JPH0971825A - Method for recovering effective component from nickel hydrogen-storing alloy secondary cell - Google Patents

Method for recovering effective component from nickel hydrogen-storing alloy secondary cell

Info

Publication number
JPH0971825A
JPH0971825A JP25007495A JP25007495A JPH0971825A JP H0971825 A JPH0971825 A JP H0971825A JP 25007495 A JP25007495 A JP 25007495A JP 25007495 A JP25007495 A JP 25007495A JP H0971825 A JPH0971825 A JP H0971825A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
nickel
fluoride
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25007495A
Other languages
Japanese (ja)
Other versions
JP3526983B2 (en
Inventor
Hideaki Seto
英昭 瀬戸
Hiroshi Ono
小野  浩
Satoshi Tanaka
聡 田中
Yoshiyuki Komatsu
禎之 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP25007495A priority Critical patent/JP3526983B2/en
Publication of JPH0971825A publication Critical patent/JPH0971825A/en
Application granted granted Critical
Publication of JP3526983B2 publication Critical patent/JP3526983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily recover valuable metals in a negative pole at a low cost by treating a negative pole alloy of a waste secondary cell of nickel hydrogen- storing alloy by the combination of an arc fusing method and a fused-salt electrolysis method. SOLUTION: An alloy powder recovered from a negative pole of a waste nickel hydrogen-storing alloy secondary cell is press formed and fused as the consumable electrode of arc discharge to form an alloy layer and a slug layer. The alloy layer essentially consists of Ni, Co, etc., and contains light rare earth elements so that it can be used as it is as an alloy for a nickel hydrogen-storing secondary cell. The slug layer essentially consists of oxides of light rare earth elements and contains a small amt. of Ni and Co. Therefore, the slug is electrolyzed and reduced by using an electrolytic bath containing, by mass %, 50-90% light rare earth fluorides, 0-50 % lithium fluoride, 0-50% barium fluoride and 0-30% calcium fluoride, a carbon electrode as an anode and Ni or Co as a cathode which is the structural component of an hydrogenstoring alloy for a cell. Thus, not only light rare earth elements but valuable metals such as Ni and Co are recovered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル・水素吸蔵合
金二次電池からの有効成分の回収方法に関し、アーク溶
解法と溶融塩電解法を組み合わせることで、簡素かつ安
価なプロセスで有効成分を金属状態で回収し、そのまま
水素吸蔵合金の原料として再利用できるニッケル・水素
吸蔵合金二次電池からの有効成分の回収方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering an active ingredient from a nickel-hydrogen storage alloy secondary battery, which combines an arc melting method and a molten salt electrolysis method to obtain the active ingredient in a simple and inexpensive process. The present invention relates to a method for recovering an active ingredient from a nickel-hydrogen storage alloy secondary battery that can be recovered in a metal state and reused as it is as a raw material for a hydrogen storage alloy.

【0002】[0002]

【従来技術】希土類を用いた水素吸蔵合金を使用するニ
ッケル・水素吸蔵合金二次電池は、そのエネルギー密度
の高さからひろく使用されているが、その活物質成分
に、希土類、コバルト、ニッケルといった稀少金属を用
いているため、その回収とリサイクルが求められてい
る。特に、このニッケル・水素吸蔵合金二次電池が地球
環境対策の一つとして考えられている電気自動車用電池
の主流をしめると目されているので、電池に含まれる稀
少金属の回収再資源化は必須である。しかしながらニッ
ケル・水素吸蔵合金二次電池用の水素吸蔵合金は、その
構成元素が希土類、ニッケル、コバルト、マンガン、ア
ルミニウムと多種にわたっており、これらの物理特性の
違いも大きい。
2. Description of the Related Art Nickel-hydrogen storage alloy secondary batteries using rare earth-based hydrogen storage alloys are widely used because of their high energy density. The active material components thereof are rare earth, cobalt and nickel. Since rare metals are used, their recovery and recycling are required. In particular, it is expected that this nickel-hydrogen storage alloy secondary battery will become the mainstream of batteries for electric vehicles, which is considered as one of the measures for global environment, so the recovery and recycling of rare metals contained in batteries is not possible. Required. However, the hydrogen storage alloys for nickel-hydrogen storage alloy secondary batteries have a wide variety of constituent elements such as rare earths, nickel, cobalt, manganese, and aluminum, and the physical characteristics of these are also large.

