JPH04289661A - Zinc alloy powder for alkaline battery and manufacture thereof - Google Patents

Zinc alloy powder for alkaline battery and manufacture thereof

Info

Publication number
JPH04289661A
JPH04289661A JP3077221A JP7722191A JPH04289661A JP H04289661 A JPH04289661 A JP H04289661A JP 3077221 A JP3077221 A JP 3077221A JP 7722191 A JP7722191 A JP 7722191A JP H04289661 A JPH04289661 A JP H04289661A
Authority
JP
Japan
Prior art keywords
zinc alloy
alloy powder
weight
zinc
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3077221A
Other languages
Japanese (ja)
Inventor
Masamoto Sasaki
正元 佐々木
Toyohide Uemura
植村 豊秀
Tomotaka Motomura
本村 智隆
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP3077221A priority Critical patent/JPH04289661A/en
Publication of JPH04289661A publication Critical patent/JPH04289661A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide zinc alloy powder for an alkaline battery and its manufacture, capable of sharply restraining hydrogen gas generation and also of retaining discharge performance in a practical level in a non-mercuriged condition. CONSTITUTION:Zinc alloy powder for an alkaline battery and its manufacture have a feature of containing a iron of 5ppm and less and components selected from the following (1) or (2); (1): bismuth of 0.01-0.5wt.%, indium of 0.01-0.5wt.%, and at least one kind of total 0.05-0.1wt.% selected from magnesium, zirconium, lithium, lanthanum, barium, silicon, boron, and tantalum; (2): aluminum of 0.01-0.5wt.%, indium of 0.01-0.5wt.%, and at least one kind of total 0.005-0.1wt.% selected from magnesium, zirconium, lithium, lanthanum, barium, silicon, boron, and tantalum.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はアルカリ電池用亜鉛合金
粉末およびその製造方法に関し、詳しくは鉄の含有量が
1ppm以下で、かつ特定の添加元素を含有することに
より、水素ガスの発生を抑制し、電池の耐洩液性を向上
させたアルカリ電池用亜鉛合金粉末およびその製造方法
に関する。
[Industrial Application Field] The present invention relates to a zinc alloy powder for alkaline batteries and a method for producing the same. Specifically, the iron content is 1 ppm or less, and hydrogen gas generation is suppressed by containing specific additive elements. The present invention also relates to a zinc alloy powder for alkaline batteries that improves the leakage resistance of batteries, and a method for producing the same.

【0002】0002

【従来の技術】アルカリ電池の負極活物質に使用されて
いる汞化亜鉛粉末中の水銀は、亜鉛の腐食による水素ガ
スの発生を抑制し、これに起因する電池の洩液を防止す
る目的から、アルカリ電池の負極活物質に不可欠な成分
と考えられていた。
[Prior Art] Mercury in the zinc oxide powder used as the negative electrode active material of alkaline batteries is used to suppress the generation of hydrogen gas due to corrosion of zinc and to prevent battery leakage caused by this. , was considered an essential component of the negative electrode active material of alkaline batteries.

【0003】しかし、環境対策の面から水銀の低減が求
められており、このため亜鉛に鉛、さらにはアルミニウ
ム、ビスマス、インジウム等を添加元素として加えるこ
とにより、水銀の含有量を10重量%から1重量%前後
まで大幅に低減させても、水素ガスの発生を抑制するこ
とが可能となった。
[0003] However, there is a need to reduce mercury from the perspective of environmental measures, and for this reason, by adding lead, aluminum, bismuth, indium, etc. to zinc as additive elements, the mercury content can be reduced from 10% by weight. Even if the content was significantly reduced to around 1% by weight, it became possible to suppress the generation of hydrogen gas.

【0004】しかるに、さらなる社会的要請として、負
極活物質中の水銀含有量を0重量%、換言すれば無汞化
とすることが近年求められている。このように負極活物
質を無汞化とすると情況は大幅に異なり、上記のような
添加元素を加えたとしても、水素ガス発生量を所定のレ
ベルまで抑制することは困難であった。すなわち、従来
より種々の添加元素を加えた負極活物質としての亜鉛合
金粉末が提案されているが(例えば特公平2−2298
4号公報、特開昭61−153950号公報)、これら
は水銀含有量が1重量%またはそれ以下でも所期の水素
ガス発生の抑制は達成できるものの、無汞化ではその実
現ができなかった。
However, as a further social demand, in recent years there has been a demand for reducing the mercury content in the negative electrode active material to 0% by weight, in other words, to make it zero. As described above, when the negative electrode active material is made non-reactive, the situation is significantly different, and even if the above-mentioned additive elements are added, it is difficult to suppress the amount of hydrogen gas generated to a predetermined level. That is, although zinc alloy powders containing various additive elements have been proposed as negative electrode active materials (for example, Japanese Patent Publication No. 2-2298
4, JP-A No. 61-153950), these can achieve the desired suppression of hydrogen gas generation even if the mercury content is 1% by weight or less, but this could not be achieved with no hydrogenation. .

