JPH11265736A - Treatment method for waste battery and treatment equipment - Google Patents

Treatment method for waste battery and treatment equipment

Info

Publication number
JPH11265736A
JPH11265736A JP6708198A JP6708198A JPH11265736A JP H11265736 A JPH11265736 A JP H11265736A JP 6708198 A JP6708198 A JP 6708198A JP 6708198 A JP6708198 A JP 6708198A JP H11265736 A JPH11265736 A JP H11265736A
Authority
JP
Japan
Prior art keywords
solution
oxidizing
treatment
cobalt
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6708198A
Other languages
Japanese (ja)
Other versions
JP3625638B2 (en
Inventor
Yoshiki Tomioka
由喜 富岡
Fuminobu Tezuka
史展 手塚
Kunihiko Sasaki
佐々木  邦彦
Masaru Hayashi
勝 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6708198A priority Critical patent/JP3625638B2/en
Publication of JPH11265736A publication Critical patent/JPH11265736A/en
Application granted granted Critical
Publication of JP3625638B2 publication Critical patent/JP3625638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly safe practical disposal treatment method for batteries which causing little environmental load, and a treatment equipment. SOLUTION: In this treatment method for waste batteries, electrode active material of a collected battery containing at least one of cobalt, nickel or manganese is dipped in a treatment tank 3 to store oxidizing treatment solution 8 containing at least one kind of oxidizing acid as sulfuric acid and nitric acid and hydrogen peroxide, and transition metal such as cobalt in the active material is separated and recovered as inorganic metallic salt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄電池の処理方
法および処理装置に係り、さらに詳しくは使用済み電池
の電極部を成すコバルトなどの遷移金属の回収方法、こ
の回収方法の実施に適する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating a waste battery, and more particularly to a method for recovering a transition metal such as cobalt forming an electrode portion of a used battery, and an apparatus suitable for carrying out the method. About.

【0002】[0002]

【従来の技術】近年、ブック型コンピューターや携帯電
話といった電子機器用の電池の需要は飛躍的に急増して
いる。特に、リチウムイオン二次電池は、単位重量や単
位体積当たりの電池容量が大きく、電圧が高いといった
多くのすぐれた特性を持っているため、小型化が進めら
れている電子機器用電源として不可欠の二次電池と考え
られている。また、大気汚染が深刻化する米国カリフォ
ルニア州では、1998年から電気自動車(EV)販売を促す
プログラムが始まる予定で、このバッテリー(電源)と
しても、リチウムイオン二次電池は開発が進めらてお
り、さらなる需要・消費の急増が予想される。そして、
この種電池の消費量の増加は、必然的に、電池の大量廃
棄処分(処理)を招来することになるので、何らかの形
での廃棄処理を要する。
2. Description of the Related Art In recent years, the demand for batteries for electronic devices such as book-type computers and mobile phones has increased dramatically. In particular, lithium-ion secondary batteries have many excellent characteristics, such as high battery capacity per unit weight and unit volume, and high voltage, so they are indispensable as power supplies for electronic devices that are being miniaturized. It is considered a secondary battery. In California, where air pollution is worsening, a program to promote sales of electric vehicles (EVs) is scheduled to begin in 1998. Lithium-ion secondary batteries are being developed as a battery (power supply). Demand and consumption are expected to increase sharply. And
An increase in the consumption of this type of battery inevitably leads to a large amount of disposal (processing) of the battery, so that some form of disposal is required.

【0003】しかしながら、リチウムイオン二次電池や
ニッケル水素二次電池などは、実用化が進められて年月
も浅いため、実用レベルの廃棄処理方法ないし手段も、
試行錯誤の段階にあるのが実情である。
However, since lithium ion secondary batteries and nickel-metal hydride secondary batteries have been put into practical use and have not been used for many years, practical disposal methods and means have not been developed.
The fact is in the trial and error stage.

【0004】[0004]

【発明が解決しようとする課題】前記リチウムイオン二
次電池の場合、リチウムはイオンとして存在するとき安
定であるが、メタル化すると反応性が高くなって危険性
を伴う。したがって、安全面からも、廃棄されるリチウ
ムイオン二次電池を集中回収し、適格な方法で廃棄処理
することが望まれる。すなわち、リチウムイオン二次電
池は、メタル状化すると高い反応性を呈するリチウムを
使用しているため、発火や爆発などの危険性が高く、ま
た、廃棄電池をそのまま焼却炉で融解・分解処理など行
うと、電池内部が高圧化して、爆発の危険性を招来する
などの問題がある。
In the case of the above-mentioned lithium ion secondary battery, lithium is stable when present as an ion, but when it is metallized, the reactivity becomes high and there is a danger. Therefore, from the viewpoint of safety, it is desired that the lithium ion secondary batteries to be discarded are collectively collected and disposed of by an appropriate method. In other words, since lithium ion secondary batteries use lithium, which exhibits high reactivity when converted to a metal form, there is a high risk of ignition or explosion.In addition, waste batteries can be directly melted and decomposed in an incinerator. If this is done, there is a problem that the internal pressure of the battery becomes high and this may cause a risk of explosion.

【0005】さらに、資源ないし環境的にみると、電極
要素中のコバルト、ニッケル、マンガンなどの遷移金属
を回収し、再利用する必要性も高い。また、一方では、
電解液として含まれるフッ素やリンが有害物質を副生成
する可能性も高いので、環境汚染を引き起こす恐れもあ
り、より適正な廃棄処理が望まれる。
Further, from the viewpoint of resources or the environment, it is highly necessary to recover and reuse transition metals such as cobalt, nickel and manganese in the electrode element. On the other hand,
Since there is a high possibility that fluorine or phosphorus contained in the electrolytic solution will produce harmful substances, there is a risk of causing environmental pollution, and more appropriate disposal treatment is desired.

【0006】ところで、前記リチウムイオン二次電池な
どの小型電池の多くは、電池単体で使用される場合と、
複数個の電池単体を樹脂製のパッケージーにてパック化
した構造で使用される場合がある。特に、廃棄物が電池
パックの場合は、環境に対する負荷を小さくするという
観点から、燃焼によらない分離技術が望まれる。たとえ
ば分離のための前処理として、電池単体の脱離や樹脂製
パッケージーの破砕などの手段で樹脂製パッケージと分
離する一方、内部の電池単体を解体する必要がある。
[0006] By the way, most of small batteries such as the above-mentioned lithium ion secondary battery are used when the battery is used alone.
In some cases, the battery is used in a structure in which a plurality of single batteries are packed in a resin package. In particular, when the waste is a battery pack, a separation technique that does not rely on combustion is desired from the viewpoint of reducing the load on the environment. For example, as a pretreatment for separation, it is necessary to separate the battery unit from the resin package by means such as detaching the battery unit or crushing the resin package, and disassemble the internal battery unit.

【0007】上記機械的な分離手法は、燃焼によらない
ため、有害物質の拡散が抑えられ、環境への負荷を低減
させる点で有効である。しかし、この手段は、破砕ない
し粉砕など機械的な分離手段のみに頼っているため、分
離効率に限界があり、金属類の回収率が低いという問題
点がある。
[0007] Since the above mechanical separation method does not rely on combustion, it is effective in suppressing the diffusion of harmful substances and reducing the burden on the environment. However, since this means relies only on mechanical separation means such as crushing or pulverization, the separation efficiency is limited and the recovery rate of metals is low.

【0008】本発明は上記事情に対処してなされたもの
で、安全性が高く、かつ環境負荷の少ない実用的な電池
の廃棄処理方法および処理装置の提供を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a practical battery disposal method and a processing apparatus which have high safety and low environmental load.

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、酸化
性酸の少なくとも1種と過酸化水素とを含む酸化性処理
溶液に、コバルト、ニッケルおよびマンガンの少なくと
も1種を含む破棄(使用済み)電池電極を浸漬し、前記
電池電極中の遷移金属を無機塩として分離し、回収する
ことを特徴とする廃電池の処理方法である。
According to a first aspect of the present invention, an oxidizing solution containing at least one oxidizing acid and hydrogen peroxide contains at least one of cobalt, nickel and manganese. (D) A method for treating a waste battery, comprising immersing a battery electrode, separating and collecting a transition metal in the battery electrode as an inorganic salt.

【0010】請求項2の発明は、コバルト、ニッケルお
よびマンガンの少なくとも1種を含む使用済み電池電極
を処理する処理槽と、過酸化水素溶液および酸化性酸溶
液を混合して酸化性処理溶液を調製した後、前記処理槽
に供給する酸化性処理溶液の調製供給機構と、前記処理
槽内での使用済み電池電極処理後の酸化性処理溶液を回
収する処理液回収槽と、前記処理液回収槽内にアルカリ
性溶液を供給し、前記遷移金属を無機塩化して沈殿させ
るアルカリ性溶液供給機構と、前記沈殿させた遷移金属
の無機塩を酸化性処理溶液から分離する金属無機塩分離
回収機構とを有することを特徴とする廃電池の処理装置
である。
According to a second aspect of the present invention, a treatment tank for treating a used battery electrode containing at least one of cobalt, nickel and manganese, and a hydrogen peroxide solution and an oxidizing acid solution are mixed to form an oxidizing treatment solution. A mechanism for preparing and supplying an oxidizing treatment solution to be supplied to the treatment tank after preparation, a treatment liquid collection tank for collecting the oxidizing treatment solution after the used battery electrode treatment in the treatment tank, and a treatment liquid collection tank An alkaline solution supply mechanism for supplying an alkaline solution into the tank and inorganic chloride of the transition metal to precipitate, and a metal inorganic salt separation and recovery mechanism for separating the precipitated transition metal inorganic salt from the oxidizing treatment solution. It is a waste battery processing device characterized by having.

【0011】すなわち、上記発明は、硫酸や硝酸などの
酸化性酸の少なくとも1種と過酸化水素とを含む溶液
に、コバルト、ニッケルおよびマンガンの少なくとも1
種を含む活物質などを浸漬した場合、電極活物質に含ま
れている3価以上のコバルトなどが容易に、2価のコバ
ルトに還元されて、硝酸イオンや硫酸イオンなどと塩を
生成し易くなることに着目してなされたものである。こ
こで、還元剤としては、硝酸や硫酸などの酸化性酸と共
存できる過酸化水素を必須とするが、その他、水素、硫
化水素、二酸化硫黄、亜硫酸ナトリウム、塩化第二ス
ズ、硫化第二鉄の少なくとも1種を併用することもでき
る。
That is, the present invention provides a solution containing at least one oxidizing acid such as sulfuric acid or nitric acid and hydrogen peroxide in a solution containing at least one of cobalt, nickel and manganese.
When an active material containing a seed is immersed, trivalent or more valent cobalt contained in the electrode active material is easily reduced to divalent cobalt, and a salt is easily generated with nitrate ions or sulfate ions. It is made by paying attention to becoming. Here, as the reducing agent, hydrogen peroxide which can coexist with an oxidizing acid such as nitric acid or sulfuric acid is essential, but in addition, hydrogen, hydrogen sulfide, sulfur dioxide, sodium sulfite, stannic chloride, ferric sulfide At least one of them can be used in combination.

【0012】なお、過酸化水素および硝酸や硫酸など
(酸化性酸)を必須とする溶液の調製は、同時混合
(事前混合)、酸化性酸を添加後に過酸化水素を添加
する方法が採られる。すなわち、過酸化水素は硝酸や硫
酸など酸化性酸と共存することにより有効にコバルトな
どを還元するが、過酸化水素を先に添加した場合は被処
理体と接触することにより自己分解して所要の還元反応
を起こさない恐れがある。特に、連続処理の場合は過酸
化水素と酸化性酸とを、たとえばミキサーなどを用いて
同時混合する方が好ましい。
For the preparation of a solution essentially containing hydrogen peroxide, nitric acid, sulfuric acid and the like (oxidizing acid), a method of simultaneous mixing (premixing), a method of adding hydrogen peroxide after adding an oxidizing acid, and the like are employed. . In other words, hydrogen peroxide effectively reduces cobalt and the like by coexisting with oxidizing acids such as nitric acid and sulfuric acid. May not occur. In particular, in the case of continuous treatment, it is preferable to simultaneously mix hydrogen peroxide and an oxidizing acid using, for example, a mixer.

【0013】図1は、上記過酸化水素と酸化性酸(たと
えば硝酸)との混合手段と、電極活物質(コバルト含有
量 120mg)からのコバルト抽出量ないし回収量(mg)と
の関係例を示す。図1において、Aは過酸化水素と酸化
性酸とを同時に加えて酸化性処理溶液を混合調製し場
合、Bは酸化性酸を先に加えてから後に過酸化水素を加
えて酸化性処理溶液を混合調製し場合、Cは過酸化水素
を先に加えてから後に酸化性酸を加えて酸化性処理溶液
を混合調製した場合をそれぞれ示す。
FIG. 1 shows an example of the relationship between the mixing means of hydrogen peroxide and an oxidizing acid (eg, nitric acid) and the amount of cobalt extracted or recovered (mg) from the electrode active material (cobalt content 120 mg). Show. In FIG. 1, A is a case where hydrogen peroxide and an oxidizing acid are simultaneously added to mix and prepare an oxidizing treatment solution, and B is an oxidizing treatment solution in which an oxidizing acid is added first and then hydrogen peroxide is added. C shows the case where hydrogen peroxide was added first and then the oxidizing acid was added to mix and prepare the oxidizing treatment solution.

【0014】なお、この過酸化水素と酸化性酸を含む酸
化性処理溶液に被処理体を浸漬してからその溶液を強制
撹拌すると、過酸化水素の自己分解が促進されるので強
制撹拌は回避すべきである。強制撹拌を行わなくとも、
過酸化水素の自己分解で生成する酸素泡によって溶液は
緩やかに撹拌され、かつ発熱を伴うので熱効率もよい。
また、過酸化水素、硝酸や硫酸などの酸化性酸を必須
とする酸化性処理溶液の酸濃度は、酸化性酸の取扱易さ
などを考慮すると、一般的に、 0.5〜 2規定程度である
が、コバルト成分などの濃度に対応して 0.5規定未満、
あるいは 2規定を超えた濃度とすることも可能である。
しかし、いずれの場合も、硝酸、硫酸などの酸化性酸の
濃度は、コバルト成分などが塩となるに十分な量である
ように設定される。
If the object to be treated is immersed in the oxidizing treatment solution containing hydrogen peroxide and oxidizing acid and then the solution is forcibly stirred, the self-decomposition of hydrogen peroxide is promoted, so that forced stirring is avoided. Should. Even without forced stirring,
The solution is gently stirred by oxygen bubbles generated by the self-decomposition of hydrogen peroxide, and generates heat.
In addition, the acid concentration of the oxidizing treatment solution that essentially requires an oxidizing acid such as hydrogen peroxide, nitric acid, and sulfuric acid is generally about 0.5 to 2 N in consideration of the ease of handling the oxidizing acid. Is less than 0.5, corresponding to the concentration of cobalt
Alternatively, it is possible to make the concentration higher than the two specified.
However, in each case, the concentration of the oxidizing acid such as nitric acid or sulfuric acid is set such that the cobalt component or the like is in an amount sufficient to form a salt.

【0015】なお、過酸化水素の濃度は、自己分解の量
を加味すると、理論量の少なくとも3倍以上に設定する
ことが好ましい。すなわち、下記の反応式でコバルト成
分の抽出が行われるので、このときの過酸化水素量を3
倍以上に選ぶ。
The concentration of hydrogen peroxide is preferably set to at least three times the theoretical amount, taking into account the amount of self-decomposition. That is, since the cobalt component is extracted by the following reaction formula, the amount of hydrogen peroxide at this time is 3
Choose more than twice.

【0016】2LiCo2 + H2 O2 →(LiCo)2 O 3 + H2 0 (LiCo)2 O 3 + 6NO3 →LiNO3 +Co( NO3 ) 2 + H2 0 図2は酸化性酸、たとえば硫酸や硝酸の少なくとも1種
と過酸化水素とを含む酸化性処理溶液における酸化性酸
の濃度(規定)と、電極活物質(コバルト含有量 120m
g)からのコバルトの抽出量(mg)との関係例を示し、
図3は過酸化水素の濃度(規定)と、電極活物質(コバ
ルト含有量 120mg)からのコバルトの抽出量(mg)との
関係例を示す。さらに、図4は上記酸化性酸および過酸
化水素を含む酸化性処理溶液で、電極活物質を処理する
ときに、その処理溶液に強制撹拌を施した場合と、強制
撹拌を施さなかた場合とを、電極活物質(コバルト含有
量 120mg)からのコバルトの抽出量(mg)との関係例を
示す。図4において、Dは強制撹拌を施さなかた場合、
Eは強制撹拌を施した場合をそれぞれ示す。
2LiCo 2 + H 2 O 2 → (LiCo) 2 O 3 + H 20 (LiCo) 2 O 3 + 6NO 3 → LiNO 3 + Co (NO 3 ) 2 + H 20 FIG. 2 shows an oxidizing acid, For example, the concentration of an oxidizing acid in an oxidizing treatment solution containing at least one of sulfuric acid and nitric acid and hydrogen peroxide (defined), and the electrode active material (cobalt content of 120 m
g) shows an example of the relationship with the amount of cobalt extracted (mg),
FIG. 3 shows an example of the relationship between the concentration (defined) of hydrogen peroxide and the amount (mg) of cobalt extracted from the electrode active material (cobalt content 120 mg). Further, FIG. 4 shows the case where the electrode active material is treated with the oxidizing treatment solution containing the oxidizing acid and hydrogen peroxide, when the treatment solution is subjected to forced stirring, and when the forced stirring is not performed. The following shows an example of the relationship between the extraction amount (mg) of cobalt from the electrode active material (cobalt content 120 mg). In FIG. 4, D indicates the case where no forced stirring is performed.
E shows the case where forced stirring was performed.

【0017】なお、上記コバルトなどの抽出処理におい
て、酸化性酸および過酸化水素を含む酸化性処理溶液の
温度をたとえば 100℃程度に加熱・上昇させると、緩や
かな撹拌が促されてコバルトなどの抽出効率が向上す
る。図5は酸化性酸および過酸化水素を含む酸化性処理
溶液温度(℃)とコバルト抽出量(mg)との関係例を示
す。
When the temperature of the oxidizing solution containing the oxidizing acid and hydrogen peroxide is heated and raised to, for example, about 100 ° C. in the above-mentioned extraction treatment of cobalt and the like, gentle stirring is promoted, and The extraction efficiency is improved. FIG. 5 shows an example of the relationship between the temperature (° C.) of the oxidizing treatment solution containing the oxidizing acid and hydrogen peroxide and the amount of extracted cobalt (mg).

【0018】さらに、電極構成部を細かく破砕し、コバ
ルトの回収ないし廃電池の処理を行った場合は、コバル
トなどを抽出し易い状態にある(バインダーなどによる
物理的な封じ込みから解放されている)ため、上記酸化
性酸および過酸化水素を含む酸化性処理溶液との接触が
促進され、より効率的にコバルトなどが抽出される。ま
た、前記バインダーは撥水効果を有するため、被処理体
をたとえば 180〜 600℃(好ましくは上限は 380℃程
度)に加熱し、バインダーを分解してから酸化性処理溶
液で処理すると、接触が促進されるので望ましい。図6
は、 2LiCo2 として 200mgを含んだ電極活物質につい
て、バインダーを分解するため予備加熱を行ってから酸
化性処理溶液で処理したときの、予備加熱温度とコバル
トの抽出量(mg)との関係例を示す。
Further, when the electrode component is finely crushed and cobalt is recovered or a waste battery is treated, it is in a state where cobalt and the like can be easily extracted (there is released from physical containment by a binder or the like). Therefore, contact with the oxidizing treatment solution containing the oxidizing acid and the hydrogen peroxide is promoted, and cobalt and the like are extracted more efficiently. Further, since the binder has a water-repellent effect, if the object to be processed is heated to, for example, 180 to 600 ° C. (preferably the upper limit is about 380 ° C.), and the binder is decomposed and then treated with an oxidizing treatment solution, the contact is reduced It is desirable because it is promoted. FIG.
Is an example of the relationship between the preheating temperature and the amount of cobalt extracted (mg) when an electrode active material containing 200 mg as 2LiCo 2 is preheated to decompose the binder and then treated with an oxidizing treatment solution Is shown.

【0019】さらに、酸化性処理溶液での処理に当たっ
て、被処理体に予め脱気処理を施すと、酸化性処理溶液
との接触が促進される。図7は、同じく 2LiCo2 として
200mgを含んだ電極活物質について、バインダーの撥水
性を防ぐため脱気処理を行ってから酸化性処理溶液で処
理したときの、脱気処理の真空度(torr)とコバルトの
抽出量(mg)との関係例を示す。
Further, when the object to be treated is subjected to a degassing treatment in advance in the treatment with the oxidizing treatment solution, the contact with the oxidizing treatment solution is promoted. Figure 7 also shows 2LiCo 2
When the electrode active material containing 200 mg is degassed to prevent water repellency of the binder and then treated with an oxidizing solution, the degree of vacuum (torr) and the amount of cobalt extracted (mg) Here is an example of the relationship.

【0020】上記発明に係る処理によれば、コバルト、
ニッケル、マンガンの回収以外に、電池の電極部を成す
アルミニウム板もしくはアルミニウムシートを分離回収
するすることもできる。すなわち、過酸化水素を含む酸
化性処理溶液中にアセチレンやカーボンなどの導電体を
含有する電極活物質層を備えたアルミニウム基体を浸漬
することにより、過酸化水素などの酸化剤によって、前
記アセチレンやカーボンなどを二酸化炭素化して、電極
活物質層の化学的および物理的な結合を分解する一方、
アルミニウム基体表面を不動体化(酸化物層の生成)し
て、電極活物質層の剥離を行うこともできる。
According to the process of the present invention, cobalt,
In addition to the recovery of nickel and manganese, an aluminum plate or an aluminum sheet forming the electrode part of the battery can be separated and recovered. That is, by immersing an aluminum substrate provided with an electrode active material layer containing a conductor such as acetylene or carbon in an oxidizing treatment solution containing hydrogen peroxide, the acetylene or oxidizing agent such as hydrogen peroxide is used. While converting carbon etc. into carbon dioxide to break down the chemical and physical bonds of the electrode active material layer,
The electrode active material layer can be peeled off by immobilizing the surface of the aluminum substrate (forming an oxide layer).

【0021】ここでアルミニウム板(電極基体)とは、
たとえばリチウムイオン二次電池において、アルミニウ
ム板もしくはアルミニウムシート類を支持体とし、その
表面などに所要の電極活物質層を担持した構成を成して
いるものである。そして、前記回収した電池は、単体、
リード付き二次電池、回路基板などを含む電池パック
(パッケージ型電池)などの廃棄物から回収されたもの
であり、また、電極活物質層を担持したアルミニウム板
の解体・取り出しは、電池の外装缶を破砕・切断など
し、対応する電極活物質を担持した正極や負極およびセ
パレータなどの電極要素構成部材を取り出し、要すれば
短冊状など機械的に切断・分離することを意味する。
Here, the aluminum plate (electrode substrate)
For example, in a lithium ion secondary battery, an aluminum plate or an aluminum sheet is used as a support, and a required electrode active material layer is supported on the surface or the like. And the collected battery is a single unit,
It is recovered from waste such as secondary batteries with leads, battery packs (package type batteries) including circuit boards, etc. The disassembly and removal of the aluminum plate carrying the electrode active material layer is performed on the exterior of the battery. This means that the can is crushed or cut, and the constituent elements of the electrode element such as the positive electrode, the negative electrode, and the separator carrying the corresponding electrode active material are taken out, and if necessary, mechanically cut or separated into strips or the like.

【0022】酸化性処理溶液の組成などは、上記の場合
基本的に同様であるが、使用後に無害な物質に分解する
過酸化水素−オゾン系、過酸化水素−硝酸系などが好ま
しい。すなわち、アルミニウム表面の不動体化には、一
般的に、硝酸や硫酸が使用されているが、この硝酸溶液
や硫酸溶液の場合は、他の金属成分の溶解を招来し、活
物質金属の回収効率などが低減する。
The composition of the oxidizing treatment solution is basically the same in the above case, but a hydrogen peroxide-ozone system, a hydrogen peroxide-nitric acid system or the like which decomposes into harmless substances after use is preferred. In other words, nitric acid or sulfuric acid is generally used to immobilize the aluminum surface, but in the case of this nitric acid solution or sulfuric acid solution, other metal components are dissolved, and the active material metal is recovered. Efficiency is reduced.

【0023】なお、過酸化水素および酸化性酸を含む酸
化性処理溶液の濃度は、アルミニウム板の迅速な分離・
回収からすれば高い濃度であることが望ましいけれど、
処理設備の耐酸化性などの制約もあるので、たとえば過
酸化水素の場合、0.01〜10規定程度に設定し、酸化性溶
液の使用量を調整することが好ましい。また、酸化性処
理溶液中での浸漬処理に当たっては、酸化性溶液に撹拌
や加温を施すと、酸化性溶液の拡散性などが高まり、所
要の処理を容易、かつ迅速に行うことができる。
The concentration of the oxidizing treatment solution containing hydrogen peroxide and the oxidizing acid should be such that the aluminum plate can be separated quickly.
Although high concentration is desirable for recovery,
For example, in the case of hydrogen peroxide, it is preferable to adjust the amount of the oxidizing solution to about 0.01 to 10 N because there are restrictions such as oxidation resistance of the processing equipment. In addition, in the immersion treatment in the oxidizing treatment solution, when the oxidizing solution is stirred or heated, the diffusivity of the oxidizing solution is increased, and the required treatment can be performed easily and quickly.

【0024】[0024]

【発明の実施の形態】以下図8,図9および図10を参照
して実施例を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment will be described below with reference to FIGS.

【0025】実施例1 図8は、第1の実施例の処理装置を模式的に示すブロッ
ク図、図9は工程の概要を示すフローチャート図であ
る。先ず、廃棄処理の対象として、円筒型リチウムイオ
ン二次電池(寸法:直径18mm,長さ65mm、外装ケース:
軟鉄,38 g)が12本組み込まれたハーソナルコンピュー
タ用バッテリーパックを用意する。次いで、予め用意し
ておいた粉砕器に、前記回収バッテリーパックを収容
し、 5mm角間で破砕(粉砕)した後、磁力選別機で軟鉄
類を選別除去してから、さらに、比重によって選別した
正極部を試料とする。
Embodiment 1 FIG. 8 is a block diagram schematically showing a processing apparatus according to a first embodiment, and FIG. 9 is a flowchart showing an outline of steps. First, cylindrical lithium ion secondary batteries (dimensions: diameter 18 mm, length 65 mm, outer case:
Prepare a battery pack for a personal computer containing 12 soft irons (38 g). Next, the collected battery pack was stored in a crusher prepared in advance, crushed (crushed) in a square of 5 mm, soft irons were selectively removed by a magnetic separator, and then the positive electrode separated by specific gravity was further separated. Part is the sample.

【0026】前記試料1を搬送用ベルト2に載置し、た
とえば長さ 200mm,幅 500mm,深さ20mm,内容積20 lの
処理槽3に、連続的に搬送・供給する。一方、前記処理
槽3には、30%過酸化水素溶液槽4、60%硝酸溶液槽5
および水槽6から、それぞれポンプ4a,5aを介して過酸
化水素溶液および硝酸溶液をミキサー7に供給し、ま
た、前記過酸化水素溶液として供給される過酸化水素が
濃度 1規定となるように、過酸化水素溶液、硝酸溶液お
よび水が随時供給されるように設定されている。
The sample 1 is placed on a transport belt 2 and continuously transported and supplied to, for example, a processing tank 3 having a length of 200 mm, a width of 500 mm, a depth of 20 mm and an internal volume of 20 l. On the other hand, the treatment tank 3 has a 30% hydrogen peroxide solution tank 4, a 60% nitric acid solution tank 5,
And a hydrogen peroxide solution and a nitric acid solution are supplied to the mixer 7 from the water tank 6 via the pumps 4a and 5a, respectively, and the concentration of hydrogen peroxide supplied as the hydrogen peroxide solution becomes 1N. It is set so that a hydrogen peroxide solution, a nitric acid solution, and water are supplied as needed.

【0027】なお、前記搬送・供給される試料1が、処
理槽3中の過酸化水素−硝酸溶液系の酸化性処理溶液8
に50分間浸漬するように、20mm/minの速度で搬送用ベル
ト2が稼働されている。
The sample 1 conveyed and supplied is an oxidizing treatment solution 8 of a hydrogen peroxide-nitric acid system in the treatment tank 3.
The conveyor belt 2 is operated at a speed of 20 mm / min so that the belt 2 is immersed for 50 minutes.

【0028】前記処理槽3中の酸化性処理溶液8を浸漬
・通過した試料1は、水切り網9上を通過する段階で乾
燥され、破棄槽10に搬送される。一方、前記試料1が浸
漬(含浸)して通過した処理槽3中の酸化性処理溶液8
は、ポンプ 11aによって溶液沈殿処理用の沈殿槽11に供
給される。この沈殿槽11には、ホンプ 12aを介して、水
酸化ナトリウム溶液槽12から、たとえば10規定濃度の水
酸化ナトリウム溶液を供給し、沈殿槽11内の酸化性処理
液8をpH12程度に調整する。このpH調整によって、酸化
性処理溶液8中に溶解・抽出していたコバルト成分は、
水酸化コバルトを生成して沈殿する。
The sample 1 immersed in and passed through the oxidizing treatment solution 8 in the treatment tank 3 is dried at the stage where it passes over the drainage net 9, and is conveyed to the disposal tank 10. On the other hand, the oxidizing treatment solution 8 in the treatment tank 3 through which the sample 1 has been immersed (impregnated) has passed.
Is supplied to a precipitation tank 11 for solution precipitation treatment by a pump 11a. For example, a 10N concentration sodium hydroxide solution is supplied from the sodium hydroxide solution tank 12 to the precipitation tank 11 via the pump 12a, and the oxidizing treatment liquid 8 in the precipitation tank 11 is adjusted to about pH12. . By this pH adjustment, the cobalt component dissolved and extracted in the oxidizing treatment solution 8 becomes:
Produces and precipitates cobalt hydroxide.

【0029】その後、前記水酸化コバルトを生成させた
酸化性処理溶液8を遠心分離機13に送り、遠心分離処理
を行って水酸化コバルトと酸化性処理溶液8とに分離
し、電極活物質中のコバルト成分を水酸化コバルトとし
て回収する。すなわち、分離された水酸化コバルトをコ
バルト回収容器14に、同じく分離された酸化性処理溶液
8をポンプ 15aによって溶液回収容器15にそれぞれ回収
する。このコバルトの回収では、回収率84%、純度96%
で高い値を示した。
Thereafter, the oxidizing treatment solution 8 in which the above-mentioned cobalt hydroxide has been generated is sent to a centrifugal separator 13 and subjected to centrifugal separation to separate it into cobalt hydroxide and the oxidizing treatment solution 8. Is recovered as cobalt hydroxide. That is, the separated cobalt hydroxide is recovered in the cobalt recovery container 14, and the separated oxidizing treatment solution 8 is recovered in the solution recovery container 15 by the pump 15a. With this cobalt recovery, a recovery rate of 84% and a purity of 96%
Showed a high value.

【0030】なお、コバルトを含有したリチウム二次電
池の正極活物質を試料とする代りに、ニッケルやマンガ
ンを含有した他の電池の電極活物質を試料とし、処理し
た場合も同様な結果が得られる。
Similar results can be obtained when the electrode active material of another battery containing nickel or manganese is used as a sample instead of using the positive electrode active material of a lithium secondary battery containing cobalt as a sample. Can be

【0031】実施例2 図10は、第2の実施例の処理装置を模式的に示すブロッ
ク図である。先ず、廃棄対象として円筒型リチウムイオ
ン二次電池(寸法:直径17mm,長さ57mm、外装ケース:
軟鉄,重量26 g)が 3本並列/セット× 3セット直列の
合計 9本組み込まれたハーソナルコンピュータ用バッテ
リーパックを用意した。次いで、このバッテリーパック
をパックごと 1 mol/ lの塩酸水溶液に24時間浸漬し、
放電処理を行った。この処理において、バッテリーパッ
クの接触端子が溶解し、内部に塩酸水溶液が侵入して、
電池の内部を外部と隔離するアルミニウムキャップを溶
解し、内部電解液をわうしゅ津することが可能となる。
Embodiment 2 FIG. 10 is a block diagram schematically showing a processing apparatus according to a second embodiment. First, cylindrical lithium ion secondary batteries (dimensions: 17 mm in diameter, 57 mm in length, outer case:
We prepared a battery pack for a personal computer in which a total of 9 pieces of soft iron, weighing 26 g) were installed in parallel: 3 pieces / set x 3 sets in series. Next, this battery pack was immersed together in a 1 mol / l hydrochloric acid aqueous solution for 24 hours.
Discharge treatment was performed. In this process, the contact terminals of the battery pack dissolve, and the aqueous hydrochloric acid solution enters the inside,
By dissolving the aluminum cap that separates the inside of the battery from the outside, the internal electrolyte can be drained.

【0032】ここでは、塩酸水溶液を使用したが、電気
伝導性を有する液体(例えば硝酸水溶液、塩化ナトリウ
ム水溶液など)であれば放電は可能であり、特に、ハロ
ゲンイオンが含まれている水溶液は、メタルへ野アタッ
クが強く、電極の溶解に適している。また、上記では塩
酸水溶液で放電とアルミニウムキャップの溶解とを同時
に行ったが、別々の工程にわけてもよい。特に、アルミ
ニウムは酸に対して不動態化し易いので、アルミニウム
キャップの溶解は苛性ソーダ水溶液で行うこともでき
る。
Although an aqueous hydrochloric acid solution is used here, discharge can be performed with a liquid having electrical conductivity (for example, an aqueous nitric acid solution or an aqueous sodium chloride solution). In particular, an aqueous solution containing a halogen ion can be used. Strong metal attack and suitable for melting electrodes. In the above description, the discharge and the dissolution of the aluminum cap are performed simultaneously with the aqueous hydrochloric acid solution, but they may be separated into separate steps. In particular, dissolution of the aluminum cap can be performed with an aqueous solution of caustic soda, since aluminum is easily passivated to acids.

【0033】このようにして、可燃性を有する電解液を
破砕前に除去することができ、空気雰囲気下でもより安
全に破砕することができる。また、電池に使用されてい
るLiPF6 はそのままでは無害であるが、水と反応してフ
ッ酸を生成するので、この時点でこれを積極的に除外
し、中和処理することも可能である。
In this way, the flammable electrolytic solution can be removed before the crushing, and the crushing can be performed more safely even in an air atmosphere. In addition, LiPF 6 used in the battery is harmless as it is, but it reacts with water to generate hydrofluoric acid, so it can be positively excluded at this point and subjected to neutralization treatment. .

【0034】上記放電および内部電解液の置換が終了し
たら、電池サンプルを水で洗浄し、3,7kW の一軸破砕器
でバッテリーパックごと粉砕する。粉砕物は破砕器下部
に予めセットされた径 5mmのスクリーンを径て取り出さ
れる。破砕サンプルは湿っているので、破砕片がそれぞ
れ分離するように乾燥する。乾燥後のサンプルは、磁力
選別機で軟鉄類などの磁性体を選別除去してから、さら
に、ウイナー式比重選別機で正極材、負極材、樹脂など
に分離する。なお、前記回収した鉄類などは、プレスし
廃棄物処理業者に売却する。
After the discharge and the replacement of the internal electrolyte are completed, the battery sample is washed with water and crushed together with the battery pack using a 3.7 kW uniaxial crusher. The pulverized material is taken out through a screen with a diameter of 5 mm set in advance at the bottom of the crusher. Since the crushed sample is wet, it is dried so that the crushed pieces are separated from each other. After drying, the magnetic material such as soft irons is selectively removed from the dried sample by a magnetic force separator, and further separated into a positive electrode material, a negative electrode material, a resin, and the like by a Wiener type specific gravity separator. The recovered irons and the like are pressed and sold to a waste disposal company.

【0035】前記試料(正極材)1′を搬送用ベルト2
に載置し、たとえば長さ 100mm,幅500mm,深さ20mm,
内容積10 lの処理槽3′に、連続的に搬送・供給する。
一方、前記処理槽3′には、30%過酸化水素溶液槽4お
よび水槽6から、それぞれポンプ4a,6aによって、過酸
化水素 1規定となるように、過酸化水素および水が随時
供給されるように設定されている。なお、前記搬送・供
給される試料1が、処理槽3′中の過酸化水素溶液8′
に25分間浸漬するように、20mm/minの速度で搬送用ベル
ト2が稼働されている。
The sample (positive electrode material) 1 ′ is transported to a conveyor belt 2.
, For example, length 100mm, width 500mm, depth 20mm,
It is continuously transported and supplied to a processing tank 3 'having an internal volume of 10 l.
On the other hand, hydrogen peroxide and water are supplied to the treatment tank 3 'from the 30% hydrogen peroxide solution tank 4 and the water tank 6 by pumps 4a and 6a, respectively, so that the hydrogen peroxide becomes 1N. It is set as follows. The sample 1 to be transported and supplied is a hydrogen peroxide solution 8 'in the processing tank 3'.
The conveyor belt 2 is operated at a speed of 20 mm / min so that the belt 2 is immersed for 25 minutes.

【0036】前記処理槽3′中の過酸化水素溶液8′を
浸漬(含浸)・通過した試料1′は、水切り網9′上を
通過する段階で乾燥され、引き続いて比重選別機16に供
給される。この比重選別機16において、比重の重い電極
活物質と比重の軽いアルミニウムとに選別され、電極活
物質用の回収容器17,アルミニウム用の回収容器18にそ
れぞれ分離回収される。なお、この比重選別機16におけ
る選別では、前記過酸化水素溶液8′での浸漬処理で、
アルミニウム基体面の不動体化が促され、この不動体化
に伴って電極活物質が容易に分離し、アルミニウム成分
の80%以上が回収された。
The sample 1 ', which has been immersed (impregnated) in and passed through the hydrogen peroxide solution 8' in the treatment tank 3 ', is dried at a stage where it passes over the drainage net 9' and subsequently supplied to the specific gravity separator 16 Is done. In the specific gravity separator 16, the electrode active material having a higher specific gravity and aluminum having a lower specific gravity are separated, and separated and collected in a collecting container 17 for the electrode active material and a collecting container 18 for the aluminum. In the selection in the specific gravity separator 16, the immersion treatment with the hydrogen peroxide solution 8 'is performed.
Immobilization of the aluminum substrate surface was promoted, and the electrode active material was easily separated with the immobilization, and 80% or more of the aluminum component was recovered.

【0037】次ぎに、前記アルミニウムを分離回収した
後の電極活物質を、第1の実施例の場合に準じて処理
し、コバルトの分離回収を行った。すなわち、アルミニ
ウムを分離した電極活物質1を、過酸化水素溶液および
硝酸溶液をミキサー7で混合し、さらに、過酸化水素の
濃度が 1規定となるように、過酸化水素溶液、硝酸溶液
および水を随時供給して調製した酸化性処理溶液8を処
理槽3に供給する。一方、搬送用ベルト2によって電極
活物質1を、前記酸化性処理溶液8中、浸漬・通過させ
て抽出処理を行ってから、水切り網6上を通過する段階
で乾燥された電極活物質を破棄槽10に搬送する。
Next, the electrode active material after the aluminum was separated and recovered was treated in the same manner as in the first embodiment to separate and recover the cobalt. That is, the electrode active material 1 from which aluminum has been separated is mixed with a hydrogen peroxide solution and a nitric acid solution by a mixer 7, and further the hydrogen peroxide solution, the nitric acid solution and the water are mixed so that the concentration of hydrogen peroxide becomes 1N. Is supplied to the treatment tank 3 as needed. On the other hand, after the electrode active material 1 is immersed and passed through the oxidizing treatment solution 8 by the transport belt 2 to perform an extraction process, the electrode active material dried at the stage of passing over the drainage net 6 is discarded. It is transported to the tank 10.

【0038】その後、電極活物質1を浸漬(含浸)処理
した酸化性処理溶液8を、溶液沈殿処理用の沈殿槽11に
供給し、この沈殿槽11に、水酸化ナトリウム溶液槽12か
ら濃度10規定の水酸化ナトリウム溶液を供給する。この
水酸化ナトリウム溶液の供給によって、沈殿槽11内の酸
化性処理溶液8をpH12程度に調整し、酸化性処理溶液8
に抽出していたコバルト成分を水酸化コバルトとして沈
殿させる。
Thereafter, the oxidizing treatment solution 8 in which the electrode active material 1 has been immersed (impregnated) is supplied to a precipitation tank 11 for solution precipitation treatment, and the sodium hydroxide solution tank 12 has a concentration of 10%. Supply the specified sodium hydroxide solution. By the supply of the sodium hydroxide solution, the oxidizing treatment solution 8 in the precipitation tank 11 is adjusted to about pH 12, and the oxidizing treatment solution 8 is adjusted.
Is precipitated as cobalt hydroxide.

【0039】その後、遠心分離機13に、前記水酸化コバ
ルトを生成した酸化性処理溶液8を送り、遠心分離処理
を行って水酸化コバルトと酸化性処理溶液8とに分離
し、電極活物質中のコバルト成分を水酸化コバルトとし
て回収する。すなわち、分離された水酸化コバルトをコ
バルト回収容器14に、同じく分離された酸化性処理溶液
8をポンプ 15aによって溶液回収容器15にそれぞれ回収
する。このコバルトの回収では、回収率80%、純度99%
で高い値を示した。
Thereafter, the oxidizing treatment solution 8 in which the above-mentioned cobalt hydroxide has been produced is sent to the centrifugal separator 13 and subjected to centrifugal separation to separate it into cobalt hydroxide and the oxidizing treatment solution 8. Is recovered as cobalt hydroxide. That is, the separated cobalt hydroxide is recovered in the cobalt recovery container 14, and the separated oxidizing treatment solution 8 is recovered in the solution recovery container 15 by the pump 15a. In this cobalt recovery, a recovery rate of 80% and a purity of 99%
Showed a high value.

【0040】なお、この実施例の態様においては、アル
ミニウムを回収する段階、すなわち処理槽3′の酸化性
処理溶液8′の代りに、過酸化水素および酸化性酸を含
む酸化性処理溶液8を使用した場合は、処理槽3で使用
した酸化性処理溶液8併せて沈殿槽11で沈殿処理するこ
とが好ましい。また、コバルトを含有したリチウム二次
電池の正極活物質を試料とする代りに、ニッケルやマン
ガンを含有した他の電池の電極活物質を試料とし、処理
した場合も同様な結果が得られる。
In this embodiment, an oxidizing treatment solution 8 containing hydrogen peroxide and an oxidizing acid is used instead of the step of recovering aluminum, that is, the oxidizing treatment solution 8 'of the treatment tank 3'. When used, the oxidizing treatment solution 8 used in the treatment tank 3 is preferably subjected to a precipitation treatment in the precipitation tank 11. Similar results can be obtained when the electrode active material of another battery containing nickel or manganese is used as a sample instead of using the positive electrode active material of a lithium secondary battery containing cobalt as a sample.

【0041】本発明は上記例示の実施態様に限定される
ものでなく、発明の主旨を逸脱しない範囲で、いろいろ
の変形を採ることができる。たとえば廃棄電池は、リチ
ウム二次電池パック以外に、リチウム二次電池単体、ニ
ッケル水素二次電池系、マンガン電池などの場合にも、
同様に適用できる。
The present invention is not limited to the embodiment described above, and various modifications can be made without departing from the gist of the invention. For example, in addition to lithium secondary battery packs, discarded batteries include lithium secondary batteries, nickel-metal hydride secondary batteries, and manganese batteries.
The same applies.

【0042】[0042]

【発明の効果】請求項1の発明によれば、本発明に係る
廃電池の処理方法によれば、フッ素やリン成分などを含
む有害物質の発生を回避する一方、有益なコバルト、ニ
ッケル、マンガンなどを効率的に回収することができ
る。すなわち、二次電池などの廃棄処分に当たって、環
境汚染ないし環境負荷などを低減・回避できるととも
に、資源の有効な活用を図ることも可能な、実用上多く
の利点を有する廃電池の処理方法が提供される。
According to the first aspect of the present invention, the method for treating a waste battery according to the present invention avoids the generation of harmful substances including fluorine and phosphorus components, and at the same time, uses beneficial cobalt, nickel and manganese. Can be efficiently collected. In other words, in the disposal of secondary batteries, etc., there is provided a method for treating waste batteries which has many practical advantages, which can reduce and avoid environmental pollution or environmental load and can effectively utilize resources. Is done.

【0043】請求項2の発明によれば、環境汚染ないし
環境負荷などを低減・回避できるとともに、資源の有効
な活用を図ることが可能な廃電池の処理方法を容易に実
施できる。
According to the second aspect of the present invention, it is possible to easily carry out a waste battery treatment method capable of reducing and avoiding environmental pollution or environmental load and effectively utilizing resources.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る廃電池の処理方法において、コバ
ルトを含有する電極活物質を抽出処理するときの過酸化
水素を含む酸化性処理溶液の調製手順とコバルトの回収
量との関係例を示す特性図。
FIG. 1 shows an example of a relationship between a preparation procedure of an oxidizing treatment solution containing hydrogen peroxide and an amount of recovered cobalt in an extraction treatment of an electrode active material containing cobalt in the method for treating a waste battery according to the present invention. FIG.

【図2】本発明に係る廃電池の処理方法において、コバ
ルトを含有する電極活物質を抽出処理するときの過酸化
水素を含む酸化性溶液中の酸濃度とコバルトの抽出量と
の関係例を示す特性図。
FIG. 2 shows an example of the relationship between the acid concentration in the oxidizing solution containing hydrogen peroxide and the amount of cobalt extracted when the electrode active material containing cobalt is extracted in the method for treating a waste battery according to the present invention. FIG.

【図3】本発明に係る廃電池の処理方法において、コバ
ルトを含有する電極活物質を抽出処理するときの酸化性
溶液中の過酸化水素の濃度とコバルトの抽出量との関係
例を示す特性図。
FIG. 3 is a characteristic diagram showing an example of the relationship between the concentration of hydrogen peroxide in an oxidizing solution and the amount of extracted cobalt when the electrode active material containing cobalt is extracted in the method for treating a waste battery according to the present invention. FIG.

【図4】本発明に係る廃電池の処理方法において、コバ
ルトを含有する電極活物質を抽出処理するときの過酸化
水素を含む酸化性溶液の撹拌有無とコバルトの抽出量と
の関係例を示す特性図。
FIG. 4 shows an example of the relationship between the presence or absence of agitation of an oxidizing solution containing hydrogen peroxide and the amount of cobalt extracted in the process of extracting a cobalt-containing electrode active material in the method for treating a waste battery according to the present invention. Characteristic diagram.

【図5】本発明に係る廃電池の処理方法において、コバ
ルトを含有する電極活物質を抽出処理するときの過酸化
水素を含む酸化性溶液の温度とコバルトの抽出量との関
係例を示す特性図。
FIG. 5 is a characteristic diagram showing an example of the relationship between the temperature of the oxidizing solution containing hydrogen peroxide and the amount of cobalt extracted when the electrode active material containing cobalt is extracted in the method for treating a waste battery according to the present invention. FIG.

【図6】本発明に係る廃電池の処理方法において、コバ
ルトを含有する電極活物質を抽出処理するときの予備加
熱温度とコバルトの抽出量との関係例を示す特性図。
FIG. 6 is a characteristic diagram showing an example of the relationship between the preheating temperature and the amount of cobalt extracted when extracting a cobalt-containing electrode active material in the method for treating a waste battery according to the present invention.

【図7】本発明に係る廃電池の処理方法において、コバ
ルトを含有する電極活物質を抽出処理するときの予備真
空処理とコバルトの抽出量との関係例を示す特性図。
FIG. 7 is a characteristic diagram showing an example of the relationship between the preliminary vacuum treatment and the amount of cobalt extracted when the electrode active material containing cobalt is extracted in the method for treating a waste battery according to the present invention.

【図8】本発明に係る第1の廃電池処理装置の構成例を
示すブロック図。
FIG. 8 is a block diagram showing a configuration example of a first waste battery processing device according to the present invention.

【図9】第1の廃電池処理装置による実施態様例を説明
するためのフローチャート図。
FIG. 9 is a flowchart for explaining an embodiment example by the first waste battery processing device.

【図10】本発明に係る第2の廃電池処理装置の構成例
を示すブロック図。
FIG. 10 is a block diagram showing a configuration example of a second waste battery processing device according to the present invention.

【符号の説明】[Explanation of symbols]

1……試料(サンプル) 2……搬送ベルト 3,3′……処理槽 4……過酸化水素溶液槽 4a,5a,6a,11a,12a,15a ……ポンプ 5……酸化性酸溶液槽 6……水槽 7……ミキサー 8……酸化性処理溶液 9,9′……水切り網 10……破棄槽 11……沈殿槽 12……水酸化ナトリウム溶液槽 13……遠心分離機 14……コバルト回収容器 15……処理液回収容器 16……比重選別機 17……アルミニウム回収容器 18……電極活物質回収容器 1 ... sample (sample) 2 ... conveyor belt 3, 3 '... processing tank 4 ... hydrogen peroxide solution tank 4a, 5a, 6a, 11a, 12a, 15a ... pump 5 ... oxidizing acid solution tank 6 Water tank 7 Mixer 8 Oxidizing treatment solution 9, 9 'Drain net 10 Discard tank 11 Sedimentation tank 12 Sodium hydroxide solution tank 13 Centrifuge 14 Cobalt recovery container 15 Processing liquid recovery container 16 Specific gravity separator 17 Aluminum recovery container 18 Electrode active material recovery container

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 勝 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masaru Hayashi 1 Toshiba, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Inside the R & D Center of Toshiba Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化性酸の少なくとも1種と過酸化水素
とを含む酸化性処理溶液に、コバルト、ニッケルおよび
マンガンの少なくとも1種を含む廃棄電池電極を浸漬
し、前記電池電極中の遷移金属を無機塩として分離し、
回収することを特徴とする廃電池の処理方法。
A waste battery electrode containing at least one of cobalt, nickel and manganese is immersed in an oxidizing treatment solution containing at least one oxidizing acid and hydrogen peroxide, and a transition metal in the battery electrode is provided. As an inorganic salt,
A method for treating a waste battery, comprising collecting the battery.
【請求項2】 コバルト、ニッケルおよびマンガンの少
なくとも1種を含む使用済み電池電極を処理する処理槽
と、 過酸化水素溶液および酸化性酸溶液を混合して酸化性処
理溶液を調製した後、前記処理槽に供給する酸化性処理
溶液の調製供給機構と、 前記処理槽内での使用済み電池電極処理後の酸化性処理
溶液を回収する処理液回収槽と、 前記処理液回収槽内にアルカリ性溶液を供給し、前記遷
移金属を無機塩化して沈殿させるアルカリ性溶液供給機
構と、 前記沈殿させた遷移金属の無機塩を酸化性処理溶液から
分離する金属無機塩分離回収機構とを有することを特徴
とする廃電池の処理装置。
2. A process tank for treating a used battery electrode containing at least one of cobalt, nickel and manganese, and a hydrogen peroxide solution and an oxidizing acid solution are mixed to prepare an oxidizing treatment solution. A mechanism for preparing and supplying an oxidizing treatment solution to be supplied to the treatment tank, a treatment liquid collection tank for collecting the oxidizing treatment solution after the used battery electrode treatment in the treatment tank, and an alkaline solution in the treatment liquid collection tank And an alkaline solution supply mechanism for inorganic chloride of the transition metal to precipitate, and a metal inorganic salt separation and recovery mechanism for separating the precipitated transition metal inorganic salt from the oxidizing treatment solution. Waste battery processing equipment.
JP6708198A 1998-03-17 1998-03-17 Waste battery treatment equipment Expired - Fee Related JP3625638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6708198A JP3625638B2 (en) 1998-03-17 1998-03-17 Waste battery treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6708198A JP3625638B2 (en) 1998-03-17 1998-03-17 Waste battery treatment equipment

Publications (2)

Publication Number Publication Date
JPH11265736A true JPH11265736A (en) 1999-09-28
JP3625638B2 JP3625638B2 (en) 2005-03-02

Family

ID=13334580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6708198A Expired - Fee Related JP3625638B2 (en) 1998-03-17 1998-03-17 Waste battery treatment equipment

Country Status (1)

Country Link
JP (1) JP3625638B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358528B1 (en) * 2000-05-22 2002-10-25 김인석 recycling method of lithium ion secondary battery
JP2003041326A (en) * 2001-07-27 2003-02-13 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from scrap of nickel metal hydride secondary battery
JP2003243051A (en) * 2002-02-01 2003-08-29 Batrec Industrie Ag Method and device for dismantling and storing object containing alkali metal such as alkali metal containing battery
WO2004062023A1 (en) * 2002-12-27 2004-07-22 Mitsui Mining & Smelting Co., Ltd. Method of recovering cobalt from lithium ion battery and cobalt recovering system
KR100443416B1 (en) * 2001-07-06 2004-08-09 한국원자력연구소 A method for recovering cobalt and lithium from organic wastesludge including LiCoO2
KR100448272B1 (en) * 2002-02-25 2004-09-10 한국지질자원연구원 Method for recycling of spent lithium ion battery
JP2009144219A (en) * 2007-12-17 2009-07-02 Mitsubishi Materials Corp Method for recovering metal from used solid oxide type fuel cell
JP2009144220A (en) * 2007-12-17 2009-07-02 Mitsubishi Materials Corp Method for recovering metal from used solid oxide type fuel cell
JP2009526374A (en) * 2007-03-15 2009-07-16 ヨウン ハン リー Waste battery dismantling device
JP2010277868A (en) * 2009-05-29 2010-12-09 Jx Nippon Mining & Metals Corp Metal recovery method
JP2011105581A (en) * 2009-11-20 2011-06-02 Korea Inst Of Geoscience & Mineral Resources Method for producing manganese sulfate and zinc sulfate from waste battery containing manganese and zinc
JP2012064557A (en) * 2010-09-20 2012-03-29 Korea Institute Of Science And Technology Method for reprocessing and synthesizing metal oxide positive electrode active material for lithium secondary battery
WO2012157957A2 (en) * 2011-05-17 2012-11-22 주식회사 티엠바이오 Method for manufacturing multi-mineral from waste battery
KR101254390B1 (en) 2010-11-01 2013-04-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for recovering metal
KR101271669B1 (en) * 2010-04-20 2013-06-05 한국지질자원연구원 Method for reusing valuable metal of used battery
US8945275B2 (en) 2010-10-12 2015-02-03 Ls-Nikko Copper Inc. Method for recovering valuable metals from lithium secondary battery wastes
JP2021507111A (en) * 2017-12-19 2021-02-22 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Reuse of batteries by leachate treatment with metallic nickel
CN114678619A (en) * 2022-04-14 2022-06-28 湖南文理学院 Pretreatment system for recycling sheet lithium batteries
CN115889387A (en) * 2021-09-30 2023-04-04 宁德时代新能源科技股份有限公司 Battery processing system and battery processing method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358528B1 (en) * 2000-05-22 2002-10-25 김인석 recycling method of lithium ion secondary battery
KR100443416B1 (en) * 2001-07-06 2004-08-09 한국원자력연구소 A method for recovering cobalt and lithium from organic wastesludge including LiCoO2
JP2003041326A (en) * 2001-07-27 2003-02-13 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from scrap of nickel metal hydride secondary battery
JP4654548B2 (en) * 2001-07-27 2011-03-23 住友金属鉱山株式会社 Valuable metal recovery method from nickel metal hydride secondary battery scrap
JP2003243051A (en) * 2002-02-01 2003-08-29 Batrec Industrie Ag Method and device for dismantling and storing object containing alkali metal such as alkali metal containing battery
KR100448272B1 (en) * 2002-02-25 2004-09-10 한국지질자원연구원 Method for recycling of spent lithium ion battery
WO2004062023A1 (en) * 2002-12-27 2004-07-22 Mitsui Mining & Smelting Co., Ltd. Method of recovering cobalt from lithium ion battery and cobalt recovering system
CN100401577C (en) * 2002-12-27 2008-07-09 三井金属矿业株式会社 Method of recovering cobalt from lithium ion battery and cobalt recovering system
JP2009526374A (en) * 2007-03-15 2009-07-16 ヨウン ハン リー Waste battery dismantling device
JP2009144219A (en) * 2007-12-17 2009-07-02 Mitsubishi Materials Corp Method for recovering metal from used solid oxide type fuel cell
JP2009144220A (en) * 2007-12-17 2009-07-02 Mitsubishi Materials Corp Method for recovering metal from used solid oxide type fuel cell
JP2010277868A (en) * 2009-05-29 2010-12-09 Jx Nippon Mining & Metals Corp Metal recovery method
JP2011105581A (en) * 2009-11-20 2011-06-02 Korea Inst Of Geoscience & Mineral Resources Method for producing manganese sulfate and zinc sulfate from waste battery containing manganese and zinc
KR101271669B1 (en) * 2010-04-20 2013-06-05 한국지질자원연구원 Method for reusing valuable metal of used battery
JP2012064557A (en) * 2010-09-20 2012-03-29 Korea Institute Of Science And Technology Method for reprocessing and synthesizing metal oxide positive electrode active material for lithium secondary battery
US8945275B2 (en) 2010-10-12 2015-02-03 Ls-Nikko Copper Inc. Method for recovering valuable metals from lithium secondary battery wastes
KR101254390B1 (en) 2010-11-01 2013-04-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for recovering metal
WO2012157957A2 (en) * 2011-05-17 2012-11-22 주식회사 티엠바이오 Method for manufacturing multi-mineral from waste battery
WO2012157957A3 (en) * 2011-05-17 2013-01-24 주식회사 티엠바이오 Method for manufacturing multi-mineral from waste battery
JP2021507111A (en) * 2017-12-19 2021-02-22 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Reuse of batteries by leachate treatment with metallic nickel
CN115889387A (en) * 2021-09-30 2023-04-04 宁德时代新能源科技股份有限公司 Battery processing system and battery processing method
WO2023050873A1 (en) * 2021-09-30 2023-04-06 宁德时代新能源科技股份有限公司 Battery processing system and battery processing method
CN115889387B (en) * 2021-09-30 2024-01-26 宁德时代新能源科技股份有限公司 Battery processing system and battery processing method
CN114678619A (en) * 2022-04-14 2022-06-28 湖南文理学院 Pretreatment system for recycling sheet lithium batteries

Also Published As

Publication number Publication date
JP3625638B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
JP3625638B2 (en) Waste battery treatment equipment
Ordoñez et al. Processes and technologies for the recycling and recovery of spent lithium-ion batteries
EP2669390B1 (en) Valuable metal leaching method, and valuable metal collection method employing the leaching method
US7713396B2 (en) Method and apparatus for recycling electrode material of lithium secondary battery
JP3452769B2 (en) Battery treatment method
JP2019160429A (en) Lithium recovery method
JP2019178395A (en) Collection method of lithium from lithium ion battery scrap
JP4909907B2 (en) Recovery method and recovery device for recovering valuable material from lithium secondary battery
US9023130B2 (en) Method for separating positive-pole active substance and method for recovering valuable metals from lithium ion battery
CN107317064A (en) A kind of recovery method of waste lithium cell
WO2019026978A1 (en) Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap
KR20220078690A (en) Heat treatment method for battery waste, and lithium recovery method
CA3075424C (en) Method for treating lithium ion battery waste
CN103943911A (en) Method for comprehensively recycling waste lithium ion batteries
JP7271833B2 (en) Lithium recovery method
KR20200087239A (en) Separation method of copper and nickel and cobalt
CA3169682A1 (en) A process for recovering metals from recycled rechargeable batteries
CN106654437A (en) Method for recycling lithium from lithium-containing battery
Milian et al. A comprehensive review of emerging technologies for recycling spent lithium-ion batteries
US20210050634A1 (en) Method for recycling lithium-ion batteries
JP2004214025A (en) Method and system for recovering cobalt in lithium ion battery
JP7052635B2 (en) Separation method of copper, nickel and cobalt
WO2024083107A1 (en) Wet crushing and recycling method and device for spent lithium-ion battery
JP2023516663A (en) Disposal method of lithium iron phosphate battery
Apriliyani et al. Li-ion Batteries Waste Processing and Utilization Progress: A Review

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041130

LAPS Cancellation because of no payment of annual fees