JP2715161B2 - Method for producing zinc alloy powder for alkaline batteries - Google Patents

Method for producing zinc alloy powder for alkaline batteries

Info

Publication number
JP2715161B2
JP2715161B2 JP1288765A JP28876589A JP2715161B2 JP 2715161 B2 JP2715161 B2 JP 2715161B2 JP 1288765 A JP1288765 A JP 1288765A JP 28876589 A JP28876589 A JP 28876589A JP 2715161 B2 JP2715161 B2 JP 2715161B2
Authority
JP
Japan
Prior art keywords
zinc
zinc alloy
alloy powder
mercury
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1288765A
Other languages
Japanese (ja)
Other versions
JPH03152870A (en
Inventor
和彦 中出
豊秀 植村
貞夫 岡本
富子 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP1288765A priority Critical patent/JP2715161B2/en
Publication of JPH03152870A publication Critical patent/JPH03152870A/en
Application granted granted Critical
Publication of JP2715161B2 publication Critical patent/JP2715161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルカリ電池用亜鉛合金粉末の製造方法に関
し、詳しくは溶融した亜鉛合金をセラミックフィルター
等の耐熱性フィルターで濾過して亜鉛中に存在する鉄酸
化物を除去することにより、アルカリ電池内での耐食性
を著しく向上させたアルカリ電池用亜鉛合金粉末の製造
方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a zinc alloy powder for an alkaline battery, and more particularly, to a method in which a molten zinc alloy is filtered through a heat-resistant filter such as a ceramic filter and is present in zinc. The present invention relates to a method for producing a zinc alloy powder for an alkaline battery having significantly improved corrosion resistance in an alkaline battery by removing iron oxides.

[従来の技術] 亜鉛を負極活物質として用いたアルカリ電池等におい
ては、水酸化カリウム水溶液等の強アルカリ性電解液を
用いるため、電池を密閉しなければならない。この電池
の密閉は電池の小型化を図る際には特に重要であるが、
同時に電池保存中の亜鉛の腐食により発生する水素ガス
を閉じ込めることになる。従って長期保存中に電池内部
のガス圧が高まり、密閉が完全なほど爆発等の危険が伴
なう。
[Related Art] In an alkaline battery or the like using zinc as a negative electrode active material, the battery must be sealed because a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used. This sealing of the battery is particularly important when miniaturizing the battery,
At the same time, hydrogen gas generated by corrosion of zinc during storage of the battery is confined. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more complete the sealing, the more dangers such as explosion are involved.

その対策として、負極活物質である亜鉛の腐食を防止
して、電池内部の水素ガス発生を少なくすることが研究
され、水銀の水素過電圧を利用した汞化亜鉛を負極活物
質として用いることが専ら行なわれている。このため、
今日市販されているアルカリ電池の負極活物質は1.5重
量%程度の水銀を含有しており、社会的ニーズとして、
より低水銀のもの、あるいは無水銀の電池の開発が強く
期待されるようになってきた。
As a countermeasure, it has been studied to prevent the corrosion of zinc, a negative electrode active material, to reduce the generation of hydrogen gas inside the battery, and to exclusively use zinc mercurized as a negative electrode active material using hydrogen overvoltage of mercury. Is being done. For this reason,
The negative electrode active material of an alkaline battery that is commercially available today contains about 1.5% by weight of mercury.
The development of batteries with lower mercury or mercury has been strongly expected.

そこで、電池内の水銀含有量を低減させるべく、亜鉛
に各種金属を添加した亜鉛合金粉末に関する提案が種々
なされている。例えば、亜鉛に鉛を添加した亜鉛合金粉
末、あるいは亜鉛に鉛とインジウムを添加した亜鉛合金
粉末(特開昭58-181266号公報)等がある。またガリウ
ム、アルミニウム等を添加した亜鉛合金粉末も提案され
ている。
In order to reduce the mercury content in the battery, various proposals have been made on a zinc alloy powder obtained by adding various metals to zinc. For example, there is a zinc alloy powder in which lead is added to zinc, or a zinc alloy powder in which lead and indium are added to zinc (JP-A-58-181266). A zinc alloy powder to which gallium, aluminum or the like is added has also been proposed.

[発明が解決しようとする課題] このように亜鉛合金粉末を用いることにより、確かに
水銀含有量を低減させても、あるいは無水銀において
も、水素ガス発生をある程度抑制させることが可能とな
ったが、製品間に耐食性のバラツキが大きく、安定した
製品の生産という面からは不充分であった。
[Problems to be Solved by the Invention] By using the zinc alloy powder as described above, it has become possible to suppress the generation of hydrogen gas to some extent even when the mercury content is certainly reduced or even in mercury-free. However, there was large variation in corrosion resistance between products, and it was insufficient from the viewpoint of stable product production.

本発明はかかる現状に鑑み、水銀の含有率を著しく減
少させつつ、更には無水銀においても、水素ガス発生を
抑制したアルカリ電池用亜鉛合金粉末の製造方法を提供
することを目的とする。
In view of such circumstances, an object of the present invention is to provide a method for producing a zinc alloy powder for an alkaline battery in which the content of mercury is remarkably reduced and hydrogen gas generation is suppressed even in mercury-free.

[課題を解決するための手段] 本発明者らは、この目的に沿って鋭意研究の結果、亜
鉛合金粉末をアルカリ電池用の電解液である4.0%水酸
化カリウム溶液中に浸漬して、水素ガス発生部分を顕微
鏡下で探して、さらにその部分をEPMAで分析したとこ
ろ、0.5〜50μm程度の鉄酸化物が認められた。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies for this purpose and found that zinc alloy powder was immersed in a 4.0% potassium hydroxide solution as an electrolyte for an alkaline battery to obtain a hydrogen solution. The gas generating portion was searched under a microscope, and the portion was further analyzed by EPMA. As a result, iron oxide of about 0.5 to 50 μm was found.

すなわち、この鉄酸化物が亜鉛のアルカリ溶液中での
水素過電圧を低下させ、下式の亜鉛腐食反応の進行を助
長しているものと考えられる。
That is, it is considered that this iron oxide reduces the hydrogen overvoltage in the alkaline solution of zinc, and promotes the progress of the zinc corrosion reaction of the following formula.

Zn+2H2O+2OH-→Zn(OH)4 2-+H2 本発明は、かかる知見に基づいてこの亜鉛中の鉄酸化
物を除去し、これによりアルカリ電池の耐食性を向上さ
せるものである。
Zn + 2H 2 O + 2OH → Zn (OH) 4 2− + H 2 The present invention is based on this finding and removes the iron oxide in the zinc, thereby improving the corrosion resistance of the alkaline battery.

すなわち本発明は、純度99.997%以上の亜鉛を溶融
し、これに合金元素を添加した溶融亜鉛合金を耐熱性フ
ィルターで濾過することを特徴とするアルカリ電池用亜
鉛合金粉末の製造方法にある。
That is, the present invention resides in a method for producing a zinc alloy powder for an alkaline battery, comprising melting zinc having a purity of 99.997% or more and filtering a molten zinc alloy obtained by adding an alloy element to the zinc by a heat resistant filter.

本発明では純度99.997%以上の高純度の亜鉛を用い
る。しかしながら、このような高純度の亜鉛中にも鉄酸
化物が含まれる。この亜鉛中の鉄酸化物は亜鉛地金の製
造工程において、例えば鋳造鋳型あるいは周囲の鉄錆が
混入したものと考えられる。
In the present invention, high-purity zinc having a purity of 99.997% or more is used. However, such high-purity zinc also contains iron oxide. It is considered that the iron oxide in the zinc is mixed with, for example, a casting mold or the surrounding iron rust in the manufacturing process of the zinc ingot.

この混入した鉄酸化物の大部分は亜鉛粉末製造工程の
再溶解時にドロスとして除去されるが、一部残存してい
るものと考えられる。
Most of the mixed iron oxide is removed as dross during re-dissolution in the zinc powder production process, but it is considered that a part of the iron oxide remains.

本発明では、この鉄酸化物が残存している亜鉛を溶融
し、これに合金元素を所定量添加する。添加される合金
元素としては鉛、アルミニウム、ビスマス、インジウム
等が例示される。このように合金元素を添加するのは、
アルカリ電池の放電特性を向上させたり、水素ガス発生
量を低減させるためである。
In the present invention, zinc in which the iron oxide remains is melted, and a predetermined amount of an alloying element is added thereto. Examples of alloy elements to be added include lead, aluminum, bismuth, and indium. The reason for adding alloying elements in this way is that
This is for improving the discharge characteristics of the alkaline battery and reducing the amount of hydrogen gas generated.

次に、本発明では、得られた溶融亜鉛合金を耐熱性フ
ィルターで濾過する。ここで用いられる耐熱性フィルタ
ーとは、セラミックフィルター、多孔質焼結金属、金属
メッシュフィルター等が例示されるが、セラミックフィ
ルターが好ましく用いられる。また、この耐熱性フィル
ターの目の大きさは数μm程度のものが好ましく採用さ
れる。
Next, in the present invention, the obtained molten zinc alloy is filtered with a heat resistant filter. Examples of the heat resistant filter used here include a ceramic filter, a porous sintered metal, a metal mesh filter, and the like, and a ceramic filter is preferably used. The mesh size of the heat resistant filter is preferably about several μm.

ここで用いられるセラミックフィルターはアルミナ、
ジルコニア、窒化アルミニウム、チタン酸バリウム−ス
トロンチウム等を原料とし、ドクターブレード法等を用
い、グリーンシートを調製し、次いで焼成を行なう等の
公知の方法により製造される。
The ceramic filter used here is alumina,
A green sheet is prepared from zirconia, aluminum nitride, barium-strontium titanate or the like as a raw material using a doctor blade method or the like, and then fired, for example, to produce the green sheet.

この耐熱性フィルターで濾過された溶融亜鉛合金は、
圧縮空気によりアトマイズし、粉体化させ、さらに篩い
分けを行なって整粒される。
The molten zinc alloy filtered by this heat resistant filter is
It is atomized by compressed air, pulverized, sieved, and sized.

整粒された亜鉛合金粉末は、そのままアルカリ電池用
の負極活物質とされるか、さらに水銀、水銀−インジウ
ムアマルガム等で乾式または湿式汞化した汞化亜鉛合金
粉末としてアルカリ電池用の負極活物質として用いられ
る。
The sized zinc alloy powder is used as a negative electrode active material for an alkaline battery as it is, or as a calcined zinc alloy powder that is dry or wet-melted with mercury, mercury-indium amalgam, or the like. Used as

このように、アルミニウム中の不純物濾過等に使用さ
れているセラミックフィルター等の耐熱性フィルターに
よって、亜鉛中に含まれる鉄酸化物を除去することによ
り、アルカリ電池内での耐食性が著しく向上したアルカ
リ電池用亜鉛合金粉末が得られる。
Thus, by removing the iron oxide contained in zinc by a heat-resistant filter such as a ceramic filter used for filtering impurities in aluminum, the corrosion resistance in the alkaline battery is significantly improved. Zinc alloy powder is obtained.

なお、セラミックフィルターにより亜鉛を濾過する場
合、濾過前の亜鉛の鉄分析値と濾過後の亜鉛の鉄分析値
に関しては有意な差は見られない。
When zinc is filtered by a ceramic filter, no significant difference is observed between the iron analysis value of zinc before filtration and the iron analysis value of zinc after filtration.

この理由は、通常、アルカリ電池用亜鉛合金粉末の原
料亜鉛中には鉄が1〜3ppm含有されているが、メタル鉄
の状態で亜鉛中に固溶している場合は亜鉛の耐食性には
何等影響を与えるものではなく、しかもこのメタル鉄が
1〜3ppm中の大部分を占め、残りのppbオーダーで鉄酸
化物が存在しているものと考えられる。
The reason for this is that usually 1 to 3 ppm of iron is contained in the raw material zinc for the zinc alloy powder for alkaline batteries, but when the metal iron is dissolved in the zinc in a solid state, the corrosion resistance of the zinc is uncertain. This has no effect, and it is considered that this metal iron occupies most of 1 to 3 ppm, and iron oxide exists in the remaining ppb order.

従って、濾過前後の微量の鉄酸化物の検出には前述し
たように亜鉛合金粉末を電解液中に浸漬して、水素ガス
発生部分を顕微鏡下で探して、さらにその部分をEPMAで
分析する方法により、鉄酸化物の存在が水素ガス発生に
影響することが判った。
Therefore, to detect trace amounts of iron oxide before and after filtration, as described above, a method of immersing zinc alloy powder in an electrolytic solution, searching for a hydrogen gas generating portion under a microscope, and analyzing that portion with EPMA As a result, it was found that the presence of iron oxide affected the generation of hydrogen gas.

[実施例] 以下、実施例および比較例に基づいて本発明を具体的
に説明する。
[Examples] Hereinafter, the present invention will be specifically described based on examples and comparative examples.

実施例1〜2 純度99.997%以上の亜鉛地金を約500℃で溶融し、こ
れに鉛、インジウムの含有率がそれぞれ、0.05重量%と
なるように添加して亜鉛合金を作成し、溶融状態でセラ
ミック製のフィルター(TKR社製、商品名メタロフィル
ターアロスーパーチュープHE81)により濾過した。
Examples 1 and 2 A zinc alloy having a purity of 99.997% or more was melted at about 500 ° C., and a zinc alloy was prepared by adding lead and indium so that the contents of lead and indium each became 0.05% by weight. With a ceramic filter (manufactured by TKR, trade name Metallofilter Alo Super Tupe HE81).

次に、これを高圧アルゴンガス(噴出圧5kg/cm2)を
使って粉体化し、得られた亜鉛合金粉末を50〜150メッ
シュの粒度範囲に篩い分けした。
Next, this was pulverized using high-pressure argon gas (ejection pressure 5 kg / cm 2 ), and the obtained zinc alloy powder was sieved to a particle size range of 50 to 150 mesh.

この亜鉛合金粉末100gをアルカリ電解液中に常温下で
3日間浸漬させて、水素ガス発生部分を顕微鏡下で探
し、水素ガス発生部分があればその部分をEPMAで分析
し、鉄酸化物の存在箇所を調べ、その個数を第1表に示
した。
100 g of this zinc alloy powder was immersed in an alkaline electrolyte at room temperature for 3 days, and a hydrogen gas generating portion was searched under a microscope. If there was a hydrogen gas generating portion, the portion was analyzed by EPMA, and the presence of iron oxide was detected. The locations were checked and the numbers are shown in Table 1.

一方、濃度40重量%の水酸化カリウム水溶液に酸化亜
鉛を飽和させたものにカルボキシメチルセルロースとポ
リアクリル酸ソーダを1.0%程度加えて電解液を作成し
た。
On the other hand, about 1.0% of carboxymethylcellulose and sodium polyacrylate were added to a 40% by weight aqueous solution of potassium hydroxide saturated with zinc oxide to prepare an electrolytic solution.

上記、亜鉛合金粉末3.0gと電解液1.5gを混合して負極
活物質として第1図に示すアルカリマンガン電池を作成
した。
3.0 g of the zinc alloy powder and 1.5 g of the electrolytic solution were mixed to prepare an alkaline manganese battery shown in FIG. 1 as a negative electrode active material.

このアリカリマンガン電池を60℃の温度下で20日間保
存し、亜鉛合金粉末の腐食により発生する水素ガス発生
量を測定し、得られた結果を第1表に示した。
This alkaline manganese battery was stored at a temperature of 60 ° C. for 20 days, and the amount of hydrogen gas generated due to corrosion of the zinc alloy powder was measured. The obtained results are shown in Table 1.

第1図のアルカリマンガン電池は、正極缶1、正極
2、負極3、セパレーター4、封口体5、負極底板6、
負極集電体7、キャップ8、熱収縮性樹脂チューブ9、
絶縁リング10,11、外装缶12で構成されている。
The alkaline manganese battery shown in FIG. 1 includes a positive electrode can 1, a positive electrode 2, a negative electrode 3, a separator 4, a sealing body 5, a negative electrode bottom plate 6,
Negative electrode current collector 7, cap 8, heat-shrinkable resin tube 9,
It comprises insulating rings 10 and 11 and an outer can 12.

比較例1〜2 実施例1と同様にして得た亜鉛合金を濾過することな
く、高圧アルゴンガスで粉体化し、得られた亜鉛合金粉
末を50〜150メッシュの粒度範囲に篩い分けして実施例
1と同様に鉄酸化物の存在箇所を分析(個数)すると共
に、アルカリ電池を作製して水素ガス発生量を測定し、
得られた結果を第1表に示した。
Comparative Examples 1-2 The zinc alloy obtained in the same manner as in Example 1 was powdered with high-pressure argon gas without filtration, and the obtained zinc alloy powder was sieved to a particle size range of 50 to 150 mesh. In the same manner as in Example 1, the location of the iron oxide was analyzed (number), and an alkaline battery was prepared to measure the amount of hydrogen gas generated.
The results obtained are shown in Table 1.

比較例3 実施例1と同様にして得た亜鉛合金を濾過することな
く、高圧アルゴンガスで粉体化し、得られた亜鉛合金粉
末を50〜150メッシュの粒度範囲に篩い分けした。
Comparative Example 3 A zinc alloy obtained in the same manner as in Example 1 was powdered with high-pressure argon gas without filtering, and the obtained zinc alloy powder was sieved to a particle size range of 50 to 150 mesh.

次に水酸化カリウム10%のアルカリ性溶液中にて上記
亜鉛合金粉末に1.5重量%となるように水銀を添加して
汞化処理を行ない汞化亜鉛合金粉末を得た。
Next, mercury was added to the above zinc alloy powder in an alkaline solution of 10% potassium hydroxide so as to be 1.5% by weight to perform a calcining treatment to obtain a calcined zinc alloy powder.

これを実施例1と同様に鉄酸化物の存在箇所を分析
(個数)すると共に、アルカリ電池を作製して水素ガス
発生量を測定し、得られた結果を第1表に示した。
In the same manner as in Example 1, the locations where iron oxides were present were analyzed (number), an alkaline battery was prepared, and the amount of hydrogen gas generated was measured. The obtained results are shown in Table 1.

第1表に示されるごとく、溶融亜鉛合金をセラミック
フィルターで濾過した実施例1〜2は、亜鉛合金粉末中
の鉄酸化物は認められず、またアルカリ電池中の水素ガ
ス発生量が未汞化にも拘らず少なく、著しく耐食性が向
上したことが判る。
As shown in Table 1, in Examples 1 and 2 in which the molten zinc alloy was filtered with a ceramic filter, no iron oxide was found in the zinc alloy powder, and the amount of hydrogen gas generated in the alkaline battery was unmelted. Nevertheless, it was found that the corrosion resistance was remarkably improved.

比較例1〜2は、実施例1〜2と同一合金組成で、セ
ラミックフィルターで濾過を行なわなかったもので、亜
鉛合金粉末中に鉄酸化物の存在が認められ、アルカリ電
池中の水素ガス発生量も顕著である。
Comparative Examples 1 and 2 had the same alloy composition as in Examples 1 and 2, but were not filtered through a ceramic filter. The presence of iron oxide in the zinc alloy powder was recognized, and the generation of hydrogen gas in an alkaline battery was observed. The amount is also significant.

比較例3は従来から用いられている方法によって得ら
れたものである。すなわち、この比較例3は実施例2と
同一合金組成で、かつ1.5重量%の水銀で汞化を行なっ
たものである。実施例2のようにセラミックフィルター
での濾過を行なわないため鉄酸化物の存在が認められ
た。また、この比較例3にあっては、水銀を1.5重量%
含有することにより水素ガス発生量の抑制が可能となる
が、水銀を多量に含有するため社会的ニーズに反するも
のである。
Comparative Example 3 was obtained by a conventionally used method. That is, in Comparative Example 3, the same alloy composition as that of Example 2 was used, and mercurization was performed with 1.5% by weight of mercury. As in Example 2, the presence of iron oxide was recognized because filtration with a ceramic filter was not performed. In Comparative Example 3, the amount of mercury was 1.5% by weight.
Although the amount of hydrogen gas generated can be suppressed by containing it, it is against social needs because it contains a large amount of mercury.

[発明の効果] 以上説明のごとく、溶融亜鉛合金を耐熱性フィルター
で濾過することにより、亜鉛中に混在する鉄酸化物を除
去する本発明によれば、水銀を低含有率あるいは無水銀
としてもアルカリ電池中での亜鉛による水素ガス発生を
充分抑制することが可能であり、社会的ニーズにも沿っ
たものである。
[Effects of the Invention] As described above, according to the present invention, in which a molten zinc alloy is filtered through a heat-resistant filter to remove iron oxides mixed in zinc, mercury has a low content or mercury-free. It is possible to sufficiently suppress the generation of hydrogen gas by zinc in an alkaline battery, which meets social needs.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係わるアルカリマンガン電池の側断面
図を示す。 1:正極缶、2:正極、3:負極、4:セパレーター、5:封口
体、6:負極底板、7:負極集電体、8:キヤップ、9:熱収縮
性樹脂チューブ、10,11:絶縁リング、12:外装缶。
FIG. 1 shows a side sectional view of an alkaline manganese battery according to the present invention. 1: positive electrode can, 2: positive electrode, 3: negative electrode, 4: separator, 5: sealing body, 6: negative electrode bottom plate, 7: negative electrode current collector, 8: cap, 9: heat-shrinkable resin tube, 10, 11: Insulation ring, 12: outer can.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】純度99.997%以上の亜鉛を溶融し、これに
合金元素を添加した溶融亜鉛合金を耐熱性フィルターで
濾過することを特徴とするアルカリ電池用亜鉛合金粉末
の製造方法。
1. A method for producing zinc alloy powder for an alkaline battery, comprising: melting zinc having a purity of 99.997% or more; and filtering a molten zinc alloy obtained by adding an alloy element to the molten zinc through a heat resistant filter.
JP1288765A 1989-11-08 1989-11-08 Method for producing zinc alloy powder for alkaline batteries Expired - Lifetime JP2715161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288765A JP2715161B2 (en) 1989-11-08 1989-11-08 Method for producing zinc alloy powder for alkaline batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288765A JP2715161B2 (en) 1989-11-08 1989-11-08 Method for producing zinc alloy powder for alkaline batteries

Publications (2)

Publication Number Publication Date
JPH03152870A JPH03152870A (en) 1991-06-28
JP2715161B2 true JP2715161B2 (en) 1998-02-18

Family

ID=17734422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288765A Expired - Lifetime JP2715161B2 (en) 1989-11-08 1989-11-08 Method for producing zinc alloy powder for alkaline batteries

Country Status (1)

Country Link
JP (1) JP2715161B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754704B2 (en) * 1991-02-19 1995-06-07 三井金属鉱業株式会社 Zinc alloy powder for alkaline battery and method for producing the same
JPH0754705B2 (en) * 1991-10-16 1995-06-07 三井金属鉱業株式会社 Zinc alloy powder for alkaline battery and method for producing the same

Also Published As

Publication number Publication date
JPH03152870A (en) 1991-06-28

Similar Documents

Publication Publication Date Title
IL146669A (en) Tantalum powder, a process for producting it, and sintered anodes obtainable therefrom
US6563695B1 (en) Powdered tantalum, niobium, production process thereof, and porous sintered body and solid electrolytic capacitor using the powdered tantalum or niobium
EP0500313B1 (en) Zinc alloy powder for alkaline cell and method to produce the same
US5312476A (en) Zinc alloy powder for alkaline cell and method for production of the same
JP2715161B2 (en) Method for producing zinc alloy powder for alkaline batteries
US5425798A (en) Zinc alloy powder for alkaline cell and method to produce the same
GB2534332A (en) Method and apparatus for producing metallic tantalum by electrolytic reduction of a feedstock
JP2832228B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832227B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPH0586430A (en) Zinc alloy powder for alkali battery and its production
US4632890A (en) Anode metal treatment and use of said anode in cell
JP3550007B2 (en) Method for producing zinc or zinc alloy powder for alkaline batteries
EP0162411B1 (en) Process for the production of active anode materials for use in cells
JPH04289661A (en) Zinc alloy powder for alkaline battery and manufacture thereof
JPH05166507A (en) Zinc alloy powder for alkaline battery and its manufacture
JP2004014306A (en) Electrolytic solution for alkaline battery and alkaline battery using this electrolytic solution
JP2832231B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832230B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832229B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832232B2 (en) Zinc alloy powder for alkaline batteries
JPH0971825A (en) Method for recovering effective component from nickel hydrogen-storing alloy secondary cell
JPS62123653A (en) Zinc-alkaline battery
JPH0418674B2 (en)
KR100496950B1 (en) Method for preparing nano-metal powder by electrochemical reduction
JPH05225974A (en) Hydrogen storage alloy electrode