JPH0754704B2 - Zinc alloy powder for alkaline battery and method for producing the same - Google Patents

Zinc alloy powder for alkaline battery and method for producing the same

Info

Publication number
JPH0754704B2
JPH0754704B2 JP4059265A JP5926592A JPH0754704B2 JP H0754704 B2 JPH0754704 B2 JP H0754704B2 JP 4059265 A JP4059265 A JP 4059265A JP 5926592 A JP5926592 A JP 5926592A JP H0754704 B2 JPH0754704 B2 JP H0754704B2
Authority
JP
Japan
Prior art keywords
weight
zinc
alloy powder
zinc alloy
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4059265A
Other languages
Japanese (ja)
Other versions
JPH0586430A (en
Inventor
豊秀 植村
智隆 本村
富子 山口
準一 浅岡
周二 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP4059265A priority Critical patent/JPH0754704B2/en
Publication of JPH0586430A publication Critical patent/JPH0586430A/en
Publication of JPH0754704B2 publication Critical patent/JPH0754704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ電池用亜鉛合金
粉末およびその製造方法に関し、詳しくは鉄の含有量が
1ppm以下で、かつ特定の添加元素を含有することに
より、水素ガスの発生を抑制し、電池の耐洩液性を向上
させた無汞化アルカリ電池用亜鉛合金粉末およびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc alloy powder for alkaline batteries and a method for producing the same, and more specifically, it suppresses the generation of hydrogen gas by containing iron in an amount of 1 ppm or less and containing a specific additive element. However, the present invention relates to a zinc alloy powder for a seamless alkaline battery having improved leakage resistance and a method for producing the same.

【0002】[0002]

【従来の技術】アルカリ電池の負極活物質に使用されて
いる汞化亜鉛粉末中の水銀は、亜鉛の腐食による水素ガ
スの発生を抑制し、これに起因する電池の洩液を防止す
る目的から、アルカリ電池の負極活物質に不可欠な成分
と考えられていた。
2. Description of the Related Art Mercury in zinc fluoride powder used as a negative electrode active material for alkaline batteries suppresses generation of hydrogen gas due to corrosion of zinc and prevents leakage of the battery due to this. It was considered to be an essential component for the negative electrode active material of alkaline batteries.

【0003】しかし、環境対策の面から水銀の低減が求
められており、このため亜鉛に鉛、さらにはアルミニウ
ム、ビスマス、インジウム等を添加元素として加えるこ
とにより、水銀の含有量を10重量%から1重量%前後
まで大幅に低減させても、水素ガスの発生を抑制するこ
とが可能となった。
However, there is a demand for reduction of mercury from the viewpoint of environmental measures. Therefore, by adding lead, aluminum, bismuth, indium, etc. to zinc as additive elements, the content of mercury is reduced from 10% by weight. Even if the amount was drastically reduced to about 1% by weight, it became possible to suppress the generation of hydrogen gas.

【0004】しかるに、さらなる社会的要請として、負
極活物質中の水銀含有量を0重量%、換言すれば無汞化
とすることが近年求められている。このように負極活物
質を無汞化とすると情況は大幅に異なり、上記のような
添加元素を加えたとしても、水素ガス発生量を所定のレ
ベルまで抑制することは困難であった。すなわち、従来
より種々の添加元素を加えた負極活物質としての亜鉛合
金粉末が提案されているが(例えば特公平2−2298
4号公報、特開昭61−153950号公報)、これら
は水銀含有量が1重量%またはそれ以下でも所期の水素
ガス発生の抑制は達成できるものの、無汞化ではその実
現ができなかった。
[0004] However, as a further social demand, it has been recently demanded that the content of mercury in the negative electrode active material be 0% by weight, in other words, it should be constant. As described above, the situation is significantly different when the negative electrode active material is made unconstrained, and it is difficult to suppress the hydrogen gas generation amount to a predetermined level even if the above-mentioned additional elements are added. That is, conventionally, a zinc alloy powder as a negative electrode active material to which various additive elements are added has been proposed (for example, Japanese Patent Publication No. 2-2298).
No. 4, JP-A-61-153950), these can achieve the desired suppression of hydrogen gas generation even when the mercury content is 1% by weight or less, but they could not be realized by the unconstrained. .

【0005】一方、亜鉛中の不純物の含有量を低減する
ことによって、水素ガスの発生を抑制し、かつ放電性能
を向上させる試みはなされており、例えば特開昭62−
123653号公報には、鉄やクロム等の不純物を低減
することが記載されており、同公報第4頁第1表におい
ては、鉛、インジウムおよびアルミニウムを一定量含有
し、かつ水銀を1重量%含有する汞化亜鉛合金粉末を用
いた負極活物質においては、鉄を10ppm程度に低減
することによって、水素ガスの発生を抑制しつつ放電性
能が向上している。
On the other hand, attempts have been made to suppress the generation of hydrogen gas and improve the discharge performance by reducing the content of impurities in zinc.
Japanese Patent No. 123653 describes reducing impurities such as iron and chromium. In Table 1 on page 4 of the same publication, a certain amount of lead, indium and aluminum is contained, and 1% by weight of mercury is contained. In the negative electrode active material using the contained zinc hydride alloy powder, the discharge performance is improved while suppressing the generation of hydrogen gas by reducing iron to about 10 ppm.

【0006】しかしながら、水銀含有量が0重量%の亜
鉛合金粉末では、上記のように不純物の含有量を10p
pm程度に低減し、かつ鉛等の添加元素を含有させても
所望の水素ガスの発生を抑制する効果は得られなかっ
た。
However, in the zinc alloy powder having a mercury content of 0% by weight, the content of impurities is 10 p as described above.
The effect of suppressing the generation of the desired hydrogen gas could not be obtained even if the content was reduced to about pm and an additive element such as lead was contained.