【0005】一方、亜鉛中の不純物の含有量を低減する
ことによって、水素ガスの発生を抑制し、かつ放電性能
を向上させる試みはなされており、例えば特開昭62−
123653号公報には、鉄やクロム等の不純物を低減
することが記載されており、同公報第4頁第1表におい
ては、鉛、インジウムおよびアルミニウムを一定量含有
し、かつ水銀を1重量%含有する汞化亜鉛合金粉末を用
いた負極活物質においては、鉄を10ppm程度に低減
することによって、水素ガスの発生を抑制しつつ放電性
能が向上している。
On the other hand, attempts have been made to suppress the generation of hydrogen gas and improve discharge performance by reducing the content of impurities in zinc.
Publication No. 123653 describes the reduction of impurities such as iron and chromium, and Table 1 on page 4 of the same publication states that it contains certain amounts of lead, indium, and aluminum, and 1% by weight of mercury. In the negative electrode active material using the contained zinc chloride alloy powder, by reducing the iron content to about 10 ppm, the discharge performance is improved while suppressing the generation of hydrogen gas.

【0006】しかしながら、水銀含有量が0重量%の亜
鉛合金粉末では、上記のように不純物の含有量を10p
pm程度に低減し、かつ鉛等の添加元素を含有させても
所望の水素ガスの発生を抑制する効果は得られなかった
However, in zinc alloy powder with a mercury content of 0% by weight, the impurity content is reduced to 10p as described above.
Even if the hydrogen content was reduced to about pm and additional elements such as lead were contained, the desired effect of suppressing the generation of hydrogen gas could not be obtained.

【0007】このように、負極活物質を無汞化とするこ
とは、水銀含有量が0.6〜1重量%という低汞化の場
合と根本的に異なる困難さを伴ない、無汞化の亜鉛合金
粉末を負極活物質として用い、水素ガスの発生を抑制し
、ひいては耐洩液性を向上させたアルカリ電池は未だ得
らていない。
[0007] As described above, making the negative electrode active material non-permeable involves fundamentally different difficulties than making the mercury content as low as 0.6 to 1% by weight. An alkaline battery that uses zinc alloy powder as a negative electrode active material, suppresses hydrogen gas generation, and improves leakage resistance has not yet been obtained.

【0008】[0008]

【発明が解決しようとする課題】本発明は、かかる従来
技術の課題を解決すべくなされたもので、無汞化におい
て、水素ガス発生を大幅に抑制すると共に、放電性能を
実用的な水準に保持し得るアルカリ電池用亜鉛合金粉末
およびその製造方法を提供することを目的とし、無水銀
アルカリ電池の耐洩液性を向上させることを最終的な目
的とする。
[Problems to be Solved by the Invention] The present invention has been made to solve the problems of the prior art, and it significantly suppresses the generation of hydrogen gas in non-operating mode, and also brings the discharge performance to a practical level. The purpose of the present invention is to provide a zinc alloy powder for alkaline batteries that can be retained and a method for producing the same, and the ultimate purpose is to improve the leakage resistance of mercury-free alkaline batteries.

【0009】[0009]

【課題を解決するための手段】本発明者らは、この目的
に沿って鋭意研究の結果、不純物としての鉄の含有量が
極めて少ない亜鉛を用い、これに特定の添加元素を加え
ることにより、両者の相乗効果によって上記目的が達成
されることを知見し、本発明に到達した。
[Means for Solving the Problem] As a result of intensive research in line with this purpose, the present inventors have found that by using zinc, which has an extremely low content of iron as an impurity, and adding specific additive elements to it, The inventors have discovered that the above object can be achieved through the synergistic effect of the two, and have arrived at the present invention.

