JP3452769B2 - Battery treatment method - Google Patents

Battery treatment method

Info

Publication number
JP3452769B2
JP3452769B2 JP25391097A JP25391097A JP3452769B2 JP 3452769 B2 JP3452769 B2 JP 3452769B2 JP 25391097 A JP25391097 A JP 25391097A JP 25391097 A JP25391097 A JP 25391097A JP 3452769 B2 JP3452769 B2 JP 3452769B2
Authority
JP
Japan
Prior art keywords
active material
battery
current collector
electrode
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25391097A
Other languages
Japanese (ja)
Other versions
JPH1197076A (en
Inventor
史展 手塚
由喜 富岡
仁弘 忠内
富明 古屋
勝 林
元央 矢吹
雅敬 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25391097A priority Critical patent/JP3452769B2/en
Priority to DE1998142658 priority patent/DE19842658B4/en
Publication of JPH1197076A publication Critical patent/JPH1197076A/en
Application granted granted Critical
Publication of JP3452769B2 publication Critical patent/JP3452769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/52Reclaiming serviceable parts of waste cells or batteries, e.g. recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、VTR、通信機器
等の各種電子機器の電源として使用されているリチウム
イオン電池、ニッケルカドミウム電池、ニッケル水素電
池などの1次電池及び2次電池のバッテリーパックの廃
棄物から、各種金属を安全に効率よく回収、再利用する
ための電池の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery pack of a primary battery and a secondary battery such as a lithium ion battery, a nickel cadmium battery and a nickel hydride battery used as a power source for various electronic devices such as VTRs and communication devices. The present invention relates to a battery treatment method for safely and efficiently recovering and reusing various metals from wastes.

【0002】[0002]

【従来の技術】近年、電池の高容量化、軽量化、長寿命
化が進むに従い、パーソナルコンピューター、携帯電話
等の通信機器、ポータブルビデオカメラ等の電気機器、
電子機器などの広範にわたって電池が使用されている。
これらの電池は、一部の携帯電話を除き、安全性や使い
易さの観点からバッテリーパックの形態で市販、利用さ
れている。一般に2次電池は、数百回程度の充放電によ
り電極や電解液の劣化から充電時の電圧が低下し、寿命
となり廃棄される。
2. Description of the Related Art In recent years, as batteries have become higher in capacity, lighter in weight and longer in life, communication devices such as personal computers and mobile phones, electric devices such as portable video cameras,
Batteries are widely used in electronic devices and the like.
Except for some mobile phones, these batteries are commercially available and used in the form of battery packs from the viewpoint of safety and ease of use. In general, a secondary battery is discharged after being charged and discharged several hundreds of times, and the voltage at the time of charging is lowered due to deterioration of the electrodes and the electrolytic solution.

【0003】このようなバッテリーパックにはカドミウ
ムや鉛のような環境問題を考慮すべき成分が含まれてい
るので、現在、廃バッテリーパックのうちニッケル−カ
ドミウム電池及び鉛蓄電池は、工業会が自主的に回収
し、非鉄製錬業者に依頼して酸化カドミウム及び鉛とし
て取り出し、再度工業原料としてリサイクルしている。
リチウムイオン2次電池、ニッケル−水素電池などは、
有害物質が含有されておらず環境にやさしい電池との理
由から、焼却した後に埋め立て処理されている。
Since such battery packs contain components such as cadmium and lead that should be taken into consideration for environmental problems, the industry association voluntarily considers nickel-cadmium batteries and lead-acid batteries among the current battery packs. It is collected as an industrial raw material and is then recycled as an industrial raw material by requesting a non-ferrous smelter to extract it as cadmium oxide and lead.
Lithium-ion secondary batteries, nickel-hydrogen batteries, etc.
It is incinerated and then landfilled because it is an environmentally friendly battery that does not contain harmful substances.

【0004】しかし、リチウムイオン二次電池は、従来
の二次電池と異なり、水銀、カドミウム、鉛などの金属
が含有されておらず、また特性においても、サイクル寿
命が良好なことから生産量は年々増加の一途を辿ってい
る。このリチウムイオン二次電池には、現在主流となっ
ている材料、及び、次世代の候補に挙がっている材料の
何れにおいても、国家備蓄材料に指定されている貴金属
を使用しており、これらの使用済みリチウムイオン二次
電池からの再利用が注目されている。このため、現在、
資源保全の観点から、上記2次電池のリサイクル技術開
発が活発になっている。例えば、リチウム2次電池を焙
焼し塩化コバルトを回収する技術がソニー社及び住友金
属鉱山社の共同で開発され、平成8年に公開されてい
る。
However, unlike conventional secondary batteries, lithium-ion secondary batteries do not contain metals such as mercury, cadmium, and lead, and have good cycle life in terms of characteristics. It is increasing year by year. For this lithium-ion secondary battery, noble metals designated as national stockpiling materials are used in both the materials currently in the mainstream and the materials listed as candidates for the next generation. Recycling from used lithium-ion secondary batteries is drawing attention. For this reason, currently
From the viewpoint of resource conservation, development of recycling technology for the secondary battery has been active. For example, a technology for roasting a lithium secondary battery and recovering cobalt chloride was developed jointly by Sony Corporation and Sumitomo Metal Mining Company, and was released in 1996.

【0005】上記焙焼法によっていきなり焙焼を行う
と、バッテリーパック内に基板等が含まれているために
鉛が飛散したり、またPC/ASA製筐体が分解して窒
素酸化物が排出して排ガス処理設備が必要となるなど、
環境問題上対処の必要な点が多々ある。これらに対処す
るためには、バッテリーパックの機械的な解体をできる
限り行い、培焼処理が必要な部分についてのみ加熱処
理、湿式処理等を行うようにすることが必要となる。
When the roasting method is suddenly roasted by the above-mentioned roasting method, lead scatters because the substrate is contained in the battery pack, and the PC / ASA casing is decomposed to discharge nitrogen oxides. And exhaust gas treatment equipment is required.
There are many points that need to be dealt with due to environmental issues. In order to deal with these problems, it is necessary to mechanically disassemble the battery pack as much as possible, and to perform heat treatment, wet treatment, etc. only on the portion that needs the culture treatment.

【0006】バッテリーパックの解体を行う際、廃電池
のなかには未放電の電池が含まれる場合があり、電位が
保持されたままバッテリーパックの解体を行うと、解体
に使用する工具によって回路を短絡させる可能性もあ
る。リチウムイオン2次電池を含むバッテリーパックな
どでは、爆発等を生じる場合があり非常に危険である。
When disassembling the battery pack, some of the waste batteries may include undischarged batteries. If the battery pack is disassembled while the potential is maintained, the circuit is short-circuited by the tool used for disassembly. There is a possibility. A battery pack including a lithium-ion secondary battery may cause an explosion or the like, which is extremely dangerous.

【0007】廃電池の放電処理に関するものとして、特
開平08−306394では、リチウム電池をイオン導
電性の液体に浸漬させて放電する方法が提案されてい
る。この提案は、色々な形状のリチウム電池を食塩水溶
液又は鉄粉末を分散した流動パラフィンあるいは水銀に
浸漬して放電することを開示している。
As a method for discharging a waste battery, Japanese Patent Application Laid-Open No. 08-306394 proposes a method of immersing a lithium battery in an ionic conductive liquid for discharging. This proposal discloses that lithium batteries having various shapes are immersed in a saline solution or liquid paraffin in which iron powder is dispersed or mercury to discharge.

【0008】また、リチウムイオン二次電池からの有価
金属の分離・回収については、電池を焙焼、粉砕した
後、磁力選別等を用いて鉄、銅、コバルト等を分離・回
収する方法がある。電池を焙焼した後に磁力選別を用い
て鉄を除いた残留物は、ふるい分けによっててふるいを
通過した物を酸で溶解し、溶媒抽出法を用いてコバルト
を分離・回収することができる。
Further, regarding the separation and recovery of valuable metals from the lithium ion secondary battery, there is a method of separating and recovering iron, copper, cobalt and the like by using magnetic sorting after roasting and crushing the battery. . The residue obtained by removing iron using magnetic separation after roasting the battery can be separated by sieving to dissolve the acid that has passed through the sieve, and the solvent extraction method to separate and recover cobalt.

【0009】[0009]

【発明が解決しようとする課題】前述の放電方法に従っ
て食塩水を用いて電池やバッテリーパックの放電を行う
と、多量の沈澱物が生じて内部が目視できないだけでな
く、電池やバッテリーパックの導電性部分が部分的に侵
食されて放電が不完全であったり、形状変化により残留
電圧の測定が困難になり放電が完了したかどうか確認が
困難になるということが生じる。電池やバッテリーパッ
クを放電する際に必要なことは、放電が確実に行われる
ことであり、放電が不完全であったり放電の完了を確認
ができないと、電池やバッテリーパックの回収作業を安
全に行うことができない。
When a battery or battery pack is discharged using saline according to the above-described discharging method, a large amount of precipitates are generated and the inside cannot be visually inspected, and the conductivity of the battery or battery pack is also reduced. The discharge may be incomplete due to partial erosion of the conductive part, or it may be difficult to measure the residual voltage due to a change in shape and it may be difficult to confirm whether the discharge is completed. What is necessary when discharging the battery or battery pack is that the discharge is performed reliably.If the discharge is incomplete or it is not possible to confirm the completion of the discharge, it is safe to collect the battery or battery pack. I can't do it.

【0010】上述のように、廃電池の回収処理における
危険を回避するためには、廃電池の解体前にあらかじめ
放電処理を安全且つ確実に行うことが必要である。
As described above, in order to avoid the danger in the waste battery recovery process, it is necessary to perform the discharge process safely and surely before disassembling the waste battery.

【0011】また、電池を焙焼、粉砕した後の金属混合
物から各金属を分離回収する際に磁力選別を用いると、
磁力によって選別回収される鉄、銅、コバルト等につい
ては、回収物中に付着している他の成分が分離されずに
混入するため、回収物の純度があまり良くなく、回収物
の利用価値が低い。
Further, when magnetic separation is used when separating and recovering each metal from the metal mixture after roasting and crushing the battery,
For iron, copper, cobalt, etc. that are sorted and collected by magnetic force, the other components adhering to the collected products are mixed without being separated, so the purity of the collected products is not very good, and the usefulness of the collected products is low. Low.

【0012】磁力選別後の残留物については、ふるい分
け、酸による溶解、溶媒抽出を経てコバルトを分離・回
収すると、比較的高純度のコバルトが回収できるが、高
価な試薬を使用するため、コストの点で不十分である。
しかも、ふるい上の残留物は銅、アルミニウムの混在物
であるため、その利用価値が低い。
With respect to the residue after the magnetic separation, relatively high-purity cobalt can be recovered by separating and recovering cobalt through sieving, dissolution with acid, and solvent extraction. The points are insufficient.
Moreover, since the residue on the sieve is a mixture of copper and aluminum, its utility value is low.

【0013】銅とアルミニウムの選別は、渦電流を用い
るのが一般的であるが、電池のような箔状の銅とアルミ
ニウムとの選別には適用できないため、電池の処理にお
いて有効な選別手段は確立されていない。
An eddy current is generally used for the selection of copper and aluminum, but it cannot be applied to the selection of foil-shaped copper and aluminum such as a battery. Not established.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
鋭意検討を行った結果、本発明者らは、液体を用いた効
率及び作業性のよい放電方法を開発するに至った。
As a result of intensive studies to solve the above problems, the present inventors have developed a discharge method using a liquid with good efficiency and workability.

【0015】また、本発明者らは、電池の筐体から取り
出した電極中の湿式あるいは乾式による活物質の分離、
電極の集電体の重液による選別などを用いることによ
り、本発明の目的を達成し得ることを見いだした。
The inventors of the present invention have also separated the active material by wet or dry method in the electrode taken out from the battery case,
It has been found that the object of the present invention can be achieved by using, for example, selection of a current collector of an electrode with a heavy liquid.

【0016】本発明の電池の処理方法は、集電体にバイ
ンダを用いて活物質が積層された電極を備える電池の処
理方法であって、該電池を硫酸水溶液に浸漬することに
より該電池を放電させる放電工程と、該電池を解体する
解体工程と、解体された電池から電極を選別する選別工
程と、当該電極を該集電体と該活物質とに分離する活物
質分離工程と、該活物質から金属成分を回収する金属回
収工程とを有し、前記活物質分離工程では、該電極を酸
液に浸漬してバインダを侵食することにより該集電体と
該活物質とを分離する。
The method of treating a battery according to the present invention is a method of treating a battery having an electrode in which an active material is laminated using a binder as a current collector, the method comprising immersing the battery in an aqueous sulfuric acid solution.
A discharging step for discharging the battery further, and disassembling the battery
Dismantling process and sorting process to select electrodes from disassembled batteries
And an active material that separates the electrode into the current collector and the active material.
Quality separation step and metal step for recovering metal components from the active material
In the active material separation step, the current collector and the active material are separated by immersing the electrode in an acid solution to erode the binder.

【0017】又、本発明の電池の処理方法は、集電体に
ハロゲンを含む樹脂からなるバインダを用いて活物質が
積層された電極を備える電池の処理方法であって、該電
極を水素/アルゴン混合ガス雰囲気中で300〜400
℃に加熱して該バインダを分解することにより該集電体
と該活物質とを分離する。
Further, the battery treating method of the present invention uses a current collector.
A method of treating a battery, comprising an electrode in which an active material is laminated using a binder made of a resin containing halogen , wherein the electrode is 300 to 400 in a hydrogen / argon mixed gas atmosphere.
The current collector and the active material are separated by heating to ° C to decompose the binder.

