JP4654548B2 - Valuable metal recovery method from nickel metal hydride secondary battery scrap - Google Patents

Valuable metal recovery method from nickel metal hydride secondary battery scrap Download PDF

Info

Publication number
JP4654548B2
JP4654548B2 JP2001228363A JP2001228363A JP4654548B2 JP 4654548 B2 JP4654548 B2 JP 4654548B2 JP 2001228363 A JP2001228363 A JP 2001228363A JP 2001228363 A JP2001228363 A JP 2001228363A JP 4654548 B2 JP4654548 B2 JP 4654548B2
Authority
JP
Japan
Prior art keywords
nickel
active material
dissolved
sulfuric acid
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001228363A
Other languages
Japanese (ja)
Other versions
JP2003041326A (en
Inventor
篤 福井
正樹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001228363A priority Critical patent/JP4654548B2/en
Publication of JP2003041326A publication Critical patent/JP2003041326A/en
Application granted granted Critical
Publication of JP4654548B2 publication Critical patent/JP4654548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はニッケル水素二次電池スクラップに含まれるニッケル、コバルト、La、Nd、等の有価金属を回収する方法に関する。
【0002】
【従来の技術】
ニッケル水素二次電池では、電極活物質を支持体に保持した正極と負極をポリプロピレン等のセパレーターで分離し、電解液と共に鋼製又はポリプロピレン製の容器に収納してある。一般に、電極活物質の支持体としては多孔質ニッケル板又は鉄にニッケルめっきしたパンチング板が使用され、正極の活物質には水酸化ニッケル及び負極の活物質には水素吸蔵合金が使用されている。
【0003】
このニッケル水素二次電池は、近年ニッケル−カドミウム電池に代わる二次電池として電気自動車のバッテリーや携帯電話等に使用されることにより、その需要が急増している。ニッケル水素二次電池は、ニッケル−カドミウム電池よりも特性が優れ、有害なカドミウムを使用していないため、廃棄した場合でも深刻な公害を発生させるには至らないが、電極活物質に含まれるニッケルや水素吸蔵合金は貴重な資源であるため、これらの有価金属をリサイクルすることが極めて重要である。
【0004】
しかしながら、使用済みのニッケル水素二次電池から有価金属を回収するとしても、電化製品の小型化に伴って電池もコンパクト化が進んでいるため、有価金属を高純度に回収することは容易ではない。また、自動車用のバッテリーに使用されるニッケル水素二次電池は、車の衝突等でも壊れにくい構造となっているため、容易には分解できず、電池すべてを破砕して、破砕物を分別するのが低コストとなる。
【0005】
特にニッケルの回収を目的とし、これらのニッケル水素二次電池の破砕物から有価金属を回収する方法は、磁選、比重分離など種々の物理分離によって容器や極板の主成分である鉄と電極活物質とを分離し、この電極活物質を鉱酸に溶解した溶解液から化学処理法によってニッケルの分離回収が行われる。この化学処理法は、ニッケルを高純度に回収するために、溶解液に含まれる希土類やその他の元素を分離する必要がある。
【0006】
上記物理分離により得られる活物質は、正負極材の混合物であり、これをさらに比重分離によって分離し、負極材は水素吸蔵合金として再利用、正極材は酸で溶解して混入した少量の希土類元素の除去を行う方法がある。しかし、電池を分解して中身を取り出した場合には、正負極材の分離は可能であるが、容器ごと破砕する場合、大きな圧力が加わることにより、正負極材が圧着してしまい、それぞれを物理的に分離することは困難であった。
【0007】
したがって、このような場合、希土類やその他の元素の分離法として活物質を酸で溶解し、溶解液を中和や薬剤を添加して分離する方法があるが、薬剤コストの増加やpH調整、固液分離など工程の複雑さが問題であった。
【0008】
また、破砕、物理分離を経て、容器や極板やセパレーターの大部分を除去して得られる電極活物質には、有価金属以外に細かく破砕されたセパレーターが残留して存在する。このセパレーターが活物質を溶解する際に浮遊してしまい、十分な溶解ができず付着したメタル分が残留する問題があった。
【0009】
そこで、このセパレーターを除去するため、大気中で焙焼した後、焙焼物を硫酸溶解することが考えられるが、焙焼した場合には電極活物質を容易に硫酸に溶解させることができなかった。
【0010】
【発明が解決しようとする課題】
本発明の目的は、使用済みのニッケル水素二次電池から有価金属を回収するに際し、希土類金属の混入の少ないニッケル、コバルトを容易に高効率に回収する方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、上記目的を達成するものとして、まず、使用済みのニッケル水素二次電池を破砕し、篩い分け等の物理分離でセパレーターや容器、極板等の大部分を除去し、電極活物質分離する。得られた電極活物質を亜硫酸ナトリウムを添加して還元しつつ硫酸で溶解する。これにより、ニッケル、コバルトなどの大部分を硫酸での溶解を可能にし、このときLa、Ndのような希土類元素は、残渣中に残留する。この性質を利用し、ニッケル、コバルトと希土類元素とを分離回収することができる。
【0012】
また、あるいは、得られた電極活物質を空気気流中で400〜600℃で焙焼してセパレーター等のプラスティック類をさらに除去した後、亜硫酸ナトリウムを添加した硫酸で溶解することにより、ニッケル、コバルトと希土類元素とを分離回収することができる。
【0013】
一方、物理分離されたセパレーターは、その形状が不織布になっているものが多く、破砕時に内部に活物質が入り込み、そのまま廃棄するとニッケルのロスとなる。したがって、これを焙焼して付着した電極活物質を回収する。得られた電極活物質は、前記方法で得られた活物質と混合して溶解すればよい。
【0014】
これらの手順により、ニッケルを高効率に回収できるとともに、浸出時に残渣や沈澱物として希土類をあらかじめニッケル、コバルトから分離することによって、精製工程を大幅に省力化して効率的にニッケル水素二次電池スクラップから有価金属を分離回収することができる。
【0015】
【発明の実施の形態】
本発明のニッケル水素二次電池スクラップからの有価金属回収法は、まず、使用済みニッケル水素二次電池スクラップを破砕して、破砕物を得る。その後破砕物を水中で攪拌し、正、負極集電体、プラスティック類と活物質を分散させて、次の篩別工程で、活物質を回収しやすくする。
【0016】
この時セパレーター等のプラスティック類は浮遊しやすいため、これを利用してプラスティック類を分離する。たとえば、水中で分散させた破砕物を篩い分けし、外容器、正、負極集電体を篩上に、電極活物質を篩下に物理分離する。
得られた篩下は、ニッケル、コバルトの水酸化物及び希土類元素を含む水素吸蔵合金の混合物である。特に有用なニッケルの回収率を高くするため、水素吸蔵合金中のニッケルも回収する。そのため活物質全量を硫酸で溶解する。
【0017】
(1) 電極活物質の硫酸溶解
電極活物質中のニッケル、コバルト等の金属は、硫酸に可溶であるが、さらにこれら金属の化合物や合金として存在するこれら金属をも溶解させるため、硫酸に亜硫酸ナトリウムを添加して還元し、溶解率を増加させ、回収率を向上させる。一方、希土類元素は、硫酸と亜硫酸ナトリウムにより、一旦溶解したのち、Naと反応し、ナトリウム塩として沈殿する。
【0018】
したがって、亜硫酸ナトリウムを添加した硫酸により、ニッケル、コバルトと希土類元素の高度な分離が可能となる。
【0019】
(2) 電極活物質の焙焼物の硫酸溶解
上記(1)の方法により、ニッケル、コバルトと希土類元素の分離は可能であるが、物理分離された電極活物質にはニッケル、コバルト以外にも、マンガン、亜鉛、希土類元素などさまざまな有用な金属に加え、細かく破砕されたセパレーターが未だ存在する。よって、活物質をこのまま硫酸溶解した際には、セパレーターが浮遊し、セパレーターに付着したメタル分が残留したり、再びセパレーターを分離する工程が必要である。
【0020】
そこで、空気気流中で400〜600℃で焙焼してセパレーターを除去した後、硫酸に亜硫酸ナトリウムを添加して溶解する。このとき、ニッケル、コバルトは、焙焼により酸化しても還元され硫酸に可溶となる。また、La、Nd等の希土類元素は還元されにくく残渣中に残り、あるいは、還元され一旦溶解した場合でもナトリウム塩となり沈殿し、希土類元素を除去した溶解液を得ることができる。
【0021】
(3)セパレーター付着活物質の回収
セパレーターには、その形状が不織布であることから活物質が繊維の間に入り込んでいる。ニッケル量としては少量であるがニッケルの回収率を向上させるためにはセパレーターに付着した活物質を回収することが好ましい。そこで物理分離によりあらかじめ分離したセパレーターを焙焼し、付着活物質を回収する。得られた活物質は上記焙焼物と混合して溶解することで回収できる。
【0022】
【実施例】
(実施例1)
直径30mm、高さ50mmの円筒型のニッケル水素二次電池スクラップをせん段破砕機の一種である(株)氏家製作所製グッドカッターを用いて破砕し、5mmの篩を用いて破砕物を篩い分けしながら篩上を目視で電極がなくなるまで繰り返し破砕した。
【0023】
正、負極の集電体には鉄−ニッケルめっきのパンチング板が用いられ、正極と負極を隔てるセパレーターにはポリプロピレン性の不織布が用いられていた。
【0024】
得られた破砕物を水中で1時間攪拌した後、浮遊したセパレーターを0.5mmの網で掬い取った。その後、残留物を直径300mmの篩目が0.5mmの篩で手動で湿式篩い分けを行い、篩下に活物質を得た。
【0025】
この活物質20gを溶解温度80℃、溶解時間2時間、溶解硫酸溶液のpHを1、スラリー濃度50g/リットルとし、亜硫酸ナトリウムを10g(活物質重量の50%)添加して溶解した。溶解液中のNi,Co,Mn,La,Ndを分析し、各元素の篩下活物質中に含まれる量に対する溶解率とした。結果を表1に示す。
【0026】
(実施例2)
実施例1と同様の方法で、篩下に電極活物質を得た。この活物質中には細かく破砕されたセパレーターが存在するため、活物質20gを空気気流中で焙焼した後、焙焼物を溶解した。焙焼温度は400℃とし、焙焼時間は設定温度までの昇温1時間、保持1時間の計2時間とした。得られた焙焼物の溶解は、溶解温度80℃、溶解時間2時間、溶解硫酸溶液のpHを1、スラリー濃度50g/リットルとした。このままでは、ニッケル等は大部分が酸化物になっており、硫酸だけでは溶解できないので、亜硫酸ナトリウムを10g(篩下活物質重量の50%)添加して溶解した。実施例1と同様に溶解液を分析し溶解率とした。結果を表1に示す。
【0027】
(実施例3)
焙焼温度を600℃とした以外は、実施例2と同様の方法で電極活物質の焙焼物を溶解し分析した。結果を表1に示す。
【0028】
(実施例4)
実施例1の物理分離で得られたセパレーター60gを実施例2と同様の方法で焙焼した。この焙焼物20gを溶解温度80℃、溶解時間2時間、溶解硫酸溶液のpHを1、スラリー濃度50g/リットルとし、亜硫酸ナトリウムを10g(焙焼物重量の50%)添加して溶解した。溶解液を分析し、物理分離されたセパレーター中に含まれる各元素に対する溶解率とした。結果を表1に示す。
【0029】
上記実施例1の方法と実施例4の方法を総合して実施することにより、ニッケルの89.7%とコバルトの94.2%を溶液中に溶解させることができた。なお、このとき、マンガンの溶解率は99.8%、La,Ndの溶解率は、それぞれ、0.35%、0.04%であり、ニッケル、コバルトと希土類元素を効率的に分離することができた。
【0030】
(比較例)
比較例として、実施例1と同様の条件で焙焼すること無く硫酸のみで溶解し、分析した。結果を表1に示す。
【0031】
表1に示すように、硫酸に亜硫酸ナトリウムを添加することにより、ニッケル、コバルトを溶液中に溶解させ、希土類元素を沈殿として分離することができた。
【0032】
また、篩下電極活物質を一旦焙焼し、硫酸に亜硫酸ナトリウムを添加することによっても、ニッケル、コバルトを溶液中に溶解させ、希土類元素を沈殿として分離することができた。焙焼により、ニッケル、コバルトの溶解率の低下と、溶解液中の希土類元素量が増加しているが、焙焼によって、セパレーター分が除去されているので、再びセパレーターを分離除去する必要が無く、工業的には容易な方法である。
【0033】
また、焙焼温度を高くすると、ニッケルコバルトの溶解率が低下し、希土類元素の溶解率が上昇するので、焙焼温度はセパレーターを除去できる程度に低温で行う方が好ましく、600℃程度が上限である。
【0034】
表1に実施例比較例の溶解率をまとめて示す。
【0035】
【表1】

Figure 0004654548
【0036】
【発明の効果】
本発明による使用済みニッケル水素二次電池からの有価金属の回収方法により、電極活物質中のニッケル、コバルトを溶液として、希土類元素を沈殿として容易に効率良く分離回収できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering valuable metals such as nickel, cobalt, La, and Nd contained in nickel-hydrogen secondary battery scrap.
[0002]
[Prior art]
In a nickel metal hydride secondary battery, a positive electrode and a negative electrode holding an electrode active material on a support are separated by a separator such as polypropylene, and stored in a steel or polypropylene container together with an electrolytic solution. In general, a porous nickel plate or a punching plate obtained by nickel plating on iron is used as the support for the electrode active material, nickel hydroxide is used for the positive electrode active material, and a hydrogen storage alloy is used for the active material for the negative electrode. .
[0003]
In recent years, the demand for nickel-metal hydride secondary batteries has been rapidly increased by being used in batteries for electric vehicles, mobile phones, and the like as secondary batteries that replace nickel-cadmium batteries. Nickel metal hydride secondary batteries have better characteristics than nickel-cadmium batteries and do not use harmful cadmium. Therefore, even if discarded, nickel-hydrogen secondary batteries do not cause serious pollution. Since hydrogen storage alloys are valuable resources, it is extremely important to recycle these valuable metals.
[0004]
However, even when recovering valuable metals from used nickel metal hydride secondary batteries, it is not easy to recover valuable metals with high purity because the batteries are becoming more compact as electric appliances become smaller. . In addition, nickel metal hydride secondary batteries used in automobile batteries have a structure that is hard to break even in the event of a car collision. Therefore, they cannot be easily disassembled, and all the batteries are crushed and the crushed materials are separated. The cost is low.
[0005]
In particular, for the purpose of recovering nickel, the method of recovering valuable metals from the crushed material of these nickel metal hydride secondary batteries is based on various physical separations such as magnetic separation and specific gravity separation, as well as iron and electrode active components that are the main components of containers and electrode plates. The material is separated and nickel is separated and recovered from the solution obtained by dissolving the electrode active material in mineral acid by a chemical treatment method. In this chemical treatment method, in order to recover nickel with high purity, it is necessary to separate rare earth and other elements contained in the solution.
[0006]
The active material obtained by the above physical separation is a mixture of positive and negative electrode materials, further separated by specific gravity separation, the negative electrode material is reused as a hydrogen storage alloy, and the positive electrode material is a small amount of rare earth mixed by dissolving with an acid. There is a method for removing elements. However, when the battery is disassembled and the contents are taken out, it is possible to separate the positive and negative electrode materials, but when crushing the whole container, the positive and negative electrode materials are crimped by applying a large pressure, and It was difficult to separate physically.
[0007]
Therefore, in such a case, as a method for separating rare earth and other elements, there is a method in which an active material is dissolved with an acid, and the solution is neutralized or separated by adding a chemical. The complexity of processes such as solid-liquid separation was a problem.
[0008]
In addition, in the electrode active material obtained by removing most of the container, electrode plate and separator through crushing and physical separation, a finely crushed separator remains in addition to valuable metals. When this separator melt | dissolved the active material, it floated, and there existed a problem that the metal part which adhered cannot remain | survive sufficiently but remained.
[0009]
Therefore, in order to remove this separator, it is conceivable that the roasted product is dissolved in sulfuric acid after roasting in the atmosphere. However, when roasted, the electrode active material could not be easily dissolved in sulfuric acid. .
[0010]
[Problems to be solved by the invention]
It is an object of the present invention to provide a method for easily and efficiently recovering nickel and cobalt that are rarely mixed with rare earth metals when recovering valuable metals from used nickel-hydrogen secondary batteries.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention first crushes a used nickel-hydrogen secondary battery, and removes most of separators, containers, electrode plates, etc. by physical separation such as sieving, etc. To separate. The obtained electrode active material is dissolved in sulfuric acid while reducing by adding sodium sulfite. Thereby, most of nickel, cobalt, etc. can be dissolved with sulfuric acid, and at this time, rare earth elements such as La and Nd remain in the residue. Utilizing this property, nickel, cobalt, and rare earth elements can be separated and recovered.
[0012]
Alternatively, the obtained electrode active material is roasted at 400 to 600 ° C. in an air stream to further remove plastics such as a separator, and then dissolved in sulfuric acid to which sodium sulfite is added, whereby nickel, cobalt And rare earth elements can be separated and recovered.
[0013]
On the other hand, many physically separated separators are made of non-woven fabric, and the active material enters the inside during crushing, and if discarded as it is, loss of nickel occurs. Therefore, the attached electrode active material is recovered by baking. The obtained electrode active material may be mixed and dissolved with the active material obtained by the above method.
[0014]
Through these procedures, nickel can be recovered with high efficiency, and by separating rare earth from nickel and cobalt in advance as residues and precipitates during leaching, the refining process can be saved significantly and nickel-hydrogen secondary battery scrap can be efficiently saved. Valuable metals can be separated and recovered from
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the method for recovering valuable metals from nickel metal hydride secondary battery scraps of the present invention, first, used nickel metal hydride secondary battery scraps are crushed to obtain crushed materials. Thereafter, the crushed material is stirred in water to disperse the positive and negative electrode current collectors, plastics and the active material, and the active material is easily recovered in the next sieving step.
[0016]
At this time, since plastics such as a separator are likely to float, the plastics are separated using this. For example, the crushed material dispersed in water is sieved, and the outer container, the positive and negative electrode current collectors are physically separated on the sieve, and the electrode active material is physically separated on the sieve.
The obtained sieve is a mixture of a hydrogen storage alloy containing nickel, cobalt hydroxide and a rare earth element. In order to increase the recovery rate of particularly useful nickel, nickel in the hydrogen storage alloy is also recovered. Therefore, the entire active material is dissolved with sulfuric acid.
[0017]
(1) Sulfuric acid dissolution of electrode active material Metals such as nickel and cobalt in the electrode active material are soluble in sulfuric acid, but in order to dissolve these metals present as compounds and alloys of these metals, Add sodium sulfite to reduce, increase dissolution rate and improve recovery. On the other hand, rare earth elements are once dissolved by sulfuric acid and sodium sulfite, and then react with Na to precipitate as a sodium salt.
[0018]
Therefore, the sulfuric acid added with sodium sulfite enables high-level separation of nickel, cobalt and rare earth elements.
[0019]
(2) Sulfuric acid dissolution of the electrode active material roasted material According to the method of (1) above, separation of nickel, cobalt and rare earth elements is possible, but in addition to nickel and cobalt, In addition to various useful metals such as manganese, zinc, and rare earth elements, there are still finely crushed separators. Therefore, when the active material is dissolved in the sulfuric acid as it is, a step of separating the separator is necessary because the separator floats and the metal attached to the separator remains.
[0020]
Then, after baking at 400-600 degreeC in an air stream and removing a separator, sodium sulfite is added and melt | dissolved in a sulfuric acid. At this time, even if nickel and cobalt are oxidized by roasting, they are reduced and become soluble in sulfuric acid. In addition, rare earth elements such as La and Nd are hardly reduced and remain in the residue, or even when reduced and once dissolved, they are precipitated as sodium salts to obtain a solution from which the rare earth elements are removed.
[0021]
(3) Separation of separator-attached active material Since the shape of the separator is a nonwoven fabric, the active material has entered between the fibers. Although the amount of nickel is small, in order to improve the recovery rate of nickel, it is preferable to recover the active material attached to the separator. Therefore, the separator separated in advance by physical separation is roasted to recover the attached active material. The obtained active material can be recovered by mixing with the roasted product and dissolving it.
[0022]
【Example】
Example 1
Cylindrical nickel-metal hydride rechargeable battery scrap with a diameter of 30 mm and a height of 50 mm is crushed using a good cutter manufactured by Ujiie Manufacturing Co., Ltd. Then, the screen was repeatedly crushed until the electrode disappeared visually.
[0023]
An iron-nickel plated punching plate was used for the positive and negative current collectors, and a polypropylene nonwoven fabric was used for the separator separating the positive and negative electrodes.
[0024]
The obtained crushed material was stirred in water for 1 hour, and then the floating separator was scraped off with a 0.5 mm net. Thereafter, the residue was wet-screened manually with a sieve having a diameter of 300 mm and a sieve having a diameter of 0.5 mm to obtain an active material under the sieve.
[0025]
20 g of this active material was dissolved at a dissolution temperature of 80 ° C., a dissolution time of 2 hours, the pH of the dissolved sulfuric acid solution was 1, the slurry concentration was 50 g / liter, and 10 g of sodium sulfite (50% of the active material weight) was added. Ni, Co, Mn, La, and Nd in the solution were analyzed, and the dissolution rate relative to the amount of each element contained in the sieving active material was determined. The results are shown in Table 1.
[0026]
(Example 2)
In the same manner as in Example 1, an electrode active material was obtained under the sieve. Since a finely crushed separator is present in this active material, 20 g of the active material was roasted in an air stream, and then the roast was dissolved. The roasting temperature was 400 ° C., and the roasting time was 1 hour for raising the temperature to the set temperature and 1 hour for holding for 2 hours. The obtained baked product was dissolved at a dissolution temperature of 80 ° C., a dissolution time of 2 hours, a pH of the dissolved sulfuric acid solution of 1, and a slurry concentration of 50 g / liter. In this state, nickel and the like are mostly oxides and cannot be dissolved only by sulfuric acid. Therefore, 10 g of sodium sulfite (50% of the weight of the under-sieving active material) was added and dissolved. The solution was analyzed in the same manner as in Example 1 to obtain the dissolution rate. The results are shown in Table 1.
[0027]
(Example 3)
Except for the roasting temperature of 600 ° C., the electrode active material roast was dissolved and analyzed in the same manner as in Example 2. The results are shown in Table 1.
[0028]
Example 4
60 g of the separator obtained by physical separation in Example 1 was roasted in the same manner as in Example 2. 20 g of the baked product was dissolved at a dissolution temperature of 80 ° C., a dissolution time of 2 hours, the pH of the dissolved sulfuric acid solution was 1, the slurry concentration was 50 g / liter, and 10 g of sodium sulfite (50% of the weight of the baked product) was added. The dissolved solution was analyzed and used as the dissolution rate for each element contained in the physically separated separator. The results are shown in Table 1.
[0029]
By combining the method of Example 1 and the method of Example 4 above, 89.7% of nickel and 94.2% of cobalt could be dissolved in the solution. At this time, the dissolution rate of manganese was 99.8%, and the dissolution rates of La and Nd were 0.35% and 0.04%, respectively, and nickel, cobalt, and rare earth elements could be efficiently separated.
[0030]
(Comparative example)
As a comparative example, the sample was dissolved and analyzed only with sulfuric acid without roasting under the same conditions as in Example 1. The results are shown in Table 1.
[0031]
As shown in Table 1, by adding sodium sulfite to sulfuric acid, nickel and cobalt were dissolved in the solution, and the rare earth elements could be separated as precipitates.
[0032]
Also, by roasting the electrode active material under the sieve once and adding sodium sulfite to the sulfuric acid, it was possible to dissolve nickel and cobalt in the solution and separate the rare earth element as a precipitate. Due to roasting, the dissolution rate of nickel and cobalt is decreased and the amount of rare earth elements in the solution is increased. However, since the separator is removed by roasting, there is no need to separate and remove the separator again. This is an industrially easy method.
[0033]
Moreover, since the dissolution rate of nickel cobalt decreases and the dissolution rate of rare earth elements increases when the roasting temperature is increased, the roasting temperature is preferably low enough to remove the separator, and the upper limit is about 600 ° C. It is.
[0034]
Table 1 summarizes the dissolution rates of the comparative examples.
[0035]
[Table 1]
Figure 0004654548
[0036]
【The invention's effect】
By the method for recovering valuable metals from a used nickel metal hydride secondary battery according to the present invention, nickel and cobalt in the electrode active material can be easily separated and recovered as solutions and rare earth elements as precipitates.

Claims (3)

使用済みニッケル水素二次電池スクラップを破砕し、篩い分け等の物理分離により得られた電極活物質を分離した後、この電極活物質を亜硫酸ナトリウムを添加した硫酸で溶解し、ニッケル、コバルトを硫酸溶液中に溶解させ、希土類元素を残渣中に残すことを特徴とするニッケル水素二次電池スクラップからの有価金属回収方法。After scraping used nickel metal hydride secondary battery scraps and separating the electrode active material obtained by physical separation such as sieving, the electrode active material is dissolved in sulfuric acid to which sodium sulfite is added, and nickel and cobalt are dissolved in sulfuric acid. A method for recovering valuable metals from nickel-metal hydride secondary battery scraps, characterized by dissolving in a solution and leaving rare earth elements in the residue. 使用済みニッケル水素二次電池スクラップを破砕し、篩い分け等の物理分離により得られた電極活物質を分離した後、この電極活物質を400〜600℃の大気中で焙焼して、さらに電極活物質中に含まれるセパレーター屑を除去し、得られた焙焼物を亜硫酸ナトリウムを添加した硫酸で溶解し、ニッケル、コバルトを硫酸溶液中に溶解させ、希土類元素を残渣中に残すことを特徴とするニッケル水素二次電池スクラップからの有価金属回収方法。After scraping used nickel metal hydride secondary battery scraps and separating the electrode active material obtained by physical separation such as sieving, the electrode active material is roasted in the atmosphere of 400 to 600 ° C. The separator waste contained in the active material is removed, and the obtained roasted product is dissolved in sulfuric acid added with sodium sulfite, nickel and cobalt are dissolved in the sulfuric acid solution, and rare earth elements are left in the residue. To recover valuable metals from nickel-metal hydride secondary battery scrap. 物理分離で得られたセパレーターを400〜600℃の大気中で焙焼した後、得られた焙焼物を亜硫酸ナトリウムを添加した硫酸で溶解し、セパレーターに付着した活物質を回収する請求項1または2に記載のニッケル水素二次電池スクラップからの有価金属回収方法。The separator obtained by physical separation is roasted in the atmosphere of 400 to 600 ° C, and then the obtained roasted product is dissolved in sulfuric acid to which sodium sulfite is added to recover the active material attached to the separator. The valuable metal recovery method from the nickel-hydrogen secondary battery scrap of 2.
JP2001228363A 2001-07-27 2001-07-27 Valuable metal recovery method from nickel metal hydride secondary battery scrap Expired - Lifetime JP4654548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001228363A JP4654548B2 (en) 2001-07-27 2001-07-27 Valuable metal recovery method from nickel metal hydride secondary battery scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001228363A JP4654548B2 (en) 2001-07-27 2001-07-27 Valuable metal recovery method from nickel metal hydride secondary battery scrap

Publications (2)

Publication Number Publication Date
JP2003041326A JP2003041326A (en) 2003-02-13
JP4654548B2 true JP4654548B2 (en) 2011-03-23

Family

ID=19060883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001228363A Expired - Lifetime JP4654548B2 (en) 2001-07-27 2001-07-27 Valuable metal recovery method from nickel metal hydride secondary battery scrap

Country Status (1)

Country Link
JP (1) JP4654548B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102864319A (en) * 2011-10-08 2013-01-09 中国恩菲工程技术有限公司 Method for leaching rare earth elements from nickel oxide ore

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4243230B2 (en) * 2004-08-25 2009-03-25 日本磁力選鉱株式会社 How to collect rare earth
JP5262627B2 (en) * 2008-11-28 2013-08-14 住友金属鉱山株式会社 Method for recovering nickel concentrate from used nickel metal hydride batteries
JP5326610B2 (en) * 2009-02-02 2013-10-30 住友金属鉱山株式会社 Method for recovering metals from used nickel metal hydride batteries
JP5012970B2 (en) * 2010-07-21 2012-08-29 住友金属鉱山株式会社 Method for separating nickel and cobalt from active materials contained in used nickel metal hydride batteries
CN103384002B (en) * 2012-05-04 2017-07-07 湖南科飞特高新技术有限公司 A kind of method that utilization nickel cobalt slag prepares electronic ternary material precursor
JP6402535B2 (en) * 2014-08-21 2018-10-10 住友金属鉱山株式会社 Method for recovering valuable metals from waste nickel metal hydride batteries
CN106229577A (en) * 2016-08-23 2016-12-14 金川集团股份有限公司 The method that the mixing of a kind of waste nickel hydrogen battery both positive and negative polarity material is leached
CN107363263B (en) * 2017-07-27 2019-04-02 赣州市钜磁科技有限公司 A kind of recovery method of waste and old neodymium iron boron
CN107881341A (en) * 2017-12-08 2018-04-06 上海产业技术研究院 Method of comprehensive utilization based on hydrometallurgical processes middle and high concentration sodium sulfate wastewater
CN108767354B (en) * 2018-05-29 2021-02-26 中南大学 Method for recovering valuable metals from waste lithium ion battery anode materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982371A (en) * 1995-09-18 1997-03-28 Mitsui Mining & Smelting Co Ltd Valuable material recovering method from waste nickel-hydrogen secondary battery
JPH1088250A (en) * 1996-09-10 1998-04-07 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from used nickel-hydrogen secondary battery
JPH11265736A (en) * 1998-03-17 1999-09-28 Toshiba Corp Treatment method for waste battery and treatment equipment
JPH11293357A (en) * 1998-04-14 1999-10-26 Hiroyuki Nakazawa Selective recovery of cobalt compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982371A (en) * 1995-09-18 1997-03-28 Mitsui Mining & Smelting Co Ltd Valuable material recovering method from waste nickel-hydrogen secondary battery
JPH1088250A (en) * 1996-09-10 1998-04-07 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from used nickel-hydrogen secondary battery
JPH11265736A (en) * 1998-03-17 1999-09-28 Toshiba Corp Treatment method for waste battery and treatment equipment
JPH11293357A (en) * 1998-04-14 1999-10-26 Hiroyuki Nakazawa Selective recovery of cobalt compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102864319A (en) * 2011-10-08 2013-01-09 中国恩菲工程技术有限公司 Method for leaching rare earth elements from nickel oxide ore
CN102864319B (en) * 2011-10-08 2015-02-04 中国恩菲工程技术有限公司 Method for leaching rare earth elements from nickel oxide ore

Also Published As

Publication number Publication date
JP2003041326A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
CN107017443B (en) A method of the comprehensively recovering valuable metal from waste and old lithium ion battery
JP4865745B2 (en) Method for recovering valuable metals from lithium batteries containing Co, Ni, Mn
JP3918041B2 (en) Method for recovering metals from used nickel-metal hydride batteries
KR100930453B1 (en) How to Recover Metals from Battery Residues
US8888892B2 (en) Method for separating nickel and cobalt from active material contained in spent nickel-metal hydride battery
JP6271964B2 (en) Method for recovering metal from cathode material for lithium ion battery
EP0649912B1 (en) Method for collecting valuable metal from nickel-hydrogen secondary cell
CN106834703B (en) A kind of leaching method of waste lithium ion cell anode active material
EP2444507A1 (en) Recovery of rare earth metals from waste material by leaching in non-oxidizing acid and by precipitating using sulphates
US8246717B1 (en) Process for the recovery of metals from used nickel/metal hydride batteries
JP4654548B2 (en) Valuable metal recovery method from nickel metal hydride secondary battery scrap
JP4506002B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP6402535B2 (en) Method for recovering valuable metals from waste nickel metal hydride batteries
JP4078838B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP4407061B2 (en) Valuable metal recovery method from nickel metal hydride secondary battery scrap
JP4608773B2 (en) Method of recovering valuable metals from used nickel metal hydride secondary batteries
JP3183619B2 (en) Method for recovering valuable resources from secondary batteries for electric vehicles
JP4872168B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
EP3006580A1 (en) Method for producing nickel-containing acidic solution
US8974754B2 (en) Method for producing nickel-containing acid solution
JP3516478B2 (en) Effective Metal Recovery Method from Nickel Metal Hydride Battery
JP5541512B2 (en) Method for producing nickel-containing acidic solution
JP3532640B2 (en) Method for recovering positive electrode material from nickel-hydrogen secondary battery and method for recovering raw material for recovering effective metal from negative electrode
CN109216821A (en) Recovery method of waste lithium titanate battery
JP3504813B2 (en) Method for recovering valuable metals from nickel-metal hydride secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4654548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term