【0010】すなわち、本発明のアルカリ電池用亜鉛合
金粉末は、鉄を5ppm以下含有し、かつ下記(1)ま
たは(2): (1)ビスマスを0.01〜0.5重量%、インジウム
を0.01〜0.5重量%およびマグネシウム、ジルコ
ニウム、リチウム、ランタン、バリウム、ケイ素、ホウ
素、タンタルから選ばれる少なくとも1種を合計0.0
05〜0.1重量%、 (2)アルミニウムを0.01〜0.5重量%、インジ
ウムを0.01〜0.5重量%およびマグネシウム、ジ
ルコニウム、リチウム、ランタン、バリウム、ケイ素、
ホウ素、タンタルから選ばれる少なくとも1種を合計0
.005〜0.1重量%、 から選択される成分を含有することを特徴とする。
That is, the zinc alloy powder for alkaline batteries of the present invention contains 5 ppm or less of iron and the following (1) or (2): (1) 0.01 to 0.5 wt% of bismuth and 0.01 to 0.5 wt% of indium. 0.01 to 0.5% by weight and at least one selected from magnesium, zirconium, lithium, lanthanum, barium, silicon, boron, and tantalum in total of 0.0%
05-0.1% by weight, (2) 0.01-0.5% by weight of aluminum, 0.01-0.5% by weight of indium, and magnesium, zirconium, lithium, lanthanum, barium, silicon,
A total of 0 of at least one selected from boron and tantalum
.. 0.005 to 0.1% by weight.

【0011】本発明においては、鉄の含有量が5ppm
以下であることが必要である。鉄の含有量が5ppmを
超えた場合には水素ガスの発生を抑制する効果が小さい
。従来、このような鉄の含有量の低い亜鉛または亜鉛合
金粉末を負極活物質として用いることは行なわれておら
ず、またそのような報告も知られていない。高純度の亜
鉛地金については特殊な用途、例えば半導体用に特別に
帯域溶融法等の方法を用いて作ることはできるが、価格
的にも高価で、とても乾電池用の原料として使用できる
ものではない。また合金粉末として用いた例も見当たら
ない。
[0011] In the present invention, the iron content is 5 ppm.
It is necessary that the following is true. When the iron content exceeds 5 ppm, the effect of suppressing hydrogen gas generation is small. Conventionally, zinc or zinc alloy powder with a low iron content has not been used as a negative electrode active material, and no such report is known. High-purity zinc ingots can be made for special purposes, such as semiconductors, using methods such as zone melting, but they are expensive and cannot be used as raw materials for dry batteries. do not have. Furthermore, there are no examples of its use as an alloy powder.

【0012】また、本発明では、上記(1)または(2
)から選択される成分を含有する。各成分元素の含有量
が上記範囲を逸脱した場合には、所期の水素ガスの発生
を抑制する効果が得られなかったり、実用的な放電性能
が維持できないという問題が生じる。このような成分以
外の添加元素、例えば従来より負極活物質として用いら
れる亜鉛合金粉末に含有されるアルミニウム、ビスマス
、カルシウム等を仮に単独で含有させても上記した本願
発明の効果は得られない。
[0012] Furthermore, in the present invention, the above (1) or (2)
). If the content of each component element deviates from the above range, problems arise in that the desired effect of suppressing the generation of hydrogen gas cannot be obtained or that practical discharge performance cannot be maintained. Even if additive elements other than these components, such as aluminum, bismuth, calcium, etc. contained in zinc alloy powder conventionally used as a negative electrode active material, are contained alone, the effects of the present invention described above cannot be obtained.

【0013】次に、本発明の製造方法について説明する
Next, the manufacturing method of the present invention will be explained.

【0014】本発明では、鉄の含有量が5ppm以下の
亜鉛を用いる。このような鉄含有量の低い亜鉛としては
、電解法による析離亜鉛や蒸留法による亜鉛インゴット
が挙げられる。従来においては、析離亜鉛を塩化アンモ
ニウム等のフラックスと共に溶融し、鋳型に鋳造した亜
鉛インゴットを負極活物質の亜鉛原料として用いていた
。このような亜鉛インゴットでは鉄の含有量を5ppm
以下とすることができない。その理由は、亜鉛の溶融工
程で浮いたドロス分を除去するが、その除去工程で一部
分回収される亜鉛を溶融部に戻す。このドロス分除去工
程で通常、分離装置からの鉄分の混入があるからである
。また、溶湯ポンプ、鋳型、環境からの鉄分の混入も予
測される。
[0014] In the present invention, zinc having an iron content of 5 ppm or less is used. Examples of such zinc with a low iron content include zinc deposited by an electrolytic method and zinc ingots produced by a distillation method. Conventionally, deposited zinc was melted together with a flux such as ammonium chloride, and a zinc ingot, which was cast into a mold, was used as the zinc raw material for the negative electrode active material. In such a zinc ingot, the iron content is 5 ppm.
It cannot be: The reason for this is that the dross that floats during the zinc melting process is removed, but some of the zinc that is recovered during the removal process is returned to the melting zone. This is because in this dross removal step, iron is usually mixed in from the separator. In addition, iron contamination from the molten metal pump, mold, and environment is also expected.

