JP4407061B2 - Valuable metal recovery method from nickel metal hydride secondary battery scrap - Google Patents

Valuable metal recovery method from nickel metal hydride secondary battery scrap Download PDF

Info

Publication number
JP4407061B2
JP4407061B2 JP2001023260A JP2001023260A JP4407061B2 JP 4407061 B2 JP4407061 B2 JP 4407061B2 JP 2001023260 A JP2001023260 A JP 2001023260A JP 2001023260 A JP2001023260 A JP 2001023260A JP 4407061 B2 JP4407061 B2 JP 4407061B2
Authority
JP
Japan
Prior art keywords
nickel
metal hydride
hydride secondary
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001023260A
Other languages
Japanese (ja)
Other versions
JP2002226923A (en
Inventor
篤 福井
正樹 今村
敬司 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001023260A priority Critical patent/JP4407061B2/en
Publication of JP2002226923A publication Critical patent/JP2002226923A/en
Application granted granted Critical
Publication of JP4407061B2 publication Critical patent/JP4407061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Description

【0001】
【発明の属する技術分野】
本発明はニッケル水素二次電池スクラップに含まれるニッケル等の有価金属を回収する方法に関する。
【0002】
【従来の技術】
ニッケル水素二次電池は、近年ニッケル−カドミウム電池に代わる二次電池として電気自動車のバッテリーや携帯電話等に使用され、需要が急増している。このニッケル水素二次電池は、多孔質ニッケルまたは鉄にニッケルめっきしたパンチング板に活物質である水酸化ニッケルを充填した正極と、水素吸蔵合金を充填した負極と、ポリプロピレン等のセパレーターとを有し、さらにこれらは電解液とともに鋼製またはポリプロピレン製の容器に収納されている。
【0003】
ニッケル水素二次電池は、ニッケル−カドミウム電池よりも特性が優れ、有害なカドミウムを使用していないため、廃棄した場合でも深刻な公害を発生させるには至らないが、ニッケルや水素吸蔵合金は貴重な資源であるため、これらの有価金属をリサイクルすることが極めて重要である。
【0004】
しかしながら、使用済みのニッケル水素二次電池から、有価金属を回収する方法は、電化製品のコンパクト化にともない、電池もコンパクト化が進み電池の構成物ごとに分離して有価金属を高純度に回収することは難しい。また、特に自動車用のバッテリーに使用される場合、車の衝突等でも壊れにくい構造となっているため、容易には分解することは困難である。したがって、使用済みニッケル水素電池から、有価金属を回収するには、電池すべてを破砕して、破砕物を分別することが必要であり、経済的な回収方法とされている。
【0005】
これらのニッケル水素二次電池の破砕物から、特にニッケルの回収を主目的として有価金属を回収する方法としては、まず、磁選、比重分離など種々の物理分離によって容器や極板の主成分である鉄の大部分と回収を目的とするニッケル等を含む活物質とに分離回収する。この分離回収した活物質を鉱酸に溶解し、得られた溶液を化学処理することによって、目的とするニッケルなどの有価金属を分離回収することが行われている。この化学処理は、ニッケルなどをできるだけ高純度に回収するために、溶解液に含まれる希土類やその他の元素を分離するために行なわれる。
【0006】
ところで、前記方法において、鉄等と分離して回収された活物質は正、負極材の混合物であり、この活物質を鉱酸溶解する場合には、硫酸、硝酸、塩酸等による溶解処理が行なわれる。これらの鉱酸で溶解する場合には、目的とする金属のみを溶解させることは難しく、回収を目的とするニッケルなどの有価金属以外にも、鉄、マンガン等のその他の元素も同時に溶解されるため、目的金属と分離する必要がある。
【0007】
しかし、たとえばニッケル回収を目的とする場合、ニッケル以外の元素を同時に除去することは困難であるため、中和による鉄除去、炭酸化による希土類除去、酸化沈殿によるマンガン除去等と、各元素毎に化学処理による分離工程が必要である。さらに、薬剤コストの増加や各沈殿物の固液分離工程が必要となり、工程が複雑となるという問題があった。
【0008】
【発明が解決しようとする課題】
本発明の目的は、使用済みのニッケル水素二次電池スクラップから有価金属を回収する方法に関し、特に化学処理工程を少なくした回収方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するものとして、使用済みのニッケル水素二次電池をスクラップを破砕し、篩い分け等の物理分離で得られたニッケル、コバルト、マンガン、希土類元素等を含む活物質を塩酸により、塩素ガスを吹込んで溶解し、ニッケル、コバルト、希土類元素等を溶液中に回収し、マンガンを選択的に沈殿させて、分離する方法である。本方法によると、従来の方法における、マンガン除去のための化学処理工程を省力化することが可能となる。
【0010】
【発明の実施の形態】
本発明のニッケル水素二次電池スクラップからの有価金属回収法は、まず、使用済みニッケル水素二次電池スクラップを破砕して、破砕物を得る。その後破砕物を水中で攪拌し、正、負極集電体、プラスティック類と活物質を分散させて、次の篩別工程で、活物質を回収しやすくする。
【0011】
この時セパレーター等のプラスティック類は浮遊しやすいため、これを利用してプラスティック類を分離する。水中で分散させた破砕物を篩い分けし、鉄を主成分とする外容器、正、負極集電体を篩上に、回収を目的とする有価金属を含む活物質を篩下に分離する。得られた篩下は、正極材料であるニッケル、コバルトの水酸化物と、負極材料であるマンガンや希土類元素を含む水素吸蔵合金の混合物である。
【0012】
特に本発明の方法では、主目的とするニッケルの回収率を高くするため、水素吸蔵合金中のニッケルも回収する。そのため篩下全量を塩酸酸性で溶解することとした。溶解時のpHは3以下にすることが必要である。前記以上のpHであると目的とする有価金属の溶解率が低下し回収率が低下する原因となる。
【0013】
活物質を主成分とする篩下を塩酸で溶解する場合は、ほぼ完全に溶解でき、ニッケルの溶解率も97%程度の高い液が得られる。この時塩素ガスを吹込むことによりマンガンが酸化されて選択的に沈殿する。これを利用し、ニッケル、コバルト、希土類元素などは溶液中に回収し、マンガンのみを選択的に沈殿させて、分離回収することができる。
【0014】
【実施例】
(実施例1)
直径30mm、高さ50mmの円筒型のニッケル水素二次電池スクラップをせん段破砕機の一種である(株)氏家製作所製グッドカッターを用いて破砕し、5mmの篩を用いて破砕物を篩い分けしながら篩上を目視で電極がなくなるまで繰り返し破砕した。
【0015】
正、負極の集電体には鉄−ニッケルめっきのパンチング板が用いられ、正極と負極を隔てるセパレーターにはポリプロピレン性の不織布が用いられていた。得られた破砕物を水中で1時間攪拌した後、浮遊したセパレーターを網目が0.5mmの網で掬い取った。
【0016】
その後、残留物を直径が300mmで篩目が0.5mmの篩を使用し、手動で湿式篩い分けを行い、篩下に活物質を得た。得られた活物質25gを使用し、水500mlに塩素ガスを吹込んで溶解温度:80℃、溶解時間:2時間、溶解pH:1になるよう塩酸を添加して制御し、スラリー濃度50g/リットルで溶解した。なお使用した塩酸の濃度は、6モル/リットル、吹き込んだ塩素ガスは、0.5リットル/分とした。
【0017】
(比較例1)
比較例1として、実施例1と同様の条件で、塩素ガスの変わりにエアーを吹き込んで溶解した。なお使用した塩酸の濃度は、6モル/リットル、吹き込んだエアーは、0.5リットル/分とした。
【0018】
(比較例2)
比較例2として、実施例1と同様の条件で、溶解pH1になるよう硫酸を添加して制御し、エアー吹込みで溶解した。なお使用した硫酸の濃度は47%、吹き込んだエアーは、0.5リットル/分とした。
【0019】
実施例、比較例での各元素の溶解率を表1に示す。表1に示すように、活物質を塩酸+塩素ガス吹込みで溶解した場合、マンガンの溶解率は2.8%となり、マンガンが分離された液が得られた。活物質を塩酸+エアー吹込みで溶解した場合、硫酸+エアーで溶解した場合とも、マンガンもニッケル、コバルト、希土類と共に溶解するという結果になりマンガンの分離はできなかった。
【0020】
したがって、活物質を塩酸+塩素ガス吹込みで溶解することにより、ニッケル、コバルト、希土類元素は溶液中に回収し、マンガンのみを選択的に沈殿させて、分離回収できることがわかる。

Figure 0004407061
【0021】
【発明の効果】
本発明による使用済みニッケル水素二次電池スクラップからの有価金属の回収方法によれば、活物質の鉱酸浸出時にマンガンをニッケル、コバルト、希土類元素から沈殿分離させることが可能となり、マンガンの分離工程を省力化して経済的にニッケル水素二次電池スクラップから有価金属を回収することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering valuable metals such as nickel contained in nickel metal hydride secondary battery scrap.
[0002]
[Prior art]
Recently, nickel metal hydride secondary batteries have been used in electric vehicle batteries, mobile phones, and the like as secondary batteries replacing nickel-cadmium batteries, and the demand is rapidly increasing. This nickel metal hydride secondary battery has a positive electrode filled with nickel hydroxide as an active material on a punching plate nickel-plated on porous nickel or iron, a negative electrode filled with a hydrogen storage alloy, and a separator such as polypropylene. Furthermore, these are housed in a steel or polypropylene container together with the electrolyte.
[0003]
Nickel-metal hydride secondary batteries have better characteristics than nickel-cadmium batteries and do not use harmful cadmium, so even if discarded, they do not cause serious pollution, but nickel and hydrogen storage alloys are valuable. It is extremely important to recycle these valuable metals because they are valuable resources.
[0004]
However, the method for recovering valuable metals from used nickel-metal hydride secondary batteries is a collection of valuable metals with high purity by separating the battery components as the appliances become more compact and the batteries become more compact. Difficult to do. In particular, when it is used for a battery for an automobile, it is difficult to be easily disassembled because it has a structure that is not easily broken even by a car collision. Therefore, in order to recover valuable metals from a used nickel-metal hydride battery, it is necessary to crush all the batteries and separate the crushed material, which is an economical recovery method.
[0005]
As a method of recovering valuable metals from the crushed materials of these nickel metal hydride secondary batteries, mainly for the purpose of recovering nickel, first, it is the main component of containers and electrode plates by various physical separations such as magnetic separation and specific gravity separation. Separate and recover most of iron and active material containing nickel for recovery. The separated valuable metals such as nickel are separated and recovered by dissolving the separated and collected active material in mineral acid and chemically treating the obtained solution. This chemical treatment is performed to separate rare earth elements and other elements contained in the solution in order to recover nickel or the like with as high a purity as possible.
[0006]
By the way, in the above method, the active material separated and recovered from iron or the like is a mixture of positive and negative electrode materials, and when this active material is dissolved with mineral acid, dissolution treatment with sulfuric acid, nitric acid, hydrochloric acid or the like is performed. It is. When dissolving with these mineral acids, it is difficult to dissolve only the target metal, and other elements such as iron and manganese are simultaneously dissolved in addition to valuable metals such as nickel for the purpose of recovery. Therefore, it is necessary to separate from the target metal.
[0007]
However, for the purpose of recovering nickel, for example, it is difficult to remove elements other than nickel at the same time. For each element, iron removal by neutralization, rare earth removal by carbonation, manganese removal by oxidation precipitation, etc. A separation step by chemical treatment is necessary. Furthermore, there is a problem in that the cost of the medicine is increased and a solid-liquid separation process for each precipitate is required, which complicates the process.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for recovering valuable metals from used nickel metal hydride secondary battery scrap, and in particular to provide a recovery method with fewer chemical treatment steps.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an active material containing nickel, cobalt, manganese, rare earth elements, etc. obtained by crushing scraps of used nickel metal hydride secondary batteries and physical separation such as sieving. In this method, chlorine gas is blown and dissolved with hydrochloric acid, nickel, cobalt, rare earth elements, etc. are recovered in the solution, and manganese is selectively precipitated and separated. According to this method, the chemical processing step for removing manganese in the conventional method can be saved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the method for recovering valuable metals from nickel metal hydride secondary battery scraps of the present invention, first, used nickel metal hydride secondary battery scraps are crushed to obtain crushed materials. Thereafter, the crushed material is stirred in water to disperse the positive and negative electrode current collectors, plastics and the active material, and the active material is easily recovered in the next sieving step.
[0011]
At this time, since plastics such as a separator are likely to float, the plastics are separated using this. The crushed material dispersed in water is sieved, the outer container mainly composed of iron, the positive and negative electrode current collectors are separated on the sieve, and the active material containing valuable metals for recovery is separated under the sieve. The obtained sieve is a mixture of nickel and cobalt hydroxides as positive electrode materials and hydrogen storage alloys containing manganese and rare earth elements as negative electrode materials.
[0012]
In particular, in the method of the present invention, nickel in the hydrogen storage alloy is also recovered in order to increase the recovery rate of the main target nickel. Therefore, the whole amount under the sieve was dissolved with hydrochloric acid. The pH during dissolution needs to be 3 or less. If the pH is higher than the above, the dissolution rate of the target valuable metal is lowered and the recovery rate is lowered.
[0013]
When the sieve under the active material as a main component is dissolved with hydrochloric acid, it can be dissolved almost completely, and a solution having a high nickel dissolution rate of about 97% can be obtained. At this time, manganese gas is oxidized and selectively precipitated by blowing chlorine gas. Utilizing this, nickel, cobalt, rare earth elements and the like can be recovered in a solution, and only manganese can be selectively precipitated and separated and recovered.
[0014]
【Example】
Example 1
Cylindrical nickel-metal hydride rechargeable battery scrap with a diameter of 30 mm and a height of 50 mm is crushed using a good cutter manufactured by Ujiie Seisakusho, a kind of stair crusher, and the crushed material is sieved using a 5 mm sieve. Then, the screen was repeatedly crushed until the electrode disappeared visually.
[0015]
An iron-nickel plated punching plate was used for the positive and negative current collectors, and a polypropylene nonwoven fabric was used for the separator separating the positive and negative electrodes. The obtained crushed material was stirred in water for 1 hour, and then the floating separator was scraped off with a mesh having a mesh size of 0.5 mm.
[0016]
After that, the residue was wet-screened manually using a sieve having a diameter of 300 mm and a sieve mesh of 0.5 mm to obtain an active material under the sieve. Using 25 g of the obtained active material, chlorine gas was blown into 500 ml of water and hydrochloric acid was added and controlled so that the dissolution temperature was 80 ° C., the dissolution time was 2 hours, and the dissolution pH was 1, and the slurry concentration was 50 g / liter. And dissolved. The concentration of hydrochloric acid used was 6 mol / liter, and the chlorine gas blown was 0.5 liter / minute.
[0017]
(Comparative Example 1)
As Comparative Example 1, air was blown in and dissolved instead of chlorine gas under the same conditions as in Example 1. The concentration of hydrochloric acid used was 6 mol / liter, and the blown air was 0.5 liter / minute.
[0018]
(Comparative Example 2)
As Comparative Example 2, sulfuric acid was added and controlled to achieve a dissolution pH of 1 under the same conditions as in Example 1, and dissolution was performed by blowing air. The concentration of sulfuric acid used was 47%, and the blown air was 0.5 liter / min.
[0019]
Table 1 shows the dissolution rate of each element in Examples and Comparative Examples. As shown in Table 1, when the active material was dissolved by blowing hydrochloric acid + chlorine gas, the dissolution rate of manganese was 2.8%, and a liquid from which manganese was separated was obtained. When the active material was dissolved with hydrochloric acid + air blowing, and with sulfuric acid + air, manganese was dissolved together with nickel, cobalt, and rare earth, and manganese could not be separated.
[0020]
Therefore, it can be seen that by dissolving the active material by injecting hydrochloric acid + chlorine gas, nickel, cobalt and rare earth elements can be recovered in the solution, and only manganese can be selectively precipitated and separated and recovered.
Figure 0004407061
[0021]
【The invention's effect】
According to the method for recovering valuable metals from used nickel metal hydride secondary battery scraps according to the present invention, manganese can be precipitated and separated from nickel, cobalt and rare earth elements during the leaching of the active material with mineral acid, and the manganese separation step This makes it possible to economically recover valuable metals from nickel-metal hydride secondary battery scrap.

Claims (1)

ニッケル水素二次電池スクラップを破砕し、篩い分け、磁選、比重分離等の物理分離で得られた回収活物質を塩素ガスを吹込みつつ塩酸で溶解し、ニッケル、コバルト、希土類元素を溶液中に回収し、マンガンを選択的に沈殿させて、分離回収することを特徴とするニッケル水素二次電池スクラップからの有価金属回収法。Nickel metal hydride secondary battery scrap is crushed, sieved, recovered active material obtained by physical separation such as magnetic separation and specific gravity separation is dissolved with hydrochloric acid while blowing chlorine gas, and nickel, cobalt, and rare earth elements are put into the solution. A method for recovering valuable metals from nickel-metal hydride secondary battery scraps that is recovered and selectively precipitated by separating and recovering manganese.
JP2001023260A 2001-01-31 2001-01-31 Valuable metal recovery method from nickel metal hydride secondary battery scrap Expired - Lifetime JP4407061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001023260A JP4407061B2 (en) 2001-01-31 2001-01-31 Valuable metal recovery method from nickel metal hydride secondary battery scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001023260A JP4407061B2 (en) 2001-01-31 2001-01-31 Valuable metal recovery method from nickel metal hydride secondary battery scrap

Publications (2)

Publication Number Publication Date
JP2002226923A JP2002226923A (en) 2002-08-14
JP4407061B2 true JP4407061B2 (en) 2010-02-03

Family

ID=18888565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001023260A Expired - Lifetime JP4407061B2 (en) 2001-01-31 2001-01-31 Valuable metal recovery method from nickel metal hydride secondary battery scrap

Country Status (1)

Country Link
JP (1) JP4407061B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966460B2 (en) * 2001-07-12 2012-07-04 ティーエムシー株式会社 Collection method of valuable metals
JP5139167B2 (en) 2008-06-19 2013-02-06 トヨタ自動車株式会社 Battery pack recycling method and battery pack recycling apparatus
JP5262627B2 (en) * 2008-11-28 2013-08-14 住友金属鉱山株式会社 Method for recovering nickel concentrate from used nickel metal hydride batteries
US8974754B2 (en) 2010-08-03 2015-03-10 Sumitomo Metal Mining Co. Ltd. Method for producing nickel-containing acid solution
JP5541512B2 (en) * 2010-08-03 2014-07-09 住友金属鉱山株式会社 Method for producing nickel-containing acidic solution
CN107910612B (en) * 2017-12-06 2020-04-14 贵州红星电子材料有限公司 Method for recovering cobalt and nickel from waste lithium batteries

Also Published As

Publication number Publication date
JP2002226923A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JP3918041B2 (en) Method for recovering metals from used nickel-metal hydride batteries
US8888892B2 (en) Method for separating nickel and cobalt from active material contained in spent nickel-metal hydride battery
JP4144820B2 (en) Method for regenerating positive electrode active material from lithium ion secondary battery
KR100930453B1 (en) How to Recover Metals from Battery Residues
JP4865745B2 (en) Method for recovering valuable metals from lithium batteries containing Co, Ni, Mn
KR20220025120A (en) Method for separating copper from nickel and cobalt
WO2017145099A1 (en) Process for recovery of pure cobalt oxide from spent lithium ion batteries with high manganese content
EP2444507A1 (en) Recovery of rare earth metals from waste material by leaching in non-oxidizing acid and by precipitating using sulphates
EP0649912B1 (en) Method for collecting valuable metal from nickel-hydrogen secondary cell
KR20220025116A (en) Method for separating copper from nickel and cobalt
JPH1197076A (en) Method for processing battery
CN113517484B (en) Method for treating waste lithium cobalt oxide battery and product thereof
JP4654548B2 (en) Valuable metal recovery method from nickel metal hydride secondary battery scrap
JP4506002B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP4078838B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP4407061B2 (en) Valuable metal recovery method from nickel metal hydride secondary battery scrap
JP2866005B2 (en) Method for recovering valuable resources from discarded nickel-hydrogen storage alloy secondary batteries
JP4872168B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP4608773B2 (en) Method of recovering valuable metals from used nickel metal hydride secondary batteries
JP3516478B2 (en) Effective Metal Recovery Method from Nickel Metal Hydride Battery
US8974754B2 (en) Method for producing nickel-containing acid solution
JP3532640B2 (en) Method for recovering positive electrode material from nickel-hydrogen secondary battery and method for recovering raw material for recovering effective metal from negative electrode
JP3504813B2 (en) Method for recovering valuable metals from nickel-metal hydride secondary batteries
CN109216821A (en) A kind of recovery method of waste and old lithium titanate battery
Heegn et al. Closed-Loop Recycling of Nickel, Cobalt and Rare Earth Metals from spent Nickel-Metal Hydride-Batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4407061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

EXPY Cancellation because of completion of term