JP3504813B2 - Method for recovering valuable metals from nickel-metal hydride secondary batteries - Google Patents

Method for recovering valuable metals from nickel-metal hydride secondary batteries

Info

Publication number
JP3504813B2
JP3504813B2 JP26394996A JP26394996A JP3504813B2 JP 3504813 B2 JP3504813 B2 JP 3504813B2 JP 26394996 A JP26394996 A JP 26394996A JP 26394996 A JP26394996 A JP 26394996A JP 3504813 B2 JP3504813 B2 JP 3504813B2
Authority
JP
Japan
Prior art keywords
nickel
fluoride
metal
secondary battery
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26394996A
Other languages
Japanese (ja)
Other versions
JPH10110288A (en
Inventor
洋 隅田
禎之 小松
成生 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP26394996A priority Critical patent/JP3504813B2/en
Publication of JPH10110288A publication Critical patent/JPH10110288A/en
Application granted granted Critical
Publication of JP3504813B2 publication Critical patent/JP3504813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Secondary Cells (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はニッケル水素二次電
池から、特に、その活物質の構成成分である有価金属
を、簡潔なプロセスで、水素吸蔵合金の特性を劣化させ
る不純物である炭素の除去・低減を同時に行いながら、
活物質の一つである水素吸蔵合金の原料用金属として回
収し、再利用することができるニッケル水素二次電池か
らの有価金属回収方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to removal of carbon, which is an impurity that deteriorates the characteristics of a hydrogen storage alloy, from a nickel-hydrogen secondary battery, in particular, a valuable metal which is a constituent of its active material by a simple process.・ While reducing at the same time,
The present invention relates to a method of recovering a valuable metal from a nickel-hydrogen secondary battery, which can be recovered and reused as a metal for a raw material of a hydrogen storage alloy which is one of active materials.

【0002】[0002]

【従来の技術】水素吸蔵合金を用いたニッケル水素二次
電池は、その高エネルギー密度で環境に対してクリーン
な電池として商品化され、広く使用されているが、コバ
ルト、ニッケル、レアアースといった希少金属を活物質
の主成分としていることから、その回収、リサイクル使
用が強く望まれている。
2. Description of the Related Art A nickel-hydrogen secondary battery using a hydrogen storage alloy has been commercialized and widely used as a battery with a high energy density and is clean to the environment, but rare metals such as cobalt, nickel, and rare earths are used. Since is the main component of the active material, its recovery and recycling are strongly desired.

【0003】特に、無公害な電気自動車用のバッテリー
として、ニッケル水素二次電池の使用が進められる中
で、電池および希少金属の回収・再資源化は必須であ
る。すなわち、ニッケル水素二次電池は、正極活物質と
して水酸化ニッケル、負極活物質として水素吸蔵合金
(コバルト、ニッケル、レアアース(ミッシュメタル)
等)、電解液として水酸化カリウム、更に電極基板とし
てのニッケル板やニッケルメッキ鉄板、銅や鉄系の電極
端子材、更にプラスチックや鋼製のケースと多岐にわた
る材料物質から構成されている。下記「表1」にその構
成材料の一具体例を示す。
[0003] In particular, as nickel-hydrogen secondary batteries are being used as non-polluting batteries for electric vehicles, it is essential to recover and recycle the batteries and rare metals. That is, the nickel-hydrogen secondary battery has nickel hydroxide as the positive electrode active material and hydrogen storage alloy (cobalt, nickel, rare earth (Misch metal) as the negative electrode active material.
Etc.), potassium hydroxide as an electrolytic solution, a nickel plate or a nickel-plated iron plate as an electrode substrate, an electrode terminal material made of copper or iron, and a case made of plastic or steel. Table 1 below shows a specific example of the constituent material.

【0004】[0004]

【表1】 [Table 1]

【0005】このような多岐にわたる材料物質から構成
されているニッケル水素二次電池あるいはその電極材料
からの再資源化は、次のような課題を有していた。
Recycling the nickel-hydrogen secondary battery composed of such various materials or the electrode material thereof has the following problems.

【0006】(1)活物質として再利用するには、必要
構成成分以外の成分、すなわち不純物となる成分の混入
を防ぐことが必要である。
(1) In order to reuse as an active material, it is necessary to prevent mixing of components other than the necessary constituent components, that is, components that become impurities.

【0007】(2)電極を構成する材料の一つではあっ
ても、初めから活物質に含まれると不純物となる成分が
ある。例えば、セパレーター中や結着材として使用され
る有機物中の炭素が負極活物質である水素吸蔵合金に一
定量以上含まれると不適とされる。また、構成材料であ
る酸化亜鉛中の亜鉛も同様に不純物となる。
(2) Even though it is one of the materials constituting the electrode, there is a component which becomes an impurity when contained in the active material from the beginning. For example, it is unsuitable if the hydrogen storage alloy, which is the negative electrode active material, contains a certain amount or more of carbon in the organic material used in the separator or as the binder. Zinc in zinc oxide, which is a constituent material, also becomes an impurity.

【0008】(3)水素吸蔵合金中の成分であるレアア
ース(稀土類)金属は非常に酸化されやすく、使用済の
ニッケル水素二次電池中の水素吸蔵合金は既に酸化が進
行しているばかりでなく、分離、回収の際でも通常の熱
あるいは化学的な処理によっても容易に酸化物や塩とな
ってしまい、金属状態が必要な活物質としては使用でき
なくなる。
(3) The rare earth (rare earth) metal, which is a component in the hydrogen storage alloy, is very likely to be oxidized, and the hydrogen storage alloy in the used nickel-hydrogen secondary battery has already been oxidized. Nonetheless, it is easily converted into an oxide or a salt during separation and recovery as well as by ordinary heat or chemical treatment, and cannot be used as an active material requiring a metal state.

【0009】ところが、多岐にわたる成分からなるこの
ニッケル水素二次電池あるいはその電極材料の再資源化
は、所望の純度を要する有効成分の回収には、個々の有
効成分を分別しながら水素吸蔵合金の特性に悪影響を及
ぼす不純物を除去した上で、既存の技術の組合せによっ
て金属として回収するために非常に長く複雑なプロセス
となり、高価な回収物となってしまう。
However, the recycling of the nickel-hydrogen secondary battery composed of various components or the electrode material for the nickel-hydrogen secondary battery is carried out by recovering the active components required to have a desired purity by separating the individual active components into the hydrogen storage alloy. After removing the impurities that adversely affect the characteristics, and recovering it as a metal by a combination of existing techniques, it becomes a very long and complicated process, resulting in an expensive recovered product.

【0010】つまり、従来の不活性ガスでの雰囲気溶解
などのプロセスで、これらの廃電池や廃電極から回収さ
れた水素吸蔵合金中には、炭素や酸素が多量に含有、付
着しているために電池用の水素吸蔵合金の原料として使
用できるような高純度な合金が得られないばかりでな
く、このような雰囲気溶解で廃電池や廃電極から回収さ
れた水素吸蔵合金を溶解した場合には、溶解中に酸化物
が濃縮したドロスが多量に発生して溶解歩留りを低下さ
せる他、トラブルとなるといった問題もあるということ
と、廃電池や廃電極から回収された水素吸蔵合金を酸な
どで溶解し、湿式工程を用いることで稀土類の化合物や
その水溶液、その他の有効性分の化合物や水溶液として
分離、回収する工程もあるが、これらの場合には工程が
複雑となり、処理費用の面から問題があるということで
ある。
That is, since a large amount of carbon and oxygen are contained and adhered in the hydrogen storage alloy recovered from these waste batteries and waste electrodes by the conventional process such as atmosphere melting with an inert gas. In addition to not being able to obtain a high-purity alloy that can be used as a raw material for a hydrogen storage alloy for batteries, when the hydrogen storage alloy recovered from a waste battery or a waste electrode is melted in such an atmosphere, In addition, a large amount of dross, which is a concentration of oxides, is generated during melting to reduce the melting yield, and there is also a problem that it causes troubles, and the hydrogen storage alloy recovered from waste batteries and waste electrodes is treated with acid etc. There is also a process of dissolving and separating the rare earth compound and its aqueous solution and other effective compounds and aqueous solution by using the wet process, but in these cases, the process becomes complicated and the treatment cost It is that from the surface there is a problem.

【0011】例えば、ニッケル水素二次電池を破砕し、
正極と負極を混在したまま同時に処理する方法として、
不要構成材料を除去した後、有機物や鉄分を分離し、さ
らに、残った有効構成材料を焼成し酸化物にするか、酸
溶解後に稀土類とニッケルのイオンを化学反応によって
別個に沈殿させて濾過・沈殿を繰り返すことで個々の沈
殿物を得た上でそれぞれを焼成し酸化物とするか、ある
いは、酸溶解後に稀土類とニッケルのイオンを化学反応
によって稀土類はフッ化物として沈殿させて濾液から更
にニッケルイオンを沈殿させた上でニッケル沈殿物は焼
成し酸化物とする工程と、これらのフッ化物や酸化物を
溶融塩電解法で処理することで有効金属を回収する方法
(特開平6−340930号公報)が提案されている
が、焼成や高価な薬品を用いた化学沈殿、濾過分離を繰
り返した上での公知の溶融塩電解法であるため、複雑、
且つ、コスト的に回収の価値が低くなることが予想され
る。
For example, a nickel-hydrogen secondary battery is crushed,
As a method of simultaneously treating the positive electrode and the negative electrode in a mixed state,
After removing unnecessary constituents, organic substances and iron are separated, and the remaining effective constituents are calcined to form oxides, or rare earth and nickel ions are separately precipitated by a chemical reaction after acid dissolution and filtered.・ Each precipitate is obtained by repeating precipitation and then each is baked to form an oxide, or after the acid is dissolved, the rare earth and nickel ions are chemically reacted to precipitate the rare earth as a fluoride, and the filtrate is obtained. From the above, a step of further precipitating nickel ions and then baking the nickel precipitate to form an oxide, and a method of recovering an effective metal by treating these fluorides and oxides by a molten salt electrolysis method (Japanese Patent Laid-Open Publication No. 6-58242). However, since it is a known molten salt electrolysis method after repeating firing, chemical precipitation using an expensive chemical, and filtration separation, it is complicated.
In addition, it is expected that the value of recovery will be low in terms of cost.

【0012】また、特開平8−20825号公報では、
ニッケル水素二次電池を破砕し、スラリー化させ、スラ
リー中に含まれる水素吸蔵合金と正極活物質を分別する
ことで、スラリー部に含まれる水素吸蔵合金は有機溶剤
で有機質バインダーを除去、洗浄後、乾燥させ再資源化
し、同じくスラリー部に含まれる正極活物質は、酸溶解
の後、ニッケル化合物として再資源化し、スラリー化し
なかった部分はフェロニッケルの原料としてリサイクル
することが提案されている。
Further, in Japanese Patent Laid-Open No. 20825/1996,
The nickel-hydrogen secondary battery is crushed and made into a slurry, and the hydrogen storage alloy contained in the slurry and the positive electrode active material are separated, so that the hydrogen storage alloy contained in the slurry part removes the organic binder with an organic solvent, and after washing. It has been proposed that the positive electrode active material contained in the slurry portion is dried and recycled, and the positive electrode active material contained in the slurry portion is acid-dissolved and then recycled as a nickel compound, and the portion which is not slurried is recycled as a raw material for ferronickel.

【0013】この方法は、正極と負極とを、おおよそ分
別してから個別に回収を行う方法であり、簡潔な方法と
なってはいるが、水素吸蔵合金の結着剤(バインダー)
はたやすく有機溶剤にて除去できる物ではなく、更に、
使用済のニッケル水素二次電池の水素吸蔵合金は酸化が
進行しており、そのまま再使用できるものとは考えられ
ない。さらに、再溶解の原料として溶解炉へ投入した場
合には酸化物の影響で溶解ドロスの発生量が極端に増え
る他、スラリー化しない部分にはニッケル金属からなる
ニッケル多孔体も含まれることからも経済的な原料とは
なり得ない。
This method is a method in which the positive electrode and the negative electrode are roughly separated and then individually recovered, and although it is a simple method, a binder for the hydrogen storage alloy (binder).
It is not easy to remove with an organic solvent,
The hydrogen storage alloy of the used nickel-hydrogen secondary battery has undergone oxidation and is not considered to be reused as it is. Furthermore, when charged into a melting furnace as a raw material for remelting, the amount of dissolved dross is extremely increased due to the influence of oxides, and the part that is not slurried also contains a nickel porous body made of nickel metal. It cannot be an economical raw material.

【0014】つまり、特開平8−115752号公報で
提案されているように、正極活物質と負極活物質とその
他の構成材料とに、個々に不純物を除去しながら分別す
る場合には、正極の有価物であるニッケルはニッケル化
合物として容易に回収可能であり、負極のみからの有価
物の回収も可能であるが、雰囲気溶解後に、発生したド
ロスから、回収効率を上げるために有効であるカルシウ
ム還元法を用いて更に回収を行っているように多段の工
程を経る必要があるということである。
That is, as proposed in Japanese Patent Application Laid-Open No. 8-1155752, when the positive electrode active material, the negative electrode active material, and other constituent materials are individually separated while removing impurities, Nickel, which is a valuable material, can be easily recovered as a nickel compound, and it is possible to recover a valuable material only from the negative electrode, but it is effective to improve the recovery efficiency from the dross generated after melting in the atmosphere. This means that it is necessary to go through a multi-step process so that the recovery is further performed using the method.

【0015】[0015]

【発明が解決しようとする課題】上述したように、正極
と負極を混在したまま同時に処理する方法では有価金属
を回収する工程において複雑、且つ、コスト的に回収の
価値が低くなることが予想され、また、正極活物質と負
極活物質とその他の構成材料とに、個々に不純物を除去
しながら分別する場合には、電極の有価物であるニッケ
ルはニッケル化合物として容易に回収可能であるが、負
極の有価物を不純物を低減した上で効率良く回収する実
用的な方法が見出されていなかったということである。
As described above, in the method of simultaneously treating the positive electrode and the negative electrode in a mixed state, it is expected that the process of recovering the valuable metal will be complicated and the value of recovery will be low in cost. In addition, when the positive electrode active material, the negative electrode active material, and other constituent materials are separately separated while removing impurities, nickel, which is a valuable material of the electrode, can be easily recovered as a nickel compound, It means that a practical method for efficiently recovering the valuable material of the negative electrode after reducing impurities has not been found.

【0016】本発明は、ニッケル水素二次電池から、特
にその活物質の構成成分である有価金属を簡潔なプロセ
スで不純物を除去し活物質の一つである水素吸蔵合金の
原料金属として回収し、再利用するニッケル水素二次電
池からの有価金属回収方法を提供することを課題とす
る。
According to the present invention, a valuable metal which is a constituent component of an active material of a nickel-hydrogen secondary battery is removed as impurities by a simple process, and is recovered as a raw material metal of a hydrogen storage alloy which is one of the active materials. An object of the present invention is to provide a method for recovering valuable metals from nickel-hydrogen secondary batteries to be reused.

【0017】[0017]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく、正極活物質と負極活物質との分離を行
う、不純物として混入してくる成分を簡潔な方法で除
去する、始めに金属である負極活物質は幾度もその性
状を変えることなく簡潔な方法で回収する、という三つ
の観点を基本として鋭意検討した結果、本発明をなすに
至ったものである。
In order to solve the above problems, the present inventors separate the positive electrode active material and the negative electrode active material, and remove the components mixed as impurities by a simple method. First, as a result of intensive studies based on three viewpoints that a negative electrode active material that is a metal is repeatedly collected by a simple method without changing its properties, the present invention has been completed.

【0018】本発明のニッケル水素二次電池からの有価
金属回収方法は、ニッケル水素二次電池を分解、また
は、破砕して、負極より回収した水素吸蔵合金を酸化物
やフッ化物等の塩に変えることなく金属状態を含んだま
ま、直接、溶融塩電解の原料とし、水素吸蔵合金に付
着、あるいは、含まれている炭素を溶融塩電解中に炭酸
ガスとして除去し、回収される合金中の炭素含有量を低
減させるとともに、回収した水素吸蔵合金から有価金属
を回収することを特徴とする。
The method of recovering valuable metals from a nickel-hydrogen secondary battery according to the present invention comprises decomposing or crushing the nickel-hydrogen secondary battery and converting the hydrogen storage alloy recovered from the negative electrode into a salt such as an oxide or a fluoride. Directly as a raw material for molten salt electrolysis without changing the metal state, adhere to hydrogen storage alloy, or remove carbon contained as carbon dioxide gas during molten salt electrolysis, It is characterized by reducing the carbon content and recovering valuable metals from the recovered hydrogen storage alloy.

【0019】上記有価金属回収方法において、溶融塩電
解工程で、フッ化稀土、フッ化リチウム、フッ化バリウ
ム、フッ化カルシウムよりなる電解浴を使用することを
特徴とする。
The valuable metal recovery method is characterized in that an electrolytic bath made of rare earth fluoride, lithium fluoride, barium fluoride and calcium fluoride is used in the molten salt electrolysis step.

【0020】上記有価金属回収方法において、溶融塩電
解工程で、フッ化稀土50〜90mass%、フッ化リ
チウム10〜50mass%、フッ化バリウム0〜30
mass%、フッ化カルシウム0〜30mass%より
なる電解浴を使用することを特徴とする。
In the above-mentioned valuable metal recovery method, in the molten salt electrolysis step, rare earth fluoride 50 to 90 mass%, lithium fluoride 10 to 50 mass%, barium fluoride 0 to 30 are used.
It is characterized by using an electrolytic bath composed of mass% and calcium fluoride of 0 to 30 mass%.

【0021】上記有価金属回収方法において、溶融塩電
解工程で、陰極に水素吸蔵合金の構成成分である金属を
用いることを特徴とする。
In the above-mentioned valuable metal recovery method, in the molten salt electrolysis step, a metal which is a constituent component of the hydrogen storage alloy is used for the cathode.

【0022】上記有価金属回収方法において、溶融塩電
解工程で、ニッケル水素二次電池の負極から回収した水
素吸蔵合金とともに、ミッシュメタル等の稀土類金属を
添加することを特徴とする。
In the above-mentioned valuable metal recovery method, a rare earth metal such as misch metal is added together with the hydrogen storage alloy recovered from the negative electrode of the nickel-hydrogen secondary battery in the molten salt electrolysis step.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態を具体
的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be specifically described below.

【0024】本発明では、ニッケル水素二次電池を分解
等によって得た負極からの回収された合金粉を溶融塩電
解炉へ投入し、稀土類合金として回収された合金粉から
有効成分を回収するものである。
In the present invention, the recovered alloy powder from the negative electrode obtained by decomposing the nickel-hydrogen secondary battery is put into a molten salt electrolysis furnace, and the active ingredient is recovered from the alloy powder recovered as a rare earth alloy. It is a thing.

【0025】まず、ニッケル水素二次電池を分解、粉砕
あるいは分解を行うと共に破砕(以下、「分解等」とい
う。)して、正極材料と負極材料との分離を行う。
First, the nickel-hydrogen secondary battery is decomposed, crushed, or decomposed and crushed (hereinafter, referred to as "decomposition") to separate the positive electrode material and the negative electrode material.

【0026】次に、分離された負極材料より回収された
合金粉を、例えばプレス等によって成形するか、あるい
は、そのまま溶融塩電解工程の原料として供用する。こ
の際、負極より回収した水素吸蔵合金は、酸化物やフッ
化物等の塩に変えることなく金属状態を含んだ状態のま
ま、直接、溶融塩電解の原料としている。
Next, the alloy powder recovered from the separated negative electrode material is molded by, for example, a press, or directly used as a raw material for the molten salt electrolysis step. At this time, the hydrogen storage alloy recovered from the negative electrode is directly used as a raw material for molten salt electrolysis without changing to a salt such as an oxide or a fluoride in a state including a metal state.

【0027】この際の溶融塩電解工程においては、回収
の対象となるフッ化稀土とフッ化リチウム、フッ化バリ
ウム、フッ化カルシウムなどからなるフッ化物系の電解
浴を使用するのが、好適である。。
In the molten salt electrolysis step at this time, it is preferable to use a fluoride-based electrolytic bath composed of rare earth fluoride to be recovered and lithium fluoride, barium fluoride, calcium fluoride or the like. is there. .

【0028】この電解浴の組成は、例えば、フッ化稀土
50〜90mass%、フッ化リチウム10〜50ma
ss%、フッ化バリウム0〜30mass%、フッ化カ
ルシウム0〜30mass%とするのが、好適である。
The composition of this electrolytic bath is, for example, 50 to 90 mass% of rare earth fluoride and 10 to 50 ma of lithium fluoride.
ss%, barium fluoride 0 to 30 mass%, and calcium fluoride 0 to 30 mass% are preferable.

【0029】この電解は大気雰囲気中で行い、陽極とし
て炭素電極を使用するとともに、陰極として、水素吸蔵
合金の構成成分であるニッケルやコバルトを使用する。
この結果、該陰極に析出した稀土類金属と陰極を構成す
る金属とが低融点の合金を作る性質があることから、こ
の溶融塩電解工程の操業温度を低くすることが可能とな
る。
This electrolysis is carried out in the atmosphere, a carbon electrode is used as the anode, and nickel and cobalt, which are constituent components of the hydrogen storage alloy, are used as the cathode.
As a result, since the rare earth metal deposited on the cathode and the metal forming the cathode have the property of forming an alloy with a low melting point, the operating temperature of this molten salt electrolysis step can be lowered.

【0030】更に、操業温度を低くすると共に回収され
る合金の融点を下げるために、状態図を参考にした上で
ミッシュメタル等の稀土類金属を加えることも有効であ
る。
Further, in order to lower the operating temperature and lower the melting point of the recovered alloy, it is also effective to add a rare earth metal such as misch metal after referring to the phase diagram.

【0031】また、陰極として、稀土類と合金を作らな
いチタンやタングステンを使用することも可能である。
It is also possible to use titanium or tungsten that does not form an alloy with rare earths as the cathode.

【0032】電解工程で、溶融状態にて電解槽の低部に
溜まった稀土類合金は、一定操業時間毎に電解槽外の鋳
型に汲み出し、インゴットとして回収する。また、この
電解によって生成した合金を溶融状態を保ったまま、そ
のなかにパイプを挿入して溶融した合金を連続的に系外
へ取り出すこともできる。
In the electrolysis step, the rare earth alloy accumulated in the lower part of the electrolytic cell in a molten state is pumped out to a mold outside the electrolytic cell at a constant operation time and recovered as an ingot. It is also possible to insert a pipe into the alloy produced by this electrolysis while keeping the molten state, and continuously take out the molten alloy from the system.

【0033】いずれの回収方法によっても、電解槽を冷
却することなく、連続した電解操業が可能である。
By any of the recovery methods, continuous electrolytic operation can be performed without cooling the electrolytic cell.

【0034】溶融塩電解によって回収した稀土類合金
は、炭素、酸素の含有量が電池用水素吸蔵合金の原料と
して使用できる程度に低減されており、そのままの状態
で電池用の水素吸蔵合金の原料として製造工程へ戻すこ
とができる。
The rare earth alloy recovered by the molten salt electrolysis has the carbon and oxygen contents reduced to such an extent that it can be used as a raw material for a hydrogen storage alloy for a battery. As it is, a raw material for a hydrogen storage alloy for a battery is used. Can be returned to the manufacturing process.

【0035】[0035]

【実施例】以下、実施例に基づいて本発明を具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on examples.

【0036】(実施例1)ニッケル水素二次電池を分解
等して負極より回収された合金粉1Kgとミッシュメタ
ル240gを、電解浴として軽稀土(La、Ce、N
d、Pr)フッ化物70mass%、フッ化リチウム2
5mass%、フッ化バリウム5mass%よりなるフ
ッ化物浴を用いた溶融塩電解炉へ投入し、陽極に黒鉛、
陰極にニッケルを使用して、電解浴の温度を1,100
℃に保持しつつ電解を実施した。
(Example 1) 1 kg of alloy powder and 240 g of misch metal recovered from the negative electrode by decomposing a nickel-hydrogen secondary battery were used as an electrolytic bath in light rare earth (La, Ce, N).
d, Pr) Fluoride 70 mass%, lithium fluoride 2
5 mass% and barium fluoride 5 mass% were charged into a molten salt electrolysis furnace using a fluoride bath, and graphite was used as an anode.
Nickel is used for the cathode and the temperature of the electrolytic bath is 1,100.
Electrolysis was carried out while maintaining the temperature at ℃.

【0037】この時の電解電流は250Aとし、ニッケ
ル水素二次電池を分解等して負極より回収された合金粉
1Kgは、電解浴の温度が所定の温度となってから10
分毎に100gずつ投入した。
The electrolysis current at this time was set to 250 A, and 1 Kg of the alloy powder recovered from the negative electrode by decomposing the nickel-hydrogen secondary battery or the like was used after the temperature of the electrolytic bath reached a predetermined temperature, 10
100 g was added every minute.

【0038】次いで、4時間の通電後、電解槽を冷却
し、電解槽の内部から合金を回収したところ1,250
gの合金を回収した。
Next, after the electricity was supplied for 4 hours, the electrolytic cell was cooled and the alloy was recovered from the inside of the electrolytic cell.
g alloy was recovered.

【0039】この時に回収された合金の分析値を「表
2」に示す。尚、この時に使用したミッシュメタルの炭
素含有量は0.03%であった。
The analytical values of the alloy recovered at this time are shown in "Table 2". The carbon content of the misch metal used at this time was 0.03%.

【0040】(実施例2)ニッケル水素二次電池を分解
等して負極より回収された合金粉1Kgとランタンメタ
ル300gを、電解浴として軽稀土(La、Ce、N
d、Pr)フッ化物65mass%、フッ化リチウム2
5mass%、フッ化カルシウム10mass%よりな
るフッ化物浴を用いた溶融塩電解炉へ投入し、陽極に黒
鉛、陰極にニッケルを使用して、電解浴の温度を1,1
00℃に保持しつつ電解を実施した。
Example 2 1 kg of alloy powder and 300 g of lanthanum metal recovered from the negative electrode by disassembling the nickel-hydrogen secondary battery were used as an electrolytic bath in light rare earth (La, Ce, N).
d, Pr) 65 mass% of fluoride, lithium fluoride 2
A molten salt electrolysis furnace using a fluoride bath consisting of 5 mass% and 10 mass% of calcium fluoride was charged, and graphite was used for the anode and nickel was used for the cathode.
Electrolysis was carried out while maintaining the temperature at 00 ° C.

【0041】この時の電解電流は250Aとし、ニッケ
ル水素二次電池を分解等して負極より回収された合金粉
1Kgは、電解槽の温度が所定の温度となってから10
分毎に100gずつ投入した。
The electrolysis current at this time was set to 250 A, and 1 Kg of the alloy powder recovered from the negative electrode by decomposing the nickel-hydrogen secondary battery was used after the temperature of the electrolytic cell reached a predetermined temperature, 10 Kg.
100 g was added every minute.

【0042】次いで、4時間の通電後、電解槽を冷却
し、電解槽の内部から合金を回収したところ1,325
gの合金を回収した。
Then, after the electricity was supplied for 4 hours, the electrolytic cell was cooled and the alloy was recovered from the inside of the electrolytic cell. 1,325
g alloy was recovered.

【0043】この時に回収された合金の分析値を「表
2」に示す。尚、この時に使用したランタンメタルの炭
素含有量は0.05%であった。
The analytical values of the alloy recovered at this time are shown in "Table 2". The carbon content of the lanthanum metal used at this time was 0.05%.

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【発明の効果】以上、説明したように、本発明の方法に
よれば、複雑な工程を用いることなく、ニッケル水素二
次廃電池および廃電極から回収された負極合金中に多量
に付着、含有する炭素、酸素を除去した水素吸蔵合金用
の稀土類合金を経済的に回収できる。
As described above, according to the method of the present invention, a large amount is deposited and contained in the negative electrode alloy recovered from the nickel-hydrogen secondary waste battery and the waste electrode without using complicated steps. It is possible to economically recover a rare earth alloy for a hydrogen storage alloy from which carbon and oxygen are removed.

【0046】従って、本発明は民生用の小型ニッケル水
素二次電池からの回収に適するばかりでなく、特に電気
自動車等の大型電池からの有効成分回収法としても有効
である。
Therefore, the present invention is not only suitable for recovery from small nickel-hydrogen secondary batteries for consumer use, but also effective as a method for recovering active ingredients from large batteries such as electric vehicles.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−340930(JP,A) 特開 平8−20825(JP,A) 特開 平8−115752(JP,A) 特開 平9−217133(JP,A) 特開 平9−117748(JP,A) 特開 平9−71825(JP,A) 国際公開97/15701(WO,A1) (58)調査した分野(Int.Cl.7,DB名) C25C 3/36 B09B 5/00 ZAB H01M 10/54 C22B 7/00 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-6-340930 (JP, A) JP-A-8-20825 (JP, A) JP-A-8-115752 (JP, A) JP-A-9- 217133 (JP, A) JP 9-117748 (JP, A) JP 9-71825 (JP, A) International Publication 97/15701 (WO, A1) (58) Fields investigated (Int. Cl. 7) , DB name) C25C 3/36 B09B 5/00 ZAB H01M 10/54 C22B 7/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ニッケル水素二次電池の負極から回収し
た水素吸蔵合金を酸化物やフッ化物等の塩に変えること
なく金属状態を含んだまま、直接、溶融塩電解の原料と
し、水素吸蔵合金に付着、あるいは、含まれている炭素
を溶融塩電解中に二酸化炭素あるいは一酸化炭素として
除去し、回収される合金中の炭素含有量を低減させると
ともに、回収した水素吸蔵合金から有価金属を含む精製
された合金を回収することを特徴とするニッケル水素二
次電池からの有価金属回収方法。
1. A hydrogen storage alloy, which is directly used as a raw material for molten salt electrolysis without changing the hydrogen storage alloy recovered from the negative electrode of a nickel-hydrogen secondary battery into a salt such as an oxide or a fluoride without changing the metal state. Adhered to, or contained carbon is removed as carbon dioxide or carbon monoxide during molten salt electrolysis to reduce the carbon content in the recovered alloy and to include valuable metals from the recovered hydrogen storage alloy. A method for recovering valuable metals from nickel-hydrogen secondary batteries, which comprises recovering a refined alloy.
【請求項2】 請求項1の有価金属回収方法において、
溶融塩電解工程で、フッ化稀土、フッ化リチウム、フッ
化バリウム、フッ化カルシウムよりなる電解浴を使用す
ることを特徴とするニッケル水素二次電池からの有価金
属回収方法。
2. The method for recovering valuable metals according to claim 1,
A method for recovering valuable metals from a nickel-hydrogen secondary battery, which comprises using an electrolytic bath composed of rare earth fluoride, lithium fluoride, barium fluoride, and calcium fluoride in a molten salt electrolysis step.
【請求項3】 請求項2の有価金属回収方法において、
溶融塩電解工程で、フッ化稀土50〜90mass%、
フッ化リチウム10〜50mass%、フッ化バリウム
0〜30mass%、フッ化カルシウム0〜30mas
s%よりなる電解浴を使用することを特徴とするニッケ
ル水素二次電池からの有価金属回収方法。
3. The method for recovering valuable metals according to claim 2,
In the molten salt electrolysis step, rare earth fluoride 50-90 mass%,
Lithium fluoride 10 to 50 mass%, barium fluoride 0 to 30 mass%, calcium fluoride 0 to 30 mass
A method for recovering valuable metals from a nickel-hydrogen secondary battery, which comprises using an electrolytic bath of s%.
【請求項4】 請求項1の有価金属回収方法において、
溶融塩電解工程で、陰極に水素吸蔵合金の構成成分であ
る金属を用いることを特徴とするニッケル水素二次電池
からの有価金属回収方法。
4. The valuable metal recovery method according to claim 1,
A method for recovering valuable metal from a nickel-hydrogen secondary battery, characterized in that a metal that is a constituent of a hydrogen storage alloy is used for a cathode in a molten salt electrolysis step.
【請求項5】 請求項1の有価金属回収方法において、
溶融塩電解工程で、ニッケル水素二次電池の負極から回
収した水素吸蔵合金とともに、ミッシュメタル等の稀土
類金属を添加することを特徴とするニッケル水素二次電
池からの有価金属回収方法。
5. The method for recovering valuable metals according to claim 1,
A method for recovering valuable metal from a nickel-hydrogen secondary battery, which comprises adding a rare earth metal such as misch metal together with a hydrogen storage alloy recovered from the negative electrode of the nickel-hydrogen secondary battery in a molten salt electrolysis step.
JP26394996A 1996-10-04 1996-10-04 Method for recovering valuable metals from nickel-metal hydride secondary batteries Expired - Fee Related JP3504813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26394996A JP3504813B2 (en) 1996-10-04 1996-10-04 Method for recovering valuable metals from nickel-metal hydride secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26394996A JP3504813B2 (en) 1996-10-04 1996-10-04 Method for recovering valuable metals from nickel-metal hydride secondary batteries

Publications (2)

Publication Number Publication Date
JPH10110288A JPH10110288A (en) 1998-04-28
JP3504813B2 true JP3504813B2 (en) 2004-03-08

Family

ID=17396498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26394996A Expired - Fee Related JP3504813B2 (en) 1996-10-04 1996-10-04 Method for recovering valuable metals from nickel-metal hydride secondary batteries

Country Status (1)

Country Link
JP (1) JP3504813B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7272439B2 (en) 2004-10-21 2007-09-18 Tokuyama Corporation Working electrode assembly for iontophoresis and iontophoresis device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6444058B2 (en) * 2014-05-20 2018-12-26 国立大学法人秋田大学 Recovery method of dysprosium by molten salt electrolysis using lithium halide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7272439B2 (en) 2004-10-21 2007-09-18 Tokuyama Corporation Working electrode assembly for iontophoresis and iontophoresis device

Also Published As

Publication number Publication date
JPH10110288A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
CN1090827C (en) Process for recovery of metals from used nickel-metal hydride accumulators
US7713396B2 (en) Method and apparatus for recycling electrode material of lithium secondary battery
EP2597164B1 (en) Method for separating nikel and cobalt from active materials contained in spent nickel-hydrogen battery
JP5326610B2 (en) Method for recovering metals from used nickel metal hydride batteries
EP3822375A1 (en) Method for recovering valuable metals from waste lithium ion batteries
JP7303327B2 (en) Method for preparing precursor compounds for lithium battery positive electrodes
EP0649912B1 (en) Method for collecting valuable metal from nickel-hydrogen secondary cell
US20230304126A1 (en) A process for recovering cobalt ion, nickel ion and manganese ion from metal-containing residues
JP2010040458A (en) Lithium recovery method and metal-recovering method
JP7271833B2 (en) Lithium recovery method
KR100644902B1 (en) High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries
US20140096647A1 (en) Process for the Recovery of AB5 Alloy from Used Nickel/Metal Hydride Batteries
JP6314730B2 (en) Method for recovering valuable metals from waste nickel metal hydride batteries
EP3006580B1 (en) Method for producing nickel-containing acidic solution
JPH08115752A (en) Method for recovering effective component from nickel-hydrogen storage alloy secondary battery
JP3504813B2 (en) Method for recovering valuable metals from nickel-metal hydride secondary batteries
US8974754B2 (en) Method for producing nickel-containing acid solution
JP3516478B2 (en) Effective Metal Recovery Method from Nickel Metal Hydride Battery
CN115367776A (en) Method for recycling lithium iron phosphate battery
JP5541512B2 (en) Method for producing nickel-containing acidic solution
JP4407061B2 (en) Valuable metal recovery method from nickel metal hydride secondary battery scrap
JP6201905B2 (en) Method for recovering valuable metals from waste nickel metal hydride batteries
JP3526983B2 (en) Method for recovering active components from nickel-hydrogen storage alloy secondary batteries
EP4372113A1 (en) Lithium recovery from lithium-ion batteries
US12027681B2 (en) Method for recovering valuable metals from waste lithium ion batteries

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031211

LAPS Cancellation because of no payment of annual fees