【0007】このように、負極活物質を無汞化とするこ
とは、水銀含有量が0.6〜1重量%という低汞化の場
合と根本的に異なる困難さを伴ない、無汞化の亜鉛合金
粉末を負極活物質として用い、水素ガスの発生を抑制
し、ひいては耐洩液性を向上させたアルカリ電池は未だ
得らていない。
[0007] As described above, making the negative electrode active material unconstrained is accompanied by fundamentally different difficulty from that in the case of lowering the mercury content of 0.6 to 1% by weight. No alkaline battery has been obtained in which the zinc alloy powder of No. 1 is used as the negative electrode active material to suppress the generation of hydrogen gas, and thus to improve the leakage resistance.

【0008】[0008]

【発明が解決しようとする課題】本発明は、かかる従来
技術の課題を解決すべくなされたもので、無汞化におい
て、水素ガス発生を大幅に抑制すると共に、放電性能を
実用的な水準に保持し得るアルカリ電池用亜鉛合金粉末
およびその製造方法を提供することを目的とし、無水銀
アルカリ電池の耐洩液性を向上させることを最終的な目
的とする。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art. In the unconstrained state, the generation of hydrogen gas can be significantly suppressed and the discharge performance can be brought to a practical level. An object is to provide a zinc alloy powder for alkaline batteries that can be retained and a method for producing the same, and an ultimate object is to improve the leakage resistance of a mercury-free alkaline battery.

【0009】[0009]

【課題を解決するための手段】本発明者らは、この目的
に沿って鋭意研究の結果、不純物としての鉄の含有量が
極めて少ない亜鉛を用い、これに特定の添加元素を加え
ることにより、両者の相乗効果によって上記目的が達成
されることを知見し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have earnestly studied in accordance with this object, and as a result, use zinc having a very small content of iron as an impurity, and by adding a specific additive element thereto, The inventors have found that the above objects can be achieved by the synergistic effect of the two, and have reached the present invention.

【0010】すなわち、本発明の無汞化アルカリ電池用
亜鉛合金粉末は、下記(1)〜(6):(1)ビスマス
を0.01〜0.5重量%、インジウム0.01〜0.
5重量%、鉛を0.01〜0.5重量%、(2)ビスマ
スを0.01〜0.5重量%、インジウムを0.01〜
0.5重量%、カルシウムを0.005〜0.5重量
%、(3)鉛を0.01〜0.5重量%およびビスマ
ス、アルミニウム、カルシウムから選ばれる少なくとも
1種を合計0〜1.0重量%、(4)カルシウムを0.
005〜0.5重量%、ビスマスを0.01〜0.5重
量%およびアルミニウムを0〜0.5重量%、(5)鉛
を0.01〜0.5重量%、インジウムを0.01〜
0.5重量%、カルシウムを0.01〜0.5重量%お
よびアルミニウムを0〜0.5重量%、(6)鉛を0.
01〜0.5重量%、インジウムを0.01〜0.5重
量%、カルシウムを0.01重量%未満およびアルミニ
ウムを0.01〜0.5重量%、から選択される成分と
残部が鉄を1ppm以下含有した亜鉛とからなることを
特徴とする。
That is, the zinc alloy powder for a non-alkaline alkaline battery of the present invention has the following (1) to (6): (1) 0.01 to 0.5% by weight of bismuth and 0.01 to 0.
5% by weight, 0.01 to 0.5% by weight of lead, 0.01 to 0.5% by weight of (2) bismuth, and 0.01 to 0.5% of indium.
0.5% by weight, 0.005 to 0.5% by weight of calcium, 0.01 to 0.5% by weight of (3) lead, and at least one selected from bismuth, aluminum, and calcium in a total of 0 to 1. 0% by weight, and (4) calcium to 0.
005-0.5 wt%, bismuth 0.01-0.5 wt% and aluminum 0-0.5 wt%, (5) lead 0.01-0.5 wt%, indium 0.01 ~
0.5% by weight, 0.01 to 0.5% by weight of calcium, 0 to 0.5% by weight of aluminum, and (6) lead of 0.
01-0.5% by weight, 0.01-0.5% by weight of indium, less than 0.01% by weight of calcium and 0.01-0.5% by weight of aluminum, and the balance iron. Is contained in an amount of 1 ppm or less.

【0011】本発明においては、鉄の含有量が1ppm
以下であることが必要である。鉄の含有量が1ppmを
超えた場合には水素ガスの発生を抑制する効果が小さ
い。ここでいう鉄の含有量1ppm以下とは、亜鉛と鉄
との分離操作を用いずに、通常の分析手段であるICP
や原子吸光度法を使用した場合の分析限界値以下を意味
する。従来、このような鉄の含有量の低い亜鉛または亜
鉛合金粉末を負極活物質として用いることは行なわれて
おらず、またそのような報告も知られていない。高純度
の亜鉛地金については特殊な用途、例えば半導体用に特
別に帯域溶融法等の方法を用いて作ることはできるが、
価格的にも高価で、とても乾電池用の原料として使用で
きるものではない。また合金粉末として用いた例も見当
たらない。工業的量産物として得られる亜鉛インゴット
のうち、最高純度とされる精留亜鉛においても、日本工
業規格の鉄濃度は20ppm以下であり、そのうち不純
物レベルの特に低いものでも鉄濃度は一般的には2pp
m以上である。また、電気亜鉛も同じレベルである。
In the present invention, the iron content is 1 ppm.
It must be: When the iron content exceeds 1 ppm, the effect of suppressing the generation of hydrogen gas is small. The iron content of 1 ppm or less as used herein means ICP which is a usual analytical means without using a separation operation of zinc and iron.
Or below the analytical limit value when the atomic absorption method is used. Conventionally, such zinc or zinc alloy powder having a low iron content has not been used as a negative electrode active material, and no such report has been known. High-purity zinc metal can be made for special purposes, for example, for semiconductors using a method such as the zone melting method,
It is also expensive in price and cannot be used as a raw material for dry batteries. Moreover, the example used as an alloy powder is not found either. Among the zinc ingots obtained as industrial products, the highest purity rectified zinc has an iron concentration of 20 ppm or less according to Japanese Industrial Standards, and even if the impurity level is particularly low, the iron concentration is generally low. 2 pp
It is m or more. In addition, electric zinc is at the same level.