【0003】また、従来の誘導加熱による不活性ガスで
の雰囲気溶解などのプロセスで、これらの廃電池の負極
から回収された合金を溶解して、有効成分を金属として
回収しようとする場合には、廃負極から回収された合金
中には炭素、酸素が多量に含有されているため、電池用
水素吸蔵合金の原料として使用できるような高純度な合
金がえられないという問題があった。また上記のような
雰囲気溶解で、廃電池の負極から回収された合金を溶解
した場合には、溶解中のるつぼ内に酸化物が濃縮したド
ロスが多量に発生して、トラブルとなるといった問題点
もあった。この廃負極から回収された合金を酸などで溶
解し、湿式工程を用いることで希土類の化合物やその水
溶液、その他有効成分の化合物や水溶液として分離して
回収する工程もあるが、これらの場合には工程が複雑と
なり、処理費用の面から問題があった。
Further, in the case where the alloy recovered from the negative electrode of these waste batteries is melted and the active ingredient is recovered as a metal by a conventional process such as atmosphere melting with an inert gas by induction heating. However, since the alloy recovered from the waste negative electrode contains a large amount of carbon and oxygen, there is a problem that a high-purity alloy that can be used as a raw material for a hydrogen storage alloy for batteries cannot be obtained. Further, when the alloy recovered from the negative electrode of the waste battery is melted in the atmosphere melting as described above, a large amount of dross containing concentrated oxide is generated in the melting crucible, which causes a problem. There was also. There is also a step of dissolving the alloy recovered from this waste negative electrode with an acid or the like, and separating and recovering it as a rare earth compound or an aqueous solution thereof or other active ingredient compound or an aqueous solution by using a wet process. Has a complicated process and has a problem in terms of processing cost.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、ニッ
ケル・水素吸蔵合金二次廃電池から回収された負極合金
を、簡素かつ安価なプロセスで、二次電池用水素吸蔵合
金の原料として使用できるような高純度な原料用金属と
して回収し、再利用する方法を提供することにある。
An object of the present invention is to use a negative electrode alloy recovered from a nickel-hydrogen storage alloy secondary waste battery as a raw material for a hydrogen storage alloy for a secondary battery in a simple and inexpensive process. An object of the present invention is to provide a method of recovering and reusing as high-purity raw material metal as possible.

【0005】[0005]

【課題を解決するための手段】本発明者は上記の課題を
解決するために、安価で効率の良いプロセスを鋭意検討
した結果、湿式工程を用いることなく、廃負極から回収
された合金中の不純物を除去し、ニッケル・水素吸蔵合
金二次電池用として使用できる高純度な原料合金を回収
するための本発明をなすに至ったものである。すなわち
本発明は、ニッケル・水素吸蔵合金二次電池を分解し
て、負極より回収した負極合金をアーク溶解にて溶解し
て希土類成分は酸化物、その他の合金成分は金属とする
工程、これらの混合物を解砕して希土類酸化物とその他
の合金とに分離する工程、希土類酸化物を溶融塩電解法
にて電解還元して希土類金属とする工程からなることを
特徴とするニッケル・水素吸蔵合金二次電池からの有効
成分の回収方法にある。
In order to solve the above-mentioned problems, the present inventor diligently studied an inexpensive and efficient process, and as a result, without using a wet process, in the alloy recovered from the waste negative electrode. The present invention has been accomplished to remove impurities and recover a high-purity raw material alloy that can be used for nickel-hydrogen storage alloy secondary batteries. That is, the present invention is a step of decomposing a nickel-hydrogen storage alloy secondary battery and melting the negative electrode alloy recovered from the negative electrode by arc melting to make the rare earth component an oxide and the other alloy components a metal. A nickel / hydrogen storage alloy characterized by comprising a step of crushing a mixture to separate it into a rare earth oxide and another alloy, and a step of electrolytically reducing the rare earth oxide by a molten salt electrolysis method to obtain a rare earth metal. It is a method of recovering the active ingredient from the secondary battery.