【0015】この鉄含有量の低い亜鉛の溶湯中に、上記
した(1)または(2)に示される各添加元素を所定範
囲の含有量となるように添加する。そして、次にアトマ
イズ法によって粉体化し、さらに篩分けして亜鉛合金粉
末を得る。この際の溶融およびアトマイズ雰囲気中の鉄
の含有量を0.009mg/m3以下とすることが、水
素ガス発生の抑制効果をさらに向上させるといった見地
から望ましい。また、得られた亜鉛合金粉末を磁力選別
することも同様の観点から望ましい。
[0015] Each of the additional elements shown in (1) or (2) above is added to this molten zinc having a low iron content so that the content falls within a predetermined range. Then, it is pulverized by an atomization method and further sieved to obtain zinc alloy powder. At this time, it is desirable that the iron content in the melting and atomizing atmosphere be 0.009 mg/m 3 or less from the viewpoint of further improving the effect of suppressing hydrogen gas generation. It is also desirable from the same point of view to magnetically sort the obtained zinc alloy powder.

【0016】このようにして得られた亜鉛合金粉末中の
鉄の含有量は、上述したように5ppm以下であり、こ
の亜鉛合金粉末は耐洩液性の許容上限である約300μ
l/day・cell(単3型)以下に水素ガスの発生
を抑制することができる。
The iron content in the zinc alloy powder thus obtained is 5 ppm or less, as mentioned above, and this zinc alloy powder has an iron content of about 300 μm, which is the upper limit of leakage resistance.
Hydrogen gas generation can be suppressed to less than 1/day cell (AA type).

【0017】[0017]

【作用】従来、亜鉛の腐食による水素ガス発生の機構に
ついては、巨視的なガス量の測定や推測による結晶構造
の関係が論じられるだけで、実際にガスの発生部位にま
で検討を加えられることがなかった。本発明者等は、連
続的にガスが発生する部位が鉄、ステンレス、酸化鉄が
ごく微量混合偏在する場所であることを知見した。そこ
で、本発明では、鉄の含有量を極めて微量にすると共に
、特定の添加元素を一定量含有させる。このことによっ
て、両者の相乗効果によって、水素ガスの発生が抑制さ
れる。
[Operation] Conventionally, the mechanism of hydrogen gas generation due to corrosion of zinc has only been discussed in relation to the crystal structure based on macroscopic gas volume measurements and speculation, but it has not been possible to actually investigate the gas generation site. There was no. The inventors of the present invention found that the region where gas is continuously generated is a region where a very small amount of iron, stainless steel, and iron oxide are mixed and unevenly distributed. Therefore, in the present invention, the iron content is made extremely small, and a specific additive element is also included in a certain amount. This suppresses the generation of hydrogen gas due to the synergistic effect of both.

【0018】[0018]

【実施例】以下、実施例および比較例に基づいて本発明
を具体的に説明する。
[Examples] The present invention will be specifically explained below based on Examples and Comparative Examples.

【0019】実施例1〜28および比較例1〜12雰囲
気中の鉄含有量が0.005mg/m3の室内において
、鉄の含有量が4ppmである電解析離亜鉛を約  5
00℃で溶融し、これに表1〜2に示す各元素の所定量
を添加して亜鉛合金溶湯を作成した。
Examples 1 to 28 and Comparative Examples 1 to 12 In a room where the iron content in the atmosphere is 0.005 mg/m3, about 50% of electrolysed zinc having an iron content of 4 ppm is
The zinc alloy was melted at 00°C, and predetermined amounts of each element shown in Tables 1 and 2 were added thereto to create a molten zinc alloy.