【0012】また、本発明では、上記(1)〜(6)か
ら選択される成分を含有する。各成分元素の含有量が上
記範囲を逸脱した場合には、所期の水素ガスの発生を抑
制する効果が得られなかったり、実用的な放電性能が維
持できないという問題が生じる。このような成分以外の
添加元素、例えば従来より負極活物質として用いられる
亜鉛合金粉末に含有されるアルミニウム、ビスマス、カ
ルシウム等を仮に単独で含有させても上記した本願発明
の効果は得られない。
The present invention also contains a component selected from the above (1) to (6). If the content of each component element deviates from the above range, there arises a problem that the desired effect of suppressing the generation of hydrogen gas cannot be obtained or that practical discharge performance cannot be maintained. Even if the additive elements other than the above components, such as aluminum, bismuth, and calcium contained in the zinc alloy powder conventionally used as the negative electrode active material, are contained alone, the above-described effects of the present invention cannot be obtained.

【0013】次に、本発明の製造方法について説明す
る。本発明では、鉄の含有量が1ppm以下の亜鉛を用
いる。このような鉄含有量の低い亜鉛としては、電解法
による析離亜鉛や蒸留法による亜鉛から得られた亜鉛イ
ンゴットが挙げられる。従来においては、析離亜鉛を塩
化アンモニウム等のフラックスと共に溶融し、鋳型に鋳
造した亜鉛インゴットを負極活物質の亜鉛原料として用
いていた。このような亜鉛インゴットでは鉄の含有量を
1ppm以下とすることができない。その理由は、亜鉛
の溶融工程で浮いたドロス分を除去するが、その除去工
程で一部分回収される亜鉛を溶融部に戻す。このドロス
分除去工程で通常、分離装置からの鉄分の混入があるか
らである。また、溶湯ポンプ、鋳型、環境からの鉄分の
混入も予測される。
Next, the manufacturing method of the present invention will be described. In the present invention, zinc having an iron content of 1 ppm or less is used. Examples of such zinc having a low iron content include zinc ingot obtained from zinc deposited by electrolysis and zinc produced by distillation. Conventionally, a zinc ingot obtained by melting deposited zinc with a flux such as ammonium chloride and casting it in a mold has been used as a zinc raw material for a negative electrode active material. In such a zinc ingot, the iron content cannot be 1 ppm or less. The reason is that the dross part floating in the melting step of zinc is removed, but zinc partially recovered in the removal step is returned to the melting part. This is because the iron content from the separator is usually mixed in this dross removal step. In addition, contamination of iron from the melt pump, mold, and environment is expected.

【0014】この鉄含有量の低い亜鉛の溶湯中で、上記
した(1)〜(6)に示される各添加元素を所定範囲の
含有量となるように溶解する。そして、次にアトマイズ
法によって粉体化し、さらに篩分けして亜鉛合金粉末を
得る。この際の溶融およびアトマイズ雰囲気中の鉄の含
有量を0.009mg/m3以下とすることが、水素ガ
ス発生の抑制効果をさらに向上させるといった見地から
望ましい。また、得られた亜鉛合金粉末を磁力選別する
ことも同様の観点から望ましい。
In the molten zinc having a low iron content, each of the additive elements shown in the above (1) to (6) is dissolved so as to have a content within a predetermined range. Then, next, it is pulverized by an atomizing method and further sieved to obtain a zinc alloy powder. The content of iron in the melting and atomizing atmosphere at this time is preferably 0.009 mg / m 3 or less from the viewpoint of further improving the effect of suppressing hydrogen gas generation. It is also desirable to magnetically sort the obtained zinc alloy powder from the same viewpoint.

【0015】このような従来法と本願発明の亜鉛合金粉
末の製造方法の相違を示したフローシートを図1に示
す。このようにして得られた亜鉛合金粉末中の鉄の含有
量は、上述したように1ppm以下であり、この亜鉛合
金粉末は耐洩液性の許容上限である約300μl/da
y・cell(単3型)以下に水素ガスの発生を抑制す
ることができる。
A flow sheet showing the difference between the conventional method and the method for producing the zinc alloy powder of the present invention is shown in FIG. The iron content in the zinc alloy powder thus obtained is 1 ppm or less as described above, and the zinc alloy powder has an allowable upper limit of leakage resistance of about 300 μl / da.
It is possible to suppress the generation of hydrogen gas below y · cell (AA type).

【0016】従来、亜鉛の腐食による水素ガスの発生機
構については、巨視的なガス量の測定や推測による結晶
構造の関係が論じられるだけで、実際にガスの発生部位
にまで立入って解明されたことがなかった。そのことが
種々出願された技術が無水銀電池に対して実用に耐えな
かった原因ではないかと考えた本願発明者等は、ガス発
生場所の顕微鏡観察とEPMA分析とを入念に行なうこ
とによって、亜鉛粉末中に含まれる不可避不純物として
の鉄あるいはその酸化物、合金等の微粒子が、亜鉛粒子
間および/または表面に存在する場合に、その微粒子が
水素ガスの発生源になることを突きとめた。
Conventionally, the mechanism of hydrogen gas generation due to corrosion of zinc is clarified by actually going into the gas generation site only by discussing the relationship of the crystal structure by macroscopically measuring and estimating the gas amount. I've never been there. The inventors of the present application, who thought that this might be the reason why the various applied technologies could not be put to practical use with respect to a mercury-free battery, did not perform zinc observation by careful microscopic observation of the gas generation site and EPMA analysis. It has been found that, when fine particles of iron or its oxides, alloys, etc. as unavoidable impurities contained in the powder are present between zinc particles and / or on the surface, the fine particles serve as a source of hydrogen gas generation.

