JP2002226923A - Method for recovering valuable metal from nickel- hydrogen secondary battery scrap - Google Patents

Method for recovering valuable metal from nickel- hydrogen secondary battery scrap

Info

Publication number
JP2002226923A
JP2002226923A JP2001023260A JP2001023260A JP2002226923A JP 2002226923 A JP2002226923 A JP 2002226923A JP 2001023260 A JP2001023260 A JP 2001023260A JP 2001023260 A JP2001023260 A JP 2001023260A JP 2002226923 A JP2002226923 A JP 2002226923A
Authority
JP
Japan
Prior art keywords
nickel
secondary battery
manganese
rare earth
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001023260A
Other languages
Japanese (ja)
Other versions
JP4407061B2 (en
Inventor
Atsushi Fukui
篤 福井
Masaki Imamura
正樹 今村
Takashi Kudo
敬司 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001023260A priority Critical patent/JP4407061B2/en
Publication of JP2002226923A publication Critical patent/JP2002226923A/en
Application granted granted Critical
Publication of JP4407061B2 publication Critical patent/JP4407061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method for economically recovering valuable metals such as nickel, cobalt or rare earth elements contained in nickel-hydrogen secondary battery scrap. SOLUTION: Recovered active material obtained by crushing a used nickel- hydrogen secondary battery and performing physical separation such as sieving is dissolved while blowing gaseous chlorine in hydrochloric acid. Nickel, cobalt and rare earth elements are recovered into a solution, and manganese is selectively precipitated, so that nickel, cobalt and rare earth elements, and manganese are separately recovered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はニッケル水素二次電
池スクラップに含まれるニッケル等の有価金属を回収す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering valuable metals such as nickel contained in nickel-metal hydride secondary battery scrap.

【0002】[0002]

【従来の技術】ニッケル水素二次電池は、近年ニッケル
−カドミウム電池に代わる二次電池として電気自動車の
バッテリーや携帯電話等に使用され、需要が急増してい
る。このニッケル水素二次電池は、多孔質ニッケルまた
は鉄にニッケルめっきしたパンチング板に活物質である
水酸化ニッケルを充填した正極と、水素吸蔵合金を充填
した負極と、ポリプロピレン等のセパレーターとを有
し、さらにこれらは電解液とともに鋼製またはポリプロ
ピレン製の容器に収納されている。
2. Description of the Related Art Nickel-metal hydride secondary batteries have recently been used as secondary batteries in place of nickel-cadmium batteries for batteries of electric vehicles, mobile phones, and the like, and demand has been rapidly increasing. This nickel-metal hydride secondary battery has a positive electrode filled with nickel hydroxide as an active material on a punched plate plated with nickel on porous nickel or iron, a negative electrode filled with a hydrogen storage alloy, and a separator such as polypropylene. These are stored together with the electrolyte in a steel or polypropylene container.

【0003】ニッケル水素二次電池は、ニッケル−カド
ミウム電池よりも特性が優れ、有害なカドミウムを使用
していないため、廃棄した場合でも深刻な公害を発生さ
せるには至らないが、ニッケルや水素吸蔵合金は貴重な
資源であるため、これらの有価金属をリサイクルするこ
とが極めて重要である。
[0003] Nickel-metal hydride secondary batteries have better characteristics than nickel-cadmium batteries and do not use harmful cadmium. Therefore, even if they are disposed of, they do not cause serious pollution. Since alloys are a valuable resource, recycling these valuable metals is extremely important.

【0004】しかしながら、使用済みのニッケル水素二
次電池から、有価金属を回収する方法は、電化製品のコ
ンパクト化にともない、電池もコンパクト化が進み電池
の構成物ごとに分離して有価金属を高純度に回収するこ
とは難しい。また、特に自動車用のバッテリーに使用さ
れる場合、車の衝突等でも壊れにくい構造となっている
ため、容易には分解することは困難である。したがっ
て、使用済みニッケル水素電池から、有価金属を回収す
るには、電池すべてを破砕して、破砕物を分別すること
が必要であり、経済的な回収方法とされている。
However, in the method of recovering valuable metals from used nickel-metal hydride secondary batteries, batteries have been downsized as electric appliances have become more compact. It is difficult to recover to purity. In addition, particularly when used in a battery for an automobile, it is difficult to be easily disassembled because it has a structure that is hard to be broken by a car collision or the like. Therefore, in order to recover valuable metals from used nickel-metal hydride batteries, it is necessary to crush all batteries and separate crushed materials, which is an economical recovery method.

【0005】これらのニッケル水素二次電池の破砕物か
ら、特にニッケルの回収を主目的として有価金属を回収
する方法としては、まず、磁選、比重分離など種々の物
理分離によって容器や極板の主成分である鉄の大部分と
回収を目的とするニッケル等を含む活物質とに分離回収
する。この分離回収した活物質を鉱酸に溶解し、得られ
た溶液を化学処理することによって、目的とするニッケ
ルなどの有価金属を分離回収することが行われている。
この化学処理は、ニッケルなどをできるだけ高純度に回
収するために、溶解液に含まれる希土類やその他の元素
を分離するために行なわれる。
[0005] As a method of recovering valuable metals from the crushed nickel-hydrogen secondary batteries, particularly for the purpose of recovering nickel in particular, first of all, various types of physical separation, such as magnetic separation and specific gravity separation, are used to separate the containers and plates. It is separated and collected into most of the component iron and an active material containing nickel or the like for the purpose of recovery. The separated and recovered active material is dissolved in a mineral acid, and the resulting solution is subjected to chemical treatment to separate and recover a desired valuable metal such as nickel.
This chemical treatment is performed to separate rare earths and other elements contained in the solution in order to recover nickel and the like with as high a purity as possible.

【0006】ところで、前記方法において、鉄等と分離
して回収された活物質は正、負極材の混合物であり、こ
の活物質を鉱酸溶解する場合には、硫酸、硝酸、塩酸等
による溶解処理が行なわれる。これらの鉱酸で溶解する
場合には、目的とする金属のみを溶解させることは難し
く、回収を目的とするニッケルなどの有価金属以外に
も、鉄、マンガン等のその他の元素も同時に溶解される
ため、目的金属と分離する必要がある。
In the above method, the active material separated and recovered from iron and the like is a mixture of a positive electrode material and a negative electrode material. Processing is performed. When dissolving with these mineral acids, it is difficult to dissolve only the target metal, and other elements such as iron and manganese are also dissolved at the same time as valuable metals such as nickel for the purpose of recovery. Therefore, it is necessary to separate from the target metal.

【0007】しかし、たとえばニッケル回収を目的とす
る場合、ニッケル以外の元素を同時に除去することは困
難であるため、中和による鉄除去、炭酸化による希土類
除去、酸化沈殿によるマンガン除去等と、各元素毎に化
学処理による分離工程が必要である。さらに、薬剤コス
トの増加や各沈殿物の固液分離工程が必要となり、工程
が複雑となるという問題があった。
However, for the purpose of recovering nickel, for example, since it is difficult to remove elements other than nickel at the same time, there are various methods such as removal of iron by neutralization, removal of rare earth by carbonation, and removal of manganese by oxidative precipitation. A separation step by chemical treatment is required for each element. Further, there is a problem that the cost of the drug is increased and a solid-liquid separation step of each precipitate is required, which complicates the step.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、使用
済みのニッケル水素二次電池スクラップから有価金属を
回収する方法に関し、特に化学処理工程を少なくした回
収方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for recovering valuable metals from used nickel-metal hydride secondary battery scraps, and more particularly to provide a recovery method in which the number of chemical treatment steps is reduced.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するものとして、使用済みのニッケル水素二次電池を
スクラップを破砕し、篩い分け等の物理分離で得られた
ニッケル、コバルト、マンガン、希土類元素等を含む活
物質を塩酸により、塩素ガスを吹込んで溶解し、ニッケ
ル、コバルト、希土類元素等を溶液中に回収し、マンガ
ンを選択的に沈殿させて、分離する方法である。本方法
によると、従来の方法における、マンガン除去のための
化学処理工程を省力化することが可能となる。
According to the present invention, there is provided a nickel-hydrogen secondary battery obtained by subjecting a used nickel-metal hydride secondary battery to physical separation such as crushing scrap and sieving. In this method, an active material containing a rare earth element or the like is dissolved by injecting chlorine gas with hydrochloric acid, nickel, cobalt, the rare earth element or the like is recovered in a solution, and manganese is selectively precipitated by separation. According to this method, it is possible to save labor in the chemical treatment step for removing manganese in the conventional method.

【0010】[0010]

【発明の実施の形態】本発明のニッケル水素二次電池ス
クラップからの有価金属回収法は、まず、使用済みニッ
ケル水素二次電池スクラップを破砕して、破砕物を得
る。その後破砕物を水中で攪拌し、正、負極集電体、プ
ラスティック類と活物質を分散させて、次の篩別工程
で、活物質を回収しやすくする。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for recovering valuable metals from nickel-metal hydride secondary battery scrap according to the present invention, first, used nickel-metal hydride secondary battery scrap is crushed to obtain crushed material. Thereafter, the crushed material is stirred in water to disperse the positive electrode, the negative electrode current collector, the plastics, and the active material so that the active material can be easily collected in the next sieving step.

【0011】この時セパレーター等のプラスティック類
は浮遊しやすいため、これを利用してプラスティック類
を分離する。水中で分散させた破砕物を篩い分けし、鉄
を主成分とする外容器、正、負極集電体を篩上に、回収
を目的とする有価金属を含む活物質を篩下に分離する。
得られた篩下は、正極材料であるニッケル、コバルトの
水酸化物と、負極材料であるマンガンや希土類元素を含
む水素吸蔵合金の混合物である。
At this time, plastics such as a separator are liable to float, and are used to separate the plastics. The crushed material dispersed in water is sieved, the outer container mainly composed of iron, the positive and negative electrode current collectors are separated on the sieve, and the active material containing valuable metals to be collected is separated under the sieve.
The resulting sieve is a mixture of nickel and cobalt hydroxides as positive electrode materials and a hydrogen storage alloy containing manganese and rare earth elements as negative electrode materials.

【0012】特に本発明の方法では、主目的とするニッ
ケルの回収率を高くするため、水素吸蔵合金中のニッケ
ルも回収する。そのため篩下全量を塩酸酸性で溶解する
こととした。溶解時のpHは3以下にすることが必要で
ある。前記以上のpHであると目的とする有価金属の溶
解率が低下し回収率が低下する原因となる。
In particular, in the method of the present invention, nickel in the hydrogen storage alloy is also recovered in order to increase the recovery rate of nickel, which is the main purpose. For this reason, the entire amount under the sieve was dissolved with hydrochloric acid. The pH at the time of dissolution must be 3 or less. When the pH is higher than the above, the dissolution rate of the target valuable metal is reduced, and the recovery rate is reduced.

【0013】活物質を主成分とする篩下を塩酸で溶解す
る場合は、ほぼ完全に溶解でき、ニッケルの溶解率も9
7%程度の高い液が得られる。この時塩素ガスを吹込む
ことによりマンガンが酸化されて選択的に沈殿する。こ
れを利用し、ニッケル、コバルト、希土類元素などは溶
液中に回収し、マンガンのみを選択的に沈殿させて、分
離回収することができる。
When hydrochloric acid is used to dissolve under a sieve containing an active material as a main component, it can be dissolved almost completely, and the dissolution rate of nickel is 9%.
A liquid as high as about 7% is obtained. At this time, by blowing chlorine gas, manganese is oxidized and selectively precipitated. By utilizing this, nickel, cobalt, rare earth elements and the like can be recovered in a solution, and only manganese can be selectively precipitated to be separated and recovered.

【0014】[0014]

【実施例】(実施例1)直径30mm、高さ50mmの
円筒型のニッケル水素二次電池スクラップをせん段破砕
機の一種である(株)氏家製作所製グッドカッターを用
いて破砕し、5mmの篩を用いて破砕物を篩い分けしな
がら篩上を目視で電極がなくなるまで繰り返し破砕し
た。
(Example 1) A cylindrical nickel-metal hydride secondary battery scrap having a diameter of 30 mm and a height of 50 mm was crushed by using a good cutter manufactured by Ujiie Seisakusho Co., Ltd., which is a kind of column crusher, and was crushed by 5 mm. While crushing the crushed material using a sieve, the crushed material was repeatedly crushed on the sieve until there was no electrode visually.

【0015】正、負極の集電体には鉄−ニッケルめっき
のパンチング板が用いられ、正極と負極を隔てるセパレ
ーターにはポリプロピレン性の不織布が用いられてい
た。得られた破砕物を水中で1時間攪拌した後、浮遊し
たセパレーターを網目が0.5mmの網で掬い取った。
An iron-nickel-plated punched plate was used for the positive and negative electrode current collectors, and a polypropylene nonwoven fabric was used for the separator separating the positive electrode and the negative electrode. After the obtained crushed material was stirred in water for 1 hour, the floating separator was scooped with a mesh having a mesh of 0.5 mm.

【0016】その後、残留物を直径が300mmで篩目
が0.5mmの篩を使用し、手動で湿式篩い分けを行
い、篩下に活物質を得た。得られた活物質25gを使用
し、水500mlに塩素ガスを吹込んで溶解温度:80
℃、溶解時間:2時間、溶解pH:1になるよう塩酸を
添加して制御し、スラリー濃度50g/リットルで溶解
した。なお使用した塩酸の濃度は、6モル/リットル、
吹き込んだ塩素ガスは、0.5リットル/分とした。
Thereafter, the residue was manually subjected to wet sieving using a sieve having a diameter of 300 mm and a sieve of 0.5 mm to obtain an active material under the sieve. Using 25 g of the obtained active material, chlorine gas was blown into 500 ml of water, and the dissolution temperature was 80:
C., dissolution time: 2 hours, dissolution pH was controlled by adding hydrochloric acid to be 1, and the slurry was dissolved at a slurry concentration of 50 g / l. The concentration of hydrochloric acid used was 6 mol / liter,
The blown chlorine gas was 0.5 liter / min.

【0017】(比較例1)比較例1として、実施例1と
同様の条件で、塩素ガスの変わりにエアーを吹き込んで
溶解した。なお使用した塩酸の濃度は、6モル/リット
ル、吹き込んだエアーは、0.5リットル/分とした。
(Comparative Example 1) As Comparative Example 1, under the same conditions as in Example 1, air was blown instead of chlorine gas to dissolve. The concentration of hydrochloric acid used was 6 mol / l, and the air blown was 0.5 l / min.

【0018】(比較例2)比較例2として、実施例1と
同様の条件で、溶解pH1になるよう硫酸を添加して制
御し、エアー吹込みで溶解した。なお使用した硫酸の濃
度は47%、吹き込んだエアーは、0.5リットル/分
とした。
Comparative Example 2 As Comparative Example 2, sulfuric acid was added under the same conditions as in Example 1 so as to obtain a dissolution pH of 1, and the mixture was dissolved by blowing air. The concentration of sulfuric acid used was 47%, and the air blown was 0.5 liter / min.

【0019】実施例、比較例での各元素の溶解率を表1
に示す。表1に示すように、活物質を塩酸+塩素ガス吹
込みで溶解した場合、マンガンの溶解率は2.8%とな
り、マンガンが分離された液が得られた。活物質を塩酸
+エアー吹込みで溶解した場合、硫酸+エアーで溶解し
た場合とも、マンガンもニッケル、コバルト、希土類と
共に溶解するという結果になりマンガンの分離はできな
かった。
Table 1 shows the dissolution rate of each element in Examples and Comparative Examples.
Shown in As shown in Table 1, when the active material was dissolved by blowing hydrochloric acid + chlorine gas, the dissolution rate of manganese was 2.8%, and a liquid from which manganese was separated was obtained. When the active material was dissolved by blowing hydrochloric acid and air, and when dissolving by sulfuric acid and air, manganese was also dissolved together with nickel, cobalt, and rare earth, and manganese could not be separated.

【0020】したがって、活物質を塩酸+塩素ガス吹込
みで溶解することにより、ニッケル、コバルト、希土類
元素は溶液中に回収し、マンガンのみを選択的に沈殿さ
せて、分離回収できることがわかる。
Therefore, it can be seen that by dissolving the active material by blowing hydrochloric acid + chlorine gas, nickel, cobalt, and rare earth elements can be recovered in the solution, and only manganese can be selectively precipitated and separated and recovered.

【0021】[0021]

【発明の効果】本発明による使用済みニッケル水素二次
電池スクラップからの有価金属の回収方法によれば、活
物質の鉱酸浸出時にマンガンをニッケル、コバルト、希
土類元素から沈殿分離させることが可能となり、マンガ
ンの分離工程を省力化して経済的にニッケル水素二次電
池スクラップから有価金属を回収することができる。
According to the method for recovering valuable metals from used nickel-metal hydride secondary battery scraps according to the present invention, manganese can be precipitated and separated from nickel, cobalt and rare earth elements at the time of leaching mineral acids from active materials. In addition, valuable metals can be economically recovered from nickel-metal hydride secondary battery scrap by saving labor in the manganese separation step.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22B 59/00 C22B 3/00 Q H01M 10/54 23/04 Fターム(参考) 4K001 AA07 AA16 AA19 AA39 BA22 CA01 CA02 CA03 CA04 DB04 DB23 5H031 AA02 BB02 BB03 BB09 EE01 EE03 RR02 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22B 59/00 C22B 3/00 Q H01M 10/54 23/04 F term (Reference) 4K001 AA07 AA16 AA19 AA39 BA22 CA01 CA02 CA03 CA04 DB04 DB23 5H031 AA02 BB02 BB03 BB09 EE01 EE03 RR02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル水素二次電池スクラップを破
砕し、篩い分け、磁選、比重分離等の物理分離で得られ
た回収活物質を塩素ガスを吹込みつつ塩酸で溶解し、ニ
ッケル、コバルト、希土類元素を溶液中に回収し、マン
ガンを選択的に沈殿させて、分離回収することを特徴と
するニッケル水素二次電池スクラップからの有価金属回
収法。
1. A nickel hydrogen rechargeable battery scrap is crushed, and the recovered active material obtained by physical separation such as sieving, magnetic separation, and specific gravity separation is dissolved with hydrochloric acid while blowing chlorine gas, and nickel, cobalt, rare earth elements are dissolved. A method for recovering valuable metals from nickel-metal hydride secondary battery scrap, comprising recovering elements in a solution, selectively precipitating manganese, and recovering the separated manganese.
JP2001023260A 2001-01-31 2001-01-31 Valuable metal recovery method from nickel metal hydride secondary battery scrap Expired - Lifetime JP4407061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001023260A JP4407061B2 (en) 2001-01-31 2001-01-31 Valuable metal recovery method from nickel metal hydride secondary battery scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001023260A JP4407061B2 (en) 2001-01-31 2001-01-31 Valuable metal recovery method from nickel metal hydride secondary battery scrap

Publications (2)

Publication Number Publication Date
JP2002226923A true JP2002226923A (en) 2002-08-14
JP4407061B2 JP4407061B2 (en) 2010-02-03

Family

ID=18888565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001023260A Expired - Lifetime JP4407061B2 (en) 2001-01-31 2001-01-31 Valuable metal recovery method from nickel metal hydride secondary battery scrap

Country Status (1)

Country Link
JP (1) JP4407061B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031229A (en) * 2001-07-12 2003-01-31 Tmc Kk Method for recovering valuable metal
JP2010003512A (en) * 2008-06-19 2010-01-07 Toyota Motor Corp Recycling method of battery pack and recycling device of battery pack
JP2010126779A (en) * 2008-11-28 2010-06-10 Sumitomo Metal Mining Co Ltd Method for recovering nickel concentrate from used nickel hydride battery
JP2012036422A (en) * 2010-08-03 2012-02-23 Sumitomo Metal Mining Co Ltd Method for manufacturing nickel containing acid solution
US8974754B2 (en) 2010-08-03 2015-03-10 Sumitomo Metal Mining Co. Ltd. Method for producing nickel-containing acid solution
CN107910612A (en) * 2017-12-06 2018-04-13 贵州红星电子材料有限公司 A kind of method of the Call Provision nickel from waste lithium cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031229A (en) * 2001-07-12 2003-01-31 Tmc Kk Method for recovering valuable metal
JP2010003512A (en) * 2008-06-19 2010-01-07 Toyota Motor Corp Recycling method of battery pack and recycling device of battery pack
US8696785B2 (en) 2008-06-19 2014-04-15 Toyota Jidosha Kabushiki Kaisha Method and apparatus for recycling battery pack
JP2010126779A (en) * 2008-11-28 2010-06-10 Sumitomo Metal Mining Co Ltd Method for recovering nickel concentrate from used nickel hydride battery
JP2012036422A (en) * 2010-08-03 2012-02-23 Sumitomo Metal Mining Co Ltd Method for manufacturing nickel containing acid solution
US8974754B2 (en) 2010-08-03 2015-03-10 Sumitomo Metal Mining Co. Ltd. Method for producing nickel-containing acid solution
CN107910612A (en) * 2017-12-06 2018-04-13 贵州红星电子材料有限公司 A kind of method of the Call Provision nickel from waste lithium cell
CN107910612B (en) * 2017-12-06 2020-04-14 贵州红星电子材料有限公司 Method for recovering cobalt and nickel from waste lithium batteries

Also Published As

Publication number Publication date
JP4407061B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
Innocenzi et al. A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries
JP3918041B2 (en) Method for recovering metals from used nickel-metal hydride batteries
CN100595970C (en) Method for selectively removing copper from waste lithium ion battery
EP2444507B1 (en) Recovery of rare earth metals from waste material by leaching in non-oxidizing acid and by precipitating using sulphates
JP4865745B2 (en) Method for recovering valuable metals from lithium batteries containing Co, Ni, Mn
KR100930453B1 (en) How to Recover Metals from Battery Residues
CN100449011C (en) Method for recovering valuable metal in invalid lithium ion battery
EP2597164A1 (en) Method for separating nikel and cobalt from active materials contained in spent nickel-hydrogen battery
EP0649912B1 (en) Method for collecting valuable metal from nickel-hydrogen secondary cell
KR20220025120A (en) Method for separating copper from nickel and cobalt
JPH10510879A (en) Method for recovering metals from used nickel-metal hydride storage batteries
JP2000015216A (en) Method for recycling positive electrode active material from lithium ion secondary battery
JP4654548B2 (en) Valuable metal recovery method from nickel metal hydride secondary battery scrap
JP4506002B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP4078838B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP4407061B2 (en) Valuable metal recovery method from nickel metal hydride secondary battery scrap
JP4872168B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP4608773B2 (en) Method of recovering valuable metals from used nickel metal hydride secondary batteries
US8974754B2 (en) Method for producing nickel-containing acid solution
JP3516478B2 (en) Effective Metal Recovery Method from Nickel Metal Hydride Battery
JP3532640B2 (en) Method for recovering positive electrode material from nickel-hydrogen secondary battery and method for recovering raw material for recovering effective metal from negative electrode
CN109216821A (en) A kind of recovery method of waste and old lithium titanate battery
JP3504813B2 (en) Method for recovering valuable metals from nickel-metal hydride secondary batteries
Chen et al. A preliminary investigation for spent LiBs recycling
Heegn et al. Closed-Loop Recycling of Nickel, Cobalt and Rare Earth Metals from spent Nickel-Metal Hydride-Batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4407061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

EXPY Cancellation because of completion of term