【0020】次に、これを同一の雰囲気中で直接高圧ア
ルゴンガス(噴出圧5kg/cm2)を使って粉体化し
、得られた亜鉛合金粉末を50〜150メッシュの粒度
に篩い分けした。
[0020] Next, this was directly pulverized in the same atmosphere using high-pressure argon gas (ejection pressure 5 kg/cm2), and the obtained zinc alloy powder was sieved to a particle size of 50 to 150 mesh.

【0021】さらに、磁石を用いて磁力選別を行ない遊
離鉄粉を除去した。得られた亜鉛合金粉末の鉄含有量は
いずれも4ppmであった。
Furthermore, free iron powder was removed by magnetic separation using a magnet. The iron content of the obtained zinc alloy powders was 4 ppm in all cases.

【0022】ここで、濃度40%の水酸化カリウム水溶
液に酸化亜鉛を飽和させたものに、ゲル化剤としてカル
ボキシメチルセルロースとポリアクリル酸ソーダを1.
0%程度加えて電解液を作成した。
[0022] Here, carboxymethyl cellulose and sodium polyacrylate are added as a gelling agent to a 40% potassium hydroxide aqueous solution saturated with zinc oxide.
An electrolytic solution was prepared by adding about 0%.

【0023】負極活物質として上記亜鉛合金粉末を用い
、この亜鉛合金粉末3.0gを電解液1.5gと混合し
てゲル状化したものをそのまま負極材とし、図1に示す
アルカリマンガン電池を作成した。
Using the zinc alloy powder described above as the negative electrode active material, 3.0 g of this zinc alloy powder was mixed with 1.5 g of electrolyte to form a gel, and the resultant mixture was used as the negative electrode material to form an alkaline manganese battery as shown in FIG. Created.

【0024】このアルカリマンガン電池を25%部分放
電させた後、亜鉛合金粉末の腐食による発生する水素ガ
ス発生量を測定し、得られた結果を表1〜2に示した。 なお、25%部分放電するのは、無水銀のアルカリマン
ガン電池を構成し、0.9Vまでの放電時間を100%
とした場合、25%部分放電あたりが水素ガス発生速度
が最大となるからであり、1Ω、11分の放電条件をも
って25%部分放電とした。
After partially discharging this alkaline manganese battery by 25%, the amount of hydrogen gas generated due to corrosion of the zinc alloy powder was measured, and the results are shown in Tables 1 and 2. In addition, 25% partial discharge constitutes a mercury-free alkaline manganese battery, and the discharge time up to 0.9V is 100%.
This is because the hydrogen gas generation rate is maximum at around 25% partial discharge, and the discharge conditions of 1Ω and 11 minutes were defined as 25% partial discharge.

【0025】図1のアルカリマンガン電池は、正極缶1
、正極2、負極(ゲル状化した亜鉛合金粉末)3、セパ
レーター4、封口体5、負極底板6、負極集電体7、キ
ャップ8、熱収縮性樹脂チューブ9、絶縁リング10,
11、外装缶12で構成されている。
The alkaline manganese battery shown in FIG.
, positive electrode 2, negative electrode (gelled zinc alloy powder) 3, separator 4, sealing body 5, negative electrode bottom plate 6, negative electrode current collector 7, cap 8, heat-shrinkable resin tube 9, insulating ring 10,
11, and an outer can 12.

【0026】比較例13〜52 鉄の含有量が4ppmの電解析離亜鉛を通常の通り一旦
鋳込んだ亜鉛インゴットを出発原料として、5mg/m
3の雰囲気中で約  500℃で溶融し、これに表2〜
3に示す各元素の所定量を添加して亜鉛合金溶湯を作成
した。
Comparative Examples 13 to 52 Using as a starting material a zinc ingot in which electrolyzed zinc with an iron content of 4 ppm was cast as usual, 5 mg/m
It is melted at about 500℃ in the atmosphere of 3, and
A molten zinc alloy was prepared by adding predetermined amounts of each element shown in 3.

【0027】次に、これを同一の雰囲気中で高圧アルゴ
ンガス(噴出圧5kg/cm2)を使って粉体化し、得
られた亜鉛亜鉛合金粉末を50〜150メッシュの粒度
に篩い分けした。
Next, this was pulverized using high pressure argon gas (injection pressure 5 kg/cm2) in the same atmosphere, and the obtained zinc-zinc alloy powder was sieved to a particle size of 50 to 150 mesh.

【0028】得られた亜鉛合金粉末の鉄含有量はいずれ
も20ppmであった。なお、ここでは磁力選別を行な
わなかった。
The iron content of the zinc alloy powders obtained was 20 ppm. Note that magnetic selection was not performed here.

【0029】この亜鉛合金粉末を用い、実施例1と同様
に図1に示すアルカリ電池を作成し、25%部分放電を
行ない、水素ガス発生量を測定した。その結果を表2〜
3に示す。
Using this zinc alloy powder, an alkaline battery shown in FIG. 1 was prepared in the same manner as in Example 1, a 25% partial discharge was performed, and the amount of hydrogen gas generated was measured. The results are shown in Table 2~
Shown in 3.

【0030】[0030]

【表1】[Table 1]

【0031】[0031]

【表2】[Table 2]

【0032】[0032]

【表3】[Table 3]

【0033】表1〜3に示されるように、鉄の含有量が
5ppm以下で、しかも特定の組成を有する実施例1〜
28の亜鉛合金粉末は、いずれも水素ガス発生量が耐洩
液性の許容上限である約300μl/day・cell
(単3型)以下である。これに対して比較例1〜12の
亜鉛合金粉末は、鉄の含有量が5ppm以下であるにも
拘らず、組成が本発明で規定する範囲を逸脱することか
ら、水素ガス発生を抑制する効果が認められない。さら
に、比較例13〜52の亜鉛合金粉末は、鉄の含有量が
20ppmであるため、組成が本発明で規定する範囲に
含まれるか否かを問わず、水素ガス発生を抑制する効果
が認められない。
[0033] As shown in Tables 1 to 3, Examples 1 to 3 had an iron content of 5 ppm or less and had a specific composition.
All 28 zinc alloy powders have a hydrogen gas generation rate of approximately 300 μl/day/cell, which is the upper limit of leakage resistance.
(AA type) or less. On the other hand, although the zinc alloy powders of Comparative Examples 1 to 12 have an iron content of 5 ppm or less, their compositions deviate from the range specified by the present invention, so they are effective in suppressing hydrogen gas generation. is not recognized. Furthermore, since the zinc alloy powders of Comparative Examples 13 to 52 have an iron content of 20 ppm, the effect of suppressing hydrogen gas generation is recognized regardless of whether the composition falls within the range specified by the present invention. I can't do it.

【0034】実験例 実施例2および比較例15の亜鉛合金粉末に、水銀1重
量%、10重量%含有されるようにそれぞれ汞化し、汞
化亜鉛合金粉末を得た。
Experimental Examples The zinc alloy powders of Example 2 and Comparative Example 15 were atomized to contain 1% by weight and 10% by weight of mercury, respectively, to obtain azinc alloy powders.

【0035】この汞化亜鉛合金粉末を用い、実施例1と
同様に図1に示すアルカリ電池を作成し、25%部分放
電を行ない、水素ガス発生量を測定した。その結果を実
施例2および比較例15の値と共にプロットして図2に
示す。
Using this zinc oxide alloy powder, an alkaline battery shown in FIG. 1 was prepared in the same manner as in Example 1, and a 25% partial discharge was performed to measure the amount of hydrogen gas generated. The results are plotted together with the values of Example 2 and Comparative Example 15 and are shown in FIG.

【0036】この図2に示されるように、鉄の含有量が
20ppmの場合には、水銀含有量が1重量%以上で耐
洩液性の許容上限を下回るのに対し、鉄の含有量が4p
pmでは水銀の含有の有無に拘らず、耐洩液性の許容上
限を下回る。
As shown in FIG. 2, when the iron content is 20 ppm, mercury content of 1% by weight or more is below the allowable upper limit of leakage resistance, while iron content is 20 ppm. 4p
pm is below the permissible upper limit for leakage resistance, regardless of the presence or absence of mercury.

【0037】[0037]

【発明の効果】以上説明のごとく、鉄の含有量が5pp
m以下の亜鉛と特定の添加元素を溶湯中で溶解し、該溶
湯を直接アトマイズすることによって、鉄の含有量が5
ppm以下であるアルカリ電池用亜鉛合金粉末が得られ
る。
[Effect of the invention] As explained above, the iron content is 5pp.
By dissolving less than m of zinc and specific additive elements in a molten metal and directly atomizing the molten metal, the iron content can be reduced to 5.
A zinc alloy powder for alkaline batteries having a concentration of ppm or less can be obtained.

【0038】この亜鉛合金粉末は、無汞化であるにも拘
らず、アルカリ電池の負極活物質に用いることにより、
水素ガス発生を大幅に抑制すると共に、放電性能を実用
的な水準に保持し得る。また、水銀が含有されていない
ため、この亜鉛合金粉末を負極活物質として用いたアル
カリ電池は社会的ニーズにも沿ったものである。
Although this zinc alloy powder is non-oxidizing, it can be used as a negative electrode active material for alkaline batteries.
Hydrogen gas generation can be significantly suppressed, and discharge performance can be maintained at a practical level. Furthermore, since it does not contain mercury, alkaline batteries using this zinc alloy powder as a negative electrode active material meet social needs.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係わるアルカリマンガン電池の側断面
図を示す。
FIG. 1 shows a side sectional view of an alkaline manganese battery according to the present invention.

【図2】亜鉛合金粉末中の水銀含有量と水素ガス発生量
との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the mercury content in zinc alloy powder and the amount of hydrogen gas generated.

【符号の説明】[Explanation of symbols]

1  正極缶 2  正極 3  負極 4  セパレータ 5  封口体 6  負極底板 7  負極集合体 8  キャップ 9  熱収縮性樹脂チューブ 10,11  絶縁リング 12  外装缶 1 Positive electrode can 2 Positive electrode 3 Negative electrode 4 Separator 5 Sealing body 6 Negative electrode bottom plate 7 Negative electrode assembly 8 Cap 9 Heat-shrinkable resin tube 10, 11 Insulation ring 12 Exterior can

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  鉄を5ppm以下、ビスマスを0.0
1〜0.5重量%、インジウムを0.01〜0.5重量
%およびマグネシウム、ジルコニウム、リチウム、ラン
タン、バリウム、ケイ素、ホウ素、タンタルから選ばれ
る少なくとも1種を合計0.005〜0.1重量%含有
することを特徴とするアルカリ電池用亜鉛合金粉末。
[Claim 1] Iron: 5 ppm or less, bismuth: 0.0
1 to 0.5% by weight, 0.01 to 0.5% by weight of indium, and a total of 0.005 to 0.1 of at least one selected from magnesium, zirconium, lithium, lanthanum, barium, silicon, boron, and tantalum. Zinc alloy powder for alkaline batteries characterized by containing % by weight.
【請求項2】  鉄を5ppm以下、アルミニウムを0
.01〜0.5重量%、インジウムを0.01〜0.5
重量%およびマグネシウム、ジルコニウム、リチウム、
ランタン、バリウム、ケイ素、ホウ素、タンタルから選
ばれる少なくとも1種を合計0.005〜0.1重量%
含有することを特徴とするアルカリ電池用亜鉛合金粉末
[Claim 2] Iron: 5 ppm or less, aluminum: 0
.. 01-0.5% by weight, 0.01-0.5% indium
wt% and magnesium, zirconium, lithium,
A total of 0.005 to 0.1% by weight of at least one selected from lanthanum, barium, silicon, boron, and tantalum.
Zinc alloy powder for alkaline batteries characterized by containing.
【請求項3】  鉄の含有量が5ppm以下の亜鉛と、
下記(1)または(2): (1)ビスマスを0.01〜0.5重量%、インジウム
を0.01〜0.5重量%およびマグネシウム、ジルコ
ニウム、リチウム、ランタン、バリウム、ケイ素、ホウ
素、タンタルから選ばれる少なくとも1種を合計0.0
05〜0.1重量%、 (2)アルミニウムを0.01〜0.5重量%、インジ
ウムを0.01〜0.5重量%およびマグネシウム、ジ
ルコニウム、リチウム、ランタン、バリウム、ケイ素、
ホウ素、タンタルから選ばれる少なくとも1種を合計0
.005〜0.1重量%、 のいずれかの含有割合となるように、上記添加元素を溶
湯中で溶解し、該溶湯を直接アトマイズすることを特徴
とする鉄の含有量が5ppm以下であるアルカリ電池用
亜鉛合金粉末の製造方法。
[Claim 3] Zinc having an iron content of 5 ppm or less;
The following (1) or (2): (1) 0.01 to 0.5% by weight of bismuth, 0.01 to 0.5% by weight of indium, and magnesium, zirconium, lithium, lanthanum, barium, silicon, boron, A total of 0.0 of at least one selected from tantalum
05-0.1% by weight, (2) 0.01-0.5% by weight of aluminum, 0.01-0.5% by weight of indium, and magnesium, zirconium, lithium, lanthanum, barium, silicon,
A total of 0 of at least one selected from boron and tantalum
.. An alkali having an iron content of 5 ppm or less, characterized in that the above additive elements are dissolved in a molten metal to a content ratio of 0.005 to 0.1% by weight, and the molten metal is directly atomized. A method for producing zinc alloy powder for batteries.
【請求項4】  前記溶解およびアトマイズ雰囲気中の
鉄含有量が0.009mg/m3以下である請求項3に
記載のアルカリ電池用亜鉛合金粉末の製造方法。
4. The method for producing zinc alloy powder for alkaline batteries according to claim 3, wherein the iron content in the melting and atomizing atmosphere is 0.009 mg/m 3 or less.
【請求項5】  得られたアトマイズ粉を磁力選別する
請求項3または4に記載のアルカリ電池用亜鉛合金粉末
の製造方法。
5. The method for producing zinc alloy powder for alkaline batteries according to claim 3 or 4, wherein the obtained atomized powder is magnetically sorted.
JP3077221A 1991-03-18 1991-03-18 Zinc alloy powder for alkaline battery and manufacture thereof Pending JPH04289661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3077221A JPH04289661A (en) 1991-03-18 1991-03-18 Zinc alloy powder for alkaline battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3077221A JPH04289661A (en) 1991-03-18 1991-03-18 Zinc alloy powder for alkaline battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04289661A true JPH04289661A (en) 1992-10-14

Family

ID=13627797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3077221A Pending JPH04289661A (en) 1991-03-18 1991-03-18 Zinc alloy powder for alkaline battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04289661A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006196A1 (en) * 1994-08-23 1996-02-29 N.V. Union Miniere S.A Zinc powder for alkaline batteries
AU685708B2 (en) * 1995-07-21 1998-01-22 Matsushita Electric Industrial Co., Ltd. Alkaline battery
JP2001250544A (en) * 2000-03-07 2001-09-14 Dowa Mining Co Ltd Zinc alloy powder for alkaline battery and its preparation method
JP2001283842A (en) * 2000-03-29 2001-10-12 Dowa Mining Co Ltd Lead alloy powder for alkaline battery and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006196A1 (en) * 1994-08-23 1996-02-29 N.V. Union Miniere S.A Zinc powder for alkaline batteries
BE1008626A3 (en) * 1994-08-23 1996-06-04 Union Miniere Sa Zinc powder for alkaline batteries.
CN1044726C (en) * 1994-08-23 1999-08-18 联合矿业有限公司 Zinc powder for alkaline batteries
AU685708B2 (en) * 1995-07-21 1998-01-22 Matsushita Electric Industrial Co., Ltd. Alkaline battery
US5721072A (en) * 1995-07-21 1998-02-24 Matsushita Electric Industrial Co., Ltd. Alkaline battery
JP2001250544A (en) * 2000-03-07 2001-09-14 Dowa Mining Co Ltd Zinc alloy powder for alkaline battery and its preparation method
JP2001283842A (en) * 2000-03-29 2001-10-12 Dowa Mining Co Ltd Lead alloy powder for alkaline battery and its manufacturing method

Similar Documents

Publication Publication Date Title
CN101901893B (en) Aluminum alloy anode material for battery and method for producing same
KR960000059B1 (en) Zinc alloy powder for alkaliu cell and method for production of the same
US5312476A (en) Zinc alloy powder for alkaline cell and method for production of the same
JPH04284357A (en) Zinc alkaline battery
US5425798A (en) Zinc alloy powder for alkaline cell and method to produce the same
JPH04289661A (en) Zinc alloy powder for alkaline battery and manufacture thereof
JPH0586430A (en) Zinc alloy powder for alkali battery and its production
JPS6240162A (en) Zinc alkaline battery
JP2832228B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832227B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPS62123656A (en) Zinc-alkaline battery
EP0945908B1 (en) Zinc alloy powder as anode material for use in alkaline manganese cells and process for producing the same
JPS6177257A (en) Zinc alkaline battery
JPH0754705B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPH0628160B2 (en) Zinc alkaline battery
JP2832230B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832231B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832232B2 (en) Zinc alloy powder for alkaline batteries
JP2832229B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPH0418674B2 (en)
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JPS6316553A (en) Zinc alkaline battery
JPH08315816A (en) Zinc alloy powder for alkaline battery and manufacture thereof
JPH0142114B2 (en)
JPH0624117B2 (en) Zinc alkaline battery