【0017】すなわち、亜鉛粉末をアルカリ電池の電解
液と同様な水酸化カリウム水溶液中に浸漬し、連続的に
ガスが発生する特定の部位があることを光学顕微鏡で観
察した。次に、比較的大粒子や細い棒状あるいは板状の
亜鉛を用いて同様にガス発生状態を観察した。そして、
長時間にわたり同一場所からガスが発生する場所がある
ことを確認して継続ガス発生箇所に鋭利な器具を用いて
印を付した。次に、上記亜鉛をEMPAにて組成分析を
行なった。
That is, the zinc powder was immersed in an aqueous potassium hydroxide solution similar to the electrolytic solution of an alkaline battery, and it was observed with an optical microscope that there were specific sites where gas was continuously generated. Next, the state of gas generation was similarly observed using relatively large particles, thin rod-shaped or plate-shaped zinc. And
It was confirmed that there was a place where gas was generated from the same place for a long time, and a mark was attached to the place where continuous gas was generated using a sharp instrument. Next, the zinc was subjected to compositional analysis by EMPA.

【0018】その結果、ガスの連続発生箇所は必ず0.
5〜5μmの主として鉄を含む微粒子が偏在することが
判明した。鉄以外の成分としては場合によりクロム、ニ
ッケル、銀、イオウ、酸素が検出された。このことから
ガス発生は主として鉄または酸化鉄の粒子が極く微量混
在していることによりなされることが判明した。
As a result, the continuous gas generation point is always 0.
It was found that fine particles of mainly 5 to 5 μm containing iron were unevenly distributed. In some cases, chromium, nickel, silver, sulfur, and oxygen were detected as components other than iron. From this, it was found that the gas generation was mainly caused by a very small amount of iron or iron oxide particles being mixed.

【0019】表1に示されるように、0.1〜数mmの
平均粒径を有する各種の粒子を亜鉛粉末あるいは亜鉛板
に1〜数ppm程度の濃度になるように添加し、水酸化
カリウム水溶液中でガス発生の情況を観察した。結果を
表1に示した。
As shown in Table 1, various particles having an average particle diameter of 0.1 to several mm are added to zinc powder or a zinc plate to a concentration of about 1 to several ppm, and potassium hydroxide is added. The situation of gas generation was observed in the aqueous solution. The results are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】この表1の結果から、鉄、酸化鉄、ステン
レスの粒子がガス発生の中心となることが判った。この
ように、ガス発生源は、微粒子、それも主として鉄系の
粒子であることが判った。
From the results shown in Table 1, it was found that particles of iron, iron oxide and stainless steel were the center of gas generation. Thus, it was found that the gas generation source was fine particles, which were also mainly iron-based particles.

【0022】そこで、本発明では、鉄の含有量を極めて
微量にすると共に、特定の添加元素を一定量含有させ
る。このことによって、両者の相乗効果によって、水素
ガスの発生が抑制される。
Therefore, in the present invention, the content of iron is made extremely small and a specific additive element is contained in a fixed amount. This suppresses the generation of hydrogen gas due to the synergistic effect of the two.

【0023】[0023]

【実施例】以下、実施例および比較例に基づいて本発明
を具体的に説明する。
EXAMPLES The present invention will be specifically described below based on Examples and Comparative Examples.

【0024】実施例1〜36および比較例1〜7 雰囲気中の鉄含有量が0.005mg/m3の室内にお
いて、鉄の含有量が1ppm以下である電解析離亜鉛を
約500℃で溶融し、これに表2〜3に示す各元素の所
定量を添加して亜鉛合金溶湯を作成した。なお、比較例
1は元素を添加しなかった。
Examples 1-36 and Comparative Examples 1-7 In a room with an iron content of 0.005 mg / m 3 in the atmosphere, ionized zinc having an iron content of 1 ppm or less was melted at about 500 ° C. Then, a predetermined amount of each element shown in Tables 2 to 3 was added thereto to prepare a molten zinc alloy. In Comparative Example 1, no element was added.

【0025】次に、これを同一の雰囲気中で直接高圧ア
ルゴンガス(噴出圧5kg/cm2)を使って粉体化
し、得られた亜鉛合金粉末を50〜150メッシュの粒
度に篩い分けした。
Next, this was directly pulverized in the same atmosphere using high pressure argon gas (jet pressure 5 kg / cm 2 ), and the obtained zinc alloy powder was sieved to a particle size of 50 to 150 mesh.

【0026】さらに、磁石を用いて磁力選別を行ない遊
離鉄粉を除去した。得られた亜鉛合金粉末の鉄含有量は
いずれも1ppm以下であった。
Further, magnetic separation was performed using a magnet to remove free iron powder. The iron contents of the obtained zinc alloy powders were all 1 ppm or less.

【0027】ここで、濃度40%の水酸化カリウム水溶
液に酸化亜鉛を飽和させたものに、ゲル化剤としてカル
ボキシメチルセルロースとポリアクリル酸ソーダを1.
0%程度加えて電解液を作成した。
Here, in a 40% aqueous potassium hydroxide solution saturated with zinc oxide, carboxymethylcellulose and sodium polyacrylate as gelling agents were added to 1.
About 0% was added to prepare an electrolytic solution.

【0028】負極活物質として上記亜鉛合金粉末を用
い、この亜鉛合金粉末3.0gを電解液1.5gと混合
してゲル状化したものをそのまま負極材とし、図2に示
すアルカリマンガン電池を作成した。
The above zinc alloy powder was used as the negative electrode active material, and 3.0 g of the zinc alloy powder was mixed with 1.5 g of the electrolytic solution to form a gel, which was directly used as the negative electrode material, and the alkaline manganese battery shown in FIG. Created.

【0029】このアルカリマンガン電池を25%部分放
電させた後、亜鉛合金粉末の腐食による発生する水素ガ
ス発生量を測定し、得られた結果を表2〜3に示した。
なお、25%部分放電するのは、無水銀のアルカリマン
ガン電池を構成し、0.9Vまでの放電時間を100%
とした場合、25%部分放電あたりが水素ガス発生速度
が最大となるからであり、1Ω、11分の放電条件をも
って25%部分放電とした。
After the alkaline manganese battery was partially discharged by 25%, the amount of hydrogen gas generated due to corrosion of the zinc alloy powder was measured, and the obtained results are shown in Tables 2 and 3.
In addition, 25% partial discharge constitutes a mercury-free alkaline manganese battery, and the discharge time up to 0.9 V is 100%.
In that case, the hydrogen gas generation rate is maximized per 25% partial discharge. Therefore, the discharge condition was 1% for 11 minutes, and 25% partial discharge was performed.

【0030】図2のアルカリマンガン電池は、正極缶
1、正極2、負極(ゲル状化した亜鉛合金粉末)3、セ
パレーター4、封口体5、負極底板6、負極集電体7、
キャップ8、熱収縮性樹脂チューブ9、絶縁リング1
0,11、外装缶12で構成されている。
The alkaline manganese battery shown in FIG. 2 has a positive electrode can 1, a positive electrode 2, a negative electrode (gelled zinc alloy powder) 3, a separator 4, a sealing body 5, a negative electrode bottom plate 6, a negative electrode current collector 7,
Cap 8, heat-shrinkable resin tube 9, insulating ring 1
It is composed of 0, 11 and an outer can 12.

【0031】比較例8〜29 鉄の含有量が1ppm以下の電解析離亜鉛を通常の通り
一旦鋳込んだ亜鉛インゴットを出発原料として、鉄の含
有量が5mg/m3の雰囲気中で約500℃で溶融し、
これに表3に示す各元素の所定量を添加して亜鉛合金溶
湯を作成した。
Comparative Examples 8 to 29 Starting from a zinc ingot in which electroanalyzed zinc having an iron content of 1 ppm or less was cast as usual as a starting material, and an iron content of about 500 mg / m 3 in an atmosphere of about 500. Melt at ℃,
A predetermined amount of each element shown in Table 3 was added to this to prepare a zinc alloy melt.

【0032】次に、これを同一の雰囲気中で高圧アルゴ
ンガス(噴出圧5kg/cm2)を使って粉体化し、得
られた亜鉛亜鉛合金粉末を50〜150メッシュの粒度
に篩い分けした。
Next, this was pulverized in the same atmosphere using high-pressure argon gas (jet pressure 5 kg / cm 2 ), and the obtained zinc-zinc alloy powder was sieved to a particle size of 50 to 150 mesh.

【0033】得られた亜鉛合金粉末の鉄含有量はいずれ
も3ppmであった。なお、ここでは磁力選別を行なわ
なかった。
The iron content of each of the obtained zinc alloy powders was 3 ppm. It should be noted that no magnetic force selection was performed here.

【0034】この亜鉛合金粉末を用い、実施例1と同様
に図2に示すアルカリ電池を作成し、25%部分放電を
行ない、水素ガス発生量を測定した。その結果を表3に
示す。
Using this zinc alloy powder, an alkaline battery shown in FIG. 2 was prepared in the same manner as in Example 1, 25% partial discharge was performed, and the hydrogen gas generation amount was measured. The results are shown in Table 3.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】表2〜3に示されるように、鉄の含有量が
1ppm以下で、しかも特定の組成を有する実施例1〜
36の亜鉛合金粉末は、いずれも水素ガス発生量が耐洩
液性の許容上限である約300μl/day・cell
(単3型)以下である。これに対して比較例1〜7の亜
鉛合金粉末は、鉄の含有量が1ppm以下であるにも拘
らず、組成が本発明で規定する範囲を逸脱することか
ら、水素ガス発生を抑制する効果が認められない。さら
に、比較例8〜29の亜鉛合金粉末は、鉄の含有量が3
ppmであるため、組成が本発明で規定する範囲に含ま
れるか否かを問わず、水素ガス発生を抑制する効果が認
められない。
As shown in Tables 2 and 3, Examples 1 to 1 having an iron content of 1 ppm or less and having a specific composition
The zinc alloy powders of No. 36 are all about 300 μl / day · cell where the hydrogen gas generation amount is the upper limit of the leakage resistance.
(AAA type) or less. On the other hand, in the zinc alloy powders of Comparative Examples 1 to 7, the composition deviates from the range defined by the present invention even though the iron content is 1 ppm or less. Is not recognized. Furthermore, the zinc alloy powders of Comparative Examples 8 to 29 have an iron content of 3
Since it is ppm, the effect of suppressing the generation of hydrogen gas is not recognized regardless of whether the composition falls within the range specified in the present invention.

【0038】この実施例および比較例の亜鉛合金粉末に
ついて、各元素の含有量および鉄の含有量と水素ガス発
生量の関係ををプロットし、その結果を図3〜13に示
した。なお、各図において、丸で囲んだ数字は実施例ナ
ンバー、四角で囲んだ数字は比較例ナンバーをそれぞれ
示す。
With respect to the zinc alloy powders of this example and the comparative example, the relationship between the content of each element and the content of iron and the hydrogen gas generation amount was plotted, and the results are shown in FIGS. In each figure, the circled numbers represent the example numbers, and the squared numbers represent the comparative example numbers.

【0039】この結果から明らかなように、各実施例は
各比較例に比べて水素ガス発生量が大幅に低減してい
る。
As is clear from this result, the hydrogen gas generation amount of each example is greatly reduced as compared with each comparative example.

【0040】実施例37〜40 磁力選別を行なわなかった以外は、すべて実施例12と
同様の組成、条件で亜鉛合金粉末を得た(実施例3
7)。またに溶融、アトマイズ雰囲気を鉄の含有量が5
mg/m3の雰囲気中で行なった以外は、すべて実施例
12と同様の組成、条件で亜鉛合金粉末を得た(実施例
38)。
Examples 37 to 40 Zinc alloy powders were obtained with the same composition and conditions as in Example 12 except that the magnetic force selection was not carried out (Example 3).
7). In addition, the content of iron is 5 in the melting and atomizing atmosphere.
A zinc alloy powder was obtained under the same composition and conditions as in Example 12 except that the treatment was performed in an atmosphere of mg / m 3 (Example 38).

【0041】同様に、磁力選別を行なわなかった以外
は、すべて実施例27と同様の組成、条件で亜鉛合金粉
末を得た(実施例39)。また、溶融、アトマイズ雰囲
気を鉄の含有量が5mg/m3の雰囲気中で行なった以
外は、すべて実施例27と同様の組成、条件で亜鉛合金
粉末を得た(実施例40)。
Similarly, a zinc alloy powder was obtained under the same composition and conditions as in Example 27 except that the magnetic force selection was not carried out (Example 39). Further, a zinc alloy powder was obtained with the same composition and conditions as in Example 27 except that the melting and atomizing atmosphere was performed in an atmosphere having an iron content of 5 mg / m 3 (Example 40).

【0042】このようにして得られた亜鉛合金粉末の鉄
含有量はいずれも1ppm以下であった。この亜鉛合金
粉末を用い、実施例1と同様に図2に示すアルカリ電池
を作成し、25%部分放電を行ない、水素ガス発生量を
測定した。その結果を表4に示す。
The iron contents of the zinc alloy powders thus obtained were all 1 ppm or less. Using this zinc alloy powder, an alkaline battery shown in FIG. 2 was prepared in the same manner as in Example 1, 25% partial discharge was performed, and the hydrogen gas generation amount was measured. The results are shown in Table 4.

【0043】[0043]

【表4】 [Table 4]

【0044】この表4から判るように、実施例37〜3
8は実施例12とほぼ同様の結果が、また実施例39〜
40は実施例27とほぼ同様の結果がそれぞれ得られ
た。
As can be seen from Table 4, Examples 37 to 3
8 has almost the same results as in Example 12, and Examples 39 to
For 40, almost the same results as in Example 27 were obtained.

【0045】実験例 実施例2および比較例11の亜鉛合金粉末に、水銀1重
量%、10重量%含有されるようにそれぞれ汞化し、汞
化亜鉛合金粉末を得た。
EXPERIMENTAL EXAMPLE The zinc alloy powders of Example 2 and Comparative Example 11 were screened so as to contain 1% by weight and 10% by weight of mercury to obtain a zinc halide alloy powder.

【0046】この汞化亜鉛合金粉末を用い、実施例1と
同様に図1に示すアルカリ電池を作成し、25%部分放
電を行ない、水素ガス発生量を測定した。その結果を実
施例2および比較例11の値と共にプロットして図14
に示す。
Using this zinc hydride alloy powder, an alkaline battery shown in FIG. 1 was prepared in the same manner as in Example 1, 25% partial discharge was performed, and the amount of hydrogen gas generated was measured. The results are plotted together with the values of Example 2 and Comparative Example 11 and are shown in FIG.
Shown in.

【0047】この図14に示されるように、鉄の含有量
が3ppmの場合には、水銀含有量が1重量%以上で耐
洩液性の許容上限を下回るのに対し、鉄の含有量が1p
pm以下では水銀の含有の有無に拘らず、耐洩液性の許
容上限を下回る。
As shown in FIG. 14, when the iron content is 3 ppm, the mercury content is less than the upper limit of the liquid leakage resistance at 1 wt% or more, whereas the iron content is 1p
Below pm, the allowable upper limit of the liquid leakage resistance is lower than that of the presence or absence of mercury.

【0048】また、実施例12および比較例16の亜鉛
合金粉末についても同様の試験を行なったが、ほぼ同様
の結果が得られた。
Further, similar tests were conducted on the zinc alloy powders of Example 12 and Comparative Example 16, but almost the same results were obtained.

【0049】[0049]

【発明の効果】以上説明のごとく、鉄の含有量が1pp
m以下の亜鉛と特定の添加元素を溶湯中で溶解し、該溶
湯を直接アトマイズすることによって、鉄の含有量が1
ppm以下であるアルカリ電池用亜鉛合金粉末が得られ
る。
As described above, the iron content is 1 pp.
By dissolving zinc of m or less and a specific additive element in a molten metal and directly atomizing the molten metal, the iron content is 1
A zinc alloy powder for alkaline batteries having a ppm or less is obtained.

【0050】この亜鉛合金粉末は、無汞化であるにも拘
らず、アルカリ電池の負極活物質に用いることにより、
水素ガス発生を大幅に抑制すると共に、放電性能を実用
的な水準に保持し得る。また、水銀が含有されていない
ため、この亜鉛合金粉末を負極活物質として用いたアル
カリ電池は社会的ニーズにも沿ったものである。
This zinc alloy powder can be used as a negative electrode active material of an alkaline battery in spite of being unconstrained.
The generation of hydrogen gas can be significantly suppressed, and the discharge performance can be maintained at a practical level. Further, since it does not contain mercury, an alkaline battery using this zinc alloy powder as a negative electrode active material meets social needs.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来法と本願発明の亜鉛合金粉末の製造方法
を示したフローシート。
FIG. 1 is a flow sheet showing a conventional method and a method for producing a zinc alloy powder of the present invention.

【図2】 本発明に係わるアルカリマンガン電池の側断
面図を示す。
FIG. 2 shows a side sectional view of an alkaline manganese battery according to the present invention.

【図3〜13】 実施例および比較例における亜鉛合金
粉末の各元素の含有量および鉄の含有量と水素ガス発生
量の関係を示すグラフ。
3 to 13 are graphs showing the relationship between the content of each element and the content of iron and the amount of hydrogen gas generated in the zinc alloy powders in Examples and Comparative Examples.