【0018】更に、本発明の電池の処理方法は、銅製集
電体及びアルミニウム製集電体を有する電池の処理方法
であって、該銅製集電体と該アルミニウム製集電体とを
比重1.9〜2.9g/mlの重液を用いた比重選別によ
り分離する。
Furthermore, the method for treating a battery of the present invention is a method for treating a battery having a copper current collector and an aluminum current collector, wherein the copper current collector and the aluminum current collector have a specific gravity of 1 Separation is carried out by specific gravity selection using a heavy liquid of 9 to 2.9 g / ml.

【0019】[0019]

【発明の実施の形態】電池やバッテリーパックは、正及
び負の電極、電解液及びこれらを覆う筐体を有し、電極
は、電極の主体を構成する集電体と、集電体表面に成膜
されて電子・イオンのやり取りを行い集電体表面を保護
する活物質の層とからなる。集電体は、正極はアルミニ
ウム、負極は銅から形成され、活物質には正極はLiC
oO2、負極は炭素等が用いられるのが一般的である。
又、活物質はPVdF等をバインダとして集電体表面に
成膜、積層される。このような電池やバッテリーパック
からリチウム、コバルト、銅、アルミニウムといった金
属のリサイクルを安全に行うには、解体作業を行って電
極を筐体及び電解液から分離し、電極を活物質及び集電
体に分離して、各金属を回収する必要がある。又、解体
作業を安全に行うために、電池及びバッテリーパックの
放電を行う必要もある。
BEST MODE FOR CARRYING OUT THE INVENTION A battery or a battery pack has positive and negative electrodes, an electrolytic solution, and a casing that covers these, and the electrodes are a current collector that constitutes the main body of the electrode and a surface of the current collector. It is composed of a layer of an active material which is formed into a film and exchanges electrons and ions to protect the surface of the current collector. The current collector is made of aluminum for the positive electrode and copper for the negative electrode, and the positive electrode is LiC for the active material.
In general, carbon or the like is used for oO 2 and the negative electrode.
The active material is deposited and laminated on the surface of the current collector using PVdF or the like as a binder. In order to safely recycle metals such as lithium, cobalt, copper, and aluminum from such batteries and battery packs, disassembling work is performed to separate the electrodes from the housing and the electrolyte, and the electrodes are made into an active material and a current collector. It is necessary to separate each metal and recover each metal. Further, in order to safely perform the disassembly work, it is necessary to discharge the battery and the battery pack.

【0020】本発明においては、上記を考慮し、図1に
示すように、放電処理(図中の工程1)を経て電池及び
バッテリーパックを解体(工程2)し、解体物を洗浄
(工程3)により電池内の電解液を回収し、磁力選別等
により筐体などを構成する鉄系成分の除去(図示省略)
を経て、電極の集電体及び活物質を構成する各金属成分
の回収が行われる。この電極の処理としては、湿式処理
及び乾式処理の2つの方法が提案され、各々において、
アルミニウム、コバルト、リチウム等の回収が行われ
る。尚、電極は、湿式又は乾式の処理を行う前に比重選
別(工程4)することによって正電極と負電極とに分離
することができ、リサイクル効率の改善に貢献する。負
電極を加熱して活物質である炭素を除去すれば、集電体
の銅を回収できる。
In consideration of the above, in the present invention, as shown in FIG. 1, the battery and the battery pack are disassembled (step 2) through a discharge treatment (step 1 in the figure), and the disassembled article is washed (step 3). ) Collects the electrolyte in the battery and removes the iron-based components that make up the casing by magnetic force selection (not shown).
After that, each metal component constituting the current collector of the electrode and the active material is recovered. Two methods, wet processing and dry processing, have been proposed for the treatment of this electrode.
Aluminum, cobalt, lithium, etc. are recovered. The electrode can be separated into a positive electrode and a negative electrode by performing a specific gravity selection (step 4) before performing a wet or dry process, which contributes to improvement of recycling efficiency. Copper of the current collector can be recovered by heating the negative electrode to remove carbon as the active material.

【0021】湿式処理は、集電体と活物質層との分離を
硫酸あるいは硝酸に含浸(工程5)して行う処理方法で
あり、正電極活物質を酸に溶解(工程6)し、pH調整
(工程7)することによってコバルトとリチウムとが分
離回収され、工程5で用いた硫酸と併せてpH調整(工
程8)、電気分解(工程9)、pH調整(工程10)を
経て、アルミニウム、銅、コバルト、リチウムを各々回
収することもできる。乾式処理は、集電体と活物質層と
の分離を加熱(工程11)してバインダを除去すること
によって行い、活物質を酸に溶解(工程12)して、電
気透析(工程13)によりコバルト、リチウムが回収さ
れる。
The wet treatment is a treatment method in which the current collector and the active material layer are separated by impregnating with sulfuric acid or nitric acid (step 5), and the positive electrode active material is dissolved in acid (step 6) to adjust the pH. By adjusting (step 7), cobalt and lithium are separated and recovered, and together with the sulfuric acid used in step 5, pH adjustment (step 8), electrolysis (step 9), pH adjustment (step 10), and aluminum. , Copper, cobalt, and lithium can also be recovered. The dry treatment is performed by heating (step 11) to remove the binder by separating the current collector and the active material layer, dissolving the active material in an acid (step 12), and performing electrodialysis (step 13). Cobalt and lithium are recovered.

【0022】まず、本発明においては、廃電池及び廃バ
ッテリーパックの放電処理(工程1)は導電性の液体を
用いて行う。一般にバッテリーパックには正極および負
極端子が複数本あるのが普通である。このような複数の
端子から放電するためには、正極及び負極を各々接続し
なければならず、接続プラグのような通常の接続手段を
用いると作業が非常に煩雑であり構造的に不可能な場合
もあるので、汎用的でない。しかし、導電性の液体であ
れば、任意の形状の任意の隙間に入ることができるの
で、このような液体に端子を浸すことにより複数の端子
が接続され、正極及び負極間での放電が容易に行われ
る。従って、このような構造に伴う問題は解決され、単
電池であるかバッテリーパックであるかに関わらず、放
電を行うことができる。
First, in the present invention, the discharging process (process 1) of a waste battery and a waste battery pack is performed using a conductive liquid. Generally, a battery pack usually has a plurality of positive and negative terminals. In order to discharge from such a plurality of terminals, the positive electrode and the negative electrode must be connected to each other, and the work is very complicated and structurally impossible if an ordinary connecting means such as a connecting plug is used. In some cases, it is not universal. However, as long as it is a conductive liquid, it can enter any gap of any shape, so by immersing the terminals in such a liquid, multiple terminals can be connected and discharge between the positive and negative electrodes is easy. To be done. Therefore, the problem associated with such a structure is solved, and the discharge can be performed regardless of whether it is a single cell or a battery pack.

【0023】一般に、3.6Vのリチウムイオン二次電
池では、10Ω程度の酸化物の抵抗を通して放電する
と、発熱によるトラブルを生じることなく1個のリチウ
ムイオン二次電池の放電を半日程度で完了することがで
きる。従って、このような放電を可能とするような液体
を放電用の電極接続液(以下、放電液と称する)として
用いるのがよい。
In general, in a 3.6V lithium-ion secondary battery, when discharging through an oxide resistance of about 10Ω, one lithium-ion secondary battery is completely discharged within half a day without causing troubles due to heat generation. be able to. Therefore, it is preferable to use a liquid that enables such a discharge as the electrode connecting liquid for discharge (hereinafter, referred to as a discharge liquid).

【0024】このような放電液の要件は、(1) 放電時に
電解によって腐食、侵食等を生じないもの、(2) 放電に
よる温度変化が1K/hour程度に抑制可能なもの、が挙
げられる。特に(2) については、放電液の温度変化が生
じ易いと、液体の過熱による気化などの問題が生じるの
で、注意が必要である。但し、これは放電液の加熱を否
定する意味ではなく、放電液の温度制御が容易であるこ
とことを意味する。
The requirements for such a discharge liquid include (1) one that does not cause corrosion and erosion due to electrolysis during discharge, and (2) one that can suppress the temperature change due to discharge to about 1 K / hour. Especially regarding (2), if the temperature of the discharge liquid is likely to change, problems such as vaporization due to overheating of the liquid may occur, so caution is required. However, this does not mean that the heating of the discharge liquid is denied, but means that the temperature control of the discharge liquid is easy.

【0025】(2) の温度変化に関する条件は、最小電極
間距離L[m]、パック最大電圧V[V]、液体の電気
伝導率κ[S/m]、液体の比重ρ[kg/m3 ]、液体
の比熱C[J/K・kg]とすると、下記のような計算式
で示すことができる。
The condition of the temperature change of (2) is the minimum interelectrode distance L [m], the maximum pack voltage V [V], the electric conductivity κ [S / m] of the liquid, and the specific gravity ρ [kg / m of the liquid. 3 ] and the specific heat of the liquid C [J / K · kg], it can be expressed by the following calculation formula.

【0026】 ΔT[K/hour]=(3600κV2 )/(ρL2 C)≦1 この(2) の条件を満たす液体として例えば純水や市水、
イソブチルアルコールなどがあり、これらは(1) の条件
をも満足する。
ΔT [K / hour] = (3600 κV 2 ) / (ρL 2 C) ≦ 1 As a liquid satisfying the condition (2), for example, pure water or city water,
There are isobutyl alcohol and the like, which also satisfy the condition (1).

【0027】一般に電極間は数ミリ程度であり、電極端
子もせいぜい0.2〜1cm2 程度であるが、市水などは
10-8S/cm程度の導電率を持ち、抵抗値としても10
MΩ程度であり、一般に使用されている数〜十数V程度
のバッテリーパックならば問題なく放電可能である。純
水の場合、抵抗が大きく放電に時間がかかるが、上式を
成立する条件内で電解質を添加して導電性を上げること
によって適切な放電液を調製することができる。
Generally, the distance between the electrodes is about several millimeters, and the electrode terminals are at most about 0.2 to 1 cm 2 , but city water or the like has a conductivity of about 10 -8 S / cm and a resistance value of 10 as well.
It is about MΩ, and a generally used battery pack of about several to ten and several volts can be discharged without problems. In the case of pure water, the resistance is large and it takes a long time to discharge, but an appropriate discharge liquid can be prepared by adding an electrolyte and increasing the conductivity within the conditions that satisfy the above equation.

【0028】電解質として、鉱酸、有機酸、金属水酸化
物、アンモニア、アミノ及びイミノ化合物等の各種酸及
び塩基並びにこれらの塩があるが、電池やバッテリーパ
ックの放電液としては、ハロゲンイオンを生じない電解
質が適している。塩酸や食塩のようなハロゲンイオンを
生じる電解質の水溶液を放電液として用いると、多量の
析出物が生じて放電液が懸濁し、正極端子が侵食される
ことにより放電が安定して行われなかったり残留電圧の
測定が困難になったりすることが多発する。又、放電液
がバッテリーパック内部に浸入する場合もある。これ
は、電池やバッテリーパックに用いられている銅の溶出
及び溶出した銅がハロゲン化銅として析出することなど
によって生じると考えられる。ポータブルビデオカメラ
のバッテリーパックなどは端子近傍に回路基板が組み込
まれている場合があり、このように回路基板を有するバ
ッテリーパックをハロゲンイオンを含む放電液に浸漬す
ると、回路基板の銅が溶出して回路が開放状態となって
放電が停止する恐れがある。
As the electrolyte, there are various acids and bases such as mineral acids, organic acids, metal hydroxides, ammonia, amino and imino compounds, and salts thereof, but halogen ions are used as the discharge liquid for batteries and battery packs. A non-producing electrolyte is suitable. If an aqueous solution of an electrolyte that produces halogen ions, such as hydrochloric acid or salt, is used as the discharge liquid, a large amount of precipitates will be generated and the discharge liquid will be suspended, and the positive electrode terminal will be eroded, resulting in unstable discharge. Frequently, it becomes difficult to measure the residual voltage. Also, the discharge liquid may penetrate into the battery pack. It is considered that this is caused by elution of copper used in batteries and battery packs and the elution of copper as copper halide. A circuit board may be installed near the terminals of a battery pack of a portable video camera, and when a battery pack having a circuit board is immersed in a discharge solution containing halogen ions, the copper of the circuit board elutes. The circuit may be opened and the discharge may stop.

【0029】従って、様々な種類の廃電池や廃バッテリ
ーパックを分別することなく放電処理するためには、ハ
ロゲンイオンを含まない放電液を用いることが肝要であ
る。例えば、硫酸、硝酸、炭酸、酢酸、有機酸、及びこ
れらの酸による塩、並びに金属水酸化物が使用できる。
このようなハロゲンイオンを生成しない電解質の中で
も、硫酸は特に放電性能がよく、析出物の生成も少な
い。
Therefore, it is important to use a discharge liquid containing no halogen ions in order to perform discharge processing without separating various kinds of waste batteries and waste battery packs. For example, sulfuric acid, nitric acid, carbonic acid, acetic acid, organic acids, salts of these acids, and metal hydroxides can be used.
Among these electrolytes that do not generate halogen ions, sulfuric acid has particularly good discharge performance and produces few precipitates.

【0030】図2は、電解質を溶解した水溶液を放電液
として用いて電池を放電させたときの残留電圧の経時変
化を示したもので、図中の符号は各々以下のような電解
質水溶液を用いて測定した場合を示している。
FIG. 2 shows changes with time in the residual voltage when the battery is discharged using an aqueous solution in which an electrolyte is dissolved as a discharge liquid. The symbols in the figure respectively use the following aqueous electrolyte solutions. It shows the case of measurement.

【0031】 A,B,C:水 D,E:1M塩化ナトリウム水溶液 F:1M水酸化ナトリウム水溶液 G:1M炭酸カルシウム水溶液 H:1M酸化マグネシウム水溶液 I:1M酸化カルシウム水溶液 J:1M硫酸水溶液 K:0.5M硫酸水溶液 L:0.5M硫酸ナトリウム水溶液 M:0.001M硫酸ナトリウム水溶液 N:1M塩酸水溶液 O:1M硝酸水溶液 電池の放電特性は固体差などによって相違があるが、図
2からは、電解質の濃度が高い方が放電性がよく、硫酸
水溶液以外の電解質の放電性において類似の傾向が見ら
れることが理解される。又、硫酸水溶液については特に
放電性が良好である。放電処理中、D,Eの塩化ナトリ
ウム水溶液を用いた場合には、析出物が大量に生じ、正
極端子が溶出して電池内部に塩化ナトリウム水溶液の流
入がみられた。Nの塩酸水溶液及びOの硝酸水溶液にお
いては、正極端子の溶出が激しく、放電時間が4時間以
降については電圧の測定は行えなかった。
A, B, C: Water D, E: 1M sodium chloride aqueous solution F: 1M sodium hydroxide aqueous solution G: 1M calcium carbonate aqueous solution H: 1M magnesium oxide aqueous solution I: 1M calcium oxide aqueous solution J: 1M sulfuric acid aqueous solution K: 0.5M sulfuric acid aqueous solution L: 0.5M sodium sulfate aqueous solution M: 0.001M sodium sulfate aqueous solution N: 1M hydrochloric acid aqueous solution O: 1M nitric acid aqueous solution Although the discharge characteristics of the battery are different depending on the individual difference, from FIG. It is understood that the higher the concentration of, the better the dischargeability, and a similar tendency is seen in the dischargeability of the electrolytes other than the sulfuric acid aqueous solution. In addition, the dischargeability of the sulfuric acid aqueous solution is particularly good. During the discharge treatment, when the sodium chloride aqueous solutions of D and E were used, a large amount of precipitate was generated, the positive electrode terminal was eluted, and the inflow of the sodium chloride aqueous solution was observed inside the battery. In the N hydrochloric acid aqueous solution and the O nitric acid aqueous solution, the elution of the positive electrode terminal was severe, and the voltage could not be measured after the discharge time of 4 hours.

【0032】硫酸水溶液を放電液として用いると、安定
して放電が行われる。但し、過度に高濃度の硫酸水溶液
を用いると、電池のパッケージを構成する金属以外の成
分(有機樹脂等)との反応などによる危険性が予想され
るので、3M程度以下のものを用いるのが好ましい。
When an aqueous solution of sulfuric acid is used as the discharge liquid, stable discharge is performed. However, if an excessively high concentration sulfuric acid aqueous solution is used, there is a risk that it will react with components (organic resins, etc.) other than the metals that make up the battery package. preferable.

【0033】放電する際、電気分解反応により正極端
子、負極端子から気体が生成する。これらを取り除くこ
とによって放電が促進するので、放電液の攪拌操作等を
併用すれば放電時間は短縮できる。負極から発生する水
素を別途回収して水素資源として用いてもよい。
When discharging, gas is generated from the positive electrode terminal and the negative electrode terminal by the electrolysis reaction. Since the discharge is promoted by removing them, the discharge time can be shortened by additionally using the stirring operation of the discharge liquid. Hydrogen generated from the negative electrode may be separately collected and used as a hydrogen resource.

【0034】また、放電液の温度を高くすることによ
り、水のpHを上昇させ、電気的媒体を増やすことによ
り放電時間を短縮することも可能である。このような物
理的な因子は、状況に応じて適宜選択することができ
る。
It is also possible to raise the pH of water by raising the temperature of the discharge liquid and shorten the discharge time by increasing the electric medium. Such physical factors can be appropriately selected depending on the situation.

【0035】放電処理は液体により回路が形成されてい
ればよいため、例えば図3のようにバッテリーパック
B、B’の電極E1,E2,E3のみを放電槽20内の
放電液21に浸すようにしてもよい。図3において符号
22は仕切り板である。又、特に浸漬方式でなくてもよ
く、噴射方式による回路の形成、スポンジに液体を含浸
させた形で利用する回路の形成でも良い。
Since it is sufficient for the discharge process to form a circuit with a liquid, for example, as shown in FIG. 3, only the electrodes E1, E2 and E3 of the battery packs B and B ′ are immersed in the discharge liquid 21 in the discharge tank 20. You may In FIG. 3, reference numeral 22 is a partition plate. Further, the circuit may be formed not only by the immersion method but also by the injection method, or may be formed by using a sponge impregnated with a liquid.

【0036】放電処理が終了した電池及びバッテリーパ
ックは、前述したように、解体(図1の工程2)した後
に洗浄(工程3)して電解液を除去し、磁力選別等によ
り筐体などを構成する鉄系成分の除去を経て、比重選別
(工程4)することによって正電極と負電極とに分離す
る。この比重選別は、比重を1.9〜2.9に調整した
重液を用いて行い、電極の主体である集電体がアルミニ
ウムで形成される正電極と集電体が銅である負電極の比
重の相違を利用する。このような重液は、例えば、ファ
ロシリコン、フェリコロイドのような磁性流体を用いて
調製することができる。このような重液に電池やバッテ
リーパックに用いられている電極を投入して数分間程度
穏やかに攪拌すると、正電極は沈降し、負電極は浮上す
る。従って、分離した負電極から集電体として用いられ
ている銅を回収することができる。
As described above, the battery and battery pack that have been subjected to the discharge treatment are disassembled (step 2 in FIG. 1) and then washed (step 3) to remove the electrolytic solution, and the casing or the like is removed by magnetic force selection or the like. After removing the iron-based constituents, the positive electrode and the negative electrode are separated by specific gravity selection (step 4). This specific gravity selection is performed using a heavy liquid whose specific gravity is adjusted to 1.9 to 2.9, and the positive electrode in which the current collector that is the main body of the electrode is made of aluminum and the negative electrode in which the current collector is copper are Utilizing the difference in specific gravity of. Such a heavy liquid can be prepared using a magnetic fluid such as farosilicon or ferricolloid. When an electrode used in a battery or a battery pack is put into such a heavy liquid and gently stirred for several minutes, the positive electrode sinks and the negative electrode floats. Therefore, the copper used as the current collector can be recovered from the separated negative electrode.

【0037】選別された電極は、各々、集電体と活物質
とに分離する。この分離は、湿式処理又は乾式処理に従
って行うことができる。
The selected electrodes are separated into a current collector and an active material. This separation can be performed according to a wet process or a dry process.

【0038】湿式処理は、酸に電極を浸漬することによ
って電極の集電体と活物質とを分離する方法である。集
電体と活物質との間に酸が入り込み、集電体が若干量溶
解することによって活物質が剥離する。用いる酸は硫酸
が望ましく、その溶液の濃度は、12規定以下である必
要がある。12規定を超える濃度のものを使用すると、
アルミニウム集電体が多量に溶解し、アルミニウムの回
収率が低下する。但し、硫酸の濃度が余りにも淡いと、
集電体と活物質との剥離に長時間を要し、好ましくな
い。従って、その濃度が0.5〜10規定、特に1〜3
規定のものが望ましい。
The wet treatment is a method in which the electrode current collector and the active material are separated by immersing the electrode in an acid. An acid enters between the current collector and the active material, and the current collector is dissolved in a slight amount, whereby the active material is peeled off. The acid used is preferably sulfuric acid, and the concentration of the solution must be 12 N or less. If you use a concentration higher than 12
A large amount of the aluminum current collector is dissolved, and the aluminum recovery rate is reduced. However, if the concentration of sulfuric acid is too light,
It takes a long time to separate the current collector and the active material, which is not preferable. Therefore, the concentration is 0.5 to 10 N, especially 1 to 3
The prescribed one is desirable.

【0039】上記の操作により、正電極ではアルミニウ
ム集電体から正極活物質が剥離し、負電極では銅集電体
上の負極活物質である炭素粉が剥離する。まず、瀘過等
の分離操作によって、酸液から正極活物質LiCoO
2 、アルミニウム集電体、銅集電体を回収する。さら
に、瀘過等の分離手段により正極活物質とアルミニウム
集電体及び銅集電体とに分離する。活物質は非常に薄い
箔状に形成されており、集電体とは寸法上あまり差はな
いが、微小な機械的な力で小片になるので、集電体から
剥離した活物質をふるいなどを用いた機械的な手法で分
別することが可能である。この場合、湿式処理を施す電
極の寸法が2cm角程度であるのが好ましい。破砕寸法が
小さくなると集電体と活物質との分別が難しくなる。
By the above operation, the positive electrode active material is separated from the aluminum current collector at the positive electrode, and the carbon powder as the negative electrode active material on the copper current collector is separated at the negative electrode. First, the positive electrode active material LiCoO 2 is removed from the acid solution by a separation operation such as filtration.
2. Collect aluminum collector and copper collector. Further, the positive electrode active material is separated into an aluminum current collector and a copper current collector by a separating means such as filtration. The active material is formed in a very thin foil shape, and there is not much difference in size from the current collector, but since it becomes a small piece with a small mechanical force, the active material peeled from the current collector is sieved. It is possible to separate by a mechanical method using. In this case, it is preferable that the size of the electrode to be wet-processed is about 2 cm square. When the crushed size is small, it becomes difficult to separate the current collector from the active material.

【0040】分離された正極活物質は、塩酸溶液などの
酸を用いて溶解した後、アルカリ溶液と接触させると水
酸化コバルトが折出するので、これを瀘過、水洗、乾
燥、焼成することによって酸化コバルトとして回収でき
る。
The separated positive electrode active material is dissolved in an acid such as a hydrochloric acid solution and then brought into contact with an alkaline solution to cause cobalt hydroxide to break off. Therefore, this should be filtered, washed with water, dried and fired. Can be recovered as cobalt oxide.

【0041】あるいは、正極活物質を酸に溶解した後
に、集電体と活物質との分離に用いた硫酸剥離液を合わ
せて、硫酸剥離液に少量含まれるアルミニウム、銅及び
コバルトを順に回収してもよい。アルミニウムの回収
は、溶液からアルミニウムを沈澱させて溶液から分離す
ることによって行う。これは、溶液のpHを中性域に近
づけて水酸化アルミニウムとして沈澱、分離することに
よって可能であり、特にリン酸又はリン酸塩を沈澱剤と
して用いると、コバルトの共沈量が少なく、アルミニウ
ムを完全に沈殿させることができる。沈殿剤の使用量
は、溶液中に存在するアルミニウムイオンに対して当量
以上で良いが、溶液中に存在するアルミニウム以外の金
属やその含有量等の影響を受けるので、溶液を予め分析
する等してその使用量を決定するのが望ましい。アルミ
ニウムを除去した液から、さらに電解分離によって銅を
回収することができ、この後、アルカリ溶液と接触させ
て水酸化コバルトとして折出させ、瀘過、水洗、乾燥、
焼成して酸化コバルトが回収できる。
Alternatively, after dissolving the positive electrode active material in an acid, the sulfuric acid stripping solution used for separating the current collector and the active material is combined, and aluminum, copper and cobalt contained in a small amount in the sulfuric acid stripping solution are sequentially recovered. May be. Recovery of aluminum is performed by precipitating aluminum from the solution and separating it from the solution. This is possible by bringing the pH of the solution closer to the neutral range and precipitating and separating it as aluminum hydroxide. Particularly, when phosphoric acid or a phosphate is used as a precipitant, the coprecipitation amount of cobalt is small and Can be completely precipitated. The amount of the precipitant used may be equal to or more than the amount of aluminum ions present in the solution, but it is affected by the metals other than aluminum present in the solution and the content thereof, and therefore the solution should be analyzed beforehand. It is desirable to determine the amount used. Copper can be recovered from the liquid from which aluminum has been removed by further electrolytic separation, after which copper is brought into contact with an alkaline solution to form cobalt hydroxide, which is filtered, washed with water, dried,
Cobalt oxide can be recovered by firing.

【0042】湿式処理を行う前に比重分離を行わない場
合、湿式処理で得られるアルミニウム集電体及び銅集電
体を重液を用いた比重選別によって分離してもよい。こ
の場合の重液の比重は、1.9〜2.9程度が好まし
く、ヨウ化メチレン/ベンゼン混合液等を用いることが
できるが、もちろんこれに限られるわけではない。
When the specific gravity separation is not performed before the wet treatment, the aluminum current collector and the copper current collector obtained by the wet treatment may be separated by specific gravity selection using a heavy liquid. In this case, the specific gravity of the heavy liquid is preferably about 1.9 to 2.9, and a methylene iodide / benzene mixed liquid or the like can be used, but it is not limited to this.

【0043】集電体及び剥離した活物質を硫酸剥離液か
ら分離した際に、用いたセパレータと共に集電体及び活
物質を水を用いたオーバーフロー式攪拌装置にオーバー
フローさせない状態で投入し、攪拌、静置によって水面
に浮遊したセパレータを取り除いた後、オーバーフロー
状態で攪拌することによってアルミニウム集電体と銅集
電体を分離して回収すると実用的である。
When the current collector and the stripped active material are separated from the sulfuric acid stripping solution, the separator and the separator used are charged into an overflow-type stirrer using water without being overflowed and stirred, It is practical to remove the separator floating on the water surface by standing and then to separate and collect the aluminum current collector and the copper current collector by stirring in an overflow state.

【0044】電極の乾式処理は、集電体と活物質層との
分離を加熱(図1の工程11)してバインダを除去する
ことによって行う。加熱は、還元性雰囲気下で行い、温
度は300〜400℃程度とする。電極のバインダとし
ては、PVdF(ポリ弗化ビニリデン)等のハロゲンを
含む材料が用いられ、これを300℃程度に加熱する
と、分解して弗素が脱離する。脱離した弗素は正極集電
体(アルミニウム)や炉材の腐食源となる。従って、集
電体及び炉材の腐食、劣化を防止するために、還元性雰
囲気中で加熱が行われる。還元性雰囲気は、例えば水素
/アルゴン混合ガスのようなものが用いられる。水素の
供給量は、バインダに含まれるハロゲンに対して等量以
上であればよいが、安全性を考慮して爆発限界濃度であ
る3%以下に設定するのがよい。バインダが熱分解する
ことによって集電体と活物質とは分離する。分離した集
電体と活物質との分別は、前述したようにふるい等を用
いて機械的に行うことができる。
The dry treatment of the electrode is performed by heating the separation of the current collector and the active material layer (step 11 in FIG. 1) to remove the binder. The heating is performed in a reducing atmosphere and the temperature is about 300 to 400 ° C. A material containing halogen such as PVdF (polyvinylidene fluoride) is used as the binder of the electrode, and when this is heated to about 300 ° C., it is decomposed and fluorine is desorbed. The desorbed fluorine becomes a corrosion source of the positive electrode current collector (aluminum) and the furnace material. Therefore, heating is performed in a reducing atmosphere to prevent corrosion and deterioration of the current collector and the furnace material. As the reducing atmosphere, for example, hydrogen / argon mixed gas is used. The amount of hydrogen supplied may be equal to or more than the amount of halogen contained in the binder, but in consideration of safety, it is preferably set to 3% or less which is the explosion limit concentration. The current collector and the active material are separated by the thermal decomposition of the binder. The separation of the separated current collector and active material can be performed mechanically using a sieve or the like as described above.

【0045】活物質は酸に溶解(工程12)して、電気
透析(工程13)を行うことによってコバルト及びリチ
ウムが水酸化物として析出する。これを瀘過、水洗、乾
燥、焼成すれば酸化物として回収される。図1に示すよ
うに、湿式処理及び乾式処理のいずれにおいても、活物
質からコバルト等の回収は一旦酸に溶解した上で行われ
るので、いずれにおいてもpH調整(工程7)を経ても
電気透析(工程13)を経てもよい。
The active material is dissolved in an acid (step 12) and electrodialysis (step 13) is carried out to deposit cobalt and lithium as hydroxides. If this is filtered, washed with water, dried and baked, it is recovered as an oxide. As shown in FIG. 1, in both wet treatment and dry treatment, recovery of cobalt and the like from the active material is carried out after being once dissolved in an acid. Therefore, in any case, electrodialysis is performed even after pH adjustment (step 7). (Step 13) may be performed.

【0046】ニッケル電池についても同様に処理するこ
とができ、コバルト、リチウムと同様の経過を経て水酸
化物あるいは酸化物として回収される。
A nickel battery can be treated in the same manner, and is recovered as a hydroxide or an oxide through the same process as cobalt and lithium.

【0047】[0047]

【実施例】以下、実施例を参照して本発明をさらに詳細
に説明する。
The present invention will be described in more detail below with reference to examples.

【0048】(実施例1)IBM製パーソナルコンピュ
ーターThinkPad 560用バッテリーパックの電圧を測定し
たところ、端子間電圧6.4Vを示した。
(Example 1) When the voltage of the battery pack for the IBM personal computer ThinkPad 560 was measured, a voltage between terminals of 6.4V was shown.

【0049】透明アクリル製放電容器に25℃の市水を
入れ、上述のバッテリーパックの電極のみが市水に浸る
ように位置決めしてバッテリーパックを固定し、放電を
行った。随時、残留電圧を測定したところ、下記式に近
似される曲線で放電し、最終残留電圧は0.18Vまで
低下した。
City water of 25 ° C. was placed in a transparent acrylic discharge container, and the battery pack was fixed by positioning so that only the electrodes of the battery pack described above were immersed in the city water and discharged. When the residual voltage was measured at any time, discharge was performed according to the curve approximated by the following formula, and the final residual voltage dropped to 0.18V.

【0050】V=6.41exp(−0.90t) (V:残留電圧[V]、t:時間[hour]) その際、負極から水素が発生し、正極付近には銅が折出
したが、容器内部で他の化学反応は生じなかった。温度
変化は測定誤差範囲内であった。
V = 6.41 exp (-0.90 t) (V: residual voltage [V], t: time [hour]) At that time, hydrogen was generated from the negative electrode, and copper was broken out near the positive electrode. , No other chemical reaction occurred inside the container. The temperature change was within the measurement error range.

【0051】放電終了後、一般の切削工具を使用し、バ
ッテリーパックを解体した。作業中、リチウムイオン2
次電池の保護カバーの一部を破り、正極と負極を短絡し
たが、発火、発煙、爆発などは生じず、安全に解体作業
を終了できた。
After discharging, the battery pack was disassembled using a general cutting tool. During work, lithium ion 2
Although a part of the protective cover of the secondary battery was broken and the positive electrode and the negative electrode were short-circuited, there was no ignition, smoke, or explosion, and the disassembly work could be completed safely.

【0052】(実施例2)東京デジタルホンDP-172新バ
イブレーター付電池パックTS-B5-02の電圧を測定したと
ころ、端子間電圧1.79Vを示した。
Example 2 When the voltage of Tokyo Digital Phone DP-172 battery pack TS-B5-02 with a new vibrator was measured, a terminal voltage of 1.79 V was shown.

【0053】透明アクリル製放電容器に18℃の0.1
M NaOH水溶液を入れ、上記バッテリーパックの電
極だけがNaOH水溶液に浸るように位置決めして電池
パックを固定し、放電を行った。随時、残留電圧を測定
したところ、下記式に近似される曲線で放電し、最終残
留電圧は0.41Vまで低下した。
A transparent acrylic discharge vessel was charged with 0.1 at 18 ° C.
An M NaOH aqueous solution was added, the battery pack was fixed by positioning so that only the electrode of the battery pack was immersed in the NaOH aqueous solution, and the battery was discharged. When the residual voltage was measured at any time, discharge was performed according to the curve approximated by the formula below, and the final residual voltage dropped to 0.41V.

【0054】V=1.79exp[−0.33t] (V:残留電圧[V]、t:時間[hour]) その際、負極から水素、正極からは酸素が発生した。正
極表面に黒色の皮膜が見られた。付近には特に折出物は
特に見られなかった。容器内部で他の化学反応は生じな
かった。温度変化は測定誤差範囲であった。
V = 1.79exp [-0.33t] (V: residual voltage [V], t: time [hour]) At that time, hydrogen was generated from the negative electrode and oxygen was generated from the positive electrode. A black film was found on the surface of the positive electrode. No particular breakouts were found in the vicinity. No other chemical reaction occurred inside the container. The temperature change was within the measurement error range.

【0055】放電終了後、一般の切削工具を使用し、電
池パックを解体した。作業中、リチウムイオン2次電池
の保護カバーの一部を破り、正極と負極を短絡したが、
発火、発煙、爆発などは生じず、安全に解体作業を終了
できた。
After discharging, the battery pack was disassembled using a general cutting tool. During the work, I broke a part of the protective cover of the lithium-ion secondary battery and short-circuited the positive electrode and the negative electrode.
There was no ignition, smoke, or explosion, and the dismantling work could be completed safely.

【0056】(比較例1)実施例1で処理したものと同
じ型のバッテリーパックを、放電処理を行う前に注意し
て解体した。切削工具で最外側の電池フィルムを破壊し
たとき、一部短絡し、発煙を生じた。パックを解体後、
各電池ごとに分け、これを実施例1と同じ条件の市水に
浸漬した。随時、残留電圧を測定したところ、下記式に
近似される曲線で放電し、最終残留電圧は1.03Vま
で低下した。
Comparative Example 1 A battery pack of the same type as that treated in Example 1 was carefully disassembled before the discharge treatment. When the outermost battery film was broken with a cutting tool, some short circuits occurred and smoke was generated. After dismantling the pack,
Each battery was divided and immersed in city water under the same conditions as in Example 1. When the residual voltage was measured at any time, discharge was performed according to the curve approximated by the following formula, and the final residual voltage dropped to 1.03V.

【0057】V=2.55exp[−0.10t] (V:残留電圧[V]、t:時間[hour]) (実施例3)リチウムイオン2次電池から回収した電極
を5mm角の大きさに裁断した。
V = 2.55exp [-0.10t] (V: residual voltage [V], t: time [hour]) (Example 3) The electrode collected from the lithium-ion secondary battery was 5 mm square. Cut into.

【0058】ファロシリコンを用いて比重2.0の重液
を調製し、底部にドレインを有する槽に投入し、これに
裁断した電極を加えて攪拌したところ、約2分後に浮力
により液面に浮かぶ電極と重液下部に沈降する電極とに
分離した。攪拌をやめ、ドレインから重液下部に沈降す
る電極を重液と共に排出し1mmメッシュの網で重液から
分離したところ、アルミニウムを集電体とする正電極が
選択的に得られた。
A heavy liquid having a specific gravity of 2.0 was prepared using farosilicon, charged into a tank having a drain at the bottom, and a chopped electrode was added thereto and stirred. It was separated into a floating electrode and an electrode that settled under the heavy liquid. When the stirring was stopped and the electrode that settled from the drain to the bottom of the heavy liquid was discharged together with the heavy liquid and separated from the heavy liquid by a 1 mm mesh net, a positive electrode using aluminum as a current collector was selectively obtained.

【0059】(実施例4)廃電池から回収した電極を5
mm角の大きさに裁断した。
(Example 4) Five electrodes collected from a waste battery were used.
It was cut to a size of mm square.

【0060】磁性流体(フェリコロイド)で比重2.5
の重液を調製し、底部にドレインを有する槽に投入し、
これに裁断した電極を加え、電磁石により磁界の強弱を
作って重液を攪拌したところ、約5分後に浮力により液
面に浮かぶ電極と重液下部に沈降する電極とに分離し
た。攪拌をやめ、ドレインから重液下部に沈降する電極
を重液と共に排出し1mmメッシュの網で重液から分離し
たところ、アルミニウムを集電体とする正電極が選択的
に得られた。
Magnetic fluid (ferri colloid) has a specific gravity of 2.5
Prepare the heavy liquid of and put it in a tank with a drain at the bottom,
The cut electrode was added to this, and the strength of the magnetic field was made strong by an electromagnet to stir the heavy liquid. After about 5 minutes, the electrode floated on the liquid surface due to buoyancy and separated into the electrode settling at the bottom of the heavy liquid. When the stirring was stopped and the electrode settling from the drain to the lower part of the heavy liquid was discharged together with the heavy liquid and separated from the heavy liquid with a 1 mm mesh net, a positive electrode using aluminum as a current collector was selectively obtained.

【0061】(実施例5)正極活物質にコバルト酸リチ
ウム(LiCoO2 )使用した使用済みリチウムイオン
二次電池から取り出した電極を5cm角に切断し、この切
断した電極1kgをポリプロピレン製容器に入れ、0.8
規定硫酸水溶液2リットルを加えて、この容器を1時間
回転させたところ、正電極のコバルト酸リチウムはアル
ミニウム集電体から剥離し、負極活物質の炭素粉も銅集
電体から剥離した。この硫酸水溶液を瀘紙を用いて瀘過
し、溶液と固形物を分けた。次に、固形物をポリプロピ
レン製の10mm×10mmのふるいに入れ、水を吹き付け
て、水と共にコバルト酸リチウムをふるいから通過さ
せ、ビーカに捕集した。ふるい上にはセパレータ、アル
ミニウム集電体及び銅集電体が捕集された。
Example 5 An electrode taken out from a used lithium ion secondary battery using lithium cobalt oxide (LiCoO 2) as a positive electrode active material was cut into 5 cm squares, and 1 kg of the cut electrode was placed in a polypropylene container. 0.8
When 2 liters of a normal sulfuric acid aqueous solution was added and the container was rotated for 1 hour, lithium cobalt oxide of the positive electrode was peeled from the aluminum current collector, and carbon powder of the negative electrode active material was also peeled from the copper current collector. The aqueous solution of sulfuric acid was filtered with a paper filter to separate the solution from the solid. Next, the solid matter was put into a polypropylene 10 mm × 10 mm sieve, sprayed with water, and lithium cobalt oxide was passed through the sieve together with water and collected in a beaker. The separator, the aluminum current collector, and the copper current collector were collected on the sieve.

【0062】ビーカ中のコバルト酸リチウムからデカン
テーションにより水を除いた後、塩酸を加えて加熱溶解
してコバルト錯イオンの溶液とした。これを室温まで冷
却した後、pH10になるまで水酸化ナトリウム溶液を
加えると、水酸化コバルトが沈殿し、これを瀘過、洗
浄、乾燥及び焼成して酸化コバルトとして回収した。
After water was removed from the lithium cobalt oxide in the beaker by decantation, hydrochloric acid was added and dissolved by heating to obtain a solution of cobalt complex ions. After cooling this to room temperature, a sodium hydroxide solution was added until it reached pH 10, cobalt hydroxide was precipitated, and this was filtered, washed, dried and calcined to recover as cobalt oxide.

【0063】他方、ふるい上のセパレータ、アルミニウ
ム集電体及び銅集電体は、ヨウ化メチレンをベンゼンで
薄めて作製した比重3.3の重液2リットル中に投入し
て10分間攪拌した。静置後、まず液面のセパレータを
取り除き、次にアルミニウム箔を取り出し、最後に銅箔
を取り出した。
On the other hand, the separator, the aluminum current collector and the copper current collector on the sieve were put into 2 liters of a heavy liquid having a specific gravity of 3.3 prepared by diluting methylene iodide with benzene and stirred for 10 minutes. After standing still, the separator on the liquid surface was first removed, then the aluminum foil was taken out, and finally the copper foil was taken out.

【0064】上記の方法において処理された電極量及び
回収されたコバルト、アルミニウム、銅の量及び比率、
並びに既知データとして処理前電池一個あたりの電極の
量及び組成比率を表1に示す。また、表1の結果から算
出した回収率を表2に、本方法における回収物中の不純
物量を表3に示す。
Amount of electrode treated and amount and ratio of cobalt, aluminum, copper recovered in the above method,
Table 1 shows the amount and composition ratio of the electrode per untreated battery as known data. In addition, the recovery rate calculated from the results of Table 1 is shown in Table 2, and the amount of impurities in the recovered material in this method is shown in Table 3.

【0065】[0065]

【表1】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 処理量 回収量(g) 比率(%) (g) Co Al Cu Co Al Cu −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例5 1000 250 73 190 25.0 7.30 19.0 −−−−−−−−−−−−−−−−−−−−−−−−−− (電池1個当り 23.1 6.24 1.84 4.48 27.0 7.97 19.4) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[Table 1] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−               Processing amount Recovery amount (g) Ratio (%)               (G) Co Al Cu Cu Co Al Cu −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Example 5 1000 250 73 190 25.0 7.30 19.0           ----------------- (23.1 6.24 1.84 4.48 27.0 7.97 19.4 per battery) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

【表2】 [Table 2]

【表3】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 回収物中の不純物(%) Fe Co Al Cu Ni Li −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− コバルト(酸化コバルト) 0.010 − 0.015 0.020 0.020 0.005 アルミニウム 0.005 0.006 − 0.017 0.005 <0.004 銅 0.005 0.005 0.0020 − 0.024 <0.005 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[Table 3] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−                                   Impurities (%) in recovered materials                           Fe Co Al Cu Cu Ni Li −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Cobalt (cobalt oxide) 0.010 − 0.015 0.020 0.020 0.005 Aluminum 0.005 0.006 − 0.017 0.005 <0.004 Copper 0.005 0.005 0.0020 − 0.024 <0.005 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

【0066】なお、剥離工程において、硫酸濃度3規
定,4規定および5規定のものを用いた場合は、コバル
トの回収率は、それぞれ、91.4%,88.8%,8
6.9%で、銅はそれぞれ95.4%,93.5%,9
1.2%であった。アルミニウムはそれぞれ64.3
%,56.2%,35.5%であった。この結果は、硫
酸濃度が高くなるほど回収率が低下することを示してお
り、アルミニウムの場合、特に顕著であった。
When sulfuric acid concentrations of 3N, 4N and 5N were used in the stripping step, the cobalt recovery rates were 91.4%, 88.8% and 8%, respectively.
6.9%, copper is 95.4%, 93.5%, 9
It was 1.2%. Aluminum is 64.3 each
%, 56.2% and 35.5%. This result shows that the recovery rate decreases as the sulfuric acid concentration increases, and it was particularly remarkable in the case of aluminum.

【0067】(比較例2)剥離液として、硫酸の代わり
に、1規定塩酸、6規定塩酸、12規定塩酸を用いた以
外は、電極を実施例5と同様にして処理したところ、い
ずれの場合もアルミニウム集電体が完全に溶解した。従
って、アルミニウムの回収が困難であった。
Comparative Example 2 The electrode was treated in the same manner as in Example 5 except that 1N hydrochloric acid, 6N hydrochloric acid and 12N hydrochloric acid were used as the stripping solution instead of sulfuric acid. Also, the aluminum current collector was completely dissolved. Therefore, it was difficult to recover aluminum.

【0068】(比較例3)剥離液として、硫酸の代わり
に、1規定硝酸、6規定硝酸、12規定硝酸を用いた以
外は、電極を実施例5と同様にして処理したところ、い
ずれも銅集電体がほぼ完全に溶解した。従って、銅の回
収が困難であった。
Comparative Example 3 The electrode was treated in the same manner as in Example 5 except that 1N nitric acid, 6N nitric acid and 12N nitric acid were used as the stripping solution instead of sulfuric acid. The current collector was almost completely dissolved. Therefore, it was difficult to recover copper.

【0069】(実施例6)実施例5と同様の方法で、コ
バルト酸リチウム、アルミニウム及び銅を固形物として
分離した。コバルト酸リチウムを酸化コバルトとして回
収する工程において、コバルト酸リチウムを塩酸で分解
したコバルト錯イオンと、硫酸剥離後に瀘過した硫酸剥
離液とを混合した。この混合溶液に水酸化ナトリウム溶
液を加えてpH4に調整した。
(Example 6) In the same manner as in Example 5, lithium cobalt oxide, aluminum and copper were separated as solids. In the step of recovering lithium cobalt oxide as cobalt oxide, the cobalt complex ion obtained by decomposing lithium cobalt oxide with hydrochloric acid was mixed with the sulfuric acid stripping solution filtered after the sulfuric acid stripping. Sodium hydroxide solution was added to this mixed solution to adjust the pH to 4.

【0070】次に、リン酸水素ナトリウム粉末を100
g加え混合し、硫酸剥離液中に含まれていたアルミニウ
ム錯イオンをリン酸アルミニウムとして沈殿させた。こ
の沈殿物を瀘紙を用いて除去した後、瀘過液に硫酸を加
えた。この溶液を、白金電極を用いて0.5Aの電流を
流して2時間電解を行って、瀘液中に含まれている銅を
除去した。銅を除去した溶液から、実施例5で用いた方
法に従って酸化コバルトを回収した。
Next, 100 parts of sodium hydrogen phosphate powder is added.
g was added and mixed, and aluminum complex ions contained in the sulfuric acid stripping solution were precipitated as aluminum phosphate. After removing this precipitate using a filter paper, sulfuric acid was added to the filter liquid. The solution was electrolyzed for 2 hours by passing a current of 0.5 A using a platinum electrode to remove copper contained in the filtrate. Cobalt oxide was recovered from the copper-free solution according to the method used in Example 5.

【0071】上記方法におけるコバルト、アルミニウム
及び銅の回収量及び比率を表4に、回収率を表5に、回
収物中の不純物を表6に示す。
Table 4 shows the recovery amounts and ratios of cobalt, aluminum and copper in the above method, the recovery rate is shown in Table 5, and the impurities in the recovered products are shown in Table 6.

【0072】[0072]

【表4】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 処理量 回収量(g) 比率(%) (g) Co Al Cu Co Al Cu −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例6 1000 265 74 191 26.5 7.40 19.1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[Table 4] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−               Processing amount Recovery amount (g) Ratio (%)               (G) Co Al Cu Cu Co Al Cu −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Example 6 1000 265 74 191 26.5 7.40 19.1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

【表5】 [Table 5]

【表6】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 回収物中の不純物(%) Fe Co Al Cu Ni Li −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− コバルト(酸化コバルト) 0.004 − 0.015 0.020 0.020 0.005 アルミニウム 0.005 0.006 − 0.017 0.005 <0.004 銅 0.005 0.005 0.002 − 0.024 <0.005 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[Table 6] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−                                 Impurities (%) in recovered materials                           Fe Co Al Cu Cu Ni Li −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Cobalt (cobalt oxide) 0.004 − 0.015 0.020 0.020 0.005 Aluminum 0.005 0.006 − 0.017 0.005 <0.004 Copper 0.005 0.005 0.002-0.024 <0.005 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

【0073】(実施例7)実施例5の方法でコバルト酸
リチウムとアルミニウム集電体,銅集電体を分離し、コ
バルトを酸化コバルトとして回収した後、ふるい上のセ
パレータ、アルミニウム集電体および銅集電体を水を用
いたオーバーフロー式攪拌装置に投入し、オーバーフロ
ーさせない状態で装置の上部から金属棒で10分間攪拌
した。5分間放置した後、水面に浮遊していたセパレー
タを取り除いた。次に、オーバーフロー状態で攪拌しな
がらアルミニウム集電体を水と共に装置外に溢れさせ、
装置外に設けた金網上に捕集した。最後に装置を停止し
て水を抜き取り、装置内に残った銅集電体を捕集した。
Example 7 Lithium cobalt oxide was separated from the aluminum current collector and the copper current collector by the method of Example 5 to recover cobalt as cobalt oxide, and then a separator on a sieve, an aluminum current collector and The copper current collector was put into an overflow-type stirring device using water, and stirring was performed for 10 minutes with a metal rod from the upper part of the device without overflowing. After standing for 5 minutes, the separator floating on the water surface was removed. Next, let the aluminum current collector overflow with the water while stirring in the overflow state,
It was collected on a wire mesh provided outside the device. Finally, the apparatus was stopped, the water was drained, and the copper current collector remaining in the apparatus was collected.

【0074】上記の方法のコバルト、アルミニウム及び
銅の回収量及び比率を表7に、回収率を表8に示す。
Table 7 shows the recovery amounts and ratios of cobalt, aluminum and copper of the above method, and Table 8 shows the recovery rates.

【0075】[0075]

【表7】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 処理量 回収量(g) 比率(%) (g) Co Al Cu Co Al Cu −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例7 1000 254 71 190 25.4 7.10 19.0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[Table 7] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−               Processing amount Recovery amount (g) Ratio (%)               (G) Co Al Cu Cu Co Al Cu −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Example 7 1000 254 71 190 25.4 7.10 19.0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

【表8】 [Table 8]

【0076】(実施例8)IBM製パーソナルコンピュ
ーターThinkPad 560用バッテリーパックの電圧を測定し
たところ、端子間電圧は6.9Vを示した。このバッテ
リーパックの端子を0.1MのH2 SO4 水溶液に浸し
て6時間放電させたところ、端子間電圧は0.5Vまで
低下した。
Example 8 When the voltage of the battery pack for the personal computer ThinkPad 560 manufactured by IBM was measured, the terminal voltage was 6.9V. When the terminals of this battery pack were immersed in a 0.1 M H 2 SO 4 aqueous solution and discharged for 6 hours, the voltage between the terminals dropped to 0.5V.

【0077】これを130℃のオーブンで加熱して、バ
ッテリーパックのポリカーボネート樹脂筐体とアクリロ
ニトリル−スチレンアクリレート樹脂のアロイ融着部を
剥離し、内部の回路基板、リチウムイオン2次電池(A
&TB製LSR17500)及びその他の部品を回収し
た。
By heating this in an oven at 130 ° C., the polycarbonate resin casing of the battery pack and the alloy fusion part of the acrylonitrile-styrene acrylate resin are peeled off, and the internal circuit board and lithium ion secondary battery (A
& TB LSR17500) and other parts were recovered.

【0078】まず、リチウムイオン2次電池(円筒形)
を軸方向に2分割し、さらにスペーサー下部及び負極端
子面の直上部のセパレーターのみ存在する箇所を切削し
た。次に、これを引火点40℃以上のアルコールに浸漬
し、析出リチウムをアルコラートにすると同時に、電解
液をアルコールで洗浄した。更に、攪拌を行い、セパレ
ーターを比重選別で除去した。
First, a lithium ion secondary battery (cylindrical)
Was divided into two parts in the axial direction, and further, the lower part of the spacer and the part just above the negative electrode terminal surface where only the separator was present were cut. Next, this was immersed in alcohol having a flash point of 40 ° C. or higher to convert the precipitated lithium into alcoholate, and at the same time, the electrolytic solution was washed with alcohol. Furthermore, stirring was performed and the separator was removed by specific gravity selection.

【0079】残った筐体、正電極及び負電極から磁力選
別によって筐体(軟鉄製)等を除去し、比重選別機(原
田産業製)を用いて、正電極、負電極及びその他の樹脂
に分類した。負電極は水に浸漬し、40KHzの超音波
を照射して活物質であるカーボンを剥離させ、銅集電体
を除去し水分を蒸発させてカーボンを回収した。このカ
ーボンは製鉄用還元剤などに利用可能であった。他方、
銅集電体を乾燥後、プレスした。この銅は純度が90wt
%以上であり、銅溶鉱炉の二次精錬工程へ直接投入可能
なものであった。
The casing (soft iron) and the like are removed from the remaining casing, positive electrode and negative electrode by magnetic force selection, and the positive electrode, negative electrode and other resins are removed using a specific gravity sorter (Harada Sangyo). Classified. The negative electrode was immersed in water and irradiated with ultrasonic waves of 40 KHz to remove carbon as an active material, remove the copper current collector and evaporate water to recover carbon. This carbon was usable as a reducing agent for iron making. On the other hand,
The copper current collector was dried and then pressed. The purity of this copper is 90wt
% Or more, and could be directly added to the secondary refining process of the copper blast furnace.

【0080】正電極をか焼炉に導入し、還元性ガス雰囲
気(水素1%、アルゴン99%)中で400℃まで加熱
し、正極活物質中に含有されているバインダー(弗素系
樹脂)を除去した。炉から排出後、これをトロンメルン
に導入し、φ5mmのふるいで正極活物質LiCoO2
正極集電体アルミ箔とを分離した。アルミ箔は、プレス
した。
The positive electrode was introduced into a calcining furnace and heated to 400 ° C. in a reducing gas atmosphere (hydrogen 1%, argon 99%) to remove the binder (fluorine resin) contained in the positive electrode active material. Removed. After discharging from the furnace, this was introduced into trommel and the positive electrode active material LiCoO 2 and the positive electrode current collector aluminum foil were separated with a sieve of φ5 mm. Aluminum foil was pressed.

【0081】正極活物質を70℃に加熱した1M塩酸水
溶液に溶解し、溶解せずに浮上するカーボンなどは濾別
した。
The positive electrode active material was dissolved in a 1 M aqueous hydrochloric acid solution heated to 70 ° C., and carbon, etc., which did not dissolve and floated, was filtered off.

【0082】濾液を図4に示す電気透析室に導入し、透
析膜を通して泳動することにより、リチウム、コバルト
の各イオンは負極側に、塩素イオンは正極側に移動、分
離した。図4において、符号30,31はアニオン透過
膜、符号32,33はカチオン透過膜、符号34,3
5,36,37はバイポーラ膜を示す。この電気透析室
においては、バイポーラ膜を用いて生成した水酸化イオ
ン及び水素イオンが各極の溶液に導入されるように構成
されており、負極側の溶液からリチウム及びコバルトを
水酸化物として析出させ、これを乾燥して酸化物として
回収した。この酸化物中の不純物は0.01wt%以下で
あった。一方、正極側の塩素イオンは塩酸として正極活
物質の溶解に再利用した。
The filtrate was introduced into the electrodialysis chamber shown in FIG. 4 and migrated through a dialysis membrane to move and separate lithium and cobalt ions to the negative electrode side and chlorine ions to the positive electrode side. In FIG. 4, reference numerals 30 and 31 are anion permeable membranes, reference numerals 32 and 33 are cation permeable membranes, and reference numerals 34 and 3 are shown.
Reference numerals 5, 36 and 37 denote bipolar films. In this electrodialysis chamber, hydroxide ions and hydrogen ions generated using a bipolar membrane are introduced into the solution of each electrode, and lithium and cobalt are precipitated as hydroxides from the solution on the negative electrode side. Then, it was dried and recovered as an oxide. Impurities in this oxide were 0.01 wt% or less. On the other hand, the chlorine ions on the positive electrode side were reused as hydrochloric acid to dissolve the positive electrode active material.

【0083】(実施例9)正極活物質としてLiNiO
2 が塗布された試作電池を実施例8と同様の操作によっ
て、放電、分解、比重選別、か焼処理をし、正極活物質
を塩酸に溶解して電気透析室に導入し、泳動分離を行っ
た。バイポーラ膜を用いて生成した水酸化イオン及び水
素イオンを透析室の各極の溶液に導入して負極側の溶液
からリチウム及びニッケルを水酸化物として析出させ、
これを乾燥して酸化物として回収した。この酸化物中の
不純物は0.01wt%以下であった。一方、負極側の塩
素イオンは塩酸として正極活物質の溶解に再利用した。
Example 9 LiNiO as a positive electrode active material
The prototype battery coated with 2 was discharged, decomposed, sorted by specific gravity and calcined by the same operations as in Example 8, and the positive electrode active material was dissolved in hydrochloric acid and introduced into an electrodialysis chamber for electrophoretic separation. It was Hydroxide ions and hydrogen ions generated using a bipolar membrane are introduced into the solution of each electrode of the dialysis chamber to deposit lithium and nickel as hydroxides from the solution on the negative electrode side,
This was dried and collected as an oxide. Impurities in this oxide were 0.01 wt% or less. On the other hand, chloride ions on the negative electrode side were reused as hydrochloric acid for dissolving the positive electrode active material.

【0084】(実施例10)実施例8で用いたバッテリ
ーパックと実施例9の試作電池とを併せて、実施例8と
同様の操作によって、放電、分解、比重選別、か焼処理
をし、正極活物質を塩酸に溶解して図5に示す電気透析
室に導入し、泳動分離を行った。図5の電気透析室にお
いて、符号40,41,42はカチオン透過膜であり、
カチオン透過膜40は1価イオン透過膜で、カチオン透
過膜41は2価イオン透過膜である。符号43はアニオ
ン透過膜であり、符号44,45,46,47はバイポ
ーラ膜である。バイポーラ膜を用いて生成した水酸化イ
オン及び水素イオンは透析室の各極の溶液に導入され、
水酸化リチウムと、水酸化コバルト及び水酸化ニッケル
の混合物とが回収された。水酸化リチウムの純度は9
9.90wt%、水酸化コバルト及び水酸化ニッケルの混
合物における不純物量は0.01wt%以下であった。一
方、負極側の塩素イオンは塩酸として正極活物質の溶解
に再利用した。
(Example 10) The battery pack used in Example 8 and the prototype battery of Example 9 were combined, and discharged, decomposed, sorted by specific gravity, and calcined by the same operation as in Example 8. The positive electrode active material was dissolved in hydrochloric acid and introduced into the electrodialysis chamber shown in FIG. 5 for electrophoretic separation. In the electrodialysis room of FIG. 5, reference numerals 40, 41 and 42 are cation permeable membranes,
The cation permeable membrane 40 is a monovalent ion permeable membrane, and the cation permeable membrane 41 is a divalent ion permeable membrane. Reference numeral 43 is an anion permeable membrane, and reference numerals 44, 45, 46 and 47 are bipolar membranes. Hydroxide ions and hydrogen ions generated using a bipolar membrane are introduced into the solution at each electrode in the dialysis room,
Lithium hydroxide and a mixture of cobalt hydroxide and nickel hydroxide were recovered. The purity of lithium hydroxide is 9
The amount of impurities in the mixture of 9.90 wt% and cobalt hydroxide and nickel hydroxide was 0.01 wt% or less. On the other hand, chloride ions on the negative electrode side were reused as hydrochloric acid for dissolving the positive electrode active material.

【0085】(実施例11)実施例と同様の操作を繰り
返し、図5の電気透析室を用いてイオンの分離を行い、
Ni2+とCo2+とが含まれた液を電気分解槽に導入し
た。Ni2+の標準端極電位は−0.250V、Co2+
−0.277Vであり、これを用いてNiを析出させて
回収した。Niを回収した後、コバルトを水酸化物とし
て回収した。回収した水酸化コバルトの純度は99.9
8wt%であった。
(Example 11) The same operation as in Example was repeated to separate ions using the electrodialysis chamber of FIG.
A liquid containing Ni 2+ and Co 2+ was introduced into the electrolysis tank. The standard end pole potential of Ni 2+ was −0.250 V and Co 2+ was −0.277 V. Using this, Ni was deposited and recovered. After recovering Ni, cobalt was recovered as hydroxide. The purity of the recovered cobalt hydroxide is 99.9.
It was 8 wt%.

【0086】(実施例12)東芝製パーソナルコンピュ
ータGT-R575 081CS 用バッテリーパックを1MのNa2
SO4 水溶液に浸漬し、十分に放電を行った。パッテリ
ーパックは外部との電源回路の他にスイッチング回路が
あるので、液体浸漬による放電は形状に依らず極めて有
効である。又、塩素系の水溶液は塩素が発生したり、多
量の塩化物が析出したりと反応性に富んでいるが、硫酸
系はそのようなこともなく、処理が容易になるメリット
がある。
(Embodiment 12) A battery pack for a personal computer GT-R575 081CS manufactured by Toshiba is used with 1M Na 2
It was immersed in an SO 4 aqueous solution and sufficiently discharged. Since the battery pack has a switching circuit in addition to the power supply circuit with the outside, discharge by liquid immersion is extremely effective regardless of the shape. Further, the chlorine-based aqueous solution is highly reactive in that chlorine is generated and a large amount of chloride is deposited, but the sulfuric acid-based solution has the merit of facilitating the treatment without such a phenomenon.

【0087】バッテリーパックを2軸粗破砕機にかけ、
バッテリーパックから基板、リチウムイオン2次電池本
体、パック樹脂などを露出させ、磁力選別装置でリチウ
ムイオン2次電池本体のみを分離した。これを中破砕機
にかけ、5mm角程度の大きさに破砕し、破砕片を2−プ
ロパノールで洗浄し、電解液を除去した。この際に、セ
パレーター等の2−プロパノールより比重の小さいもの
を除去した。更に、比重選別機(原田産業製)にかけ、
負電極及びセパレータ等と正電極とを分離した。
The battery pack was placed on a biaxial coarse crusher,
The substrate, the lithium ion secondary battery main body, the pack resin, etc. were exposed from the battery pack, and only the lithium ion secondary battery main body was separated by the magnetic force sorting device. This was put into a medium crusher and crushed to a size of about 5 mm square, and the crushed pieces were washed with 2-propanol to remove the electrolytic solution. At this time, a separator or the like having a smaller specific gravity than 2-propanol was removed. Furthermore, put it on a gravity sorter (made by Harada Sangyo),
The negative electrode, the separator and the like were separated from the positive electrode.

【0088】分離した正電極を1M硝酸水溶液に浸漬し
て攪拌し、正極活性物質を剥離させて濾過、回収し、8
0℃に加熱した1M塩酸水溶液に投入し攪拌して溶解さ
せた。溶解しないカーボン等を濾過して除去した。濾液
を実施例8と同様の電気透析処理し、コバルト及びリチ
ウムの水酸化物混合物を回収した。この回収物の不純物
量は0.01wt%以下であった。
The separated positive electrode was dipped in a 1 M nitric acid aqueous solution and stirred, and the positive electrode active material was peeled off, filtered, and collected.
The mixture was poured into a 1 M hydrochloric acid aqueous solution heated to 0 ° C. and stirred to dissolve it. Insoluble carbon and the like were removed by filtration. The filtrate was electrodialyzed in the same manner as in Example 8 to recover a hydroxide mixture of cobalt and lithium. The amount of impurities in this recovered product was 0.01 wt% or less.

【0089】(実施例13)アルミニウムを筐体に使用
した試作電池を、2軸破砕機で5mm角の小片に破砕し、
これをn−オクタノールで洗浄した。洗浄液に浮上した
セパレータ等は除去し、濾過して洗浄液を除去した。固
体残渣を比重選別機(原田産業製)にかけてアルミニウ
ム筐体と正電極及び負電極とに分離した。正電極及び負
電極を実施例8と同様の操作を繰り返すことにより、不
純物量が0.01wt%以下の水酸化コバルトが回収され
た。アルミニウム筐体は、正極から回収したアルミ箔と
併せてプレスした。これは、アルミニウム精錬の原料と
して使用可能なものであった。
(Example 13) A prototype battery using aluminum as a casing was crushed into small pieces of 5 mm square by a biaxial crusher,
This was washed with n-octanol. The separator and the like that floated on the cleaning liquid were removed and filtered to remove the cleaning liquid. The solid residue was applied to a specific gravity sorter (manufactured by Harada Sangyo) to separate it into an aluminum casing and a positive electrode and a negative electrode. By repeating the same operation as in Example 8 for the positive electrode and the negative electrode, cobalt hydroxide having an impurity amount of 0.01 wt% or less was recovered. The aluminum casing was pressed together with the aluminum foil collected from the positive electrode. This could be used as a raw material for aluminum refining.

【0090】(実施例14)PAN、EC及びPCを主
構成材料とするカード状ポリマーリチウム2次電池を刃
幅が5mmである2軸シュレッダーにかけ、内部が露出す
る大きさに裁断した。裁断物を塩酸溶液に浸漬し、超音
波を照射することにより電解液を拡散させつつ、リチウ
ムを溶解してイオン化した。溶解しない樹脂類を濾過し
て除去し、1価のリチウムのみを水酸化物として回収し
た。この結果、最終的に得られた水酸化リチウムの純度
は99.9wt%であった。
Example 14 A card-shaped polymer lithium secondary battery containing PAN, EC and PC as main constituent materials was put on a biaxial shredder having a blade width of 5 mm and cut into a size such that the inside was exposed. The cut product was dipped in a hydrochloric acid solution and irradiated with ultrasonic waves to disperse the electrolytic solution while dissolving and ionizing lithium. Undissolved resins were removed by filtration, and only monovalent lithium was recovered as hydroxide. As a result, the finally obtained lithium hydroxide had a purity of 99.9 wt%.

【0091】(実施例15)PEO、PPO、EC及び
PCを主構成材料とするカード状ポリマーリチウム2次
電池を実施例14と同様の操作を繰り返して処理した。
その結果、純度が99.9wt%の水酸化リチウムが回収
された。
Example 15 A card-like polymer lithium secondary battery containing PEO, PPO, EC and PC as main constituent materials was treated by repeating the same operation as in Example 14.
As a result, lithium hydroxide having a purity of 99.9 wt% was recovered.

【0092】(実施例16)刃幅約2cmの破砕装置を用
いてリチウムイオン二次電池内蔵PHSの粗破砕を行
い、基板、液晶パネル、電池、バイブレータを取り出し
た。この中から二次電池を回収し、実施例13と同様の
操作を行って、純度99.9wt%の水酸化リチウム、純
度99.9wt%の水酸化ニッケル、純度99.99wt%
のコバルトを回収した。
Example 16 A PHS with a built-in lithium ion secondary battery was roughly crushed using a crusher having a blade width of about 2 cm, and a substrate, a liquid crystal panel, a battery and a vibrator were taken out. The secondary battery was recovered from this and the same operation as in Example 13 was carried out to obtain lithium hydroxide having a purity of 99.9 wt%, nickel hydroxide having a purity of 99.9 wt%, and a purity of 99.99 wt%.
Of cobalt was recovered.

【0093】一方、回路基板をオーブンで200℃に加
熱し、ブラッシングにて基板上のコンデンサー、抵抗、
IC等のパーツを除去した。その後、60℃に加熱した
1.0M塩酸水溶液に浸漬し、鉛及び銅を溶解、イオン
化した。
On the other hand, the circuit board is heated to 200 ° C. in an oven, and the capacitors, resistors, and
Parts such as IC were removed. Then, it was immersed in a 1.0 M hydrochloric acid aqueous solution heated to 60 ° C. to dissolve and ionize lead and copper.

【0094】溶解しない樹脂部分を濾過して分別し、濾
液を電気透析室に導入して泳動分離した。銅イオン及び
鉛イオンを含む負極側の液を電気分解し、銅を回収した
後、硫化水素を吹き込んで鉛を硫化鉛として回収した。
処理後の水溶液は再度電気透析室に導入し、濃縮する操
作を繰り返し行い、これを除去した。
The undissolved resin portion was filtered and separated, and the filtrate was introduced into an electrodialysis chamber for electrophoretic separation. A liquid on the negative electrode side containing copper ions and lead ions was electrolyzed to recover copper, and then hydrogen sulfide was blown into the solution to recover lead as lead sulfide.
After the treatment, the aqueous solution was introduced into the electrodialysis chamber again, and the concentration operation was repeated to remove it.

【0095】又、電気透析室の正極側の塩素イオンは、
バイポーラ膜によって生成した水素イオンと合わせて酸
として再利用した。
Chloride ions on the positive electrode side of the electrodialysis room are
It was reused as an acid together with hydrogen ions generated by the bipolar film.

【0096】(比較例4)実施例8で用いたと同様のバ
ッテリーパックを焙焼した後、破砕し、磁力選別機で鉄
分を除去した後に、ふるいを用いてアルミニウム及び
銅、パウダーに分別した。パウダーを酸に溶解し、不溶
物を除去した後に苛性ソーダを添加して水酸化コバルト
及び水酸化ニッケルを回収した。コバルト及びニッケル
の回収率は90.0wt%であった。
Comparative Example 4 A battery pack similar to that used in Example 8 was roasted, then crushed, iron contents were removed by a magnetic separator, and then separated into aluminum, copper and powder using a sieve. The powder was dissolved in acid, insoluble material was removed, and then caustic soda was added to recover cobalt hydroxide and nickel hydroxide. The recovery rate of cobalt and nickel was 90.0 wt%.

【0097】[0097]

【発明の効果】極めて容易、安価且つ安全に、使用済み
電池及びバッテリーパックから、アルミニウム、銅、コ
バルト等の有価金属をほぼ完全に分離回収でき、さらに
回収物は高純度品にすることができる。従って、回収物
の利用価値が高く、リサイクル産業に寄与することが大
である。
Industrial Applicability The valuable metals such as aluminum, copper and cobalt can be almost completely separated and recovered from used batteries and battery packs very easily, inexpensively and safely, and the recovered products can be highly pure products. . Therefore, the utility value of the recovered material is high, and it greatly contributes to the recycling industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電池又はバッテリーパックの処理
方法の一実施形態を示すフローチャート。
FIG. 1 is a flowchart showing an embodiment of a method for treating a battery or a battery pack according to the present invention.

【図2】本発明による電池又はバッテリーパックの処理
方法における放電効率を説明するグラフ。
FIG. 2 is a graph illustrating discharge efficiency in a method for treating a battery or a battery pack according to the present invention.

【図3】本発明による電池又はバッテリーパックの処理
方法における放電処理を行う放電槽の一例を示す概略斜
視図。
FIG. 3 is a schematic perspective view showing an example of a discharge tank for performing a discharge treatment in the method for treating a battery or a battery pack according to the present invention.

【図4】本発明による電池又はバッテリーパックの処理
方法における電気透析処理を行う電気透析室の一例を示
す概略構成図。
FIG. 4 is a schematic configuration diagram showing an example of an electrodialysis chamber for performing electrodialysis in the method for treating a battery or a battery pack according to the present invention.

【図5】本発明による電池又はバッテリーパックの処理
方法における電気透析処理を行う電気透析室の他の例を
示す概略構成図。
FIG. 5 is a schematic configuration diagram showing another example of an electrodialysis chamber for performing electrodialysis in the method for treating a battery or a battery pack according to the present invention.

【符号の説明】 B,B’ バッテリーパック E1,E2,E3 電極 20 放電槽 21 放電液 22 仕切り板 30,31,43 アニオン透過膜 32,33,40,41,42 カチオン透過膜(4
0:1価イオン透過膜、41:2価イオン透過膜) 34,35,36,37,44,45,46,47 バ
イポーラ膜
[Explanation of Codes] B, B'Battery packs E1, E2, E3 Electrodes 20 Discharge tank 21 Discharge liquid 22 Partition plates 30, 31, 43 Anion permeable membranes 32, 33, 40, 41, 42 Cation permeable membranes (4
0: 1 valent ion permeable membrane, 41: 2 valent ion permeable membrane) 34, 35, 36, 37, 44, 45, 46, 47 Bipolar membrane

フロントページの続き (72)発明者 古屋 富明 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 横浜事業所内 (72)発明者 林 勝 神奈川県川崎市幸区小向東芝町1 株式 会社東芝 研究開発センター内 (72)発明者 矢吹 元央 神奈川県川崎市幸区小向東芝町1 株式 会社東芝 研究開発センター内 (72)発明者 小沼 雅敬 神奈川県川崎市幸区小向東芝町1 株式 会社東芝 研究開発センター内 (56)参考文献 特開 平8−115752(JP,A) 特開 昭50−36378(JP,A) 特開 平10−255861(JP,A) 特開 平10−255862(JP,A) 特公 昭54−15273(JP,B1) 日本化学会編,化学便覧 応用化学編 Iプロセス編,日本,丸善,1986年10月 15日,p.310〜318 (58)調査した分野(Int.Cl.7,DB名) H01M 10/54 H01M 6/52 B09B 1/00 - 5/00 C22B 1/00 - 61/00 Front page continuation (72) Inventor Tomiaki Furuya 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Toshiba Yokohama Works (72) Inventor Katsumi Hayashi, Komukai-Toshiba-cho, Kawasaki-shi, Kanagawa Prefecture Toshiba Research Co., Ltd. In the development center (72) Inventor Motoo Yabuki 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Toshiba Research and Development Center (72) Inventor Masataka Onuma 1 Komukai-shiba-cho, Saiwai-ku, Kawasaki, Kanagawa Toshiba Research and Development Center (56) Reference JP-A-8-115752 (JP, A) JP-A-50-36378 (JP, A) JP-A-10-255861 (JP, A) JP-A-10-255862 ( JP, A) Japanese Patent Publication Sho 54-15273 (JP, B1) Chemical Society of Japan, Handbook of Chemistry, Applied Chemistry, I Process, Japan, Maruzen, October 15, 1986, p. 310 to 318 (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/54 H01M 6/52 B09B 1/00-5/00 C22B 1/00-61/00

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 集電体に活物質が積層された電極を有す
る電池の処理方法であって、該電極を水素/アルゴン混
合ガス雰囲気中で300〜400℃に加熱し、ハロゲン
を含む樹脂からなり該電極の該集電体と該活物質とを接
合するバインダを分解して集電体から活物質を分離する
加熱工程を有することを特徴とする電池の処理方法。
1. A method for treating a battery having an electrode in which an active material is laminated on a current collector, wherein the electrode is mixed with hydrogen / argon.
Halogen is heated to 300-400 ° C in a mixed gas atmosphere.
A method for treating a battery, comprising: a heating step of decomposing a binder made of a resin containing the resin and joining the current collector of the electrode and the active material to separate the active material from the current collector.
【請求項2】 集電体に活物質が積層された電極を有す
る電池の処理方法であって、該電池を硫酸水溶液に浸漬
することにより該電池を放電させる放電工程と、該電池
を解体する解体工程と、解体された電池から電極を選別
する選別工程と、該電極の集電体から活物質を分離する
活物質分離工程と、該活物質から金属成分を回収する金
属回収工程とを有し、前記活物質分離工程は、該電極を
還元性雰囲気中で加熱して、該集電体と該活物質とを接
合するバインダを分解する加熱工程を有することを特徴
とする電池の処理方法。
2. A method of treating a battery having an electrode in which an active material is laminated on a current collector, wherein the battery is immersed in an aqueous sulfuric acid solution.
A discharging step of discharging the battery by
Dismantling process for dismantling and selecting electrodes from dismantled batteries
A separating step , an active material separating step of separating an active material from a current collector of the electrode, and a metal collecting step of recovering a metal component from the active material. A method for treating a battery, which comprises a heating step of heating in a reducing atmosphere to decompose a binder for joining the current collector and the active material.
【請求項3】 集電体に活物質が積層された電極を有す3. An electrode having an active material laminated on a current collector
る電池の処理方法であって、該電池を硫酸水溶液に浸漬A method for treating a battery, comprising immersing the battery in an aqueous sulfuric acid solution.
することにより該電池を放電させる放電工程と、該電池A discharging step of discharging the battery by
を解体する解体工程と、解体された電池から電極を選別Dismantling process for dismantling and selecting electrodes from dismantled batteries
する選別工程と、当該電極を該集電体と該活物質とに分And a separation step for separating the electrode into the current collector and the active material.
離する活物質分離工程と、該活物質から金属成分を回収Active material separation process to separate and recover metal components from the active material
する金属回収工程とを有し、前記活物質分離工程は、該And a step of recovering the active material.
電極を酸液に浸漬する酸処理工程を有することを特徴とCharacterized by having an acid treatment step of immersing the electrode in an acid solution
する電池の処理方法。Battery treatment method.
【請求項4】 集電体にLiCoO 及び/又はLiN
iO を含有する活物質が積層された電極を有する電池
の処理方法であって、電池から電極を分離する電極分離
工程と、当該電極を該集電体と該活物質とに分離する活
物質分離工程と、該活物質から金属成分を回収する金属
回収工程と、比重1.9〜2.9g/mlの重液を用いた
比重選別により前記集電体に含まれる銅製集電体とアル
ミニウム製集電体とを分離する工程とを有し、前記活物
分離工程は、該電極を酸液に浸漬する酸処理工程を有
することを特徴とする電池の処理方法。
4. A current collector of LiCoO 2 and / or LiN
A method for treating a battery having an electrode in which an active material containing iO 2 is laminated, comprising: an electrode separation step of separating the electrode from the battery; and an active material of separating the electrode into the current collector and the active material. A separation step, a metal recovery step of recovering a metal component from the active material, and a heavy liquid having a specific gravity of 1.9 to 2.9 g / ml were used.
The copper current collector and the aluminum contained in the current collector are selected by specific gravity selection.
And a step of separating the current collector made of minium ,
The method for treating a battery is characterized in that the quality separation step includes an acid treatment step of immersing the electrode in an acid solution.
【請求項5】 前記酸液は、12規定以下の硫酸水溶液
であることを特徴とする請求項3又は4記載の電池の処
理方法。
5. The method for treating a battery according to claim 3 , wherein the acid solution is a 12 N or less aqueous sulfuric acid solution.
【請求項6】 前記金属回収工程において、該活物質の
金属成分は、該活物質を酸液に溶解した溶液から回収さ
れ、該金属回収工程は、電気透析により該溶液から活物
質の金属成分を分離する電気透析工程を有することを特
徴とする請求項2〜5のいずれかに記載の電池の処理方
法。
6. In the metal recovery step, the metal component of the active material is recovered from a solution in which the active material is dissolved in an acid solution, and in the metal recovery step, the metal component of the active material is recovered from the solution by electrodialysis. The method for treating a battery according to claim 2, further comprising an electrodialysis step of separating the cells.
【請求項7】 集電体に活物質が積層された電極を有す
る電池の処理方法であって、該電池を硫酸水溶液に浸漬
することにより該電池を放電させる放電工程と、該電池
を解体する解体工程と、解体された電池から電極を選別
する選別工程と、当該電極を該集電体と該活物質とに分
離する活物質分離工程と、該活物質が酸液に溶解した溶
液から該活物質の金属成分を回収する金属回収工程とを
有し、該金属回収工程は、該溶液の水素イオン濃度を調
整して活物質の金属成分を該溶液から析出させる水素イ
オン濃度調整工程と、該溶液を電解する電解工程とを有
することを特徴とする電池の処理方法。
7. A method for treating a battery having an electrode in which an active material is laminated on a current collector, wherein the battery is immersed in an aqueous sulfuric acid solution.
A discharging step of discharging the battery by
Dismantling process for dismantling and selecting electrodes from dismantled batteries
A step of separating, an active material separation step of separating the electrode into the current collector and the active material, and a metal recovery step of recovering a metal component of the active material from a solution in which the active material is dissolved in an acid solution. And the metal recovery step includes a hydrogen ion concentration adjusting step of adjusting a hydrogen ion concentration of the solution to precipitate a metal component of an active material from the solution, and an electrolysis step of electrolyzing the solution. Characteristic battery treatment method.
【請求項8】 集電体にLiCoO8. The current collector of LiCoO 2 Two 及び/又はLiNAnd / or LiN
iOiO Two を含有する活物質が積層された電極を有する電池Battery Having Electrode Laminated With Active Material Containing
の処理方法であって、該電極を還元性雰囲気中で加熱And heating the electrode in a reducing atmosphere.
し、該電極の該集電体と該活物質とを接合するバインダAnd a binder for joining the current collector of the electrode and the active material
を分解して集電体から活物質を分離する加熱工程と、比And a heating step of separating the active material from the current collector by decomposing the
重1.9〜2.9g/mlの重液を用いた比重選別によりGravity selection using heavy liquid of 1.9-2.9 g / ml
前記集電体に含まれる銅製集電体とアルミニウム製集電Copper current collector and aluminum current collector included in the current collector
体とを分離する工程とを有することを特徴とする電池のAnd a step of separating the body from the battery.
処理方法。Processing method.
【請求項9】 集電体にLiCoO及び/又はLiN
iOを含有する活物質が積層された電極を有する電池
の処理方法であって、電池から電極を分離する電極分離
工程と、当該電極を該集電体と該活物質とに分離する活
物質分離工程と、該活物質が酸液に溶解した溶液から該
活物質の金属成分を回収する金属回収工程と、比重1.
9〜2.9g/mlの重液を用いた比重選別により前記集
電体に含まれる銅製集電体とアルミニウム製集電体とを
分離する工程とを有し、該金属回収工程は、該溶液の水
素イオン濃度を調整して活物質の金属成分を該溶液から
析出させる水素イオン濃度調整工程と、該溶液を電解す
る電解工程とを有することを特徴とする電池の処理方
法。
9. A current collector of LiCoO 2 and / or LiN
Batteries having electrodes laminated with active material containing iO 2.
The method of treating, separating electrodes from batteries
And a step of separating the electrode into the current collector and the active material.
From the substance separation step and the solution in which the active material is dissolved in an acid solution,
A metal recovery step of recovering the metal component of the active material, and a specific gravity of 1.
The above-mentioned collection was carried out by specific gravity selection using a heavy liquid of 9 to 2.9 g / ml.
And a step of separating the copper current collector and A aluminum-made current collector included in the collector, the metal recovery step, the water of the solution
Adjust the concentration of elementary ions to remove the metal component of the active material from the solution.
Hydrogen ion concentration adjusting step for precipitation and electrolysis of the solution
Processing method that batteries be characterized as having a that electrolysis step.
【請求項10】 電池を導電液に浸漬することにより該
電池を放電させる放電工程を有する電池の処理方法であ
って、該導電液は硫酸水溶液であることを特徴とする電
池の処理方法。
10. A method for treating a battery, comprising a discharging step of discharging the battery by immersing the battery in a conductive liquid, wherein the conductive liquid is an aqueous sulfuric acid solution.
JP25391097A 1997-09-18 1997-09-18 Battery treatment method Expired - Fee Related JP3452769B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25391097A JP3452769B2 (en) 1997-09-18 1997-09-18 Battery treatment method
DE1998142658 DE19842658B4 (en) 1997-09-18 1998-09-17 Process for treating lithium ion waste batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25391097A JP3452769B2 (en) 1997-09-18 1997-09-18 Battery treatment method

Publications (2)

Publication Number Publication Date
JPH1197076A JPH1197076A (en) 1999-04-09
JP3452769B2 true JP3452769B2 (en) 2003-09-29

Family

ID=17257759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25391097A Expired - Fee Related JP3452769B2 (en) 1997-09-18 1997-09-18 Battery treatment method

Country Status (2)

Country Link
JP (1) JP3452769B2 (en)
DE (1) DE19842658B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103341455A (en) * 2013-06-06 2013-10-09 天津力神电池股份有限公司 Device for cleaning electrode powder of lithium ion battery electrode material in manual mode

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9727222D0 (en) * 1997-12-23 1998-02-25 Aea Technology Plc Cell recycling
FR2796207B1 (en) * 1999-07-07 2001-09-21 Tredi METHOD FOR RECOVERING METAL SPECIES FROM LITHIUM BATTERIES AND ACCUMULATORS
KR100358528B1 (en) * 2000-05-22 2002-10-25 김인석 recycling method of lithium ion secondary battery
JP2005327482A (en) * 2004-05-12 2005-11-24 Sumitomo Metal Mining Co Ltd Method of separating and collecting lithium ion secondary battery cathode activator
JP2005347162A (en) * 2004-06-04 2005-12-15 Nec Tokin Tochigi Ltd Discharge method of discarded battery
JP4492222B2 (en) * 2004-06-21 2010-06-30 トヨタ自動車株式会社 Lithium battery treatment method
JP2006236859A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Treating method of lithium battery
JP4892925B2 (en) * 2005-10-25 2012-03-07 住友金属鉱山株式会社 Method for recovering valuable metals from lithium-ion batteries
JP4892236B2 (en) * 2005-12-27 2012-03-07 プライムアースEvエナジー株式会社 Active material separation method for electrode plates for storage batteries
JP4909907B2 (en) 2006-02-02 2012-04-04 川崎重工業株式会社 Recovery method and recovery device for recovering valuable material from lithium secondary battery
KR100784440B1 (en) * 2007-03-15 2007-12-11 이영훈 Scrap battery recycling plant
JP4412412B2 (en) 2008-05-28 2010-02-10 トヨタ自動車株式会社 Processing method for lithium battery
JP2010034021A (en) * 2008-07-03 2010-02-12 Sumitomo Chemical Co Ltd Method of recycling oxide-containing battery material from waste battery material
DE102008053690A1 (en) * 2008-10-29 2010-06-24 3V Consulting Gmbh Method and device for recycling an electrochemical energy store
EP2365867A4 (en) * 2008-11-17 2012-06-06 Chemetall Foote Corp Recovery of lithium from aqueous solutions
JP5487930B2 (en) * 2009-12-11 2014-05-14 トヨタ自動車株式会社 Battery pack recycling method and battery pack recycling apparatus
JP2011154811A (en) * 2010-01-26 2011-08-11 Dowa Eco-System Co Ltd Method for leaching lithium and method for recovering lithium
KR101149762B1 (en) 2010-04-20 2012-06-01 한국지질자원연구원 Method for recovering valuable metals from used battery pack
DE102010020911A1 (en) * 2010-05-18 2011-11-24 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Arrangement and method for safely discharging an energy store
JP5488335B2 (en) * 2010-08-20 2014-05-14 住友金属鉱山株式会社 Judgment method and judgment device for end of discharge of waste battery
JP5664043B2 (en) * 2010-09-09 2015-02-04 住友金属鉱山株式会社 Reuse method of waste lithium ion battery electrolyte
JP5304775B2 (en) * 2010-12-13 2013-10-02 住友金属鉱山株式会社 Battery pack processing apparatus and processing method
DE102011110083B4 (en) * 2011-08-12 2016-09-01 Technische Universität Braunschweig Carolo-Wilhelmina Process for recovering active material from a galvanic cell and active material separation plant, in particular active metal separation plant
JP2013080595A (en) * 2011-10-03 2013-05-02 Dowa Eco-System Co Ltd Method for recovering valuable from lithium ion secondary battery
EP2750242B1 (en) * 2011-12-08 2017-08-09 Sumitomo Metal Mining Company Limited Method for determining completion of discharging waste battery and determination device
JPWO2013153692A1 (en) * 2012-04-13 2015-12-17 旭化成株式会社 Lithium recovery method
US9702024B2 (en) 2012-10-10 2017-07-11 Rockwood Lithium GmbH Method for the hydrometallurgical recovery of lithium, nickel and cobalt from the lithium transition metal oxide-containing fraction of used galvanic cells
US9620790B2 (en) 2013-10-28 2017-04-11 Energizer Brands, Llc Method for dismantling a battery cell using fluid jets
CN103757366A (en) * 2013-12-29 2014-04-30 四川师范大学 Leaching method of lithium cobaltate waste battery positive electrode material
CN103757393A (en) * 2013-12-29 2014-04-30 四川师范大学 Leaching method of lithium cobaltate waste battery positive electrode material
JP6435190B2 (en) * 2014-12-25 2018-12-05 株式会社シンコーフレックス Aluminum / copper alloy production method from lithium ion secondary battery
JP6258890B2 (en) * 2015-03-31 2018-01-10 Jx金属株式会社 Method for removing copper and scrap metal from lithium ion battery scrap
CN113594485A (en) * 2015-06-19 2021-11-02 24M技术公司 Electrochemical cell repair method
AR102820A1 (en) 2015-10-14 2017-03-29 Consejo Nac De Investig Científicas Y Técnicas (Conicet) METHOD FOR THE DISSOLUTION OF LiCoO₂ CONTENT IN ION-LITHIUM BATTERIES SOLD OUT WITH ACID
US10246343B2 (en) * 2016-11-11 2019-04-02 Rocher Manganese, Inc. Processing of cobaltous sulpha/dithionate liquors derived from cobalt resource
JP6198027B1 (en) * 2017-01-24 2017-09-20 三菱マテリアル株式会社 How to recover valuable materials from used lithium ion batteries
KR101992715B1 (en) * 2017-01-25 2019-06-25 주식회사 엘지화학 Method for recovering positive electrode active material from lithium secondary battery
TWI746818B (en) * 2017-04-07 2021-11-21 比利時商烏明克公司 Process for the recovery of lithium
JP7270130B2 (en) * 2017-10-31 2023-05-10 出光興産株式会社 Lithium recovery device and lithium recovery method
CN108285977A (en) * 2018-01-30 2018-07-17 武汉科技大学 A kind of method of waste lithium ion cell anode material recovery
CA3113941A1 (en) * 2018-10-15 2020-04-23 Basf Se Battery recycling with electrolysis of the leach to remove copper impurities
AU2019389199A1 (en) 2018-11-26 2021-06-03 Basf Se Battery recycling by hydrogen gas injection in leach
SE543505C2 (en) 2019-04-15 2021-03-09 Northvolt Ab Process for the recovery of cathode materials in the recycling of lithium ion batteries
JP7120158B2 (en) * 2019-05-30 2022-08-17 Jfeエンジニアリング株式会社 Dismantling method of lithium ion battery cell
CN111180821B (en) * 2020-01-05 2022-10-21 广东省资源综合利用研究所 Harmless recycling and sorting method for waste lithium ion batteries
CN111974785A (en) * 2020-08-18 2020-11-24 广东尚鼎环境科技有限公司 Pyrolysis recovery method for waste lithium battery
JP2023086494A (en) * 2021-12-10 2023-06-22 株式会社Jera Storage battery recycling method
JP2023100113A (en) 2022-01-05 2023-07-18 トヨタ自動車株式会社 Method for recovering positive electrode active material
EP4257710A1 (en) * 2022-04-08 2023-10-11 Niocycle Teknoloji Tic. San. A.S. Lithium-ion battery recycling method
CN115172923A (en) * 2022-06-23 2022-10-11 广东邦普循环科技有限公司 Method for recovering battery powder through low-temperature pyrolysis desorption
WO2024014540A1 (en) * 2022-07-14 2024-01-18 Jx Metals Corporation Method for removing impurities, and method for recovering metals
WO2024068615A1 (en) 2022-09-28 2024-04-04 Basf Se Process for recycling aluminum hydroxide from a black mass
WO2024079236A1 (en) 2022-10-14 2024-04-18 Basf Se Solid-solid separation of carbon from a hardly soluble alkaline earth sulfate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2721467B2 (en) * 1993-02-25 1998-03-04 キヤノン株式会社 Lithium battery material recovery method
DE4445495A1 (en) * 1994-12-20 1996-06-27 Varta Batterie Process for the recovery of metals from used nickel-metal hydride accumulators

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本化学会編,化学便覧 応用化学編Iプロセス編,日本,丸善,1986年10月15日,p.310〜318

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103341455A (en) * 2013-06-06 2013-10-09 天津力神电池股份有限公司 Device for cleaning electrode powder of lithium ion battery electrode material in manual mode
CN103341455B (en) * 2013-06-06 2015-06-03 天津力神电池股份有限公司 Device for cleaning electrode powder of lithium ion battery electrode material in manual mode

Also Published As

Publication number Publication date
DE19842658B4 (en) 2004-08-05
JPH1197076A (en) 1999-04-09
DE19842658A1 (en) 1999-04-01

Similar Documents

Publication Publication Date Title
JP3452769B2 (en) Battery treatment method
EP3320577B1 (en) A method of recovering metals from spent li-ion batteries
JP4144820B2 (en) Method for regenerating positive electrode active material from lithium ion secondary battery
CN101599563B (en) Method for efficiently recovering active materials of positive poles in waste lithium batteries
Xu et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries
TWI726033B (en) Process for recovering metal values from spent lithium ion batteries with high manganese content
TWI392745B (en) A method for recovering a valuable metal from a lithium battery residue containing Co, Ni, and Mn
TW201809296A (en) Process for recovery of pure cobalt oxide from spent lithium ion batteries with high manganese content
JP7371263B2 (en) How to reuse active materials using cathode scraps
KR20200096965A (en) Battery recycling by treatment of leachate using metallic nickel
KR20200139692A (en) Lithium and transition metal recovery method using heat
CN1317086C (en) Method for recycling mixed waste batteries
KR20210075092A (en) Battery recycling to remove copper impurities by electrolyzing leachate
CN104183887A (en) Green method for dismantling, separation and recovery of waste LiCoO2 battery
JP7271833B2 (en) Lithium recovery method
CN109659642B (en) Method for separating aluminum foil and positive active material in waste lithium ion battery positive plate
JP2004214025A (en) Method and system for recovering cobalt in lithium ion battery
CN110257631B (en) Method for separating lithium and other metals in anode of waste lithium ion battery
US20230099073A1 (en) Method of selectively removing aluminum from waste electrode and a method of removing metal components from the waste electrode using the method
JP3516478B2 (en) Effective Metal Recovery Method from Nickel Metal Hydride Battery
RU2789852C1 (en) Method for processing lithium-ion batteries with obtaining positive electrode components of alkaline batteries
RU2794298C2 (en) Battery recycling by treatment with nickel metallic leaching agent
RU2790318C2 (en) Method for extraction of lithium and transition metal, using heating
Noor et al. Recovery of Value Metals from Waste Lithium Ion Batteries by Hydrometallurgical Process
WO2012161172A1 (en) Method for recovering valuable material from positive electrode in lithium-ion secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees