JPH05166507A - Zinc alloy powder for alkaline battery and its manufacture - Google Patents

Zinc alloy powder for alkaline battery and its manufacture

Info

Publication number
JPH05166507A
JPH05166507A JP4090130A JP9013092A JPH05166507A JP H05166507 A JPH05166507 A JP H05166507A JP 4090130 A JP4090130 A JP 4090130A JP 9013092 A JP9013092 A JP 9013092A JP H05166507 A JPH05166507 A JP H05166507A
Authority
JP
Japan
Prior art keywords
weight
less
zinc
alloy powder
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4090130A
Other languages
Japanese (ja)
Other versions
JPH0754705B2 (en
Inventor
Masamoto Sasaki
正元 佐々木
Tomotaka Motomura
智隆 本村
Hirofumi Asano
浩文 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP4090130A priority Critical patent/JPH0754705B2/en
Publication of JPH05166507A publication Critical patent/JPH05166507A/en
Publication of JPH0754705B2 publication Critical patent/JPH0754705B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an alkaline battery with zinc alloy powder which suppresses the generation of hydrogen gas substantially when the powder is processed to be unmercurial and unleaded, and can retain discharge performance at a practical level, and to provide its manufacture. CONSTITUTION:Zinc alloy powder contains components selected from (1) 0.001-0.5 percentage by weight of aluminum, 0.01-0.5 percentage by weight of bismuth, (2) 0.001-0.5 percentage by weight of aluminum, 0.1-0.5 percentage by weight of bismuth, 1.0 percentage by weight or less of indium, (3) 0.001-0.5 percentage by weight of aluminum, 0.01-0.5 percentage by weight of bismuth, 0.5 percentage by weight or less of lithium, (4) 0.001-0.5 percentage by weight of aluminum, 0.01-0.5 percentage by weight of bismuth, 1.0 percentage by weight or less of indium, 0.5 percentage by weight or less of calcium or 0.5 percentage by weight or less of lithium. The rest portion is formed of zinc containing 1ppm or less of iron as accompanying impurity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】[Industrial applications]

【0002】本発明はアルカリ電池用亜鉛合金粉末およ
びその製造方法に関し、詳しくは亜鉛中の随伴不純物と
しての鉄の含有量を1ppm以下とし、かつ特定の添加
元素を含有することにより、有害な元素である水銀およ
び鉛を使用せずに、水素ガス発生を抑制し、電池の耐洩
液性を向上させたアルカリ電池用亜鉛合金粉末およびそ
の製造方法に関する。
The present invention relates to a zinc alloy powder for alkaline batteries and a method for producing the same. More specifically, the content of iron as a concomitant impurity in zinc is 1 ppm or less, and a specific additive element is contained, so that it is a harmful element. The present invention relates to a zinc alloy powder for an alkaline battery, which suppresses hydrogen gas generation and improves battery leakage resistance without using mercury and lead, and a method for producing the same.

【0003】[0003]

【従来の技術】アルカリ電池の負極活物質に使用されて
いる汞化亜鉛粉末中の水銀は、亜鉛の腐食による水素ガ
スの発生を抑制し、これに起因する電池の洩液を防止す
る目的から、アルカリ電池の負極活物質に不可欠な成分
と考えられていた。
2. Description of the Related Art Mercury in zinc fluoride powder used as a negative electrode active material of alkaline batteries suppresses generation of hydrogen gas due to corrosion of zinc and prevents leakage of batteries due to this. It was considered to be an essential component for the negative electrode active material of alkaline batteries.

【0004】しかし、環境対策の面から水銀の低減が求
められており、このため亜鉛に鉛、さらにはアルミニウ
ム、ビスマス、インジウム等を添加元素として加えるこ
とにより、水銀の含有量を10重量%から1重量%前後
まで大幅に低減させても、水素ガスの発生を抑制するこ
とが可能となった。
However, there is a demand for reduction of mercury from the viewpoint of environmental measures. Therefore, by adding lead, aluminum, bismuth, indium and the like as additive elements to zinc, the content of mercury is reduced from 10% by weight. Even if the amount was drastically reduced to around 1% by weight, it became possible to suppress the generation of hydrogen gas.

【0005】しかるに、さらなる社会的要請として、負
極活物質中の水銀含有量を0重量%、換言すれば無汞化
とすることが近年求められている。このように負極活物
質を無汞化とすると情況は大幅に異なり、上記のような
添加元素を加えたとしても、水素ガス発生量を所定のレ
ベルまで抑制することは困難であった。すなわち、従来
より種々の添加元素を加えた負極活物質としての亜鉛合
金粉末が提案されているが(例えば特公平2−2298
4号公報、特開昭61−153950号公報)、これら
は水銀含有量が1重量%またはそれ以下でも所期の水素
ガス発生の抑制は達成できるものの、無汞化ではその実
現ができなかった。
[0005] However, as a further social demand, it has been recently demanded that the content of mercury in the negative electrode active material be 0% by weight, in other words, it should be constant. As described above, the situation is significantly different when the negative electrode active material is made unconstrained, and it is difficult to suppress the hydrogen gas generation amount to a predetermined level even if the above-mentioned additional elements are added. That is, conventionally, a zinc alloy powder as a negative electrode active material to which various additive elements have been added has been proposed (for example, Japanese Patent Publication No. 2-2298).
No. 4, JP-A-61-153950), these can achieve the desired suppression of hydrogen gas generation even when the mercury content is 1% by weight or less, but they could not be realized by the unconstrained. ..

【0006】また、水銀の含有量の低減化に伴ない、鉛
の有する亜鉛腐食抑制効果が近年最も重要となってい
る。現在市販されている低水銀アルカリ電池の負極活物
質は、亜鉛−鉛、亜鉛−アルミニウム−鉛、亜鉛−アル
ミニウム−インジウム−鉛、亜鉛−ビスマス−鉛等とい
った合金組成からなっているのが一般的である。つま
り、水銀含有量の低減化は、鉛の添加効果によって達成
されたところが大きく、鉛を使用せずに負極活物質にお
ける無水銀化は達成し得ないと考えられていた。
Further, with the reduction of the content of mercury, the zinc corrosion inhibiting effect of lead has become the most important in recent years. Negative electrode active materials for low-mercury alkaline batteries currently on the market are generally composed of alloy compositions such as zinc-lead, zinc-aluminum-lead, zinc-aluminum-indium-lead, and zinc-bismuth-lead. Is. That is, the reduction of the mercury content was largely achieved by the effect of adding lead, and it was considered that the mercury-free conversion in the negative electrode active material could not be achieved without using lead.

【0007】鉛も水銀と同様に人体に悪影響を及ぼすこ
とが知られている。クリーンな環境を求める社会的ニー
ズを考慮すれば、人為的な鉛の添加は好ましくない。し
かしながら、上述したように、現在までにおいては、負
極活物質における無鉛化は、低水銀化の場合でさえ容易
に達成されていない。
Lead, like mercury, is known to adversely affect the human body. Considering the social needs for a clean environment, artificial addition of lead is not preferable. However, as described above, up to now, lead-free lead in the negative electrode active material has not been easily achieved even in the case of reducing mercury.

【0008】一方、亜鉛中の不純物の含有量を低減する
ことによって、水素ガスの発生を抑制し、かつ放電性能
を向上させる試みがなされている。例えば特開昭62−
123653号公報には、鉄やクロム等の不純物を低減
することが記載されており、同公報第4頁第1表におい
ては、鉛、インジウムおよびアルミニウムを一定量含有
し、かつ水銀を1重量%含有する汞化亜鉛合金粉末を用
いた負極活物質においては、鉄を10ppm程度に低減
することによって、水素ガスの発生を抑制しつつ放電性
能が向上している。
On the other hand, attempts have been made to suppress the generation of hydrogen gas and improve the discharge performance by reducing the content of impurities in zinc. For example, JP-A-62-1
Japanese Patent No. 123653 describes reducing impurities such as iron and chromium. In Table 1 on page 4 of the same publication, it contains a certain amount of lead, indium and aluminum, and contains 1% by weight of mercury. In the negative electrode active material using the contained zinc hydride alloy powder, the discharge performance is improved while suppressing generation of hydrogen gas by reducing iron to about 10 ppm.

【0009】しかしながら、水銀含有量が0重量%の亜
鉛合金粉末では、上記のように不純物としての鉄の含有
量を10ppm程度に低減し、かつ鉛等の添加元素を含
有させても所望の水素ガスの発生を抑制する効果は得ら
れなかった。
However, in a zinc alloy powder having a mercury content of 0% by weight, the desired hydrogen content is reduced even if the content of iron as an impurity is reduced to about 10 ppm as described above and an additive element such as lead is contained. The effect of suppressing the generation of gas was not obtained.

【0010】このように、負極活物質を無汞化かつ無鉛
化とすることは、水銀含有量が0.6〜1.0重量%と
いう低汞化の場合と根本的に異なる困難さを伴ない、無
汞化かつ無鉛化の亜鉛合金粉末を負極活物質として用
い、水素ガスの発生を抑制し、ひいては耐洩液性を向上
させたアルカリ電池は未だ得られていない。
As described above, making the negative electrode active material free from lead and lead-free has fundamentally different difficulties from the case of low lead having a mercury content of 0.6 to 1.0% by weight. No alkaline battery has been obtained in which a lead-free and lead-free zinc alloy powder is used as a negative electrode active material to suppress the generation of hydrogen gas and thus improve the leakage resistance.

【0011】[0011]

【発明が解決しようとする課題】本発明は、かかる従来
技術の課題を解決すべくなされたもので、無汞化さらに
は無鉛化において、水素ガス発生を大幅に抑制するアル
カリ電池用亜鉛合金粉末およびその製造方法を提供する
ことを目的とし、無水銀アルカリ電池の耐洩液性を向上
させることを最終的な目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above problems of the prior art, and it is a zinc alloy powder for an alkaline battery, which greatly suppresses the generation of hydrogen gas in a lead-free and lead-free manner. And to provide a method for producing the same, and to finally improve the leakage resistance of a mercury-free alkaline battery.

【0012】[0012]

【課題を解決するための手段】本発明者等は、この目的
に沿って鋭意研究の結果、不純物としての鉄の含有量が
極めて少ない亜鉛を用い、これに特定の添加元素を加え
ることにより、両者の相乗効果によって上記目的が達成
されることを知見し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have earnestly studied in accordance with this object, and as a result, by using zinc having an extremely small content of iron as an impurity, and by adding a specific additive element thereto, The inventors have found that the above objects can be achieved by the synergistic effect of the two, and have reached the present invention.

【0013】すなわち、本発明の無汞化アルカリ電池用
亜鉛合金粉末は、下記(1)〜(4): (1)アルミニウム0.001〜0.5重量%、ビスマ
ス0.01〜0.5重量%、(2)アルミニウム0.0
01〜0.5重量%、ビスマス0.01〜0.5重量
%、インジウム1.0重量%以下、(3)アルミニウム
0.001〜0.5重量%、ビスマス0.01〜0.5
重量%、リチウム0.5重量%以下、(4)アルミニウ
ム0.001〜0.5重量%、ビスマス0.01〜0.
5重量%、インジウム1.0重量%以下、カルシウム
0.5重量%以下またはリチウム0.5重量%以下、か
ら選択される成分を含有し、残部が随伴不純物としての
鉄を1ppm以下含有する亜鉛からなることを特徴とす
る。
That is, the zinc alloy powder for a smooth alkaline battery of the present invention comprises the following (1) to (4): (1) 0.001 to 0.5% by weight of aluminum and 0.01 to 0.5 of bismuth. % By weight, (2) aluminum 0.0
01-0.5 wt%, bismuth 0.01-0.5 wt%, indium 1.0 wt% or less, (3) aluminum 0.001-0.5 wt%, bismuth 0.01-0.5
Wt%, lithium 0.5 wt% or less, (4) aluminum 0.001-0.5 wt%, bismuth 0.01-0.
Zinc containing a component selected from 5 wt%, indium 1.0 wt% or less, calcium 0.5 wt% or less or lithium 0.5 wt% or less, and the balance containing 1 ppm or less of iron as an accompanying impurity. It is characterized by consisting of.

【0014】本発明においては、亜鉛中の随伴不純物と
しての鉄の含有量が1ppm以下であることが必要であ
る。鉄の含有量が1ppmを超えた場合には水素ガスの
発生を抑制する効果が小さい。ここでいう鉄の含有量1
ppm以下とは、亜鉛と鉄との分離操作を用いずに、通
常の分析手段であるICPや原子吸光光度法を使用した
場合の分析限界値以下を意味する。従来、このような鉄
の含有量の低い亜鉛または亜鉛合金粉末を負極活物質と
して用いることは行なわれておらず、またそのような報
告も知られていない。高純度の亜鉛地金については特殊
な用途、例えば半導体用に特別に帯域溶融法等の方法を
用いて作ることはできるが、価格的にも高価で、とても
乾電池用の原料として使用できるものではない。また合
金粉末として用いた例も見当たらない。工業的量産物と
して得られる亜鉛インゴットのうち、最高純度とされる
精留亜鉛においても、日本工業規格の鉄濃度は20pp
m以下であり、そのうち不純物レベルの特に低いもので
も鉄濃度は一般的には2ppm以上である。また、電気
亜鉛も同じレベルである。
In the present invention, it is necessary that the content of iron as an accompanying impurity in zinc is 1 ppm or less. When the iron content exceeds 1 ppm, the effect of suppressing the generation of hydrogen gas is small. Iron content 1 here
The term "ppm or less" means an analytical limit value or less when using ICP or atomic absorption spectrophotometry, which is a usual analytical means, without using a separation operation of zinc and iron. Conventionally, such zinc or zinc alloy powder having a low iron content has not been used as a negative electrode active material, and no such report has been known. High-purity zinc metal can be made for special applications, for example, for semiconductors using a special method such as the zone melting method, but it is also expensive in price and cannot be used as a raw material for dry batteries. Absent. Moreover, the example used as an alloy powder is not found, either. Among the zinc ingots obtained as industrial products, the highest purity rectified zinc has an iron concentration of 20 pp according to Japanese Industrial Standards.
The iron concentration is generally 2 ppm or more, even if the impurity level is particularly low. In addition, electric zinc is at the same level.

【0015】また、本発明では、上記(1)〜(4)か
ら選択される成分を含有する。各成分元素の含有量が上
記範囲を逸脱した場合には、所期の水素ガスの発生を抑
制する効果が得られなかったり、実用的な放電性能が維
持できないという問題が生じる。このような成分以外の
添加元素、例えば従来より負極活物質として用いられる
亜鉛合金粉末に含有されるアルミニウム、ビスマス、カ
ルシウム等を仮に単独で含有させても上記した本発明の
効果は得られない。
Further, the present invention contains a component selected from the above (1) to (4). If the content of each component element deviates from the above range, there is a problem that the desired effect of suppressing the generation of hydrogen gas cannot be obtained, or that practical discharge performance cannot be maintained. Even if the additive elements other than these components, such as aluminum, bismuth, and calcium contained in the zinc alloy powder conventionally used as the negative electrode active material, are contained alone, the above-described effects of the present invention cannot be obtained.

【0016】次に、本発明の製造方法について説明す
る。本発明では、随伴不純物としての鉄の含有量が1p
pm以下の亜鉛を用いる。このような鉄含有量の低い亜
鉛としては、電解法による析離亜鉛や、真空蒸留法によ
る亜鉛インゴットが挙げられる。従来においては、析離
亜鉛を塩化アンモニウム等のフラックスと共に溶融し、
鋳型に鋳造した亜鉛インゴットを負極活物質の亜鉛原料
として用いていた。このような亜鉛インゴットでは鉄の
含有量を1ppm以下とすることができない。その理由
は、亜鉛の溶融工程で浮いたドロス分を除去するが、そ
の除去工程で一部分回収される亜鉛を溶融部に戻す。こ
のドロス分除去工程で通常、分離装置からの鉄分の混入
があるからである。また、溶湯ポンプ、鋳型、環境から
の鉄分の混入も予測される。
Next, the manufacturing method of the present invention will be described. In the present invention, the content of iron as an accompanying impurity is 1 p
Zinc of pm or less is used. Examples of such zinc having a low iron content include zinc deposited by electrolysis and zinc ingot produced by vacuum distillation. Conventionally, fused zinc is melted with a flux such as ammonium chloride,
A zinc ingot cast in a mold was used as a zinc raw material for the negative electrode active material. In such a zinc ingot, the iron content cannot be 1 ppm or less. The reason is that the dross part floating in the melting step of zinc is removed, but zinc partially recovered in the removal step is returned to the melting part. This is because the iron content from the separator is usually mixed in this dross removal step. In addition, iron content from the melt pump, mold, and environment is also predicted.

【0017】この鉄含有量の低い亜鉛の溶湯中で、上記
した(1)〜(4)に示される各添加元素を所定範囲の
含有量となるように溶解する。そして、次にアトマイズ
法によって粉体化し、さらに篩分けして亜鉛合金粉末を
得る。この際の溶融およびアトマイズ雰囲気中の鉄の含
有量を0.009mg/m3以下とすることが、水素ガ
ス発生の抑制効果をさらに向上させるといった見地から
望ましい。また、得られた亜鉛合金粉末を磁力選別する
ことも同様の観点から望ましい。
In the molten zinc having a low iron content, each of the additive elements shown in the above (1) to (4) is dissolved so as to have a content within a predetermined range. Then, it is pulverized by an atomizing method and further sieved to obtain a zinc alloy powder. At this time, the iron content in the melting and atomizing atmosphere is preferably set to 0.009 mg / m 3 or less from the viewpoint of further improving the effect of suppressing hydrogen gas generation. It is also desirable to magnetically sort the obtained zinc alloy powder from the same viewpoint.

【0018】このような従来法と本発明の亜鉛合金粉末
の製造方法の相違を示したフローシートを図1に示す。
このようにして得られた亜鉛合金粉末中の鉄の含有量
は、上述したように1ppm以下であり、この亜鉛合金
粉末は耐洩液性の許容上限である約300μl/day
・cell(単3型)以下に水素ガスの発生を制御する
ことができる。
FIG. 1 shows a flow sheet showing the difference between the conventional method and the method for producing the zinc alloy powder of the present invention.
The iron content in the zinc alloy powder thus obtained is 1 ppm or less as described above, and the zinc alloy powder has an allowable upper limit of leakage resistance of about 300 μl / day.
-Hydrogen gas generation can be controlled below cell (AA type).

【0019】従来、亜鉛の腐食による水素ガスの発生機
構については、巨視的なガス量の測定や推測による結晶
構造の関係が論じられるだけで、実際にガスの発生部位
にまで立入って解明されたことがなかった。そのことが
種々出願された技術が無水銀電池に対して実用に耐えな
かった原因ではないかと考えた本発明者等は、ガス発生
場所の顕微鏡観察とEPMA分析とを入念に行なうこと
によって、亜鉛粉末中に含まれる不可避不純物としての
鉄あるいはその酸化物、合金等の微粒子が、亜鉛粒子間
および/または表面に存在する場合に、その微粒子が水
素ガスの発生源になることを突きとめた。
Conventionally, the generation mechanism of hydrogen gas due to corrosion of zinc is clarified by actually going into the gas generation site only by discussing the relationship of the crystal structure by macroscopically measuring and estimating the gas amount. I've never been there. The inventors of the present invention, who thought that this might be the reason why the various applications were not practically applicable to the mercury-free battery, did not perform zinc observation by careful microscopic observation and EPMA analysis of the gas generation site. It has been found that when fine particles of iron or its oxides, alloys, etc. as unavoidable impurities contained in the powder exist between zinc particles and / or on the surface, the fine particles serve as a source of hydrogen gas generation.

【0020】すなわち、亜鉛粉末をアルカリ電池の電解
液と同様な水酸化カリウム水溶液中に浸漬し、連続的に
ガスが発生する特定の部位があることを光学顕微鏡で観
察した。次に、比較的大粒子や細い棒状あるいは板状の
亜鉛を用いて同様にガス発生状態を観察した。そして、
長時間にわたり同一場所からガスが発生する場所がある
ことを確認して継続ガス発生箇所に鋭利な器具を用いて
印を付した。次に、上記亜鉛をEMPAにて組成分析を
行なった。
That is, the zinc powder was immersed in an aqueous potassium hydroxide solution similar to the electrolytic solution of an alkaline battery, and it was observed with an optical microscope that there were specific sites where gas was continuously generated. Next, the state of gas generation was similarly observed using relatively large particles, thin rod-shaped or plate-shaped zinc. And
It was confirmed that there was a place where gas would be generated from the same place for a long time, and the point where continuous gas was generated was marked using a sharp instrument. Next, the zinc was subjected to compositional analysis by EMPA.

【0021】その結果、ガスの連続発生箇所は必ず0.
5〜5μmの主として鉄を含む微粒子が偏在することが
判明した。鉄以外の成分としては場合によりクロム、ニ
ッケル、銀、イオウ、酸素が検出された。このことから
ガス発生は主として鉄または酸化鉄の粒子が極く微量混
在していることによりなされることが判明した。
As a result, the continuous gas generation point is always 0.
It was found that fine particles of 5 to 5 μm mainly containing iron were unevenly distributed. In some cases, chromium, nickel, silver, sulfur, and oxygen were detected as components other than iron. From this, it was found that the gas generation was mainly caused by a very small amount of iron or iron oxide particles being mixed.

【0022】表1に示されるように、0.1〜数mmの
平均粒径を有する各種の粒子を亜鉛粉末あるいは亜鉛板
に1〜数ppm程度の濃度になるように添加し、水酸化
カリウム水溶液中でガス発生の情況を観察した。結果を
表1に示した。
As shown in Table 1, various particles having an average particle diameter of 0.1 to several mm are added to zinc powder or a zinc plate so as to have a concentration of about 1 to several ppm, and potassium hydroxide is added. The situation of gas generation was observed in the aqueous solution. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】この表1の結果から、鉄、酸化鉄、ステン
レスの粒子がガス発生の中心となることが判った。この
ように、ガス発生源は、微粒子、それも主として鉄系の
粒子であることが判った。
From the results shown in Table 1, it was found that particles of iron, iron oxide and stainless steel were the center of gas generation. Thus, it was found that the gas generation source was fine particles, which were also mainly iron-based particles.

【0025】さらに、本発明者等は鉛を添加した場合の
効果が亜鉛と電解液間で発生する単純な腐食を抑制する
効果よりも、亜鉛中に偏在する鉄分によって引き起こさ
れる局部電池反応による腐食を抑制する効果の方が大き
く、亜鉛中の不純物としての鉄の含有量が極めて低減さ
れた場合には、水素ガス発生量が、鉛の添加無しに耐洩
液性の許容上限を下回わることも知見した。
Furthermore, the present inventors have found that the effect of adding lead is not the effect of suppressing the simple corrosion that occurs between zinc and the electrolytic solution, but the effect of local cell reaction caused by the unevenly distributed iron content in zinc. When the content of iron as an impurity in zinc is extremely reduced, the hydrogen gas generation amount falls below the permissible upper limit of leakage resistance without the addition of lead. I also found out.

【0026】そこで、本発明では亜鉛中の随伴不純物と
しての鉄の含有量を極めて微量にすると共に、水銀、鉛
以外の特定の添加元素を一定量含有させるのである。こ
のことによって、両者の相乗効果によって、水素ガスの
発生が抑制される。
Therefore, in the present invention, the content of iron as an accompanying impurity in zinc is made extremely small and a specific amount of a specific additive element other than mercury and lead is contained. This suppresses the generation of hydrogen gas due to the synergistic effect of the two.

【0027】[0027]

【実施例】以下、実施例および比較例に基づいて本発明
を具体的に説明する。
EXAMPLES The present invention will be specifically described below based on Examples and Comparative Examples.

【0028】実施例1〜15および比較例1〜8 雰囲気中の鉄含有量が0.005mg/m3の室内にお
いて、随伴不純物としての鉄の含有量が1ppm以下で
ある電解析離亜鉛を約500℃で溶融し、これに表2に
示す各元素の所定量を添加して亜鉛合金溶湯を作成し
た。
Examples 1 to 15 and Comparative Examples 1 to 8 In a room with an iron content of 0.005 mg / m 3 in the atmosphere, about 0.1 ppm of ionized zinc having an iron content of 1 ppm or less as an accompanying impurity was used. It was melted at 500 ° C., and a predetermined amount of each element shown in Table 2 was added thereto to prepare a molten zinc alloy.

【0029】次に、これを同一の雰囲気中で直接高圧ア
ルゴンガス(噴出圧5kg/cm2)を使って粉体化
し、得られた亜鉛合金粉末を50〜150メッシュの粒
度に篩い分けした。
Next, this was directly pulverized in the same atmosphere using high pressure argon gas (jet pressure 5 kg / cm 2 ), and the obtained zinc alloy powder was sieved to a particle size of 50 to 150 mesh.

【0030】さらに、磁石を用いて磁力選別を行ない遊
離鉄粉を除去した。得られた亜鉛合金粉末の鉄含有量は
いずれも1ppm以下であった。
Further, a magnetic force was used to select magnetic force to remove free iron powder. The iron contents of the obtained zinc alloy powders were all 1 ppm or less.

【0031】ここで、濃度40%の水酸化カリウム水溶
液に酸化亜鉛を飽和させたものに、ゲル化剤としてカル
ボキシメチルセルロースとポリアクリル酸ソーダを1.
0%程度加えて電解液を作成した。
Here, in a 40% aqueous potassium hydroxide solution saturated with zinc oxide, carboxymethyl cellulose and sodium polyacrylate as gelling agents were added to 1.
About 0% was added to prepare an electrolytic solution.

【0032】負極活物質として上記亜鉛合金粉末を用
い、この亜鉛合金粉末3.0gを電解液1.5gと混合
してゲル状化したものをそのまま負極材とし、図2に示
すアルカリマンガン電池を作成した。
The above zinc alloy powder was used as the negative electrode active material, and 3.0 g of this zinc alloy powder was mixed with 1.5 g of the electrolytic solution to form a gel, which was directly used as the negative electrode material, and the alkaline manganese battery shown in FIG. Created.

【0033】このアルカリマンガン電池を25%部分放
電させた後、亜鉛合金粉末の腐食により発生する水素ガ
ス発生量を測定し、得られた結果を表2に示した。な
お、25%部分放電するのは、無水銀のアルカリマンガ
ン電池を構成し、0.9Vまでの放電時間を100%と
した場合、25%部分放電あたりが水素ガス発生速度が
最大となるからであり、1Ω、11分の放電条件をもっ
て25%部分放電とした。
After the alkaline manganese battery was partially discharged by 25%, the amount of hydrogen gas generated by the corrosion of the zinc alloy powder was measured, and the obtained results are shown in Table 2. The 25% partial discharge is because the hydrogen gas generation rate is maximum per 25% partial discharge when a mercury-free alkaline manganese battery is configured and the discharge time up to 0.9 V is 100%. Yes, a 25% partial discharge was performed under the discharge conditions of 1Ω and 11 minutes.

【0034】図2のアルカリマンガン電池は、正極缶
1、正極2、負極(ゲル状化した亜鉛合金粉末)3、セ
パレーター4、封口体5、負極底板6、負極集電体7、
キャップ8、熱収縮性樹脂チューブ9、絶縁リング1
0,11、外装缶12で構成されている。
The alkaline manganese battery of FIG. 2 has a positive electrode can 1, a positive electrode 2, a negative electrode (gelled zinc alloy powder) 3, a separator 4, a sealing body 5, a negative electrode bottom plate 6, a negative electrode current collector 7,
Cap 8, heat-shrinkable resin tube 9, insulating ring 1
It is composed of 0, 11 and an outer can 12.

【0035】比較例9〜11 鉄の含有量が1ppm以下の電解析離亜鉛を通常の通り
一旦鋳込んだ亜鉛インゴットを出発原料として、鉄の含
有量が5mg/m3の雰囲気中で約500℃で溶融し、
これに表2に示す各元素の所定量を添加して亜鉛合金溶
湯を作成した。
Comparative Examples 9 to 11 Starting from a zinc ingot in which ion-analyzed zinc having an iron content of 1 ppm or less was cast as usual, the starting material was about 500 mg in an atmosphere having an iron content of 5 mg / m 3. Melt at ℃,
A predetermined amount of each element shown in Table 2 was added to this to prepare a zinc alloy melt.

【0036】次に、これを同一の雰囲気中で高圧アルゴ
ンガス(噴出圧5kg/cm2)を使って粉体化し、得
られた亜鉛亜鉛合金粉末を50〜150メッシュの粒度
に篩い分けした。
Next, this was pulverized in the same atmosphere using high-pressure argon gas (jet pressure 5 kg / cm 2 ), and the obtained zinc-zinc alloy powder was sieved to a particle size of 50 to 150 mesh.

【0037】得られた亜鉛合金粉末の鉄含有量はいずれ
も3ppmであった。なお、ここでは磁力選別を行なわ
なかった。
The iron content of each of the obtained zinc alloy powders was 3 ppm. Note that no magnetic force selection was performed here.

【0038】この亜鉛合金粉末を用い、実施例1と同様
に図2に示すアルカリ電池を作成し、25%部分放電を
行ない、水素ガス発生量を測定した。その結果を表2に
示す。
Using this zinc alloy powder, an alkaline battery shown in FIG. 2 was prepared in the same manner as in Example 1, 25% partial discharge was performed, and the hydrogen gas generation amount was measured. The results are shown in Table 2.

【0039】[0039]

【表2】 [Table 2]

【0040】表2に示されるように、鉄の含有量が1p
pm以下で、しかも特定の組成を有する実施例1〜15
の亜鉛合金粉末は、いずれも水素ガス発生量が耐洩液性
の許容上限である約300μ1/day・cell(L
R6型)以下である。これに対して比較例1〜8の亜鉛
合金粉末は、鉄の含有量が1ppm以下であるにも拘ら
ず、組成が本発明で規定する範囲を逸脱することから、
水素ガス発生を抑制する効果が認められない。さらに、
比較例9〜11の亜鉛合金粉末は、鉄の含有量が3pp
mであるため、組成が本発明で規定する範囲に含まれる
か否かを問わず、水素ガス発生を抑制する効果が認めら
れない。
As shown in Table 2, the iron content is 1 p
Examples 1 to 15 having a specific composition of not more than pm
In all of the zinc alloy powders, the hydrogen gas generation amount is about 300 μ1 / day · cell (L
R6 type) or less. On the other hand, the zinc alloy powders of Comparative Examples 1 to 8 have a composition that deviates from the range defined by the present invention, even though the iron content is 1 ppm or less.
No effect of suppressing hydrogen gas generation is observed. further,
The zinc alloy powders of Comparative Examples 9 to 11 had an iron content of 3 pp.
Since it is m, the effect of suppressing the generation of hydrogen gas is not recognized regardless of whether the composition falls within the range specified in the present invention.

【0041】実施例16〜19 磁力選別を行なわなかった以外は、すべて実施例2と同
様の組成、条件で亜鉛合金粉末を得た(実施例16)。
また溶融、アトマイズ雰囲気を鉄の含有量が5mg/m
3の雰囲気中で行なった以外は、すべて実施例2と同様
の組成、条件で亜鉛合金粉末を得た(実施例17)。
Examples 16 to 19 Zinc alloy powders were obtained under the same composition and conditions as in Example 2 except that the magnetic force selection was not carried out (Example 16).
Also, the content of iron in the melting and atomizing atmosphere is 5 mg / m
A zinc alloy powder was obtained with the same composition and conditions as in Example 2 except that the operation was performed in the atmosphere of Example 3 (Example 17).

【0042】同様に、磁力選別を行なわなかった以外
は、すべて実施例6と同様の組成、条件で亜鉛合金粉末
を得た(実施例18)。また、溶融、アトマイズ雰囲気
を鉄の含有量が5mg/m3の雰囲気中で行なった以外
は、すべて実施例6と同様の組成、条件で亜鉛合金粉末
を得た(実施例19)
Similarly, a zinc alloy powder was obtained with the same composition and conditions as in Example 6 except that magnetic force selection was not carried out (Example 18). Further, a zinc alloy powder was obtained under the same composition and conditions as in Example 6, except that the melting and atomizing atmosphere was performed in an atmosphere in which the iron content was 5 mg / m 3 (Example 19).

【0043】このようにして得られた亜鉛合金粉末の鉄
含有量はいずれも1ppm以下であった。この亜鉛合金
粉末を用い、実施例1と同様に図2に示すアルカリ電池
を作成し、25%部分放電を行ない、水素ガス発生量を
測定した。その結果を表3に示す。
The iron contents of the zinc alloy powders thus obtained were all 1 ppm or less. Using this zinc alloy powder, an alkaline battery shown in FIG. 2 was prepared in the same manner as in Example 1, 25% partial discharge was performed, and the hydrogen gas generation amount was measured. The results are shown in Table 3.

【0044】[0044]

【表3】 [Table 3]

【0045】この表3から判るように、実施例16〜1
7は実施例2とほぼ同様の結果が、また実施例18〜1
9は実施例6とほぼ同様の結果がそれぞれ得られた。
As can be seen from Table 3, Examples 16-1
7 has almost the same results as in Example 2, and Examples 18 to 1
In No. 9, almost the same results as in Example 6 were obtained.

【0046】実験例1 実施例2および比較例9の亜鉛合金粉末に、水銀1重量
%、10重量%含有されるようにそれぞれ汞化し、汞化
亜鉛合金粉末を得た。
Experimental Example 1 The zinc alloy powders of Example 2 and Comparative Example 9 were screened so as to contain 1% by weight and 10% by weight of mercury to obtain a zinc halide alloy powder.

【0047】この汞化亜鉛合金粉末を用い、実施例1と
同様に図2に示すアルカリ電池を作成し、25%部分放
電を行ない、水素ガス発生量を測定した。その結果を実
施例2および比較例9の値と共にプロットして図3に示
す。
Using this zinc hydride alloy powder, an alkaline battery shown in FIG. 2 was prepared in the same manner as in Example 1, 25% partial discharge was performed, and the amount of hydrogen gas generated was measured. The results are plotted in FIG. 3 together with the values of Example 2 and Comparative Example 9.

【0048】この図3に示されるように、鉄の含有量が
3ppmの場合には、水銀含有量が1重量%以上で耐洩
液性の許容上限を下回るのに対し、鉄の含有量が1pp
m以下では水銀の含有の有無に拘らず、耐洩液性の許容
上限を下回る。
As shown in FIG. 3, when the iron content is 3 ppm, the mercury content is less than the allowable upper limit of the liquid leakage resistance at 1 wt% or more, whereas the iron content is 1 pp
If it is m or less, the upper limit of the liquid leakage resistance is below the upper limit regardless of the presence or absence of mercury.

【0049】実験例2 (1)アルミニウム0.01重量%、ビスマス0.05
重量%、残部亜鉛、(2)アルミニウム0.01重量
%、ビスマス0.05重量%、鉛0.05重量%、残部
亜鉛、(3)アルミニウム0.01重量%、ビスマス
0.05重量%、鉛0.05重量%、水銀0.15重量
%、残部亜鉛となるように、実施例2と同様の方法で亜
鉛合金粉末を得た。なお、この際の亜鉛合金粉末中の鉄
の含有量をそれぞれ変量した。
Experimental Example 2 (1) 0.01% by weight of aluminum and 0.05 of bismuth
Wt%, balance zinc, (2) aluminum 0.01 wt%, bismuth 0.05 wt%, lead 0.05 wt%, balance zinc, (3) aluminum 0.01 wt%, bismuth 0.05 wt%, A zinc alloy powder was obtained in the same manner as in Example 2 so that the lead content was 0.05% by weight, the mercury content was 0.15% by weight, and the balance was zinc. The content of iron in the zinc alloy powder at this time was varied.

【0050】これらの亜鉛合金粉末を用いて、実施例1
と同様に図2に示すアルカリ電池を作成し、25%部分
放電を行ない、水素ガス発生量を測定した。その結果を
プロットして図4に示す。
Example 1 using these zinc alloy powders
The alkaline battery shown in FIG. 2 was prepared in the same manner as above, 25% partial discharge was performed, and the hydrogen gas generation amount was measured. The results are plotted and shown in FIG.

【0051】この図4に示されるように、随伴不純物と
しての鉄の含有量が2ppm以上の場合には、水銀、鉛
の有無にかかわらず耐洩液性許容上限を上回る。耐洩液
性許容上限を下回るためには、鉄の含有量がいずれにし
ても1ppm以下でなければならないことが判る。
As shown in FIG. 4, when the content of iron as an accompanying impurity is 2 ppm or more, the permissible upper limit of the liquid leakage resistance is exceeded regardless of the presence or absence of mercury or lead. It can be seen that the iron content must be 1 ppm or less in any case in order to fall below the upper limit of liquid leakage resistance.

【0052】[0052]

【発明の効果】以上説明のごとく、随伴不純物としての
鉄の含有量が1ppm以下の亜鉛と特定の添加元素を溶
湯中で溶解し、該溶湯を直接アトマイズすることによっ
て、鉄の含有量が1ppm以下であるアルカリ電池用亜
鉛合金粉末が得られる。
As described above, zinc having an iron content of 1 ppm or less as an accompanying impurity and a specific additive element are dissolved in a molten metal, and the molten metal is directly atomized to obtain an iron content of 1 ppm. The following zinc alloy powder for alkaline batteries is obtained.

【0053】この亜鉛合金粉末は無汞化、無鉛化である
にも拘らずアルカリ電池の負極活物質に用いることによ
り、水素ガス発生を大幅に抑制すると共に、放電性能を
実用的な水準に保持し得る。また、水銀および鉛が含有
されていないため、この亜鉛合金粉末を負極活物質とし
て用いたアルカリ電池は社会的ニーズにも沿ったもので
ある。
By using this zinc alloy powder as a negative electrode active material for alkaline batteries, it is possible to significantly suppress the generation of hydrogen gas and maintain the discharge performance at a practical level, even though it is lead-free and lead-free. You can Further, since it contains neither mercury nor lead, an alkaline battery using this zinc alloy powder as a negative electrode active material meets social needs.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来法と本発明の亜鉛合金粉末の製造方法を
示したフローシート。
FIG. 1 is a flow sheet showing a conventional method and a method for producing a zinc alloy powder according to the present invention.

【図2】 本発明に係わるアルカリマンガン電池の側断
面図を示す。
FIG. 2 shows a side sectional view of an alkaline manganese battery according to the present invention.

【図3】 亜鉛合金粉末中の水銀含有量と水素ガス発生
量との関係を示すグラフ。
FIG. 3 is a graph showing a relationship between a mercury content in a zinc alloy powder and a hydrogen gas generation amount.

【図4】 亜鉛合金粉末中の鉄含有量と水素ガス発生速
度との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the iron content in zinc alloy powder and the hydrogen gas generation rate.

【符号の説明】[Explanation of symbols]

1:正極缶、2:正極、 3:負極、 4:セパレー
タ、 5:封口体、6:負極底板、 7:負極集電体、
8:キャップ、 9:熱収縮性樹脂チューブ、 1
0,11:絶縁リング、 12:外装缶。
1: Positive electrode can, 2: Positive electrode, 3: Negative electrode, 4: Separator, 5: Sealing body, 6: Negative electrode bottom plate, 7: Negative electrode current collector,
8: Cap, 9: Heat-shrinkable resin tube, 1
0, 11: Insulating ring, 12: Outer can.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム0.001〜0.5重量
%、ビスマス0.01〜0.5重量%、残部が随伴不純
物としての鉄を1ppm以下含有する亜鉛からなること
を特徴とする無汞化アルカリ電池用亜鉛合金粉末。
1. An unconstrained product comprising 0.001 to 0.5% by weight of aluminum, 0.01 to 0.5% by weight of bismuth, and the balance being zinc containing 1 ppm or less of iron as an accompanying impurity. Zinc alloy powder for alkaline batteries.
【請求項2】 アルミニウム0.001〜0.5重量
%、ビスマス0.01〜0.5重量%、インジウム1.
0重量%以下、残部が随伴不純物としての鉄を1ppm
以下含有する亜鉛からなることを特徴とする無汞化アル
カリ電池用亜鉛合金粉末。
2. Aluminum 0.001 to 0.5% by weight, bismuth 0.01 to 0.5% by weight, indium 1.
0 wt% or less, the balance is 1 ppm of iron as an accompanying impurity
A zinc alloy powder for a non-alkaline alkaline battery, characterized by comprising zinc contained below.
【請求項3】 アルミニウム0.001〜0.5重量
%、ビスマス0.01〜0.5重量%、リチウム0.5
重量%以下、残部が随伴不純物としての鉄を1ppm以
下含有する亜鉛からなることを特徴とする無汞化アルカ
リ電池用亜鉛合金粉末。
3. Aluminum 0.001 to 0.5% by weight, bismuth 0.01 to 0.5% by weight, lithium 0.5.
A zinc alloy powder for a non-alkaline alkaline battery, characterized in that it is made of zinc containing 1 wt% or less by weight and the balance of 1 ppm or less of iron as an accompanying impurity.
【請求項4】 アルミニウム0.001〜0.5重量
%、ビスマス0.01〜0.5重量%、インジウム1.
0重量%以下、カルシウム0.5重量%以下またはリチ
ウム0.5重量%以下、残部が随伴不純物としての鉄を
1ppm以下含有する亜鉛からなる特徴とする無汞化ア
ルカリ電池用亜鉛合金粉末。
4. Aluminum 0.001 to 0.5% by weight, bismuth 0.01 to 0.5% by weight, indium 1.
A zinc alloy powder for use in a non-alkaline alkaline battery, comprising 0% by weight or less, 0.5% by weight or less of calcium or 0.5% by weight or less of lithium, and the balance of zinc containing 1 ppm or less of iron as an accompanying impurity.
【請求項5】 随伴不純物としての鉄を1ppm以下含
有する電解析離亜鉛に、下記(1),(2),(3)ま
たは(4): (1)アルミニウム0.001〜0.5重量%、ビスマ
ス0.01〜0.5重量%、 (2)アルミニウム0.001〜0.5重量%、ビスマ
ス0.01〜0.5重量%、インジウム1.0重量%以
下、 (3)アルミニウム0.001〜0.5重量%、ビスマ
ス0.01〜0.5重量%、リチウム0.5重量%以
下、 (4)アルミニウム0.001〜0.5重量%、ビスマ
ス0.01〜0.5重量%、インジウム1.0重量%以
下、カルシウム0.5重量%以下またはリチウム0.5
重量%以下、 のいずれかの含有割合となるように上記添加元素を溶解
し、該溶湯を直接アトマイズすることを特徴とする、随
伴不純物としての鉄を1ppm以下含有する無汞化アル
カリ電池用亜鉛合金粉末の製造方法。
5. The following (1), (2), (3) or (4) in (1), (2), (3) or (4): (1) 0.001 to 0.5 weight of aluminium, in ionized zinc containing 1 ppm or less of iron as an accompanying impurity %, Bismuth 0.01 to 0.5 wt%, (2) aluminum 0.001 to 0.5 wt%, bismuth 0.01 to 0.5 wt%, indium 1.0 wt% or less, (3) aluminum 0.001 to 0.5% by weight, bismuth 0.01 to 0.5% by weight, lithium 0.5% by weight or less, (4) Aluminum 0.001 to 0.5% by weight, bismuth 0.01 to 0. 5 wt%, indium 1.0 wt% or less, calcium 0.5 wt% or less, or lithium 0.5
Zinc for a non-alkaline battery containing 1 ppm or less of iron as an accompanying impurity, characterized in that the additive element is melted so as to have a content ratio of any one of wt% or less and the molten metal is directly atomized. Method for manufacturing alloy powder.
【請求項6】 前記溶解およびアトマイズ雰囲気中の鉄
含有量が0.009mg/m3以下である請求項5に記
載の無汞化アルカリ電池用亜鉛合金粉末の製造方法。
6. The method for producing a zinc alloy powder for a smooth alkaline battery according to claim 5, wherein the iron content in the melting and atomizing atmosphere is 0.009 mg / m 3 or less.
【請求項7】 得られたアトマイズ粉を磁力選別する請
求項5または6に記載の無汞化アルカリ電池用亜鉛合金
粉末の製造方法。
7. The method for producing a zinc alloy powder for a smooth alkaline battery according to claim 5, wherein the atomized powder obtained is magnetically selected.
【請求項8】 請求項1、2、3または4に記載の亜鉛
合金粉末を負極活物質として用いたアルカリ電池。
8. An alkaline battery using the zinc alloy powder according to claim 1, 2, 3 or 4 as a negative electrode active material.
JP4090130A 1991-10-16 1992-03-17 Zinc alloy powder for alkaline battery and method for producing the same Expired - Lifetime JPH0754705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4090130A JPH0754705B2 (en) 1991-10-16 1992-03-17 Zinc alloy powder for alkaline battery and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-294839 1991-10-16
JP29483991 1991-10-16
JP4090130A JPH0754705B2 (en) 1991-10-16 1992-03-17 Zinc alloy powder for alkaline battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05166507A true JPH05166507A (en) 1993-07-02
JPH0754705B2 JPH0754705B2 (en) 1995-06-07

Family

ID=26431636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4090130A Expired - Lifetime JPH0754705B2 (en) 1991-10-16 1992-03-17 Zinc alloy powder for alkaline battery and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0754705B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076886C (en) * 1994-09-29 2001-12-26 富士电气化学株式会社 Alkaline cell
JP2002025552A (en) * 2000-07-12 2002-01-25 Fdk Corp Negative electrode zinc group alloy fine particle for alkaline battery, and alkaline battery using this fine particle
US8283069B2 (en) 2006-03-28 2012-10-09 Panasonic Corporation Zinc-alkaline battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177259A (en) * 1984-09-21 1986-04-19 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPS61116755A (en) * 1984-11-12 1986-06-04 Mitsubishi Metal Corp Zinc powder for alkaline manganese battery and alkaline manganese battery
JPS62123656A (en) * 1985-11-25 1987-06-04 Mitsui Mining & Smelting Co Ltd Zinc-alkaline battery
JPH03152870A (en) * 1989-11-08 1991-06-28 Mitsui Mining & Smelting Co Ltd Manufacture of zinc alloy powder for alkaline cell
JPH03173731A (en) * 1989-11-10 1991-07-29 Acec Union Miniere Nv:Sa Powdered zinc for use in alkaline battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177259A (en) * 1984-09-21 1986-04-19 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPS61116755A (en) * 1984-11-12 1986-06-04 Mitsubishi Metal Corp Zinc powder for alkaline manganese battery and alkaline manganese battery
JPS62123656A (en) * 1985-11-25 1987-06-04 Mitsui Mining & Smelting Co Ltd Zinc-alkaline battery
JPH03152870A (en) * 1989-11-08 1991-06-28 Mitsui Mining & Smelting Co Ltd Manufacture of zinc alloy powder for alkaline cell
JPH03173731A (en) * 1989-11-10 1991-07-29 Acec Union Miniere Nv:Sa Powdered zinc for use in alkaline battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076886C (en) * 1994-09-29 2001-12-26 富士电气化学株式会社 Alkaline cell
JP2002025552A (en) * 2000-07-12 2002-01-25 Fdk Corp Negative electrode zinc group alloy fine particle for alkaline battery, and alkaline battery using this fine particle
US8283069B2 (en) 2006-03-28 2012-10-09 Panasonic Corporation Zinc-alkaline battery

Also Published As

Publication number Publication date
JPH0754705B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
US5312476A (en) Zinc alloy powder for alkaline cell and method for production of the same
EP0500313B1 (en) Zinc alloy powder for alkaline cell and method to produce the same
US5425798A (en) Zinc alloy powder for alkaline cell and method to produce the same
JPH04284358A (en) Zinc alkaline battery
JP2832228B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPH0586430A (en) Zinc alloy powder for alkali battery and its production
JPH05299082A (en) Zinc alloy powder for alkaline battery and manufacture thereof
JPH05166507A (en) Zinc alloy powder for alkaline battery and its manufacture
JPS62123656A (en) Zinc-alkaline battery
JP2832229B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832231B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPH05299085A (en) Zinc alloy powder for alkaline battery and manufacture thereof
EP0945908B1 (en) Zinc alloy powder as anode material for use in alkaline manganese cells and process for producing the same
JP2832232B2 (en) Zinc alloy powder for alkaline batteries
JPH04289661A (en) Zinc alloy powder for alkaline battery and manufacture thereof
JPH0628160B2 (en) Zinc alkaline battery
CA2077796A1 (en) Low-lead zinc alloy powders for zero-mercury alkaline batteries
JP2715161B2 (en) Method for producing zinc alloy powder for alkaline batteries
JPS62123653A (en) Zinc-alkaline battery
CA2080762C (en) Zinc alloy powder for alkaline cell and method to produce the same
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JPH0142114B2 (en)
JPH08315816A (en) Zinc alloy powder for alkaline battery and manufacture thereof
JPS6193558A (en) Negative electrode collection body for alkaline battery
JPH0622121B2 (en) Zinc alkaline battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 17