【図14】 亜鉛合金粉末中の水銀含有量と水素ガス発
生量との関係を示すグラフ。
FIG. 14 is a graph showing the relationship between the mercury content in the zinc alloy powder and the hydrogen gas generation amount.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 富子 広島県竹原市竹原町1436−3三井金属鉱業 株式会社内 (72)発明者 浅岡 準一 大阪府門真市大字門真1006番地松下電器産 業株式会社内 (72)発明者 土田 周二 大阪府門真市大字門真1006番地松下電器産 業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Tomiko Yamaguchi 1436-3 Takehara-cho, Takehara-shi, Hiroshima Prefecture Mitsui Mining & Smelting Co., Ltd. In-house (72) Inventor Shuji Tsuchida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 ビスマスを0.01〜0.5重量%、イ
ンジウム0.01〜0.5重量%、鉛を0.01〜0.
5重量%、残部が随伴不純物である鉄を1ppm以下含
有した亜鉛とからなることを特徴とする無汞化アルカリ
電池用亜鉛合金粉末。
1. Bismuth in an amount of 0.01 to 0.5% by weight, indium in an amount of 0.01 to 0.5% by weight, and lead in an amount of 0.01 to 0.5% by weight.
A zinc alloy powder for a non-alkaline alkaline battery, characterized by comprising 5% by weight and the balance zinc containing 1 ppm or less of iron as an accompanying impurity.
【請求項2】 ビスマスを0.01〜0.5重量%、イ
ンジウムを0.01〜0.5重量%、カルシウムを0.
005〜0.5重量%、残部が随伴不純物である鉄を1
ppm以下含有した亜鉛とからなることを特徴とする無
汞化アルカリ電池用亜鉛合金粉末。
2. Bismuth of 0.01 to 0.5% by weight, indium of 0.01 to 0.5% by weight, and calcium of 0.
005 to 0.5% by weight, the balance 1
Zinc alloy powder for a non-alkaline alkaline battery, which is characterized by comprising zinc in an amount of ppm or less.
【請求項3】 鉛を0.01〜0.5重量%およびビス
マス、アルミニウム、カルシウムから選ばれる少なくと
も1種を合計0〜1.0重量%、残部が随伴不純物であ
る鉄を1ppm以下含有した亜鉛とからなることを特徴
とする無汞化アルカリ電池用亜鉛合金粉末。
3. Lead in an amount of 0.01 to 0.5% by weight, at least one selected from bismuth, aluminum, and calcium in a total amount of 0 to 1.0% by weight, and the balance containing 1 ppm or less of iron as an accompanying impurity. A zinc alloy powder for a seamless alkaline battery, characterized by comprising zinc.
【請求項4】 カルシウムを0.005〜0.5重量
%、ビスマスを0.01〜0.5重量%およびアルミニ
ウムを0〜0.5重量%、残部が随伴不純物である鉄を
1ppm以下含有した亜鉛とからなることを特徴とする
無汞化アルカリ電池用亜鉛合金粉末。
4. Containing 0.005 to 0.5% by weight of calcium, 0.01 to 0.5% by weight of bismuth, 0 to 0.5% by weight of aluminum, and the balance of 1 ppm or less of iron as an accompanying impurity. Zinc alloy powder for a non-alkaline alkaline battery, characterized by comprising:
【請求項5】 鉛を0.01〜0.5重量%、インジウ
ムを0.01〜0.5重量%、カルシウムを0.01〜
0.5重量%およびアルミニウムを0〜0.5重量%、
残部が随伴不純物である鉄を1ppm以下含有した亜鉛
とからなることを特徴とする無汞化アルカリ電池用亜鉛
合金粉末。
5. Lead in an amount of 0.01 to 0.5% by weight, indium in an amount of 0.01 to 0.5% by weight, and calcium in an amount of 0.01 to 0.5% by weight.
0.5% by weight and 0-0.5% by weight of aluminum,
A zinc alloy powder for a non-alkaline alkaline battery, the balance of which is zinc containing 1 ppm or less of iron as an accompanying impurity.
【請求項6】 鉛を0.01〜0.5重量%、インジウ
ムを0.01〜0.5重量%、カルシウムを0.01重
量%未満およびアルミニウムを0.01〜0.5重量
%、残部が随伴不純物である鉄を1ppm以下含有した
亜鉛とからなることを特徴とする無汞化アルカリ電池用
亜鉛合金粉末。
6. 0.01 to 0.5% by weight of lead, 0.01 to 0.5% by weight of indium, less than 0.01% by weight of calcium and 0.01 to 0.5% by weight of aluminum, A zinc alloy powder for a non-alkaline alkaline battery, the balance of which is zinc containing 1 ppm or less of iron as an accompanying impurity.
【請求項7】 鉄を1ppm以下含有した電解析離亜鉛
と、下記(1)〜(6): (1)ビスマスを0.01〜0.5重量%、インジウム
0.01〜0.5重量%、鉛を0.01〜0.5重量
%、 (2)ビスマスを0.01〜0.5重量%、インジウム
を0.01〜0.5重量%、カルシウムを0.005〜
0.5重量%、 (3)鉛を0.01〜0.5重量%およびビスマス、ア
ルミニウム、カルシウムから選ばれる少なくとも1種を
合計0〜1.0重量%、 (4)カルシウムを0.005〜0.5重量%、ビスマ
スを0.01〜0.5重量%およびアルミニウムを0〜
0.5重量%、 (5)鉛を0.01〜0.5重量%、インジウムを0.
01〜0.5重量%、カルシウムを0.01〜0.5重
量%およびアルミニウムを0〜0.5重量%、 (6)鉛を0.01〜0.5重量%、インジウムを0.
01〜0.5重量%、カルシウムを0.01重量%未満
およびアルミニウムを0.01〜0.5重量%、 のいずれかの含有割合となるように、上記添加元素を溶
解し、該溶湯を直接アトマイズすることを特徴とする、
随伴不純物である鉄を1ppm以下含有する無汞化アル
カリ電池用亜鉛合金粉末の製造方法。
7. An electroanalyzed zinc containing 1 ppm or less of iron, and (1) to (6) below: (1) 0.01 to 0.5% by weight of bismuth and 0.01 to 0.5% by weight of indium. %, Lead 0.01 to 0.5 wt%, (2) bismuth 0.01 to 0.5 wt%, indium 0.01 to 0.5 wt%, calcium 0.005 to
0.5% by weight, (3) 0.01 to 0.5% by weight of lead and 0 to 1.0% by weight of at least one selected from bismuth, aluminum and calcium, and (4) 0.005 of calcium. ~ 0.5 wt%, 0.01-0.5 wt% bismuth and 0-aluminium
0.5% by weight, (5) 0.01 to 0.5% by weight of lead and 0.
01 to 0.5% by weight, 0.01 to 0.5% by weight of calcium and 0 to 0.5% by weight of aluminum, (6) 0.01 to 0.5% by weight of lead and 0.
01-0.5 wt%, less than 0.01 wt% calcium, and 0.01-0.5 wt% aluminum, the above-mentioned additional elements are dissolved and the molten metal is added. Characterized by direct atomization,
A method for producing a zinc alloy powder for a seamless alkaline battery, containing 1 ppm or less of iron, which is an accompanying impurity.
【請求項8】 前記溶解およびアトマイズ雰囲気中の鉄
含有量が0.009mg/m3以下である請求項7に記
載のアルカリ電池用亜鉛合金粉末の製造方法。
8. The method for producing a zinc alloy powder for an alkaline battery according to claim 7, wherein the iron content in the melting and atomizing atmosphere is 0.009 mg / m 3 or less.
【請求項9】 得られたアトマイズ粉を磁力選別する請
求項7または8に記載のアルカリ電池用亜鉛合金粉末の
製造方法。
9. The method for producing a zinc alloy powder for an alkaline battery according to claim 7, wherein the atomized powder obtained is magnetically selected.
【請求項10】 請求項1〜6のいずれかに記載の亜鉛
合金粉末を負極活物質として用いたアルカリ電池。
10. An alkaline battery using the zinc alloy powder according to claim 1 as a negative electrode active material.
JP4059265A 1991-02-19 1992-02-14 Zinc alloy powder for alkaline battery and method for producing the same Expired - Fee Related JPH0754704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4059265A JPH0754704B2 (en) 1991-02-19 1992-02-14 Zinc alloy powder for alkaline battery and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP3-45333 1991-02-19
JP4533291 1991-02-19
JP4533391 1991-02-19
JP3-45332 1991-02-19
JP4059265A JPH0754704B2 (en) 1991-02-19 1992-02-14 Zinc alloy powder for alkaline battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0586430A JPH0586430A (en) 1993-04-06
JPH0754704B2 true JPH0754704B2 (en) 1995-06-07

Family

ID=27292193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4059265A Expired - Fee Related JPH0754704B2 (en) 1991-02-19 1992-02-14 Zinc alloy powder for alkaline battery and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0754704B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1007443A3 (en) * 1993-02-25 1995-07-04 Union Miniere Sa Zinc powder for alkaline batteries.
JP3370486B2 (en) 1995-07-21 2003-01-27 松下電器産業株式会社 Alkaline battery
JP2001250544A (en) * 2000-03-07 2001-09-14 Dowa Mining Co Ltd Zinc alloy powder for alkaline battery and its preparation method
US6602629B1 (en) * 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell
JP2002025552A (en) * 2000-07-12 2002-01-25 Fdk Corp Negative electrode zinc group alloy fine particle for alkaline battery, and alkaline battery using this fine particle
JP2009064756A (en) 2007-09-10 2009-03-26 Panasonic Corp Alkaline dry battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177257A (en) * 1984-09-21 1986-04-19 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPS61116755A (en) * 1984-11-12 1986-06-04 Mitsubishi Metal Corp Zinc powder for alkaline manganese battery and alkaline manganese battery
JPS62123656A (en) * 1985-11-25 1987-06-04 Mitsui Mining & Smelting Co Ltd Zinc-alkaline battery
JPH02284355A (en) * 1989-04-24 1990-11-21 Matsushita Electric Ind Co Ltd Alkaline-manganese cell
JPH03152870A (en) * 1989-11-08 1991-06-28 Mitsui Mining & Smelting Co Ltd Manufacture of zinc alloy powder for alkaline cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177257A (en) * 1984-09-21 1986-04-19 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPS61116755A (en) * 1984-11-12 1986-06-04 Mitsubishi Metal Corp Zinc powder for alkaline manganese battery and alkaline manganese battery
JPS62123656A (en) * 1985-11-25 1987-06-04 Mitsui Mining & Smelting Co Ltd Zinc-alkaline battery
JPH02284355A (en) * 1989-04-24 1990-11-21 Matsushita Electric Ind Co Ltd Alkaline-manganese cell
JPH03152870A (en) * 1989-11-08 1991-06-28 Mitsui Mining & Smelting Co Ltd Manufacture of zinc alloy powder for alkaline cell

Also Published As

Publication number Publication date
JPH0586430A (en) 1993-04-06

Similar Documents

Publication Publication Date Title
US5312476A (en) Zinc alloy powder for alkaline cell and method for production of the same
EP0500313B1 (en) Zinc alloy powder for alkaline cell and method to produce the same
CN101901893B (en) Aluminum alloy anode material for battery and method for producing same
US5425798A (en) Zinc alloy powder for alkaline cell and method to produce the same
JPH0754704B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPH0790435A (en) Hydrogen storage alloy, its manufacture and electrode using this alloy
JP2832228B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832227B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP4852713B2 (en) Zinc alloy powder for alkaline batteries and method for producing the same
JPH0754705B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPH04289661A (en) Zinc alloy powder for alkaline battery and manufacture thereof
JP2832231B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832229B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832230B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPS62123656A (en) Zinc-alkaline battery
EP0945908B1 (en) Zinc alloy powder as anode material for use in alkaline manganese cells and process for producing the same
JP2832232B2 (en) Zinc alloy powder for alkaline batteries
JPH09302424A (en) Manufacture of zinc-titanium base alloy, and manganese dry battery
CA2080762C (en) Zinc alloy powder for alkaline cell and method to produce the same
JPH0628160B2 (en) Zinc alkaline battery
JP2715161B2 (en) Method for producing zinc alloy powder for alkaline batteries
CA2077796A1 (en) Low-lead zinc alloy powders for zero-mercury alkaline batteries
JPH0971825A (en) Method for recovering effective component from nickel hydrogen-storing alloy secondary cell
JP3343803B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPS5842740A (en) Zinc alloy for electrode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees