the reactivity between the zinc grains decreases, causing problems such as the discharge characteristics as a negative electrode beginning to deteriorate, which is disadvantageous.

第3の成分は、亜鉛又は前述の特開昭58−21876
0号に開示されているようなベース亜鉛と他の添加元素
とからなる亜鉛合金である。後者の場合、開示されてい
る添加元素はこれらのうち少なくとも1糧が含有されて
いればよいが、それぞれの含有量は最大で0.1重量%
であることが好壕しく、またこれら元素の含有量は全体
で1. O重fjk%以下に制限することが好ましい。
The third component is zinc or the aforementioned JP-A-58-21876
This is a zinc alloy consisting of base zinc and other additive elements as disclosed in No. 0. In the latter case, the disclosed additive elements may contain at least one of these elements, but each content may be at most 0.1% by weight.
It is preferable that the content of these elements is 1. It is preferable to limit the O weight to fjk% or less.

この含有量があまシ多ぐなると、相対的に亜鉛量が少な
くなって負極としての放電特性が低下しはじめる。
If this content becomes too large, the amount of zinc becomes relatively small, and the discharge characteristics as a negative electrode begin to deteriorate.

本発明の負極用亜鉛合金粉末は、組成は全て上記した合
金組成であるが、しかし、後述する形状の粉末が50M
量96以上含まれている。
The zinc alloy powder for negative electrodes of the present invention has all the above alloy compositions, but the powder having the shape described below is 50M
Contains 96 or more.

すなわち、その形状は、長軸長が0.3 個以下で、か
つ、短軸長が0.05 団以上の細長い球状若しくは“
繭状”又tよ涙滴状であり、表面には表面酸化の影響に
よると思われる尖鋭な突起状物はない。
That is, the shape is an elongated spherical shape with a major axis length of 0.3 or less and a minor axis length of 0.05 or more.
It has a cocoon-like or teardrop-like shape, and there are no sharp protrusions on the surface that are thought to be due to surface oxidation.

このような形状の粉末が全体の50重量%以上を占有す
ることによシ、本発明の負極用粉末は全体として相互間
の接触機会が多くなシ、その結果、短絡電流を多く取り
出すことが可能になる。また、表面には突起状物がない
ので、水素ガス発生も抑制される。
Since the powder having such a shape occupies 50% or more of the total weight, the negative electrode powder of the present invention has many opportunities for mutual contact as a whole, and as a result, it is possible to extract a large amount of short circuit current. It becomes possible. Furthermore, since there are no protrusions on the surface, hydrogen gas generation is also suppressed.

形状特性に関する上記限定が外れた粉末は、その形状が
いわば線状に近似してくるので、相互間の接触機会は減
少して放電特性の低下を否めない。
Powder that does not meet the above-mentioned limitations regarding shape characteristics has a shape that approximates a linear shape, so the chances of mutual contact are reduced and the discharge characteristics are unavoidably deteriorated.

更には、これら亜鉛合金粉末から負極合剤を調製して、
それを電池缶にノズル注入するとき、ノズル閉塞の事故
が発生し易すくなって電池製造工程に悪影響を与える。
Furthermore, a negative electrode mixture is prepared from these zinc alloy powders,
When it is injected into a battery can through a nozzle, accidents such as nozzle clogging are likely to occur, which adversely affects the battery manufacturing process.

また、その占有率が50重量%以下の場合は、理由は明
確ではないが、その短絡電流が半減して放電特性は低下
するので不都合である。
Furthermore, if the occupancy is less than 50% by weight, the short circuit current is halved and the discharge characteristics deteriorate, although the reason is not clear.

以上のような本発明の亜鉛合金粉末は次のようにして製
造さ7Lる。まず所定組成の亜鉛合金を例えば常用の融
解法によって調製する。このとき重要なことは、雰囲気
を酸素濃度0.4容積%以下の状態に管理することであ
る。具体的には、窒素、アルゴン等の不活性ガス雰囲気
が好適である。アルカリ金属としてリチウムを用いた場
合には、リチウムは窒素と容易に窒化物を形成するので
、そのときは窒素使用を排すべきである。また合金化に
適用する温度は通常410〜650℃でよい。
The zinc alloy powder of the present invention as described above is manufactured as follows. First, a zinc alloy of a predetermined composition is prepared, for example, by a conventional melting method. What is important at this time is to control the atmosphere to an oxygen concentration of 0.4% by volume or less. Specifically, an inert gas atmosphere such as nitrogen or argon is suitable. When lithium is used as the alkali metal, the use of nitrogen should then be eliminated, since lithium easily forms nitrides with nitrogen. Moreover, the temperature applied to alloying may generally be 410 to 650°C.

このとき含有されているスズは融液の融点降下をうなが
す。したがって、融液を噴霧したとき噴霧滴が不活性ガ
ス中を飛散して冷却固化する間に表面凝集が充分に進む
ので前述したスズ添加効果が発揮されるものと考えられ
る。
The tin contained at this time helps lower the melting point of the melt. Therefore, it is considered that when the melt is sprayed, surface aggregation progresses sufficiently while the spray droplets are scattered in the inert gas and cooled and solidified, so that the above-mentioned tin addition effect is exhibited.

つぎに、溶融した亜鉛合金を同じ酸素濃度0.4容積%
以下の雰囲気下で噴霧・冷却して微粉化する。
Next, the molten zinc alloy was heated to the same oxygen concentration of 0.4% by volume.
Finely powder by spraying and cooling in the following atmosphere.

合金化、溶融噴霧時の雰囲気を酸素濃度0.4容積%以
下のそれとした理由は、雰囲餅の酸素濃度が0.4容積
%より増大すると、粉末表面の酸化が進んで表面粗度が
増し、粉末の表面積も増加して亜鉛合金粉末の腐食減4
にの増加、したがって水素ガス発生Fkの増大を招くか
らである。
The reason why the atmosphere during alloying and melt spraying was set to an oxygen concentration of 0.4% by volume or less is that when the oxygen concentration of the atmosphere cake increases beyond 0.4% by volume, oxidation of the powder surface progresses and the surface roughness increases. The surface area of the powder also increases, reducing the corrosion of zinc alloy powder4.
This is because this results in an increase in Fk and thus an increase in hydrogen gas generation Fk.

このときの溶融噴霧は、特開昭50−48427号公報
に開示されている装置を用すて行なうことが好ましい。
The melting and spraying at this time is preferably carried out using the apparatus disclosed in JP-A-50-48427.

この装置の例えば、注下ルツボ孔径、噴射ノズルの交叉
角等の条件を適宜に設置し、まえ、噴霧ガス圧などの条
件を適正に選んで前記した形状特性の粉末が製造される
The conditions of this apparatus, such as the diameter of the pouring crucible hole and the intersection angle of the injection nozzle, are set appropriately, and the conditions such as the spray gas pressure are appropriately selected to produce powder having the above-described shape characteristics.

〔発明の実施ダj〕[Practice of the invention]

実施例1 (1)亜鉛合金粉末の調製 高純度黒鉛製るつぼの中に純度99.99%の亜鉛をい
れ、ここにスズ0.08重量X量、鉛0.06重斌%量
を添加して全体を酸素濃度が異なるアルゴンガス中で6
00℃に溶融加熱した。得られた融液にそれぞれ同じ雰
囲気中にてリチウム0.1重量Xiを投入して全体を石
英ガラス棒で攪拌したのち再び600℃に加熱した。
Example 1 (1) Preparation of zinc alloy powder Zinc with a purity of 99.99% was placed in a crucible made of high-purity graphite, and 0.08 weight x amount of tin and 0.06 weight percent of lead were added thereto. The whole body was heated in argon gas with different oxygen concentrations.
The mixture was melted and heated to 00°C. 0.1 weight of lithium Xi was added to each of the obtained melts in the same atmosphere, the whole was stirred with a quartz glass rod, and then heated to 600° C. again.

充分攪拌したのち、特開昭50−48427号に開示さ
れた装置を用い、同一の雰囲気中で溶融噴霧して各種の
亜鉛合金粉末を碍た。得られた粉末は、短軸長0.05
111111以上長軸長0.3圏以下の形状特性のもの
が、それぞれ60〜80重t%占めてい友。
After thorough stirring, various zinc alloy powders were melted and sprayed in the same atmosphere using the apparatus disclosed in JP-A-50-48427. The obtained powder has a minor axis length of 0.05
Those with shape characteristics of 111111 or more and major axis length of 0.3 or less account for 60 to 80% by weight, respectively.

水酸化カリウム水溶液中に浸漬し、45℃で3日間放置
したときの水素ガス発生量を測定した。その結果を第1
図に示し九。図で縦軸に、粉末12.1日当シの水素ガ
ス発生j!−(μl)を表わす。
The amount of hydrogen gas generated was measured when the sample was immersed in an aqueous potassium hydroxide solution and left at 45°C for 3 days. The result is the first
Nine shown in the figure. In the figure, the vertical axis shows the hydrogen gas generation of powder 12.1 per day! -(μl).

図から明らかなように、本発明の酸素濃度下で製造した
亜鉛合金粉末はその水素ガス発生速度が小さい。
As is clear from the figure, the zinc alloy powder produced under the oxygen concentration of the present invention has a low hydrogen gas generation rate.

(3)電池の放7It特性 これらの亜鉛合金粉末のうち、酸素濃度0.2 X。(3) Battery discharge characteristics Among these zinc alloy powders, the oxygen concentration was 0.2X.

0.4%、0.5%、0.6%で製造したものを負極と
して以下の仕様でLR6形マンガンアルカリ電池を製造
した。
LR6 type manganese alkaline batteries were manufactured with the following specifications using the negative electrodes manufactured with 0.4%, 0.5%, and 0.6%.

正也合剤:二酸化マンガンと黒鉛粉、セパレータ:ポリ
プロピレン不織布、集電子:亜鉛棒、負極合剤二上記分
末60Ti′t%とカルボキシメチル文ルロースのナト
リウム塩(増粘剤)0.4重量%と30に苛性カリ水溶
液(電解g)39.s重量%とから成るゲル体(なお、
電解液の粘度は?、Q O0cps 、亜鉛濃度は5%
、二酸化炭素濃度は0.8 Nであつ九)。
Masaya mixture: manganese dioxide and graphite powder, separator: polypropylene nonwoven fabric, current collector: zinc rod, negative electrode mixture 2 above fraction 60 Ti't% and sodium salt of carboxymethyl lullose (thickener) 0.4 weight % and 30 aqueous caustic potassium solution (electrolytic g) 39. A gel body consisting of s weight % (in addition,
What is the viscosity of the electrolyte? , Q O0cps , zinc concentration is 5%
, the carbon dioxide concentration was 0.8 N (9).

得られた電池を60℃で20日間貯蔵したときの水素ガ
ス発生量、及び貯蔵後20℃における10Ω負荷筬続時
の連続放電持続時間を測定した。
The amount of hydrogen gas generated when the obtained battery was stored at 60° C. for 20 days and the continuous discharge duration under a 10Ω load at 20° C. after storage were measured.

得られた結果を第1表に示した。The results obtained are shown in Table 1.

第  1  表 本発明の亜鉛合金粉末を用いた電池は、ガス発生−量が
少なく、放置持続時間も長い。
Table 1 Batteries using the zinc alloy powder of the present invention generate less gas and last longer when left unused.

(4)長軸長03m以下、短軸長0.05 WIn以上
の粉末の占有率の影響 (1)における装置の操作条件をかえて、長軸長0.3
晒以下、短軸長005rrrIn以上の粉末の存在割合
が異なる各種の亜鉛合金粉末をA製し、これら粉末を用
いて(3)と同様の方法でL几6型アルカリマンガン電
池を製造して、初度20℃における短絡電流を測定した
。その結果を第2表に示した。
(4) Influence of the occupancy of powder with a major axis length of 03 m or less and a minor axis length of 0.05 WIn or more by changing the operating conditions of the device in (1),
A variety of zinc alloy powders having different proportions of powder having a short axis length of 005 rrrIn or more under bleaching were manufactured by A, and using these powders, an L-6 type alkaline manganese battery was manufactured in the same manner as in (3). The short circuit current at 20° C. was initially measured. The results are shown in Table 2.

第  2  表 表から明らかなように 50%未満では短絡電流が半減
して電池の放電特性が甑立って低下する。
As is clear from Table 2, when it is less than 50%, the short circuit current is halved and the discharge characteristics of the battery are drastically reduced.

実施例2 実施例1において、スズの添加量を第3表のように変え
たこと、雰囲気を酸素濃度が0.2谷積にのアルゴン雰
囲気に固定したことを除いては実施例1と同様にして亜
鉛合金粉末を製造した。これら粉末を用いて実施列1−
(3)のようにしてLR6形マンガンアルカリ電池を各
50個製造し、これらを60℃で50日間貯蔵したとき
の水素ガス発生′J1を測定した。その結果を第3表に
示した。
Example 2 Same as Example 1 except that the amount of tin added was changed as shown in Table 3 and the atmosphere was fixed to an argon atmosphere with an oxygen concentration of 0.2 valley product. Zinc alloy powder was produced. Using these powders, Example 1-
Fifty LR6 type manganese alkaline batteries were manufactured as described in (3), and hydrogen gas generation 'J1 was measured when these batteries were stored at 60°C for 50 days. The results are shown in Table 3.

第3表 実施例3 アルカリ金属としてリチウムを選定し、実施例1の方法
にしたがってリチウム含有量の異なる亜鉛合金を調製し
た。この合金を溶融噴霧すれば、本発明の粉末が得られ
る。
Table 3 Example 3 Lithium was selected as the alkali metal, and zinc alloys with different lithium contents were prepared according to the method of Example 1. By melting and spraying this alloy, the powder of the present invention can be obtained.

このリチウム含有量の異なる各亜鉛合金から同一表面積
のペレットを5個切り出し、表面研摩したのち、それぞ
れを40%水酸化カリウム水溶液に浸漬し60℃で10
日間放置した。そのときの各ペレットの重量減少を測定
して、そのばらつき(単位:キ)を測定し、かつ、その
平均値をペレット表面積で除して腐食減量(単位: q
/cffl)を算出した。以上の結果を第2図に示した
。横軸は対数目盛である。
Five pellets with the same surface area were cut out from each zinc alloy with different lithium content, and after surface polishing, each pellet was immersed in a 40% potassium hydroxide aqueous solution for 10 minutes at 60°C.
I left it for days. Measure the weight loss of each pellet at that time, measure its dispersion (unit: q), and divide the average value by the pellet surface area to calculate the corrosion weight loss (unit: q).
/cffl) was calculated. The above results are shown in Figure 2. The horizontal axis is a logarithmic scale.

図から明らかなように1 リチウムがo、oot〜2.
0重量%のとき腐食減量は小さいことが判明した。
As is clear from the figure, 1 lithium is o, oot~2.
It was found that the corrosion loss was small when the content was 0% by weight.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明の方法で製造した
亜鉛合金粉末は、それを負極に用いたとき、腐食減量が
小さく、水素ガス発生量が少なくなシ、かつ、大きな短
絡電流を取り出すことができ、その放電持続時間も長い
という電池を得ることができる。そして、この亜鉛合金
粉末は無氷化であるので、公害による環境汚染の問題も
解消する。
As is clear from the above explanation, when the zinc alloy powder produced by the method of the present invention is used for a negative electrode, it has a small corrosion loss, a small amount of hydrogen gas generation, and a large short circuit current. It is possible to obtain a battery that has a long discharge duration. Since this zinc alloy powder is ice-free, the problem of environmental pollution caused by pollution is also solved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、溶融噴霧時の酸素濃度をかえて製造した各種
の亜鉛合金粉末の水素ガス発生量を表わす図である。第
2図は、本発明亜鉛合金の腐食減量とリチウム含有量と
の関係図である。 第1図 第2図
FIG. 1 is a diagram showing the amount of hydrogen gas generated from various zinc alloy powders produced by changing the oxygen concentration during melt spraying. FIG. 2 is a diagram showing the relationship between corrosion loss and lithium content of the zinc alloy of the present invention. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、亜鉛と、スズと、アルカリ金属とを必須成分として
含有する亜鉛合金粉末であつて、 該粉末には、短軸長0.05mm以上、長軸長0.3m
m以下の形状特性を有する粉末が50重量%以上含まれ
ていることを特徴とする水銀無添加アルカリ電池の負極
用亜鉛合金粉末。 2、該スズの含有量が0.005〜0.8重量%である
特許請求の範囲第1項記載の水銀無添加アルカリ電池の
負極用亜鉛合金粉末。 3、アルカリ金属の含有量が0.001〜2.0重量%
である特許請求の範囲第1項記載の水銀無添加アルカリ
電池の負極用亜鉛合金粉末。 4、亜鉛と、スズと、アルカリ金属とを必須成分として
含有する亜鉛合金を、酸素濃度0.4容積%以下の雰囲
気中で溶融噴霧することを特徴とする水銀無添加アルカ
リ電池の負極用亜鉛合金粉末の製造方法。
[Claims] 1. A zinc alloy powder containing zinc, tin, and an alkali metal as essential components, the powder having a minor axis length of 0.05 mm or more and a major axis length of 0.3 m.
A zinc alloy powder for a negative electrode of a mercury-free alkaline battery, characterized in that it contains 50% by weight or more of a powder having a shape characteristic of m or less. 2. Zinc alloy powder for a negative electrode of a mercury-free alkaline battery according to claim 1, wherein the tin content is 0.005 to 0.8% by weight. 3. Alkali metal content is 0.001-2.0% by weight
A zinc alloy powder for a negative electrode of a mercury-free alkaline battery according to claim 1. 4. Zinc for negative electrode of mercury-free alkaline battery, characterized in that a zinc alloy containing zinc, tin, and alkali metal as essential components is melted and sprayed in an atmosphere with an oxygen concentration of 0.4% by volume or less. Method for producing alloy powder.
JP59185414A 1984-09-06 1984-09-06 Zinc alloy powder for the negative electrode of a mercury-free alkaline battery and its manufacture Granted JPS6164074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59185414A JPS6164074A (en) 1984-09-06 1984-09-06 Zinc alloy powder for the negative electrode of a mercury-free alkaline battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59185414A JPS6164074A (en) 1984-09-06 1984-09-06 Zinc alloy powder for the negative electrode of a mercury-free alkaline battery and its manufacture

Publications (2)

Publication Number Publication Date
JPS6164074A true JPS6164074A (en) 1986-04-02
JPH0355023B2 JPH0355023B2 (en) 1991-08-22

Family

ID=16170370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59185414A Granted JPS6164074A (en) 1984-09-06 1984-09-06 Zinc alloy powder for the negative electrode of a mercury-free alkaline battery and its manufacture

Country Status (1)

Country Link
JP (1) JPS6164074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193362A (en) * 1985-02-21 1986-08-27 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
WO2000048260A1 (en) * 1999-02-09 2000-08-17 N.V. Union Miniere S.A. Centrifugally atomized zinc alloy powder for alkaline batteries

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193362A (en) * 1985-02-21 1986-08-27 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPH0418674B2 (en) * 1985-02-21 1992-03-27 Mitsui Kinzoku Kogyo Kk
WO2000048260A1 (en) * 1999-02-09 2000-08-17 N.V. Union Miniere S.A. Centrifugally atomized zinc alloy powder for alkaline batteries
JP2002536815A (en) * 1999-02-09 2002-10-29 エン.ファウ.ユニオン ミニーレ エス.アー. Centrifugal atomized zinc alloy powder for alkaline batteries
US7374840B1 (en) * 1999-02-09 2008-05-20 Umicore Centrifugally atomized zinc alloy powder for alkaline batteries

Also Published As

Publication number Publication date
JPH0355023B2 (en) 1991-08-22

Similar Documents

Publication Publication Date Title
CN101901893B (en) Aluminum alloy anode material for battery and method for producing same
JP3215448B2 (en) Zinc alkaline battery
CN102011028B (en) Zinc powder used as electrode and preparation method thereof
JP3215447B2 (en) Zinc alkaline battery
JPH04284357A (en) Zinc alkaline battery
PL205987B1 (en) Zinc powder or zinc alloy powder for alkaline batteries
JPS6164074A (en) Zinc alloy powder for the negative electrode of a mercury-free alkaline battery and its manufacture
JP2975527B2 (en) Zinc alloy powder for mercury-free alkaline batteries
JP4852713B2 (en) Zinc alloy powder for alkaline batteries and method for producing the same
EP0945908B1 (en) Zinc alloy powder as anode material for use in alkaline manganese cells and process for producing the same
JP2001250544A (en) Zinc alloy powder for alkaline battery and its preparation method
JPS6158164A (en) Zinc alloy powder for negative electrode of nonmercury alkaline battery and its manufacture
JPH0754704B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPH04289661A (en) Zinc alloy powder for alkaline battery and manufacture thereof
JPH03120323A (en) Manufacture of lowly mercurated zinc alloy grain for alkaline battery
BE893551A (en) Zinc powder for alkaline battery electrodes - contg. additive to reduce amt. of amalgamation required
JPS6164073A (en) Zinc alloy for negative electrode of an alkaline battery
JPS60243969A (en) Manufacture of anode active material for battery
JP3708198B2 (en) Negative electrode for alkaline batteries
JPS6110861A (en) Alkaline zinc battery
JP3434961B6 (en) Method for producing zinc alloy powder for alkaline batteries
JPH0369143B2 (en)
JPS6110859A (en) Alkaline-zinc battery
JP2003272615A (en) Zinc alloy powder and alkaline battery using the same
JP3434961B2 (en) Zinc alloy powder for alkaline battery and method for producing the same