【0006】以下、本発明を具体的に説明する。まず、
ニッケル・水素吸蔵合金二次電池を分解して、負極より
回収された合金粉をプレスによって成型し、これをアー
ク溶解する。この際、成型した合金粉自身を電極とす
る、いわゆる消耗電極タイプとしても良いし、あるいは
タングステン製などの電極を使うボタン溶解タイプのい
ずれとしても良い。アーク溶解で得られたインゴットを
機械的手段によって解砕し、希土類酸化物を主な成分と
するスラグ部分と、精製された合金部分とに分離する。
合金部分はそのままニッケル・水素吸蔵合金二次電池用
合金の原料として製造工程に戻し、スラグ部分は以下の
溶融塩電解工程の原料として供用する。この溶融塩電解
工程では、フッ化希土、フッ化リチウム、フッ化バリウ
ム、フッ化カルシウムよりなる電解浴を使用するもの
で、例えば、フッ化希土50〜90mass%、フッ化
リチウム10〜50mass%、フッ化バリウム0〜3
0mass%、フッ化カルシウム0〜30mass%よ
りなる。
Hereinafter, the present invention will be described specifically. First,
The nickel-hydrogen storage alloy secondary battery is disassembled, the alloy powder collected from the negative electrode is molded by a press, and this is arc-melted. At this time, either the so-called consumable electrode type in which the molded alloy powder itself is used as an electrode or the button melting type in which an electrode made of tungsten or the like is used may be used. The ingot obtained by arc melting is crushed by mechanical means, and separated into a slag portion containing a rare earth oxide as a main component and a refined alloy portion.
The alloy portion is returned as it is to the manufacturing process as a raw material for the nickel / hydrogen storage alloy secondary battery alloy, and the slag portion is used as a raw material for the following molten salt electrolysis step. In this molten salt electrolysis step, an electrolytic bath made of rare earth fluoride, lithium fluoride, barium fluoride, and calcium fluoride is used. For example, rare earth fluoride 50 to 90 mass%, lithium fluoride 10 to 50 mass. %, Barium fluoride 0-3
It is composed of 0 mass% and 0 to 30 mass% of calcium fluoride.

【0007】この溶融塩電解工程では電解還元される金
属の析出する陰極に、ニッケル・水素吸蔵合金二次電池
用合金の構成成分である金属を使用して、低融点の希土
類合金として回収することも可能である。溶融塩電解法
で回収された希土合金は炭素、酸素が低減されており、
そのままの状態でニッケル・水素吸蔵合金二次電池用の
合金の原料として製造工程に戻すことができる。
In this molten salt electrolysis step, a metal, which is a constituent of a nickel-hydrogen storage alloy secondary battery alloy, is used as a cathode on which a metal to be electrolytically reduced is deposited and recovered as a low-melting rare earth alloy. Is also possible. The rare earth alloy recovered by the molten salt electrolysis method has reduced carbon and oxygen,
As it is, it can be returned to the manufacturing process as a raw material of an alloy for a nickel-hydrogen storage alloy secondary battery.

【0008】本発明では、ニッケル・水素吸蔵合金二次
電池の廃負極より回収された合金粉をプレスによってブ
リケット形状にプレス成形した試料を、アーク溶解炉に
セットし、ロータリーポンプ等にて炉内を真空に排気し
た後、アーク溶解炉内にアルゴンガスを大気圧まで導入
し、アーク溶解によってこのブリケットを溶融して、冷
却後、金属部分とスラグ部分の2相よりなるインゴット
を得る。アーク溶解にいわゆる消耗性電極タイプを用い
る場合には、上記の合金粉の成型の際に電極としての所
定の形状にプレス成型を行う。この成型した電極をアー
ク溶解炉に設置し、ロータリーポンプなどでアーク溶解
炉内を真空に排気し、その後アルゴンガスを大気圧まで
導入して、アーク放電を行い、電極として成型した合金
粉を溶解せしめて滴下させる。滴下した合金を電極下部
に設置した水冷鋳型に受け、連続的に凝固させるととも
に、比重の軽いスラグ部分は上部に浮かせてこれを分離
し、合金部分とスラグ部分の分かれたインゴットとして
回収する。アーク溶解にて得られたインゴットは機械的
に解砕することによって、合金部分とスラグ部分とを容
易に分離できるのでこれを分け、アーク溶解の終わった
精製されたニッケル、コバルトなどの希土以外の元素を
主成分とする合金を回収する。また、同時に回収したス
ラグ部分は希土類の酸化物を主成分として、希土類金属
と希土類以外の金属が混合した状態となっている。
In the present invention, a sample obtained by pressing the alloy powder recovered from the waste negative electrode of the nickel-hydrogen storage alloy secondary battery into a briquette shape by pressing is set in an arc melting furnace and is set in the furnace by a rotary pump or the like. After being evacuated to a vacuum, argon gas is introduced into the arc melting furnace up to atmospheric pressure, the briquette is melted by arc melting, and after cooling, an ingot consisting of two phases of a metal part and a slag part is obtained. When a so-called consumable electrode type is used for arc melting, press molding is performed into a predetermined shape as an electrode when molding the above alloy powder. This molded electrode is installed in an arc melting furnace, the arc melting furnace is evacuated to a vacuum with a rotary pump, and then argon gas is introduced to atmospheric pressure to perform arc discharge and melt the alloy powder molded as an electrode. At the very least, drop it. The dripping alloy is received by a water-cooled mold placed under the electrode and continuously solidified, and the slag portion with a lighter specific gravity is floated above and separated to collect it as an ingot in which the alloy portion and the slag portion are separated. By mechanically crushing the ingot obtained by arc melting, it is possible to easily separate the alloy part and the slag part, so separate this and separate the rare earth such as refined nickel and cobalt after arc melting. The alloy whose main component is is recovered. In addition, the slag portion recovered at the same time is in a state in which a rare earth metal and a metal other than the rare earth are mixed with the rare earth oxide as a main component.

【0009】このスラグ部分を溶融塩電解によって電解
還元して、希土類金属、あるいは希土類金属とニッケル
・水素吸蔵合金二次電池用合金の構成成分である金属と
の合金として有効成分を回収する。この際の溶融塩電解
工程においては、回収の対象となる合金を構成する希土
成分からなるフッ化希土とフッ化リチウム、フッ化バリ
ウム、フッ化カルシウムなどよりなるフッ化物系の電解
浴を使用し、この電解浴中へアーク溶解工程で回収した
スラグを添加して、電解還元を行う。この電解浴の組成
は例えば、フッ化希土50〜90mass%、フッ化リ
チウム10〜50mass%、フッ化バリウム0〜30
mass%、フッ化カルシウム0〜30mass%であ
る。これらをアルゴン等の不活性ガス雰囲気あるいは大
気雰囲気中で溶解させて、陽極として炭素電極を、陰極
としては希土類と合金をつくらないチタンやタングステ
ンを使用して電解を行う。
The slag portion is electrolytically reduced by molten salt electrolysis to recover an effective component as a rare earth metal or an alloy of a rare earth metal and a metal which is a constituent component of an alloy for a nickel-hydrogen storage alloy secondary battery. In the molten salt electrolysis step at this time, a fluoride-based electrolytic bath composed of rare earth fluoride consisting of rare earth components constituting the alloy to be recovered and lithium fluoride, barium fluoride, calcium fluoride or the like is used. Used, the slag recovered in the arc melting step is added to this electrolytic bath to carry out electrolytic reduction. The composition of this electrolytic bath is, for example, 50 to 90 mass% of rare earth fluoride, 10 to 50 mass% of lithium fluoride, and 0 to 30 of barium fluoride.
mass% and calcium fluoride 0 to 30 mass%. These are dissolved in an atmosphere of an inert gas such as argon or the atmosphere, and a carbon electrode is used as an anode, and titanium or tungsten that does not form an alloy with a rare earth element is used as a cathode for electrolysis.

【0010】また、上記の溶融塩電解工程で陰極として
ニッケル・水素吸蔵合金二次電池用合金の構成成分であ
るニッケルやコバルトを使用すれば、陰極表面に析出し
た希土類金属と陰極を構成する金属が低融点の合金を作
る性質があることから、この溶融塩電解工程の操業温度
を低く設定することが可能となる。電解工程で溶融状態
にて電解槽の底に溜まった希土類金属、あるいは希土類
合金は一定操業時間ごとにひしゃくによって電解槽外の
鋳型に汲み出し、インゴットとして回収する。また、こ
の電解によって生成した合金を溶融状態に保ちつつ、そ
の中にニッケルパイプを挿入して、真空吸引によって溶
融した合金を系外に取り出すこともできる。いずれの回
収方法によっても、電解槽を冷却することなく、連続し
た電解操業が可能である。溶融塩電解によって回収した
希土類金属あるいは希土類合金は炭素、酸素含有量がニ
ッケル・水素吸蔵合金二次電池用合金の原料として使用
できる程度になっているので、そのまま原料として供用
することが可能である。
If nickel or cobalt, which is a constituent of the alloy for nickel-hydrogen storage alloy secondary battery, is used as the cathode in the molten salt electrolysis step, the rare earth metal deposited on the surface of the cathode and the metal constituting the cathode are used. Has the property of forming an alloy with a low melting point, it is possible to set the operating temperature of this molten salt electrolysis step to a low value. Rare earth metals or rare earth alloys that have accumulated in the bottom of the electrolytic cell in a molten state in the electrolysis process are pumped out to the mold outside the electrolytic cell by ladle every certain operating time and collected as an ingot. Further, while keeping the alloy produced by this electrolysis in a molten state, a nickel pipe can be inserted into the molten state and the molten alloy can be taken out of the system by vacuum suction. Either recovery method enables continuous electrolysis operation without cooling the electrolysis cell. The rare earth metal or rare earth alloy recovered by molten salt electrolysis has carbon and oxygen contents that can be used as raw materials for nickel / hydrogen storage alloy secondary battery alloys, so it can be used as it is as raw materials. .

【0011】[0011]

【実施例】以下、実施例に基づいて本発明を具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on examples.

【0012】実施例1 ニッケル・水素吸蔵合金二次電池から回収された負極合
金粉100gをブリケットした試料をアーク溶解炉に入
れ、ロータリーポンプにてアーク溶解炉内を0.1to
rrまで真空排気した後、アルゴンガスを大気圧まで炉
内に導入した。溶解電流700Aで10分間の溶解を行
い、10分間の冷却の後、試料を取り出した。得られた
試料を解砕したところ合金85.2g、スラグ7.5g
を回収することができた。これらの合金とスラグおよび
アーク溶解前の合金粉の分析結果を表1に示した。
Example 1 A sample obtained by briquetting 100 g of negative electrode alloy powder recovered from a nickel-hydrogen storage alloy secondary battery was placed in an arc melting furnace, and the rotary furnace pumped the inside of the arc melting furnace to 0.1 to.
After evacuation to rr, argon gas was introduced into the furnace up to atmospheric pressure. The sample was taken out after 10 minutes of melting at a melting current of 700 A and cooling for 10 minutes. When the obtained sample was crushed, alloy 85.2g, slag 7.5g
Could be recovered. Table 1 shows the analysis results of these alloys, the slag, and the alloy powder before arc melting.

【0013】実施例2 ニッケル・水素吸蔵合金二次電池の廃電池から回収され
た負極合金粉250gをブリケットし、これをアーク溶
解炉内に入れ、ロータリーポンプにてアーク溶解炉内を
0.5torrまで真空排気したのち、アルゴンガスを
大気圧まで炉内に導入した。溶解電流1000Aで15
分間の溶解を行い、30分間の冷却の後、試料を取り出
した。得られた試料を解砕したところ、合金225.1
g、スラグ16.2gを回収することができた。これら
の合金とスラグおよびアーク溶解前の合金粉の分析結果
を表1に示した。
Example 2 250 g of negative electrode alloy powder recovered from a waste battery of a nickel-hydrogen storage alloy secondary battery was briquetted, put in an arc melting furnace, and the inside of the arc melting furnace was 0.5 torr by a rotary pump. After vacuum evacuation to, argon gas was introduced into the furnace up to atmospheric pressure. 15 at a melting current of 1000 A
The sample was taken out after 30 minutes of melting and cooling for 30 minutes. When the obtained sample was crushed, alloy 225.1
g, and 16.2 g of slag could be recovered. Table 1 shows the analysis results of these alloys, the slag, and the alloy powder before arc melting.

【0014】実施例3 実施例1で回収したスラグを用いて溶融塩電解法による
還元を行った。電解浴として、軽希土(La、Ce、P
r、Nd)フッ化物70mass%、フッ化リチウム3
0mass%よりなるフッ化物浴を用い、陽極に黒鉛、
陰極にニッケルを使用して、電解浴の温度を900±5
℃に保持しつつ、アルゴンガス雰囲気で電解を実施し
た。このときの電解電流は10Aとし、スラグは粉砕し
て、電解前に全量を電解浴の中に溶解させた。このとき
の電解浴中のスラグ濃度は3.5%に相当する。1時間
の電解電流の通電後、電解槽を冷却し、電解槽を取り出
して分解し、その内部より5.8gの合金を回収した。
このときに回収した合金の分析値を表1に示した。
Example 3 Using the slag recovered in Example 1, reduction was performed by a molten salt electrolysis method. As an electrolytic bath, light rare earth (La, Ce, P
r, Nd) Fluoride 70 mass%, lithium fluoride 3
Using a fluoride bath containing 0 mass%, graphite as the anode,
Using nickel for the cathode, the temperature of the electrolytic bath is 900 ± 5
Electrolysis was carried out in an argon gas atmosphere while maintaining the temperature at ℃. The electrolytic current at this time was 10 A, the slag was crushed, and the whole amount was dissolved in the electrolytic bath before electrolysis. The slag concentration in the electrolytic bath at this time corresponds to 3.5%. After passing an electrolytic current for 1 hour, the electrolytic cell was cooled, the electrolytic cell was taken out and disassembled, and 5.8 g of an alloy was recovered from the inside.
Table 1 shows the analytical values of the alloys recovered at this time.

【0015】実施例4 実施例2で回収したスラグを用いて溶融塩電解法による
還元を行った。電解浴として軽希土(La、Ce、P
r、Nd)フッ化物70mass%、フッ化リチウム2
5mass%、フッ化バリウム5mass%よりなるフ
ッ化物浴を用い、陽極に黒鉛、陰極にニッケルを使用し
て、電解浴の温度を900±10℃に保持しつつ、アル
ゴンガス雰囲気で電解を実施した。このときの電解電流
は25Aとし、原料となる、先のアーク溶解で得られた
スラグを粉砕した試料は電解前に全量を電解浴の中に溶
解させた。このときの電解浴中の原料濃度は3.5%に
相当する。30分間の電解電流の通電後電解槽を冷却
し、50℃以下の温度となってから電解槽を取り出して
分解し、その内部より11.5gの合金を回収した。こ
のときに回収された合金の分析値を表1に示した。
Example 4 Using the slag recovered in Example 2, reduction was carried out by a molten salt electrolysis method. Light rare earth (La, Ce, P
r, Nd) Fluoride 70 mass%, lithium fluoride 2
Electrolysis was carried out in an argon gas atmosphere while using a fluoride bath composed of 5 mass% and 5 mass% of barium fluoride, using graphite for the anode and nickel for the cathode while keeping the temperature of the electrolytic bath at 900 ± 10 ° C. . The electrolytic current at this time was set to 25 A, and the slag obtained as a raw material, which was obtained by the above-described arc melting, was pulverized, and all the samples were dissolved in the electrolytic bath before electrolysis. The raw material concentration in the electrolytic bath at this time corresponds to 3.5%. After passing the electrolytic current for 30 minutes, the electrolytic cell was cooled, and when the temperature reached 50 ° C. or lower, the electrolytic cell was taken out and decomposed, and 11.5 g of the alloy was recovered from the inside. Table 1 shows the analytical values of the alloys recovered at this time.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】以上説明したように、本発明の方法によ
れば、複雑な湿式工程を用いることなく、廃電池から回
収された合金中に多量に含まれる炭素、酸素を除去した
ニッケル・水素吸蔵合金二次電池用の合金が回収でき
る。
As described above, according to the method of the present invention, nickel / hydrogen in which a large amount of carbon and oxygen contained in the alloy recovered from a waste battery is removed without using a complicated wet process. The alloy for the storage alloy secondary battery can be recovered.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松 禎之 広島県竹原市竹原町652−15 三井金属黒 浜南社宅 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sadayuki Komatsu 652-15 Takehara-cho, Takehara-shi, Hiroshima Mitsui Kinzoku Kurohama company house

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル・水素吸蔵合金二次電池を分解
して、負極より回収した負極合金をアーク溶解にて溶解
して希土類成分は酸化物、その他の合金成分は金属とす
る工程、これらの混合物を解砕して希土類酸化物とその
他の合金とに分離する工程、希土類酸化物を溶融塩電解
法にて電解還元して希土類金属とする工程とからなるこ
とを特徴とするニッケル・水素吸蔵合金二次電池からの
有効成分の回収方法。
1. A step of decomposing a nickel-hydrogen storage alloy secondary battery and dissolving the negative electrode alloy recovered from the negative electrode by arc melting to obtain a rare earth component as an oxide and other alloy components as a metal. Nickel / hydrogen storage characterized by a step of crushing the mixture to separate it into a rare earth oxide and other alloys, and a step of electrolytically reducing the rare earth oxide by a molten salt electrolysis method to obtain a rare earth metal A method for recovering active ingredients from an alloy secondary battery.
【請求項2】 ニッケル・水素合金二次電池を分解して
負極より回収した負極合金をアーク溶解工程での消耗電
極として使用することを特徴とする請求項1記載のニッ
ケル・水素吸蔵合金二次電池からの有効成分の回収方
法。
2. The nickel-hydrogen storage alloy secondary according to claim 1, wherein the anode alloy recovered from the anode by decomposing the nickel-hydrogen alloy secondary battery is used as a consumable electrode in the arc melting step. Method of recovering active ingredients from batteries.
【請求項3】 溶融塩電解工程で、フッ化希土、フッ化
リチウム、フッ化バリウム、フッ化カルシウムよりなる
電解浴を使用することを特徴とする請求項1記載のニッ
ケル・水素吸蔵合金二次電池からの有効成分の回収方
法。
3. The nickel-hydrogen storage alloy according to claim 1, wherein an electrolytic bath of rare earth fluoride, lithium fluoride, barium fluoride and calcium fluoride is used in the molten salt electrolysis step. How to recover active ingredients from secondary batteries.
【請求項4】 フッ化希土50〜90mass%、フッ
化リチウム10〜50mass%、フッ化バリウム0〜
30mass%、フッ化カルシウム0〜30mass%
よりなる電解浴を使用することを特徴とする請求項3記
載のニッケル・水素吸蔵合金二次電池からの有効成分の
回収方法。
4. Rare earth fluoride 50 to 90 mass%, lithium fluoride 10 to 50 mass%, barium fluoride 0 to
30 mass%, calcium fluoride 0-30 mass%
The method for recovering an active ingredient from a nickel-hydrogen storage alloy secondary battery according to claim 3, characterized in that an electrolytic bath consisting of
【請求項5】 溶融塩電解の陰極に電池用水素吸蔵合金
の構成成分である金属を用いることを特徴とする請求項
1記載のニッケル・水素吸蔵合金二次電池からの有効成
分の回収方法。
5. The method for recovering an effective component from a nickel-hydrogen storage alloy secondary battery according to claim 1, wherein a metal which is a constituent component of the hydrogen storage alloy for a battery is used for the cathode of the molten salt electrolysis.
JP25007495A 1995-09-05 1995-09-05 Method for recovering active components from nickel-hydrogen storage alloy secondary batteries Expired - Fee Related JP3526983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25007495A JP3526983B2 (en) 1995-09-05 1995-09-05 Method for recovering active components from nickel-hydrogen storage alloy secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25007495A JP3526983B2 (en) 1995-09-05 1995-09-05 Method for recovering active components from nickel-hydrogen storage alloy secondary batteries

Publications (2)

Publication Number Publication Date
JPH0971825A true JPH0971825A (en) 1997-03-18
JP3526983B2 JP3526983B2 (en) 2004-05-17

Family

ID=17202428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25007495A Expired - Fee Related JP3526983B2 (en) 1995-09-05 1995-09-05 Method for recovering active components from nickel-hydrogen storage alloy secondary batteries

Country Status (1)

Country Link
JP (1) JP3526983B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180278B1 (en) 1998-07-21 2001-01-30 Eveready Battery Company, Inc. Reclamation of active material from metal hydride electrochemical cells
JP2002246661A (en) * 2001-02-20 2002-08-30 Toshiba Corp Processing system of thermoelectric element
CN111373062A (en) * 2017-11-24 2020-07-03 住友金属矿山株式会社 Method for treating waste lithium ion battery
WO2023121058A1 (en) * 2021-12-21 2023-06-29 포스코홀딩스 주식회사 Valuable metal recovery alloy, valuable metal recovery composition, and method for recovering valuable metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180278B1 (en) 1998-07-21 2001-01-30 Eveready Battery Company, Inc. Reclamation of active material from metal hydride electrochemical cells
JP2002246661A (en) * 2001-02-20 2002-08-30 Toshiba Corp Processing system of thermoelectric element
CN111373062A (en) * 2017-11-24 2020-07-03 住友金属矿山株式会社 Method for treating waste lithium ion battery
WO2023121058A1 (en) * 2021-12-21 2023-06-29 포스코홀딩스 주식회사 Valuable metal recovery alloy, valuable metal recovery composition, and method for recovering valuable metal

Also Published As

Publication number Publication date
JP3526983B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
JP6819827B2 (en) How to recover valuable metals from waste lithium-ion batteries
US7713396B2 (en) Method and apparatus for recycling electrode material of lithium secondary battery
US5024737A (en) Process for producing a reactive metal-magnesium alloy
CN1090827C (en) Process for recovery of metals from used nickel-metal hydride accumulators
JP2019135321A (en) Method for recovering valuable metal from waste lithium-ion battery
JP6940003B2 (en) Alloy powder and its manufacturing method
KR20210094615A (en) Methods for recovering lithium
JPH10158751A (en) Method for recovering valuable metal from used lithium secondary battery
KR20210131258A (en) Method of recovering valuable metal including lithium from waste lithium battery
JP3526983B2 (en) Method for recovering active components from nickel-hydrogen storage alloy secondary batteries
JP2002198104A (en) Recycling method of hydrogen storage alloy
EP4239087A1 (en) Recycling method for heavy rare earth element and recycling method for rare earth magnet
US5188711A (en) Electrolytic process for making alloys of rare earth and other metals
JP3614987B2 (en) Method for reducing oxygen in hydrogen storage alloys
JP3504813B2 (en) Method for recovering valuable metals from nickel-metal hydride secondary batteries
JP7210827B2 (en) Pretreatment method for recovery of at least one of Ni or Co
Raynes et al. The Extractive Metallurgy of Zirconium By the Electrolysis of Fused Salts: III. Expanded Scale Process Development of the Electrolytic Production of Zirconium from
JP3700564B2 (en) Method for recovering mixed rare earth metals from scrap
US20240191382A1 (en) Method for preparing rare earth alloys
JP7215517B2 (en) Valuable metal manufacturing method
JP7124923B1 (en) Valuable metal manufacturing method
WO2022191179A1 (en) Method for recovering valuable metal from used lib
US5972074A (en) Method for reducing impurities in misch metal and alloys
WO2012143719A2 (en) Methods and apparatus for the production of metal
JP2022168438A (en) Manganese recovery method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees