JP4865745B2 - Method for recovering valuable metals from lithium batteries containing Co, Ni, Mn - Google Patents

Method for recovering valuable metals from lithium batteries containing Co, Ni, Mn Download PDF

Info

Publication number
JP4865745B2
JP4865745B2 JP2008031800A JP2008031800A JP4865745B2 JP 4865745 B2 JP4865745 B2 JP 4865745B2 JP 2008031800 A JP2008031800 A JP 2008031800A JP 2008031800 A JP2008031800 A JP 2008031800A JP 4865745 B2 JP4865745 B2 JP 4865745B2
Authority
JP
Japan
Prior art keywords
solution
lithium
metal
sulfuric acid
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008031800A
Other languages
Japanese (ja)
Other versions
JP2009193778A (en
Inventor
陽介 山口
順三 日野
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2008031800A priority Critical patent/JP4865745B2/en
Publication of JP2009193778A publication Critical patent/JP2009193778A/en
Application granted granted Critical
Publication of JP4865745B2 publication Critical patent/JP4865745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Description

本発明は、Co,Ni,Mn含有リチウム電池滓からの有価金属回収方法に関するものである。Co,Ni,Mn含有リチウム電池滓とは、三元系Li金属塩と炭素、N-メチル−2−ピロリドン、ポリビニルアルコールなどの溶媒からなるスラリー状物質であり、リチウム二次電池製造工程で電池の所定部分に各物質を装填する際に、装填できないなどの理由により発生する滓である。これらの電池滓中に存在し有価金属を含有する金属酸リチウムの処理は有価金属回収の観点から重要である。 The present invention relates to a method for recovering valuable metals from a Co, Ni, Mn-containing lithium battery case. Co, Ni, Mn-containing lithium battery is a slurry material consisting of a ternary Li metal salt and a solvent such as carbon, N-methyl-2-pyrrolidone, polyvinyl alcohol, etc. When loading each substance in a predetermined part of the material, it should occur due to the reason that it cannot be loaded. The treatment of lithium metalate present in these battery cells and containing valuable metals is important from the viewpoint of recovering valuable metals.
特許文献1:特開平6−251805号公報は、その出願時の平成5年にはリチウム二次電池はまだ開発されていなかったが、開発に先立ってリチウム二次電池のリサイクルを準備したものである。この方法では、使用済みリチウム電池をウォータージェットで切断し、濾過により液体から分離された固体を、セパレータ、集電体及び正極材に選別する。これらは溶融又は粉砕を行い材料によっては再利用することができると説明している。なお、正極材として使用される金属酸化物の金属としては、Ni,Co,Ti,Fe,V,Mn,Mo.Cr,Wなど多種の金属が列挙されているが、これらの金属が全部使用されているのではなく、現在最も一般的金属はCoである。   Patent Document 1: Japanese Patent Application Laid-Open No. 6-251805 discloses that a lithium secondary battery was not yet developed in 1993 at the time of filing, but was prepared for recycling of a lithium secondary battery prior to development. is there. In this method, a used lithium battery is cut with a water jet, and a solid separated from the liquid by filtration is sorted into a separator, a current collector, and a positive electrode material. They explain that they can be melted or crushed and reused depending on the material. In addition, various metals such as Ni, Co, Ti, Fe, V, Mn, Mo.Cr, W are listed as the metal of the metal oxide used as the positive electrode material, but all of these metals are used. Rather than being Co, the most common metal at present is Co.
特許文献2:特開2006―331707号公報は、多くの段階からなるリチウム電池リサイクル法を提案しており、正極物質回収前後の段階では、捲回体、正極、負極及びセパレータを機械的に分離し、正極を硝酸水溶液に浸漬して正極基材(アルミニウム)と正極活物質を分離し、正極活物質を塩酸溶液に浸漬して溶解させ、溶液をろ過することによりLi,Niなどの金属イオン混合溶液を得る。ついでこの混合溶液から、イオン交換、電気分解、沈澱分離などの手法を用いて、それぞれの金属を回収する。   Patent Document 2: Japanese Patent Laid-Open No. 2006-331707 proposes a lithium battery recycling method consisting of a number of stages, and mechanically separates the wound body, the positive electrode, the negative electrode and the separator before and after the recovery of the positive electrode material. Then, the positive electrode is immersed in a nitric acid aqueous solution to separate the positive electrode base material (aluminum) and the positive electrode active material, the positive electrode active material is immersed in a hydrochloric acid solution to dissolve, and the solution is filtered to remove metal ions such as Li and Ni A mixed solution is obtained. Next, each metal is recovered from the mixed solution by using techniques such as ion exchange, electrolysis, and precipitation separation.
特許文献3:特許第3450684号公報は、リチウム二次電池が各種電子機器に搭載されるようになっていた平成9年の出願であり、使用済みリチウム電池の正極活物質からMo, Co, Ni, Snなどを回収する方法を提案している。具体的には使用済みリチウム電池を解体せずに鉄ケースとともに焙焼し、焙焼物に粉砕;1次磁選;及び非磁性物について2次磁選を施している。   Patent Document 3: Japanese Patent No. 3450684 is an application in 1997 in which a lithium secondary battery was to be mounted on various electronic devices. From a positive electrode active material of a used lithium battery, Mo, Co, Ni , Proposes a method for recovering Sn. Specifically, a used lithium battery is roasted together with an iron case without being disassembled, and pulverized into the roasted product; primary magnetic selection; and nonmagnetic material is subjected to secondary magnetic selection.
正極に使用されるCoは高価であるために最近、ほぼ等量のCo,Ni及びMnを含有するリチウム酸金属塩を正極活物質として使用する技術開発が行われている。例えば、特許文献4:特開2007−48692号公報は、二酸化マンガン、酸化コバルト、酸化ニッケル及び炭酸リチウムを、Ni:Mn:Co比が 1:1:1となり、 Li:(Ni,Mn,Co)比が1.06:1となるように、秤量し、これらの化合物をポリビニルアルコール溶液と混合し、その後、造粒、乾燥、焼成する。この焼成三元系金属Li複酸化物を結着剤及び溶媒と混合してスラリー状正極活物質を調製している。   Since Co used for the positive electrode is expensive, recently, technical development has been carried out in which a lithium acid metal salt containing almost equal amounts of Co, Ni and Mn is used as the positive electrode active material. For example, Patent Document 4: Japanese Unexamined Patent Application Publication No. 2007-48692 discloses that manganese dioxide, cobalt oxide, nickel oxide and lithium carbonate have a Ni: Mn: Co ratio of 1: 1: 1 and Li: (Ni, Mn, Co ) Weigh so that the ratio is 1.06: 1, mix these compounds with the polyvinyl alcohol solution, and then granulate, dry and calcine. This calcined ternary metal Li double oxide is mixed with a binder and a solvent to prepare a slurry-like positive electrode active material.
ニッケル―水素化物電池の正極活物質はオキシ水酸化ニッケル(NiOOH)であり、リチウム電池の正極活物質であるリチウム酸金属ではない。かかるニッケル―水素化物電池からの金属の回収法に関して、特許文献5:特表平10−510878号公報は次の方法を提案している。即ち、(1)廃電池をシュレッダーで破砕する;(2)得られたスクラップを磁選することによりFe,Niを分離する;(3)非磁性材料を硫酸で溶解する;(4)pH調整によりFeを分離する;(5)ろ過によりFeを分離したろ液を有機溶媒抽出することにより、Zn,Cd,Mn,Alを抽出する。
正極物質に比較すると負極物質にLiとともに含まれるC, Al, Si等は有価金属ではなく、回収コストの方が原料コストよりも高くなる。但しこれらの負極物質も電池滓には含有されることがある。
The positive electrode active material of the nickel-hydride battery is nickel oxyhydroxide (NiOOH), not the lithium acid metal that is the positive electrode active material of the lithium battery. Regarding such a method for recovering a metal from a nickel-hydride battery, Japanese Patent Application Laid-Open No. 10-510878 proposes the following method. That is, (1) crushing a waste battery with a shredder; (2) separating Fe and Ni by magnetically selecting the obtained scrap; (3) dissolving a nonmagnetic material with sulfuric acid; (4) adjusting pH (5) Zn, Cd, Mn, and Al are extracted by extracting the filtrate from which Fe has been separated by filtration with an organic solvent.
Compared with the positive electrode material, C, Al, Si, etc. contained in the negative electrode material together with Li are not valuable metals, and the recovery cost is higher than the raw material cost. However, these negative electrode materials may also be contained in the battery case.
本出願人は特許文献6:特願2007−74089号(平成19年3月22日出願)において、段落番号0001で説明した回収方法を提案した。但し、この方法で有機溶媒中に抽出される金属はMn及びCoのみであった。
特開平6−251805号公報 特開2006−331707号公報 特許第3450684号公報 特開2007−48692号公報 特表平10−510878号公報 特願2007−74089(平成19年3月22日出願) 「資源と素材」、1997,12, Vol.113,リサイクリング大特集号,第941頁 講座・現代の金属学、精錬編2、非鉄金属製錬、昭和57年7月10日金属学会出版、第240〜241頁
The present applicant has proposed the recovery method described in paragraph No. 0001 in Japanese Patent Application No. 2007-74089 (filed on Mar. 22, 2007). However, the metals extracted into the organic solvent by this method were only Mn and Co.
JP-A-6-251805 JP 2006-331707 A Japanese Patent No. 3450684 JP 2007-48692 A Japanese National Patent Publication No. 10-510878 Japanese Patent Application No. 2007-74089 (filed on Mar. 22, 2007) "Resources and Materials", 1997,12, Vol.113, Special issue on recycling, page 941 Lecture, Modern Metallurgy, Refinement 2, Nonferrous Metal Smelting, July 10, 1982, Japan Institute of Metals, pp. 240-241
電池のリサイクルには、特許文献3及び5のように電池をそのままリサイクルする方法と、特許文献1及び2が提案するように電池を各構成部材もしくは材料に分解して回収する方法がある。本発明は、電池製造工程から発生する上記した正極物質を含むスラリー状電池滓のリサイクル法であり、これらのいずれにも属さない。
本発明は、リチウム電池の電池滓に含有されるCo,Ni及びMn含有Li酸金属塩から有価金属を回収する方法を提供することを目的とする。
Battery recycling includes a method of recycling the battery as it is as in Patent Documents 3 and 5, and a method of disassembling and collecting the battery into respective constituent members or materials as proposed in Patent Documents 1 and 2. The present invention is a method for recycling a slurry-like battery case containing the positive electrode material generated from the battery manufacturing process, and does not belong to any of these.
An object of the present invention is to provide a method for recovering valuable metals from Co, Ni and Mn-containing Li acid metal salts contained in a battery case of a lithium battery.
本発明に係る第一の方法は、Co,Ni及びMnを含有するリチウム酸金属塩を含有するリチウム電池滓を、250g/l以上の濃度の塩酸溶液にて攪拌浸出し、浸出液につきMn、Co及びNiの98%以上を酸性抽出剤で溶媒抽出し、それぞれの金属を含有する三種の溶液を生成し、これらの溶液から当該金属を回収することを特徴とするCo,Ni,Mn含有リチウム電池滓からの有価金属回収方法であり、
第二の方法は、Co, Ni及びMnを含有するリチウム酸金属塩を含有するリチウム電池滓を、200g/l以上の濃度の硫酸溶液にて加熱攪拌浸出し、浸出液につきMn、Co及びNiの98%以上を酸性抽出剤で溶媒抽出し、それぞれの金属を含有する三種の溶液を生成し、これらの溶液から当該金属を回収することを特徴とするCo, Ni, Mn含有リチウム電池滓からの有価金属回収方法であり、
第三の方法は、Co, Ni及びMnを含有するリチウム酸金属塩を含有するリチウム電気滓を、200g/l以上の濃度の硫酸溶液と20g/l以上の過酸化水素溶液を混合した溶液にて攪拌浸出し、浸出液につきMn、Co及びNiの98%以上を酸性抽出剤で溶媒抽出し、それぞれの金属を含有する三種の溶液を生成し、これらの溶液から当該金属を回収することを特徴とするCo, Ni, Mn含有電池滓からの有価金属回収方法である。
According to the first method of the present invention, a lithium battery container containing a lithium acid metal salt containing Co, Ni and Mn is stirred and leached with a hydrochloric acid solution having a concentration of 250 g / l or more. Co, Ni, Mn-containing lithium battery characterized in that 98% or more of Ni is solvent-extracted with an acidic extractant to produce three types of solutions containing the respective metals and recovering the metals from these solutions It is a method for recovering valuable metals from firewood,
The second method involves heating and leaching a lithium battery cell containing a lithium acid metal salt containing Co, Ni and Mn with a sulfuric acid solution having a concentration of 200 g / l or more. More than 98% is extracted with a solvent with an acidic extractant to produce three kinds of solutions containing the respective metals, and the metals are recovered from these solutions. It is a valuable metal recovery method,
The third method is to mix a lithium electrolytic bath containing a lithium acid metal salt containing Co, Ni and Mn into a solution in which a sulfuric acid solution having a concentration of 200 g / l or more and a hydrogen peroxide solution of 20 g / l or more are mixed. Leaching with stirring, and 98% or more of Mn, Co and Ni in the leachate is solvent extracted with an acidic extractant to produce three types of solutions containing each metal, and the metals are recovered from these solutions This is a method for recovering valuable metals from a Co, Ni, Mn-containing battery case.
ところで、電子デバイスのバッテリーの正極活物質としてCo系化合物を用いるものと、ほぼ等量のMn,Co及びNiを含有するリチウム酸金属塩(以下「三元系Li金属塩」という)を用いたものの両方が、市場に出回る状態が続くことが十分に考えられる。この場合、リチウム電池滓のCo相対量が多くなる。このような電池滓についても、本発明により酸浸出を行い、その後溶媒抽出を行い、有価金属を回収することができる。しかしながら、以下の説明では主として三元系Li金属塩の処理について説明する。
以下、本発明を詳しく説明する。
By the way, a lithium compound metal salt (hereinafter referred to as “ternary Li metal salt”) containing approximately equal amounts of Mn, Co and Ni was used as a positive electrode active material of an electronic device battery. It is quite possible that both things will remain on the market. In this case, the Co relative amount of the lithium battery case increases. Such a battery case can also be subjected to acid leaching according to the present invention, followed by solvent extraction to recover valuable metals. However, in the following description, the treatment of ternary Li metal salt will be mainly described.
The present invention will be described in detail below.
電池滓は、三元系Li金属塩と炭素、N-メチル−2−ピロリドン、ポリビニルアルコールなどの溶媒などからなるスラリー状物質であり、リチウム二次電池製造工程上で発生する滓である。その金属組成は、一般に10〜12質量%Co、10〜12質量%Ni、10〜12質量%Mn、4〜5質量%Liである。   The battery soot is a slurry-like material composed of a ternary Li metal salt and a solvent such as carbon, N-methyl-2-pyrrolidone, polyvinyl alcohol, etc., and should be generated during the manufacturing process of the lithium secondary battery. The metal composition is generally 10-12 wt% Co, 10-12 wt% Ni, 10-12 wt% Mn, 4-5 wt% Li.
本発明者らは三元系Li金属塩の電池滓を次の条件で浸出し、その結果として硫酸溶液や塩酸溶液、硫酸と過酸化水素混合溶液がCo,Ni,Mn,Liのすべての浸出に有効であることを確認した。
(イ) 電池滓:段落番号0005で説明したもの; 200g。
(ロ) 浸出液:表1に示す濃度の各種酸; 容量2000mL。
(ハ) 浸出時間:4h〜8h
(ニ) 温度:常温あるいは65〜80℃に加熱。
(ホ) 攪拌:あり。
試験の結果を表1に示す。
The present inventors leached a battery of ternary Li metal salt under the following conditions, and as a result, sulfuric acid solution, hydrochloric acid solution, sulfuric acid and hydrogen peroxide mixed solution were all leached out of Co, Ni, Mn, Li It was confirmed that it was effective.
(B) Battery jar: as described in paragraph 0005; 200 g.
(B) Leachate: various acids with concentrations shown in Table 1; capacity 2000 mL.
(C) Leaching time: 4h-8h
(D) Temperature: Heated to room temperature or 65-80 ° C.
(E) Stirring: Yes.
The test results are shown in Table 1.
三元系Li金属塩の浸出に関しては次のことが分かる。
(1)70〜80℃で加熱しながらの8時間攪拌浸出であれば、200g/l硫酸水溶液でも
Co,Ni,Mn,Liともに100%の浸出が可能である。温度は80℃以上でも浸出は可能であ
るが、蒸発硫酸の浄化設備などが必要となる。さらに300g/l硫酸水溶液であれば8
時間の硫酸浸出を65〜70℃で行うと同様の浸出率が達成可能である。
(2)攪拌のみの浸出では、250g/l以上の濃度の塩酸水溶液、及び、200g/l以上の濃度の
硫酸と20g/l以上の濃度の過酸化水素との混合水溶液であれば浸出率はCo,Ni,Mn,Li
ともに100%である。
Regarding the leaching of ternary Li metal salts, the following can be seen.
(1) If stirring and leaching for 8 hours while heating at 70-80 ° C, 200g / l sulfuric acid aqueous solution can be used.
Co, Ni, Mn, and Li can be 100% leached. Leaching is possible even at temperatures above 80 ° C, but evaporative sulfuric acid purification equipment is required. Furthermore, if it is 300 g / l sulfuric acid aqueous solution, 8
A similar leaching rate can be achieved if the sulfuric acid leaching is carried out at 65-70 ° C. for a time.
(2) In leaching only with stirring, the leaching rate will be as long as a hydrochloric acid solution with a concentration of 250 g / l or more, or a mixed solution of sulfuric acid with a concentration of 200 g / l or more and hydrogen peroxide with a concentration of 20 g / l or more. Co, Ni, Mn, Li
Both are 100%.
以上のとおり、200g/l以上の濃度の硫酸水溶液は加熱浸出を行うと、
100%の浸出率を達成することができる。
次に、攪拌のみの浸出については、250g/l以上の濃度の塩酸水溶液、及び、200g/l以上
の濃度の硫酸と20g/l以上の濃度の過酸化水素を含有する水溶液であれば100%の浸出率
を達成することができる。
なお、これらの塩酸水溶液浸出もしくは硫酸・過酸化水素混合溶液浸出の場合も、浸出液
の加熱を妨げるものではない。
また、上記表1において浸出率100%は実験室における成績である。工業的規模での実施で
は、月産で電池滓を100ton以上リサイクルする場合は秤量の誤差を加味して98〜100%の
浸出率を達成することができる。浸出の結果生成した浸出液は三元系金属イオンを含有し
ており、残渣は主として有機又は無機状態の炭素からなる。かかる炭素は硫酸や塩酸に対
して難溶であり、固形物として残るが、炭素などは回収する価値がないため、浸出後の残
渣は廃棄とするかあるいは焼却する。
攪拌はスラリー状電池滓が、浸出液中に均一に分散するように、回転ブレードなどの任意
の手段により行うことができる。
As described above, when sulfuric acid aqueous solution with a concentration of 200 g / l or more is heated and leached,
100% leaching rate can be achieved.
Next, for leaching only with stirring, 100% of an aqueous hydrochloric acid solution having a concentration of 250 g / l or more and an aqueous solution containing sulfuric acid having a concentration of 200 g / l or more and hydrogen peroxide having a concentration of 20 g / l or more are used. Leaching rate can be achieved.
In the case of leaching with an aqueous hydrochloric acid solution or a mixed solution of sulfuric acid and hydrogen peroxide, heating of the leaching solution is not hindered.
In Table 1 above, the leaching rate of 100% is the result in the laboratory. In practice on an industrial scale, when the battery is recycled more than 100 tons in monthly production, a leach rate of 98-100% can be achieved by taking account of weighing errors. The leachate produced as a result of leaching contains ternary metal ions, and the residue consists mainly of organic or inorganic carbon. Such carbon is hardly soluble in sulfuric acid and hydrochloric acid and remains as a solid, but carbon and the like are not worth recovery, so the residue after leaching is discarded or incinerated.
Stirring can be performed by any means such as a rotating blade so that the slurry-like battery can be uniformly dispersed in the leachate.
浸出後液に含有されるCo、Ni、Mn、Liを回収する上では、Mn、Co、Niの三種の金属を溶媒抽出すると、Liが分離される。これらを溶媒抽出する抽出剤としては、例えば、非特許文献1:資源と素材、1997,12,Vol.113,「リサイクリング大特集号」、第941頁、表1にて公知の酸性抽出剤を使用することができる。   In recovering Co, Ni, Mn, and Li contained in the liquid after leaching, Li is separated by solvent extraction of three types of metals, Mn, Co, and Ni. As an extractant for extracting these solvents, for example, Non-Patent Document 1: Resources and Materials, 1997, 12, Vol. 113, “Recycling Special Feature”, page 941, page 1, known acidic extractant Can be used.
Mn抽出剤としてLANXESS社製D2EHPAを、またCo及びNiの抽出剤としては大八化学株式会社製PC-88Aを使用することが好ましい。D2EHPAはジー2−エチルヘキシル燐酸であり、非特許文献1にて公知のMn抽出剤である。PC-88Aは2−エチルヘキシル2−エチルヘキシルホスホネート系であり、その情報は
1202884345093_1.pdf
にて入手できる。
It is preferable to use D2EHPA manufactured by LANXESS as the Mn extractant and PC-88A manufactured by Daihachi Chemical Co., Ltd. as the extractant for Co and Ni. D2EHPA is di-2-ethylhexyl phosphoric acid and is a Mn extractant known in Non-Patent Document 1. PC-88A is a 2-ethylhexyl 2-ethylhexyl phosphonate system.
1202884345093_1.pdf
Available at
抽出後溶液からの金属回収法については、以下に記す、現に行われている方法により回収するか、あるいは有価金属含有資源として外販し、これらの金属を回収する公知の湿式精錬工程において、副原料として処理し、金属を回収することが可能である。
Coについて:塩化Coの電解採取法。
Mnについて:硫酸Mnの電解採取法
Niについて:塩素浸出によるNi電解法。
Regarding the method for recovering metals from the solution after extraction, it is recovered by the methods currently used, or they are sold as valuable metal-containing resources, and in the known hydrometallurgical process for recovering these metals, secondary raw materials are used. It is possible to recover the metal.
About Co: Electrolytic extraction of Co chloride.
About Mn: Electrolytic extraction of Mn sulfate
About Ni: Ni electrolysis method by chlorine leaching.
金属回収の別法としては、溶媒抽出後に逆抽出した液である硫酸酸性溶液を中和することにより金属塩を沈殿させ、濾過により固形分として金属塩を回収する方法を採用することができる。続いて、かかる金属塩は、金属精錬会社に金属原料として外販することもできる。あるいは、金属塩の濃度を溶媒抽出後液中の濃度より数倍に濃縮し、その後電解採取により回収すると、電池滓の回収から金属再生まで一貫してリサイクルを行うことができる。Ni,Co,Mnの電解採取は、例えば、非特許文献2:講座・現代の金属学、精錬編2、非鉄金属製錬、昭和57年7月10日金属学会出版、第240〜241頁に記載された条件で行うことができる。   As another method of metal recovery, a method can be employed in which a metal salt is precipitated by neutralizing a sulfuric acid acidic solution, which is a back-extracted solution after solvent extraction, and recovered as a solid content by filtration. Subsequently, the metal salt can be sold to a metal refining company as a metal raw material. Alternatively, when the concentration of the metal salt is concentrated several times the concentration in the solution after solvent extraction and then recovered by electrowinning, it is possible to recycle consistently from the recovery of the battery to the metal regeneration. Electrolytic extraction of Ni, Co, and Mn, for example, Non-Patent Document 2: Lecture / Modern Metallurgy, Refining Edition 2, Nonferrous Metal Smelting, July 10, 1982, Japan Institute of Metals, pp. 240-241 It can be performed under the conditions described.
続いて、DE2HPA及びPC-88AによりそれぞれMn、Co及びNiを溶媒抽出する方法を、図1、図2、図3を参照して具体的に説明する。
Mnの抽出
DE2HPAのケロシン(灯油)混合液とCo-Ni-Mn-Li溶液(即ち浸出後液、図1参照)、サイトフロー及び攪拌機付き分液槽にて混合して溶媒抽出を行う。苛性ソーダを添加してpHを2〜3に調節する。
その後、さらに溶媒による抽出を行い、これにより、溶液にはCo-Ni-Liのみが残る。溶媒は、溶液とは逆方向に、抽出3、抽出2、抽出1と流れる(向流多段抽出)。Mn抽出後の溶媒中には若干のCoも含むため10g/l H2SO4 によりCoは洗浄される。
続いて、50g/l硫酸水溶液で逆抽出を行い、硫酸水溶液中にMnを濃縮させる(「Mn溶液」)。逆抽出は2段で行い、溶媒は抽出3で再利用する。Mn溶液には苛性ソーダ、または炭酸ソーダを添加して中和を行い、中和後の液体及び沈澱には濾過を施して、MnをMn(OH)2 、MnCO3として回収する。洗浄液は抽出前のCo-Ni-Mn-Li溶液に加える。
Next, a method for solvent extraction of Mn, Co, and Ni by DE2HPA and PC-88A, respectively, will be specifically described with reference to FIGS.
Extraction of Mn
DE2HPA kerosene (kerosene) mixed solution and Co-Ni-Mn-Li solution (that is, the solution after leaching, see Fig. 1), site flow and solvent extraction with a stirrer are used for solvent extraction. Add caustic soda to adjust pH to 2-3.
Thereafter, extraction with a solvent is further carried out, whereby only Co—Ni—Li remains in the solution. The solvent flows through extraction 3, extraction 2, and extraction 1 in the opposite direction to the solution (countercurrent multistage extraction). Since the solvent after the Mn extraction contains some Co, Co is washed with 10 g / l H 2 SO 4 .
Subsequently, back extraction is performed with a 50 g / l sulfuric acid aqueous solution to concentrate Mn in the sulfuric acid aqueous solution (“Mn solution”). Back extraction is performed in two stages and the solvent is reused in extraction 3. Caustic soda or sodium carbonate is added to the Mn solution for neutralization, and the neutralized liquid and precipitate are filtered to recover Mn as Mn (OH) 2 and MnCO 3 . The washing solution is added to the Co-Ni-Mn-Li solution before extraction.
Coの抽出
PC-88Aのケロシン(灯油)混合液とCo-Ni-Li溶液(即ちMn抽出後液、図2参照)、サイトフロー及び攪拌機付き分液槽にて混合して溶媒抽出を行う。苛性ソーダを添加してpHを4〜5に調節する。
その後、さらに溶媒による抽出を行い、これにより、溶液にはNiのみが残る。溶媒は、溶液とは逆方向に、抽出3、抽出2、抽出1と流れる(向流多段抽出)。Co抽出後の溶媒中には若干のNiも含むため10g/l H2SO4 によりNiは洗浄される。
続いて、50g/l硫酸水溶液で逆抽出を行い、硫酸水溶液中にCoを濃縮させる(「Co溶液」)。逆抽出は2段で行い、溶媒は抽出3で再利用する。Co溶液には苛性ソーダ、または炭酸ソーダを添加して中和を行い、中和後の液体及び沈澱には濾過を施して、CoをCo(OH)2 、CoCO3として回収する。洗浄液は抽出前のCo-Ni-Li溶液に加える。
Co extraction
PC-88A kerosene (kerosene) mixed solution and Co-Ni-Li solution (that is, the solution after Mn extraction, see Fig. 2), site flow and solvent separation with a stirrer are used for solvent extraction. Add caustic soda to adjust pH to 4-5.
Thereafter, extraction with a solvent is further performed, so that only Ni remains in the solution. The solvent flows through extraction 3, extraction 2, and extraction 1 in the opposite direction to the solution (countercurrent multistage extraction). Since the solvent after the Co extraction contains some Ni, the Ni is washed with 10 g / l H 2 SO 4 .
Subsequently, back extraction is performed with a 50 g / l sulfuric acid aqueous solution to concentrate Co in the sulfuric acid aqueous solution (“Co solution”). Back extraction is performed in two stages and the solvent is reused in extraction 3. The Co solution is neutralized by adding caustic soda or sodium carbonate, and the neutralized liquid and precipitate are filtered to recover Co as Co (OH) 2 and CoCO 3 . The washing solution is added to the Co-Ni-Li solution before extraction.
Niの抽出
PC-88Aのケロシン(灯油)混合液とNi-Li溶液(即ちCo抽出後液、図3参照)、サイトフロー及び攪拌機付き分液槽にて混合して溶媒抽出を行う。苛性ソーダを添加してpHを6〜7に調節する。
その後、さらに溶媒による抽出を行い、これにより、溶液にはLiのみが残る。溶媒は、溶液とは逆方向に、抽出3、抽出2、抽出1と流れる(向流多段抽出)。Ni抽出後の溶媒中には若干のLiも含むため10g/l H2SO4 によりLiは洗浄される。
続いて、50g/l硫酸水溶液で逆抽出を行い、硫酸水溶液中にNiを濃縮させる(「Ni溶液」)。逆抽出は2段で行い、溶媒は抽出3で再利用する。Ni溶液には苛性ソーダ、または炭酸ソーダを添加して中和を行い、中和後の液体及び沈澱には濾過を施して、NiをNi(OH)2 、NiCO3として回収する。洗浄液は抽出前のNi-Li溶液に加える。
Ni extraction
PC-88A kerosene (kerosene) mixed solution and Ni-Li solution (ie Co extracted solution, see Fig. 3), site flow and solvent extraction with a stirrer are used for solvent extraction. Add caustic soda to adjust pH to 6-7.
Thereafter, extraction with a solvent is further performed, so that only Li remains in the solution. The solvent flows through extraction 3, extraction 2, and extraction 1 in the opposite direction to the solution (countercurrent multistage extraction). Since the solvent after extracting Ni contains some Li, Li is washed with 10 g / l H 2 SO 4 .
Subsequently, back extraction is performed with a 50 g / l sulfuric acid aqueous solution to concentrate Ni in the sulfuric acid aqueous solution (“Ni solution”). Back extraction is performed in two stages and the solvent is reused in extraction 3. Caustic soda or sodium carbonate is added to the Ni solution for neutralization, and the neutralized liquid and precipitate are filtered to recover Ni as Ni (OH) 2 and NiCO 3 . The washing solution is added to the Ni-Li solution before extraction.
上記した溶媒抽出により得られたCo、Ni、Mn、Li濃度の一般的範囲及び実施例の濃度を表2に示す。金属は中和によりそれぞれMn(OH)2または MnCO3と、Co(OH)2または CoCO3と、Ni(OH)2または NiCO3と、Li(OH)2または LiCO3として回収することができる。 Table 2 shows the general ranges of the Co, Ni, Mn, and Li concentrations obtained by the solvent extraction described above and the concentrations of the examples. Metals can be recovered by neutralization as Mn (OH) 2 or MnCO 3 , Co (OH) 2 or CoCO 3 , Ni (OH) 2 or NiCO 3 , and Li (OH) 2 or LiCO 3 , respectively. .
上記したところから本発明の好ましい実施態様は次のとおりである。
(1)Mn,Co及びNiを酸性溶媒抽出する方法。
(2)逆抽出後の溶液、及びCo,Ni,Mnを回収後のLiを含む溶液のpHを調整する
ことによりMn,Co,Ni,Liを沈殿させ、濾過することにより固形分として金
属を分離する方法。
(3)固形金属を電解液に再溶解し電解採取する(2)項の方法
From the above, preferred embodiments of the present invention are as follows.
(1) A method of extracting Mn, Co and Ni with an acidic solvent.
(2) Adjust the pH of the solution after back extraction and the solution containing Li after recovering Co, Ni, and Mn.
To precipitate Mn, Co, Ni, Li, and filter as gold
How to isolate a genus.
(3) The method according to item (2), wherein the solid metal is redissolved in the electrolytic solution and electrolytically collected.
(1)三元系金属Li塩系正極活物質をスラリー状態でリサイクルすることができるの
で、リチウム電池滓を固形化するためのエネルギーが不要である。さらに、スラ
リー中の三元系金属Li塩は微粒子状態であるので、浸出液との接触面積が大き
く、浸出効率が高い。
(2)Co,Ni,Mn及びLiのそれぞれが全量浸出可能である。一方、これ以外の炭素などは
残渣となり、前記四種の金属とは分離される。
(3)希釈硫酸または希釈塩酸を使用するので環境への負担が少ない。
(4)Liは浸出液に溶解するが、他の有価金属を抽出分離することにより他の有価金属
とは分離することができる(Ni溶液からNiを抽出した後も液中に残る)。溶媒抽出
においてMn,Co,Niを分離した後、Liはろ液中に残り分離される。
(1) Since the ternary metal Li salt-based positive electrode active material can be recycled in a slurry state, no energy is required for solidifying the lithium battery case. Furthermore, since the ternary metallic Li salt in the slurry is in the form of fine particles, the contact area with the leaching solution is large and the leaching efficiency is high.
(2) All of Co, Ni, Mn and Li can be leached. On the other hand, carbon other than this becomes a residue and is separated from the above four metals.
(3) Since diluted sulfuric acid or diluted hydrochloric acid is used, the burden on the environment is small.
(4) Although Li dissolves in the leachate, it can be separated from other valuable metals by extracting and separating other valuable metals (which remains in the liquid even after Ni is extracted from the Ni solution). After separating Mn, Co and Ni in the solvent extraction, Li remains in the filtrate and is separated.
三元系金属Li塩含有ペースト(Co11%,Ni 11%,Mn 11%,Li 4.3% 以下
単に「ペースト」という)の100kgにつき浸出及び溶媒抽出を行った。以下説明する試験
において、抽出時間は攪拌10分、逆抽出時間は攪拌10分、洗浄は攪拌10分で行った。
(1)浸出
300g/l硫酸水溶液1000L中にペーストを投入し、70〜80℃で加熱しながら4時間攪
拌し、その後濾過を行ったところ、乾燥後の状態で10kgの残渣が残った。1000Lの
濾液中の金属濃度は次表のとおりであり、100%の浸出ができた。
Leaching and solvent extraction were conducted per 100 kg of paste containing ternary metal Li salt (Co11%, Ni 11%, Mn 11%, Li 4.3% or less, simply referred to as “paste”). In the tests described below, the extraction time was 10 minutes with stirring, the back extraction time was 10 minutes with stirring, and the washing was performed with 10 minutes of stirring.
(1) Leaching
The paste was put into 1000 L of 300 g / l sulfuric acid aqueous solution, stirred for 4 hours while heating at 70 to 80 ° C., and then filtered to leave 10 kg of residue in the dried state. The metal concentration in the 1000 L filtrate was as shown in the following table, and 100% leaching was achieved.
(2)Mn抽出
濾液につき25%NaOH溶液で中和後、Mnの溶媒抽出を行った。中和後の溶液は1290L
であった。溶媒抽出剤は、LANXESS 社製D2EHPAのケロシン溶液1290Lで、これを
中和後の溶液と攪拌し、25%NaOH溶液でpH=2.5に調節した(O/A比=1/1)。溶媒
抽出の結果、Mn抽出液1290LとCo-Ni-Li溶液1340Lが得られた。Mn抽出液(少々Co
を含む)を10g/l H2SO4 により洗浄し、続いて50g/l硫酸水溶液で逆抽出を行い、
硫酸水溶液中にMnを濃縮させる(Mn溶液)。 Co-Ni-Li溶液1340L (金属濃度は表4
に示す)とMn溶液250L(金属濃度は表5に示す)を得た。
(2) Mn extraction The filtrate was neutralized with 25% NaOH solution, and Mn was subjected to solvent extraction. 1290L of neutralized solution
Met. The solvent extractant was 1290 L of LANXESS D2EHPA kerosene solution, which was stirred with the neutralized solution and adjusted to pH = 2.5 with a 25% NaOH solution (O / A ratio = 1/1). As a result of solvent extraction, 1290 L of Mn extract and 1340 L of Co—Ni—Li solution were obtained. Mn extract (a little Co
Is washed with 10 g / l H 2 SO 4 , followed by back extraction with 50 g / l sulfuric acid aqueous solution,
Mn is concentrated in an aqueous sulfuric acid solution (Mn solution). Co-Ni-Li solution 1340L (metal concentration is Table 4)
And 250 L of Mn solution (metal concentration is shown in Table 5).
表4に示すCo,Ni,Li溶液につきCoの溶媒抽出を行った。溶媒抽出剤は、大八化学株式会社製PC-88Aのケロシン溶液1340Lで、これを中和後の溶液と攪拌し、25%NaOH溶液でpH=4.2に調節した(O/A比=1/1)。溶媒抽出の結果、Co抽出液1340LとNi-Li溶液1390Lが得られた。Co抽出液(少々Niを含む)を10g/l H2SO4 により洗浄し、続いて50g/l硫酸水溶液で逆抽出を行い、硫酸水溶液中にCoを濃縮させる(Co溶液)。 Ni-Li溶液1390L (金属濃度は表6に示す)とCo溶液250L(金属濃度は表7に示す)を得た。 The Co, Ni, and Li solutions shown in Table 4 were subjected to solvent extraction of Co. The solvent extractant was 1340 L of Daisuke Chemical Co., Ltd. PC-88A kerosene solution, which was stirred with the neutralized solution and adjusted to pH = 4.2 with 25% NaOH solution (O / A ratio = 1/1 / 1). As a result of solvent extraction, Co extract 1340L and Ni-Li solution 1390L were obtained. The Co extract (containing a little Ni) is washed with 10 g / l H 2 SO 4 , followed by back extraction with a 50 g / l sulfuric acid aqueous solution to concentrate Co in the sulfuric acid aqueous solution (Co solution). Ni-Li solution 1390L (metal concentration is shown in Table 6) and Co solution 250L (metal concentration is shown in Table 7) were obtained.
表6に示すNi,Li溶液につきNiの溶媒抽出を行った。溶媒抽出剤は、大八化学株式会社製PC-88Aのケロシン溶液1390Lで、これを中和後の溶液と攪拌し、25%NaOH溶液でpH=6.5に調節した(O/A比=1/1)。溶媒抽出の結果、Ni抽出液1390LとLi溶液1410Lが得られた。Ni抽出液(少々Liを含む)を10g/l H2SO4 により洗浄し、続いて50g/l硫酸水溶液で逆抽出を行い、硫酸水溶液中にNiを濃縮させる(Ni溶液)。 Li溶液1410L (金属濃度は表8に示す)とNi溶液250L(金属濃度は表9に示す)を得た。 The Ni and Li solutions shown in Table 6 were subjected to Ni solvent extraction. The solvent extractant was 1390 L of PC-88A kerosene solution manufactured by Daihachi Chemical Co., Ltd., which was stirred with the neutralized solution and adjusted to pH = 6.5 with 25% NaOH solution (O / A ratio = 1/1 / 1). As a result of solvent extraction, 1390 L of Ni extract and 1410 L of Li solution were obtained. The Ni extract (containing a little Li) is washed with 10 g / l H 2 SO 4 , followed by back extraction with a 50 g / l sulfuric acid aqueous solution, and Ni is concentrated in the sulfuric acid aqueous solution (Ni solution). Li solution 1410L (metal concentration shown in Table 8) and Ni solution 250L (metal concentration shown in Table 9) were obtained.
以上示すように、Mn,Co,Ni,Liを全て分離することができた。なお、硫酸浸出の例につき説明したが、塩酸浸出でも金属全量を浸出できるから、その後の溶媒抽出は同じ結果となる。     As shown above, Mn, Co, Ni, and Li could all be separated. Although an example of sulfuric acid leaching has been described, since the entire amount of metal can be leached even by hydrochloric acid leaching, subsequent solvent extraction has the same result.
従来三元系金属Li塩を正極活物質とする電池滓のリサイクル法がなかったので、倉庫に保管などなされていたが、本発明法により電池滓を硫酸または塩酸にて浸出すると有価金属の回収が可能になる。スラリー状でないCo,Ni,Mn含有リチウム電池滓を使用して同様の試験を行ったが、同様の結果を得ることができた。また、本発明法では溶媒抽出法を採用しているので、例えば電池滓にCo系正極活物質が混入しても、問題なく有価金属を回収することができるので、リサイクル事業の展開が容易である。   Previously, there was no recycling method for battery cages using ternary metal Li salt as the positive electrode active material, so they were stored in warehouses. However, when the battery cages were leached with sulfuric acid or hydrochloric acid according to the present invention, valuable metals were recovered. Is possible. A similar test was performed using a lithium battery containing Co, Ni, and Mn that was not in a slurry state, and similar results could be obtained. In addition, since the solvent extraction method is employed in the method of the present invention, for example, even if a Co-based positive electrode active material is mixed in the battery case, valuable metals can be recovered without problems, so that the recycling business can be easily developed. is there.
Mnの溶媒抽出工程を示すフローチャートである。It is a flowchart which shows the solvent extraction process of Mn. Coの溶媒抽出工程を示すフローチャートである。It is a flowchart which shows the solvent extraction process of Co. Niの溶媒抽出工程を示すフローチャートである。It is a flowchart which shows the solvent extraction process of Ni.

Claims (7)

  1. Co,Ni及びMnを含有するリチウム酸金属塩を含有するリチウム電池滓を、
    250g/l以上の濃度の塩酸溶液に、該塩酸溶液中の塩酸に対して質量比0.4以下の割合で
    混合して攪拌することにより、Co,Ni及びMnをそれぞれ98〜100%の浸出率で浸出し、浸
    出液につきCo ,Ni及び Mnを酸性抽出剤で溶媒抽出し、それぞれの金属を含有する三種
    の溶液を生成し、これらの溶液から当該金属を回収することを特徴とするCo,Ni,Mn含有
    リチウム電池滓からの有価金属回収方法
    A lithium battery case containing a lithium acid metal salt containing Co, Ni and Mn,
    In a hydrochloric acid solution having a concentration of 250 g / l or more, a mass ratio of 0.4 or less with respect to hydrochloric acid in the hydrochloric acid solution.
    By mixing and stirring, Co, Ni and Mn are leached at a leaching rate of 98 to 100%, respectively , and Co, Ni and Mn are extracted with an acidic extractant from the leachate, and each metal is contained. A method of recovering valuable metals from lithium batteries containing Co, Ni, and Mn, comprising generating three types of solutions and recovering the metals from these solutions
  2. Co, Ni及びMnを含有するリチウム酸金属塩を含有するリチウム電池滓を、200g/l以上の濃度の硫酸溶液に該硫酸溶液中の硫酸に対して質量比0.5以下の割合で混合し、65 〜80℃の範囲で加熱攪拌することによりCo,Ni及びMnをそれぞれ98〜100%の浸出率で浸出し、浸出液につきCo ,Ni及びMnを酸性抽出剤で溶媒抽出し、それぞれの金属を含有する三種の溶液を生成し、これらの溶液から当該金属を回収することを特徴とするCo, Ni, Mn含有リチウム電池滓からの有価金属回収方法。 Co, the lithium battery scum containing lithium acid metal salt containing Ni and Mn, were mixed in the following proportions by weight ratio of 0.5 with respect to sulfuric sulfuric acid solution in sulfuric acid solution of 200 g / l or more concentration, 65 Co, Ni and Mn are leached at a leaching rate of 98 to 100% by heating and stirring in the range of -80 ° C , respectively, and Co, Ni and Mn are extracted with an acidic extractant from the leaching solution, and each metal is contained. A method for recovering a valuable metal from a Co, Ni, Mn-containing lithium battery case, wherein three kinds of solutions are generated and the metal is recovered from these solutions.
  3. Co, Ni及びMnを含有するリチウム酸金属塩を含有するリチウム電池滓を、
    硫酸濃度が200g/l以上、且つ過酸化水素濃度が20g/l以上の硫酸−過酸化水素混合溶液
    に,該硫酸−過酸化水素混合溶液中の硫酸に対して質量比0.5以下の割合で混合して攪拌
    することにより、Co,Ni及びMnをそれぞれ98〜100%の浸出率で浸出し、浸出液につき
    Co, Ni及び Mnを酸性抽出剤で溶媒抽出し、それぞれの金属を含有する三種の溶液を生 成し、これらの溶液から当該金属を回収することを特徴とするCo, Ni, Mn含有電池滓 からの有価金属回収方法。
    A lithium battery container containing a lithium acid metal salt containing Co, Ni and Mn,
    Sulfuric acid-hydrogen peroxide mixed solution with sulfuric acid concentration of 200 g / l or more and hydrogen peroxide concentration of 20 g / l or more
    The mixture is mixed with sulfuric acid in the sulfuric acid-hydrogen peroxide mixed solution at a mass ratio of 0.5 or less and stirred.
    By leaching Co, Ni and Mn at a leaching rate of 98-100% respectively ,
    Co, Ni, and Mn are extracted with an acidic extractant to produce three types of solutions containing the respective metals, and the metals are recovered from these solutions. Valuable metal recovery method.
  4. 浸出を常温で行うことを特徴とする請求項1又は3記載のCo,Ni,Mn含The leaching is carried out at room temperature, containing Co, Ni, Mn as claimed in claim 1 or 3
    有リチウム電池滓からの有価金属回収方法。A method for recovering valuable metals from lithium batteries.
  5. 溶媒抽出後pH調整を行うことにCo,Ni,Mnを沈殿させ、濾過することにより固形物として回収することを特徴とする請求項1から3までの何れか1項記載のCo,Ni,Mn含有リチウム電池滓からの有価金属回収方法。

    Co, Ni, Mn according to any one of claims 1 to 3, wherein Co, Ni, Mn is precipitated by performing pH adjustment after solvent extraction and recovered as a solid by filtration. Method for recovering valuable metals from lithium-containing lithium batteries.

  6. 前記固形物を電解液に再溶解し、電解採取することを特徴とする請求項
    5記載のCo,Ni,Mn含有リチウム電池滓からの有価金属回収方法。
    6. The method for recovering a valuable metal from a Co, Ni, Mn-containing lithium battery case according to claim 5, wherein the solid matter is redissolved in an electrolytic solution and electrolytically collected.
  7. Co,Ni,Mnを溶媒抽出にて抽出した残りの液を、pH調整することにより
    Liを沈殿させ、濾過することにより固形物として回収することを特徴とする請求項1か
    ら3までの何れか1項記載のCo,Ni,Mn含有リチウム電池滓からの有価金属回収方法。
    By adjusting the pH of the remaining liquid extracted by solvent extraction of Co, Ni, and Mn
    The Li is precipitated and recovered as a solid by filtration .
    4. A method for recovering valuable metals from a Co, Ni, Mn-containing lithium battery case according to any one of items 1 to 3 .
JP2008031800A 2008-02-13 2008-02-13 Method for recovering valuable metals from lithium batteries containing Co, Ni, Mn Active JP4865745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008031800A JP4865745B2 (en) 2008-02-13 2008-02-13 Method for recovering valuable metals from lithium batteries containing Co, Ni, Mn

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008031800A JP4865745B2 (en) 2008-02-13 2008-02-13 Method for recovering valuable metals from lithium batteries containing Co, Ni, Mn
KR20080100907A KR101036407B1 (en) 2008-02-13 2008-10-15 METHOD FOR RECOVERING VALUABLE METAL FROM LITHIUM BATTERY WASTE CONTAINING Co, Ni, AND Mn
TW97141955A TWI392745B (en) 2008-02-13 2008-10-31 A method for recovering a valuable metal from a lithium battery residue containing Co, Ni, and Mn
CN2008101788350A CN101509071B (en) 2008-02-13 2008-12-01 Method for recycling value metal from lithium cell slag containing Co, Ni, Mn

Publications (2)

Publication Number Publication Date
JP2009193778A JP2009193778A (en) 2009-08-27
JP4865745B2 true JP4865745B2 (en) 2012-02-01

Family

ID=41001602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031800A Active JP4865745B2 (en) 2008-02-13 2008-02-13 Method for recovering valuable metals from lithium batteries containing Co, Ni, Mn

Country Status (4)

Country Link
JP (1) JP4865745B2 (en)
KR (1) KR101036407B1 (en)
CN (1) CN101509071B (en)
TW (1) TWI392745B (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5014394B2 (en) 2009-09-29 2012-08-29 Jx日鉱日石金属株式会社 Method for separating and recovering nickel and lithium
KR100975317B1 (en) * 2009-11-20 2010-08-12 주식회사 에코닉스 Method for preparing manganese sulfate and zinc sulfate from waste batteries containing manganese and zinc
KR101089519B1 (en) * 2009-11-30 2011-12-05 한국지질자원연구원 Method for Producing CMB Catalyst recycled with Lithium Ion Battery and Ternary Cathode Materials
CN101831548B (en) * 2010-03-31 2012-01-04 奇瑞汽车股份有限公司 Method for recovering valuable metals from waste lithium manganese oxide battery
CN101871048B (en) * 2010-06-25 2012-05-23 浙江华友钴业股份有限公司 Method for recovering cobalt, nickel and manganese from waste lithium cells
JP5254407B2 (en) * 2010-08-30 2013-08-07 Jx日鉱日石金属株式会社 Cathode active material leaching method
JP5501180B2 (en) * 2010-09-29 2014-05-21 株式会社日立製作所 Lithium extraction method and metal recovery method
KR101201947B1 (en) * 2010-10-12 2012-11-16 엘에스니꼬동제련 주식회사 Method for recovering valuable metals from lithium secondary battery wastes
KR101220149B1 (en) * 2011-02-17 2013-01-11 한국지질자원연구원 Method for making sulfate solution of valuable metal from used battery and for making cathode active material
JP5675452B2 (en) * 2011-03-15 2015-02-25 三井金属鉱業株式会社 Manufacturing method of recycled materials
CN102162034A (en) * 2011-04-07 2011-08-24 常州今创博凡能源新材料有限公司 Process for recovering valuable metals from waste lithium batteries
CN102340046B (en) * 2011-06-14 2015-04-22 安徽亚兰德新能源材料有限公司 Method of recovering and treating edge scraps of cobalt-coated spherical nickel hydroxide
JP5406260B2 (en) * 2011-09-29 2014-02-05 Jx日鉱日石金属株式会社 Method for separating aluminum and manganese
CN102363839A (en) * 2011-11-21 2012-02-29 郴州雄风稀贵金属材料股份有限公司 Process for recovering silver, lead and bismuth from silver-bearing soot comprehensively
KR101210983B1 (en) * 2012-05-25 2012-12-11 한국지질자원연구원 Methods of seperating and collecting manganese from cobalt and nickel with high selectivity using screening effect of an extractant mixture
KR101247224B1 (en) * 2012-10-11 2013-03-25 주식회사 대일이앤씨 Method for remediating soil contaminated with zinc using solvent extraction and thereof system
KR101429647B1 (en) 2012-12-21 2014-08-14 주식회사 포스코 Mothod for recovery resource from scrap of positive active material
KR101497041B1 (en) * 2013-04-24 2015-03-02 타운마이닝캄파니(주) Method for recovering valuable metals from cathodic active material of used lithium battery
CN103334009B (en) * 2013-06-14 2015-02-04 山东青龙山有色金属有限公司 Method for recycling valuable metal from waste lithium batteries
US9748616B2 (en) 2013-08-20 2017-08-29 University Of Calcutta Regeneration of cathode material of lithium-ion batteries
CN104628217B (en) * 2013-11-12 2016-09-07 天津卡特化工技术有限公司 A kind of processing method recycling waste lithium cell electrolyte and electrolyte waste water
KR101420117B1 (en) 2014-01-29 2014-07-17 한국지질자원연구원 Leaching method of rare-earth metals using hydrochloric acid from manganese nodule
CN111004919A (en) * 2014-09-30 2020-04-14 捷客斯金属株式会社 Method for leaching lithium ion battery waste, and method for recovering metal from lithium ion battery waste
KR101584120B1 (en) * 2015-05-22 2016-01-13 성일하이텍(주) Manufacturing method of pure nickel sulfate from leaching residue being removed cobalt of lithium secondary battery
JP6483569B2 (en) * 2015-08-13 2019-03-13 Jx金属株式会社 Lithium-ion battery processing method
TWI551731B (en) * 2015-11-30 2016-10-01 朝陽科技大學 Method of metal recovering by electrodialysis synergized solvent extraction and apparatus thereof
CN105633500A (en) * 2016-02-22 2016-06-01 四川天齐锂业股份有限公司 Method for preparing ternary cathode material precursor by recycling lithium-ion battery material
CN106834680B (en) * 2017-01-04 2018-07-10 北京科技大学 A kind of separation method of Li, Co, Ni, Cu, Mn mixed metal ion
CN106684489B (en) * 2017-03-24 2019-01-29 赣南师范大学 A method of recycling valuable metal from waste and old polynary lithium ion battery
JP6599396B2 (en) * 2017-03-30 2019-10-30 Jx金属株式会社 Lithium recovery method
TWI644468B (en) * 2017-10-13 2018-12-11 國立中山大學 Method for recycling cobalt in waste lithium battery
CN108193050B (en) * 2017-11-27 2019-10-18 中国人民解放军陆军防化学院 Metal material recovery method in a kind of waste and old ternary power battery
CN108069447B (en) * 2017-12-13 2019-11-29 长沙矿冶研究院有限责任公司 Utilize the method for lithium ion cell positive Active Waste preparation LITHIUM BATTERY lithium hydroxide
CN108172925A (en) * 2017-12-27 2018-06-15 浙江中金格派锂电产业股份有限公司 A kind of nickle cobalt lithium manganate ter-polymers cell anode waste recovery method
CN110013822B (en) * 2018-01-07 2020-02-14 中南大学 Method for recycling waste lithium ion batteries and co-producing lithium adsorbent
KR102064668B1 (en) 2018-04-24 2020-01-09 (주)이엠티 A Method of Recycling Material for Precursor of Anode Active Material, Precursor of Anode Active Material, Anode Active Material, Anode, and Lithium Ion Secondary Battery Using The Same
CN109022810B (en) * 2018-08-24 2019-10-25 肇庆市珈旺环境技术研究院 A method of separating and recovering valuable metal iron, manganese and scandium from tungsten slag
JP2020035723A (en) 2018-08-31 2020-03-05 Jx金属株式会社 Manufacturing method of lithium carbonate
CN109020001A (en) * 2018-09-10 2018-12-18 青海瑞能新型燃料科技有限公司 Alcohol-containing waste liquid comprehensive recovering process in a kind of Production Process of Lithium Battery
KR20200066990A (en) 2018-12-03 2020-06-11 동우 화인켐 주식회사 Manufacturing method of precursor for cathode active material from waste lithium secondary battery
JP2020105598A (en) * 2018-12-27 2020-07-09 Jx金属株式会社 Valuable metal recovery method
CN110066925A (en) * 2019-04-28 2019-07-30 浙江天能新材料有限公司 The recovery method of valuable metal in a kind of waste and old nickel-cobalt-manganese ternary lithium battery
KR102154599B1 (en) * 2019-04-30 2020-09-10 코스모에코켐(주) Method for Separation and Recovery of Valuable Metals from Cathode Active Material
CN110184455B (en) * 2019-06-20 2021-01-01 东北大学 Leaching method of refractory cobalt ore
CN110724818A (en) * 2019-09-29 2020-01-24 湖南雅城新材料有限公司 Full-wet recovery process of waste lithium battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4445496A1 (en) * 1994-12-20 1996-06-27 Varta Batterie Process for the recovery of metals from used nickel-metal hydride accumulators
JPH10287864A (en) * 1997-04-14 1998-10-27 Nippon Chem Ind Co Ltd Recovery of valuable metal from active material of positive electrode for lithium ion secondary battery
JP3546912B2 (en) * 1997-04-30 2004-07-28 住友金属鉱山株式会社 Purification method of nickel sulfate by acidic organic extractant
JP2002198103A (en) * 2000-12-22 2002-07-12 Toshiba Corp Recovery method of electrode-constituting metals
CN1287481C (en) * 2003-11-11 2006-11-29 财团法人工业技术研究院 Method for recovering valuable metal from waste secondary cell
TWI231063B (en) * 2003-11-14 2005-04-11 Ind Tech Res Inst Process of recovering valuable metals from waste secondary batteries
JP4815763B2 (en) * 2004-07-09 2011-11-16 住友金属鉱山株式会社 Method for dissolving lithium-containing positive electrode active material
JP4388091B2 (en) * 2007-03-22 2009-12-24 日鉱金属株式会社 Noble metal recovery method from Co, Ni, Mn containing battery

Also Published As

Publication number Publication date
CN101509071B (en) 2011-08-03
TW200934879A (en) 2009-08-16
TWI392745B (en) 2013-04-11
KR20090087801A (en) 2009-08-18
JP2009193778A (en) 2009-08-27
KR101036407B1 (en) 2011-05-23
CN101509071A (en) 2009-08-19

Similar Documents

Publication Publication Date Title
Choubey et al. Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs)
Lv et al. A critical review and analysis on the recycling of spent lithium-ion batteries
Ku et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching
Nayaka et al. Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids
Yao et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review
Ordoñez et al. Processes and technologies for the recycling and recovery of spent lithium-ion batteries
Yang et al. Rare earth element recycling from waste nickel-metal hydride batteries
CN107267759B (en) A kind of comprehensive recovering process of anode material for lithium-ion batteries
Nayl et al. Acid leaching of mixed spent Li-ion batteries
Meshram et al. Process optimization and kinetics for leaching of rare earth metals from the spent Ni–metal hydride batteries
Fernandes et al. Separation of nickel (II), cobalt (II) and lanthanides from spent Ni-MH batteries by hydrochloric acid leaching, solvent extraction and precipitation
Zhang et al. Recovery of metal values from spent nickel–metal hydride rechargeable batteries
Zhu et al. Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation
TW511306B (en) Clean process of recovering metals from waste lithium ion batteries
CN101818251B (en) Method for recovering cobalt and lithium from waste lithium ion batteries
Innocenzi et al. Recovery of rare earths and base metals from spent nickel-metal hydride batteries by sequential sulphuric acid leaching and selective precipitations
Shin et al. Development of a metal recovery process from Li-ion battery wastes
CN101831548B (en) Method for recovering valuable metals from waste lithium manganese oxide battery
JP5904459B2 (en) Manufacturing method of high purity nickel sulfate
Innocenzi et al. Separation of manganese, zinc and nickel from leaching solution of nickel-metal hydride spent batteries by solvent extraction
Sayilgan et al. Acidic leaching and precipitation of zinc and manganese from spent battery powders using various reductants
Mantuano et al. Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272
CN107017443B (en) A method of the comprehensively recovering valuable metal from waste and old lithium ion battery
CN106319228B (en) A kind of method of synchronous recycling nickel cobalt manganese in manganese waste slag from nickel and cobalt containing
US6110433A (en) Process for the recovery of metals from used nickel/metal/rare earth hydride storage batteries

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101006

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

R150 Certificate of patent or registration of utility model

Ref document number: 4865745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350