JP7120158B2 - Dismantling method of lithium ion battery cell - Google Patents

Dismantling method of lithium ion battery cell Download PDF

Info

Publication number
JP7120158B2
JP7120158B2 JP2019101084A JP2019101084A JP7120158B2 JP 7120158 B2 JP7120158 B2 JP 7120158B2 JP 2019101084 A JP2019101084 A JP 2019101084A JP 2019101084 A JP2019101084 A JP 2019101084A JP 7120158 B2 JP7120158 B2 JP 7120158B2
Authority
JP
Japan
Prior art keywords
electrode plate
laminated
water
ion battery
battery cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019101084A
Other languages
Japanese (ja)
Other versions
JP2020194749A (en
Inventor
茂樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2019101084A priority Critical patent/JP7120158B2/en
Publication of JP2020194749A publication Critical patent/JP2020194749A/en
Application granted granted Critical
Publication of JP7120158B2 publication Critical patent/JP7120158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Secondary Cells (AREA)

Description

本発明は、リチウムイオン電池セルの解体方法に関する。 The present invention relates to a method for disassembling lithium ion battery cells.

近年、スマートフォンや電気自動車用の電池として、ラミネート型のリチウムイオン電池が広く利用されている。このラミネート型のリチウムイオン電池は、正極板と負極板がセパレータを介して積層することで形成される積層電極が電解液とともにラミネートフィルムで外装されたリチウムイオン電池セルとして構成されている。リチウムイオン電池セルは、複数接続されてモジュールを形成し、モジュールが複数接続されてパックを形成することがあるが、ここでのリチウムイオン電池セルとは、電池として機能する最小単位の電池を意味する。 In recent years, laminated lithium-ion batteries have been widely used as batteries for smartphones and electric vehicles. This laminated type lithium ion battery is configured as a lithium ion battery cell in which a laminated electrode formed by laminating a positive electrode plate and a negative electrode plate with a separator interposed therebetween is covered with a laminated film together with an electrolytic solution. A plurality of lithium-ion battery cells are connected to form a module, and a plurality of modules are connected to form a pack, but the lithium-ion battery cell here means the smallest unit battery that functions as a battery. do.

正極板は、基材たるアルミ箔にニッケル酸リチウムやコバルト酸リチウムを含む正極活物質を固着して成り、アルミ箔は非磁性であるが表層に固着されたニッケル、コバルト成分が磁性を有しているため、正極板として磁着物となる。一方、負極板は基材としての銅箔に黒鉛などの負極活物質を固着して成り、銅箔は非磁性であり、黒鉛は磁性があるものの反磁性であり、負極板としては磁着物ではない。しかし、正極板と負極板とが物理的に一体となっている積層電極は、正極板が磁性を示すため、磁着物となる。 The positive electrode plate is made by adhering a positive electrode active material containing lithium nickelate or lithium cobaltate to an aluminum foil as a base material. Although the aluminum foil is non-magnetic, the nickel and cobalt components adhered to the surface layer are magnetic. Therefore, it becomes a magnetic substance as a positive electrode plate. On the other hand, the negative electrode plate is made by fixing a negative electrode active material such as graphite to a copper foil as a base material. do not have. However, a laminated electrode in which a positive electrode plate and a negative electrode plate are physically integrated becomes a magnetic substance because the positive electrode plate exhibits magnetism.

このように形成されるラミネート型のリチウムイオン電池セルは、正極板に固着されているニッケル、コバルト成分が有価金属であるため、使用後廃棄される際に、この有価金属を取り出すことが試みられている。また、その他の構造である円筒型や角型のリチウムイオン電池にも有価金属が含まれるため、同様の試みがなされており、例えば、特許文献1にその手法の一つが開示されている。 In the laminate-type lithium ion battery cell thus formed, since the nickel and cobalt components fixed to the positive electrode plate are valuable metals, attempts have been made to remove these valuable metals when discarding after use. ing. In addition, cylindrical and prismatic lithium-ion batteries with other structures also contain valuable metals, and similar attempts have been made.

特許文献1にあっては、リチウムイオン電池(セル)を破砕、解砕して解体する解体工程と、電池解体物をアルコール又は水で洗浄し、電解液及び電解質を除去する洗浄工程と、洗浄した電池解体物を硫酸水溶液に浸漬して、正極基板から正極活物質を剥離する正極活物質剥離工程を経ることで、有価金属であるニッケル、コバルトを含む正極活物質を得て、後に、中和工程でニッケル、コバルトを回収することとしている。 In Patent Document 1, a disassembly step of crushing and disassembling a lithium ion battery (cell), a washing step of washing the disassembled battery with alcohol or water to remove the electrolytic solution and the electrolyte, and a washing The battery disassembled product is immersed in an aqueous sulfuric acid solution, and the positive electrode active material is peeled off from the positive electrode substrate to obtain a positive electrode active material containing nickel and cobalt, which are valuable metals. It is decided that nickel and cobalt will be recovered in the sum process.

特開2007-122885JP 2007-122885

ところで、特許文献1では、最初の工程で、リチウムイオン電池の構造形式に係わりなく、解体工程でリチウムイオン電池を破砕、解砕してしまう。すなわち、正極板、負極板、セパレータ等を一緒に破砕、解砕している。したがって、電池解体物は、破砕、解砕されることでさまざまな様態をなし、正極板では、基材となるアルミ箔からコバルト、ニッケルの有価金属を含む正極活物質が脱落したり、アルミ箔に残存したり、負極板では、基材となる銅箔に塗布した黒鉛等の炭素粒子が脱落したりする。かくして、電池解体物は、細粒化されて上記正極活物質と炭素粒子とが混合した状態になる。 By the way, in Patent Document 1, in the first step, the lithium ion battery is crushed and shredded in the dismantling step regardless of the structural form of the lithium ion battery. That is, the positive electrode plate, the negative electrode plate, the separator, and the like are crushed and crushed together. Therefore, dismantled batteries take various forms by being crushed and crushed. In the positive electrode plate, the positive electrode active material containing valuable metals such as cobalt and nickel falls off from the aluminum foil as the base material, and the aluminum foil falls off. In the case of the negative electrode plate, carbon particles such as graphite coated on the copper foil serving as the base material fall off. Thus, the battery dismantled material is pulverized into a state in which the positive electrode active material and the carbon particles are mixed.

また、正極活物質と炭素粒子が混合されている電池解体物から、正極活物質を取り出すには、解体工程後に、上述のごとく、洗浄工程と正極活物質剥離工程を必要とし、しかも、電池解体物は破砕、解砕により、細粒物として混合している状態にあるため、上記洗浄工程、正極活物質剥離工程が煩瑣となる。 Further, in order to take out the positive electrode active material from the battery disassembled product in which the positive electrode active material and the carbon particles are mixed, as described above, the cleaning step and the positive electrode active material peeling step are required after the dismantling step. Since the substances are in a state of being mixed as fine particles by crushing and pulverizing, the washing process and the positive electrode active material stripping process become complicated.

本発明は、かかる事情に鑑みてなされたものであり、ラミネート型のリチウムイオン電池セルの正極板、負極板を破砕することなく、きわめて容易かつ効率的に正極板を取り出すことが可能なリチウムイオン電池セルの解体方法を提供することを課題とする。 The present invention has been made in view of such circumstances, and a lithium ion battery cell that enables extremely easy and efficient extraction of the positive electrode plate and the negative electrode plate of a laminated lithium-ion battery cell without crushing the positive electrode plate and the negative electrode plate. An object of the present invention is to provide a battery cell dismantling method.

本発明に係るリチウムイオン電池セルは、正極板と負極板とがセパレータを介して積層されて積層電極を形成し、該積層電極がラミネートフィルムの外装で封止されている。 In the lithium-ion battery cell according to the present invention, a positive electrode plate and a negative electrode plate are laminated via a separator to form a laminated electrode, and the laminated electrode is sealed with a laminate film exterior.

かかるリチウムイオン電池セルの解体方法において、本発明では、ラミネートフィルムを切開する切開工程と、積層電極を磁着してラミネートフィルムから分離する第一磁力選別工程と、積層電極を水没させ、該積層電極と水との間に相対動を与えて該積層電極の正極板と負極板とを剥離する電極板剥離工程と、正極板と負極板とが剥離状態にある積層電極を磁着して、磁着物たる正極板を、非磁着物たる負極板及び残留物から分離して取り出す第二磁力選別工程とを有することを特徴としている。ここで、リチウムイオン電池セルの電解液の有機溶媒として六フッ化リン酸リチウムを溶解させた溶液を用いるリチウムイオン電池セルを解体する場合、作業環境保全の観点からラミネートフィルムを切開する切開工程と、積層電極を磁着してラミネートフィルムから分離する第一磁力選別工程はリチウムイオン電池セルを水没させた状態で実施することもできる。 In such a method for disassembling a lithium ion battery cell, in the present invention, a cutting step of cutting the laminate film, a first magnetic separation step of magnetically attaching the laminated electrode and separating it from the laminated film, submerging the laminated electrode in water, and an electrode plate separation step of separating the positive electrode plate and the negative electrode plate of the laminated electrode by giving relative motion between the electrode and water; and a second magnetic force sorting step of separating the positive electrode plate, which is a magnetic substance, from the negative electrode plate, which is a non-magnetic substance, and the residue. Here, when dismantling a lithium ion battery cell using a solution in which lithium hexafluorophosphate is dissolved as an organic solvent for the electrolyte of the lithium ion battery cell, a cutting step of cutting the laminate film from the viewpoint of working environment preservation is performed. The first magnetic separation step of magnetically attaching the laminated electrodes to separate them from the laminate film can also be carried out while the lithium ion battery cells are submerged in water.

このような構成の本発明によると、リチウムイオン電池セルは、切開工程、第一磁力選別工程、電極板剥離工程、第二磁力選別工程を経て解体され、どの工程でも、リチウムイオン電池セルの破砕は行われず、外装のラミネートフィルムを切開してから、正極板と負極板の積層電極を第一磁力選別工程でラミネートフィルムから分離し、電極板剥離工程で、積層電極と水との間に相対動を与えるだけで、正極板と負極板及び残留物とに分離する。したがって、正極板と負極板が破砕されることなく、正極板が取り出される。 According to the present invention having such a configuration, the lithium ion battery cell is dismantled through the incision process, the first magnetic separation process, the electrode plate peeling process, and the second magnetic separation process. is not performed, and after cutting the outer laminate film, the laminated electrodes of the positive electrode plate and the negative electrode plate are separated from the laminated film in the first magnetic separation process, and in the electrode plate peeling process, the laminated electrode and water are separated from each other. It separates into a positive plate, a negative plate and a residue just by giving it a motion. Therefore, the positive electrode plate can be taken out without crushing the positive electrode plate and the negative electrode plate.

本発明において、電極板剥離工程は、水流により積層電極と水との間での相対動を与える工程とすることができる。このような水流中に積層電極を配することで、積層電極と水との間での相対動により、水が正極板とセパレータの間、負極板とセパレータとの間に侵入し、正極板、負極板がセパレータから剥離状態となる。 In the present invention, the electrode plate peeling step can be a step of imparting relative motion between the laminated electrode and water by a water flow. By arranging the laminated electrode in such a water flow, water penetrates between the positive electrode plate and the separator and between the negative electrode plate and the separator due to the relative movement between the laminated electrode and the water. The negative electrode plate is separated from the separator.

本発明において、電極板剥離工程は、水、積層電極の少なくとも一方に超音波振動を印加して積層電極と水との間に相対動を与える工程とすることができる。超音波振動は、積層電極が配された静水または水流に印加することができる。このように積層電極と水との間の相対動が超音波振動であると、正極板とセパレータ、そして負極板とセパレータの剥離が容易となる。 In the present invention, the electrode plate peeling step can be a step of applying ultrasonic vibration to at least one of the water and the laminated electrode to provide relative motion between the laminated electrode and the water. Ultrasonic vibrations can be applied to still water or a stream of water in which the stacked electrodes are placed. When the relative motion between the laminated electrode and water is ultrasonic vibration, the separation between the positive electrode plate and the separator, and between the negative electrode plate and the separator is facilitated.

本発明のリチウムイオン電池セルの解体方法によれば、リチウムイオン電池セルの正極板、負極板を破砕することなく、きわめて容易かつ効率的に正極板を取り出すことができる。 According to the lithium ion battery cell dismantling method of the present invention, the positive electrode plate and the negative electrode plate of the lithium ion battery cell can be very easily and efficiently taken out without crushing them.

(A)はリチウムイオン電池セルの構造を簡単にして示す断面図、(B)はラミネートフィルムを切開して得られる積層電極の断面図である。(A) is a cross-sectional view showing a simplified structure of a lithium-ion battery cell, and (B) is a cross-sectional view of a laminated electrode obtained by cutting a laminate film. 本発明の一実施形態としてのリチウムイオン電池セルの解体方法における各工程を示す図である。FIG. 4 is a diagram showing each step in a method for disassembling a lithium-ion battery cell as an embodiment of the present invention; 積層電極における正極板と負極板をセパレータから剥離するための装置の概要構成図で、(A)は水流を用いる装置、(B)は超音波を用いる装置、(C)は水流と超音波振動を用いる装置である。Schematic configuration diagram of a device for separating the positive electrode plate and the negative electrode plate in the laminated electrode from the separator, (A) is a device using water flow, (B) is a device using ultrasonic waves, and (C) is water flow and ultrasonic vibration. It is a device that uses

以下、添付図面にもとづき、本発明の一実施形態を説明する。 An embodiment of the present invention will be described below with reference to the accompanying drawings.

図1(A)は、本実施形態で解体しようとするリチウムイオン電池セルの概要構造を示す断面図で、図1(B)はラミネートフィルムを切開して得られる積層電極の断面図である。 FIG. 1(A) is a cross-sectional view showing the schematic structure of a lithium-ion battery cell to be disassembled in this embodiment, and FIG. 1(B) is a cross-sectional view of a laminated electrode obtained by cutting the laminate film.

図1(A)において、リチウムイオン電池セル10は、正極板11と負極板12がセパレータ13を介して積層電極14を形成するように積層されており、外装としてのラミネートフィルム15内に電解液あるいは電解質とともに封入されて一つのセルをなしている。図1(A)の例では、負極板12を中央に配置し、セパレータ13を介して対称な位置に正極板11を配置し積層電極14を形成しているが、正極板11、セパレータ13、負極板12、セパレータ13、正極板11のように、セパレータ13を介して正極板11と負極板12を交互に配置し積層電極14を形成してもよい。 In FIG. 1(A), a lithium ion battery cell 10 has a positive electrode plate 11 and a negative electrode plate 12 laminated to form a laminated electrode 14 with a separator 13 interposed therebetween. Alternatively, it is encapsulated together with an electrolyte to form one cell. In the example of FIG. 1A, the negative electrode plate 12 is arranged in the center, and the positive electrode plate 11 is arranged at symmetrical positions with the separator 13 interposed therebetween to form the laminated electrode 14. The positive electrode plate 11, the separator 13, The positive electrode plate 11 and the negative electrode plate 12 may be alternately arranged with the separator 13 in between to form the laminated electrode 14 .

図1(A)において、二つの正極板11には、正極集電体11Aが接続され、正極集電体11Aはラミネートフィルム15外に引き出されている。また、中央に位置する負極板12には、負極集電体12Aが接続され、負極集電体12Aはラミネートフィルム15外に引き出されている。正極集電体11A、負極集電体12Aは、リチウムイオン電池セル10を負荷に接続する際には、リチウムイオン電池セル10と負荷との接触要素として用いられ、また、複数のリチウムイオン電池セル10を接続して一つのモジュールを形成する際、さらには複数のモジュールを接続して一つのパックを形成する際には、リチウムイオン電池セル10同士間の接続要素として用いられる。 In FIG. 1A, two positive electrode plates 11 are connected to a positive current collector 11A, and the positive current collector 11A is pulled out of the laminate film 15. As shown in FIG. A negative electrode current collector 12 A is connected to the negative electrode plate 12 located in the center, and the negative electrode current collector 12 A is pulled out to the outside of the laminate film 15 . The positive electrode current collector 11A and the negative electrode current collector 12A are used as contact elements between the lithium ion battery cell 10 and the load when connecting the lithium ion battery cell 10 to the load. When connecting 10 to form one module, and when connecting a plurality of modules to form one pack, it is used as a connection element between lithium ion battery cells 10 .

正極板11は、基材たるアルミ箔にニッケル酸リチウムやコバルト酸リチウムを含む正極活物質を固着して形成されている。ここでニッケルやコバルトは有価金属である。かかる正極板11において、アルミ箔は非磁性であるが表層に固着されたニッケル、コバルト成分が磁性を有しているため、正極板11としては磁着物である。かかる正極板11は、外装としてのラミネートフィルム15内に、セパレータ13を介して複数積層されており、複数の正極板11は、リードとしての正極集電体11Aに接続され、正極集電体11Aはラミネートフィルム15外に引き出されている。 The positive electrode plate 11 is formed by fixing a positive electrode active material containing lithium nickelate or lithium cobaltate to an aluminum foil as a base material. Here, nickel and cobalt are valuable metals. In this positive electrode plate 11, the aluminum foil is non-magnetic, but the nickel and cobalt components fixed to the surface layer have magnetism, so the positive electrode plate 11 is magnetic. A plurality of such positive electrode plates 11 are laminated in a laminate film 15 as an outer package with separators 13 interposed therebetween. are pulled out of the laminate film 15 .

一方、負極板12は基材としての銅箔に黒鉛などの負極活物質を固着している。銅箔は非磁性であり、黒鉛は磁性があるものの反磁性であるので、負極板12としては磁着物とはならない。しかし、正極板11と負極板12とが物理的に一体となっていて分離しにくい積層電極14の状態では、正極板11が磁性を示すため積層電極14全体として磁着物となる。 On the other hand, the negative electrode plate 12 has a negative electrode active material such as graphite adhered to a copper foil as a base material. Copper foil is non-magnetic, and graphite is magnetic but diamagnetic. However, in the state of the laminated electrode 14 in which the positive plate 11 and the negative plate 12 are physically integrated and difficult to separate, the positive plate 11 exhibits magnetism, so the laminated electrode 14 as a whole becomes magnetic.

このように形成されるリチウムイオン電池セル10は、正極板11に固着されているニッケル、コバルト成分が有価金属であることから、電池として所定期間使用後に廃棄される際に、図1(B)に示すように、リチウムイオン電池セル10を解体して、この有価金属を取り出して再利用に供する。 In the lithium-ion battery cell 10 formed in this manner, since the nickel and cobalt components fixed to the positive electrode plate 11 are valuable metals, when the lithium-ion battery cell 10 is discarded after being used for a predetermined period of time, the , the lithium ion battery cell 10 is dismantled, and the valuable metal is taken out and reused.

次に、本発明にしたがい、上記有価金属たるニッケル、コバルト成分を有する正極板11を、リチウムイオン電池セル10から取り出すためのリチウムイオン電池セル10の解体方法を説明する。 Next, according to the present invention, a disassembly method of the lithium ion battery cell 10 for removing the positive electrode plate 11 containing nickel and cobalt components, which are valuable metals, from the lithium ion battery cell 10 will be described.

なお、リチウムイオン電池セル10は、単体で用いられることも、リチウムイオン電池セル10が複数個接続されたモジュールとして用いられることも、さらには、複数のモジュールを接続したパックとして用いられることもあるが、ここでは、モジュールやパックから分解された状態におけるリチウムイオン電池セルの解体方法について述べることにする。図1(A)及び図2に見られるように、切開工程でリチウムイオン電池セル10をラミネートフィルム15の端部で切断し(図1(A)に示した切断線X)、次に第一磁力選別工程でラミネートフィルム15を積層電極14から分離する(図1(B))。既述のように積層電極14は磁着物、ラミネートフィルム15は非磁着物なので、両者は磁力により容易に分離される。ラミネートフィルム15の切断による切開工程では、正極集電体11Aの一部、負極集電体12Aの一部は、ラミネートフィルム15とともに、積層電極14から分離される。 The lithium ion battery cell 10 may be used alone, may be used as a module in which a plurality of lithium ion battery cells 10 are connected, or may be used as a pack in which a plurality of modules are connected. However, here, the disassembly method of the lithium-ion battery cell in the state disassembled from the module or pack will be described. As can be seen in FIGS. 1A and 2, the lithium ion battery cell 10 is cut at the edge of the laminate film 15 in the cutting process (cutting line X shown in FIG. 1A), and then the first The laminated film 15 is separated from the laminated electrode 14 in the magnetic force sorting process (FIG. 1(B)). As described above, the laminated electrode 14 is magnetic and the laminate film 15 is non-magnetic, so they are easily separated by magnetic force. In the cutting step by cutting the laminate film 15 , part of the positive electrode current collector 11</b>A and part of the negative electrode current collector 12</b>A are separated from the laminated electrode 14 together with the laminate film 15 .

次に、電極板剥離工程で、ラミネートフィルム15が分離除去して得られた積層電極14を、電極板剥離装置にもたらす。電極板剥離装置は、本実施形態では、三つの態様の装置が例示されており、図3(A)では電極板剥離装置20A、図3(B)では電極板剥離装置20B、図3(C)では電極板剥離装置20Cとして示されている。 Next, in the electrode plate peeling step, the laminated electrode 14 obtained by separating and removing the laminate film 15 is brought to the electrode plate peeling device. In the present embodiment, the electrode plate peeling device is exemplified in three modes: FIG. 3A shows an electrode plate peeling device 20A, FIG. ) shows an electrode plate peeling device 20C.

図3(A)に示される電極板剥離装置20Aは、水槽21Aと水槽21A内を一方向に向け走行するコンベア22Aと、水槽21Aに接続された管路23Aと、管路23Aに設けられたポンプ24Aとを有している。 The electrode plate peeling apparatus 20A shown in FIG. 3A includes a water tank 21A, a conveyor 22A running in one direction in the water tank 21A, a pipeline 23A connected to the water tank 21A, and a and a pump 24A.

水槽21Aは、上方に向け開口され、その内部に水Wが収容されている。ポンプ24Aにより管路23Aを圧送される水は、水槽21A内では、図3(A)の場合、水槽21Aの左端から右端へ向けた水流WOを形成する。なお、ここで使用される水は、産業活動のために供給される水(工業用水)をはじめとして、例えば、焼却炉から排出される排ガスを冷却してほぼ純水に近い純度を有する清浄水や高純度に処理された水(純水、高純水)を使用してもよい。 The water tank 21A is open upward and contains water W therein. The water pumped through the conduit 23A by the pump 24A forms a water flow WO in the water tank 21A from the left end to the right end of the water tank 21A in the case of FIG. 3(A). The water used here includes water supplied for industrial activities (industrial water), for example, clean water that has a purity close to that of pure water by cooling exhaust gas discharged from an incinerator. or high-purity treated water (pure water, high-purity water) may be used.

コンベア22Aは、水槽21A内に設けられたガイド(図示せず)により案内され、水槽21Aの右端側から水槽21Aの底部に沿って水槽21Aの左端側へ出て行く走行路を有しており、その走行方向は上記の水流WOと対向している。コンベア22A上の任意点が水槽21A内の水Wの中を走行している時間、すなわちコンベア22Aで搬送される積層電極14の水W内での滞在時間は、後述のように水W内で正極板11と負極板12がセパレータ13から剥離される必要十分な時間長に設定される。これは、実験的に定められる。 The conveyer 22A is guided by a guide (not shown) provided in the water tank 21A, and has a running path extending from the right end of the water tank 21A along the bottom of the water tank 21A to the left end of the water tank 21A. , the traveling direction of which is opposite to the water flow WO. The time during which an arbitrary point on the conveyor 22A travels in the water W in the water tank 21A, that is, the residence time in the water W of the laminated electrode 14 conveyed by the conveyor 22A is determined in the water W as described later. A necessary and sufficient length of time is set for the positive electrode plate 11 and the negative electrode plate 12 to be separated from the separator 13 . This is determined experimentally.

コンベア22Aにより、水槽21Aへは積層電極14が順次搬入されるが、図3(A)のごとく、水W中に進入すると、積層電極14は搬送方向と逆方向の水流WOと対向する。その結果、積層電極14は、搬送速度と水流WOの速度の和を相対速度として水流WOの動圧を受けることになる。積層電極14は、積層界面、すなわち、正極板11とセパレータ13の界面、負極板12とセパレータ13の界面が水流WOの流れ方向と平行となるように、コンベア22Aに設置されている。したがって、水流WOは積層電極14の正極板11とセパレータ13の界面、負極板12とセパレータ13の界面へ、正極板11、負極板12の端縁から進入し、進入した水流WOの動圧により正極板11及び負極板12がそれぞれセパレータ13から分離可能な剥離状態になる。 The laminated electrodes 14 are successively carried into the water tank 21A by the conveyor 22A, and as shown in FIG. As a result, the laminated electrode 14 receives the dynamic pressure of the water flow WO with the relative speed being the sum of the transport speed and the speed of the water flow WO. The laminated electrodes 14 are placed on the conveyor 22A so that the laminated interfaces, that is, the interface between the positive electrode plate 11 and the separator 13 and the interface between the negative electrode plate 12 and the separator 13, are parallel to the flow direction of the water flow WO. Therefore, the water flow WO enters the interface between the positive electrode plate 11 and the separator 13 and the interface between the negative electrode plate 12 and the separator 13 of the laminated electrode 14 from the edges of the positive electrode plate 11 and the negative electrode plate 12. The positive electrode plate 11 and the negative electrode plate 12 are separated from the separator 13 respectively.

かくして、正極板11、負極板12、セパレータ13が剥離状態になった積層電極14はコンベア22Aにより水槽21A外に搬出されるとともに、次の積層電極14がコンベア22Aにより水槽21A内に搬入され、上述の要領で剥離状態とされる。正極板11、負極板12、セパレータ13が剥離状態となった積層電極14は、コンベア22Aにより水槽21A外に搬出され、次の第二磁力選別工程にもたらされる。 Thus, the laminated electrode 14 from which the positive electrode plate 11, the negative electrode plate 12, and the separator 13 are peeled off is carried out of the water tank 21A by the conveyor 22A, and the next laminated electrode 14 is carried into the water tank 21A by the conveyor 22A. The stripped state is set in the manner described above. The laminated electrode 14 from which the positive electrode plate 11, the negative electrode plate 12, and the separator 13 are peeled off is conveyed out of the water tank 21A by the conveyor 22A, and brought to the next second magnetic force sorting step.

第二磁力選別工程で積層電極14に磁力を作用させると、正極板11、負極板12、セパレータ13は、すでに、上記電極板剥離工程で剥離状態にあるので、上記磁力によって磁着物である正極板11が非磁着物である負極板12、セパレータ13から分離して選別される。かくして、正極板11が取り出され、後工程での処理で、有価金属であるニッケル、コバルトが回収される。 When a magnetic force is applied to the laminated electrode 14 in the second magnetic force sorting step, the positive electrode plate 11, the negative electrode plate 12, and the separator 13 are already in a peeled state in the electrode plate peeling step. The plate 11 is separated from the negative electrode plate 12 and the separator 13, which are non-magnetic, and sorted. Thus, the positive electrode plate 11 is taken out, and nickel and cobalt, which are valuable metals, are recovered in subsequent processes.

なお、第二磁力選別工程で取り出されなかった負極板12、セパレータ13のうち、有価金属として回収されるべきは負極板12中の銅である。第二磁力選別工程で取り出されなかった非磁着物を銅精錬工程で処理することで、有価金属である銅が回収される。 Of the negative electrode plate 12 and the separator 13 that were not taken out in the second magnetic separation step, copper in the negative electrode plate 12 should be recovered as a valuable metal. Copper, which is a valuable metal, is recovered by treating the non-magnetic substances that have not been taken out in the second magnetic separation step in the copper refining step.

次に、本実施形態についての変形例を説明する。図3(A)の電極板剥離装置20Aの例では、コンベア22A上の積層電極14に対し、水槽21A内で積層電極14の搬送方向と対向する水流WOを生じさせて、水流WOが積層電極14との相対動を生じていたが、図3(B)に示される変形例としての電極板剥離装置20Bでは、水槽21Bの底部に超音波振動子25Bが分布して配設されており、コンベア22B上の積層電極14には水流ではなく超音波が水Wを経て印加されている。この超音波が水Wと積層電極14との間に相対動をもたらし、積層電極14における正極板11、負極板12、セパレータ13を剥離状態にさせる。しかる後、積層電極14は、水槽21B外に搬出され、次の第二磁力選別工程にもたらされる。これは、既述の図3(A)の場合の例と同じである。 Next, a modified example of this embodiment will be described. In the example of the electrode plate peeling apparatus 20A shown in FIG. 3A, the water flow WO is generated in the water tank 21A against the laminated electrode 14 on the conveyor 22A in a direction opposite to the direction in which the laminated electrode 14 is conveyed. 14, but in the electrode plate peeling device 20B as a modification shown in FIG. Ultrasonic waves are applied to the laminated electrode 14 on the conveyor 22B through the water W instead of the water flow. This ultrasonic wave causes relative movement between the water W and the laminated electrode 14, causing the positive electrode plate 11, the negative electrode plate 12, and the separator 13 in the laminated electrode 14 to be separated. Thereafter, the laminated electrode 14 is carried out of the water tank 21B and brought to the next second magnetic force sorting step. This is the same as the example in the case of FIG. 3(A) already described.

また、図3(C)における電極板剥離装置20Cの例では、図3(A)の場合と同様に、電極板剥離装置20Aへポンプ24Cで水槽21C内に水流WOを生じさせているのに加え、図3(B)の場合と同様に水槽21Cの底壁に配設された超音波振動子25Cにより水Wを経て積層電極14に超音波を印加している。したがって、この図3(C)に示される変形例では、図3(A)の場合の作用効果と図3(B)の場合の作用効果を重畳して得ることができる。 In addition, in the example of the electrode plate stripping device 20C in FIG. 3C, as in the case of FIG. In addition, as in the case of FIG. 3B, ultrasonic waves are applied to the laminated electrode 14 through the water W by an ultrasonic transducer 25C arranged on the bottom wall of the water tank 21C. Therefore, in the modification shown in FIG. 3(C), the effects of FIG. 3(A) and the effects of FIG. 3(B) can be superimposed.

10 リチウムイオン電池セル
11 正極板
12 負極板
13 セパレータ
14 積層電極
15 ラミネートフィルム
REFERENCE SIGNS LIST 10 Lithium ion battery cell 11 Positive electrode plate 12 Negative electrode plate 13 Separator 14 Laminated electrode 15 Laminated film

Claims (3)

正極板と負極板がセパレータを介して積層されて積層電極を形成し、該積層電極がラミネートフィルムの外装で封止されたリチウムイオン電池セルの解体方法において、
ラミネートフィルムを切開する切開工程と、
積層電極を磁着してラミネートフィルムから分離する第一磁力選別工程と、
積層電極を水没させ、該積層電極と水との間に相対動を与えて該積層電極の正極板と負極板とを剥離状態とする電極板剥離工程と、
正極板と負極板とが剥離状態にある積層電極を磁着して、磁着物たる正極板を、非磁着物たる負極板及び残留物から分離して取り出す第二磁力選別工程とを有することを特徴とするリチウムイオン電池セルの解体方法。
In a method for disassembling a lithium-ion battery cell in which a positive electrode plate and a negative electrode plate are laminated with a separator interposed to form a laminated electrode, and the laminated electrode is sealed with a laminate film exterior,
an incision step of incising the laminate film;
A first magnetic force sorting step of magnetically attaching the laminated electrode to separate it from the laminated film;
an electrode plate peeling step of submerging the laminated electrode in water and imparting relative motion between the laminated electrode and water to bring the positive electrode plate and the negative electrode plate of the laminated electrode into a separated state;
A second magnetic force sorting step of magnetically attaching the laminated electrode in which the positive electrode plate and the negative electrode plate are in a separated state, and separating and taking out the positive electrode plate as a magnetic substance from the negative electrode plate and the residue as a non-magnetic substance. A method for disassembling a lithium-ion battery cell.
電極板剥離工程は、水流により積層電極と水との間に相対動を与えることを特徴とする請求項1に記載のリチウムイオン電池セルの解体方法。 2. The method for disassembling a lithium ion battery cell according to claim 1, wherein the electrode plate peeling step applies relative motion between the laminated electrode and water by a water flow. 電極板剥離工程は、水、積層電極の少なくとも一方に超音波振動を印加して積層電極と水との間に相対動を与えることを特徴とする請求項1または請求項2に記載のリチウムイオン電池セルの解体方法。 3. The lithium ion according to claim 1, wherein in the electrode plate peeling step, ultrasonic vibration is applied to at least one of water and the laminated electrode to provide relative motion between the laminated electrode and water. A method of disassembling a battery cell.
JP2019101084A 2019-05-30 2019-05-30 Dismantling method of lithium ion battery cell Active JP7120158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019101084A JP7120158B2 (en) 2019-05-30 2019-05-30 Dismantling method of lithium ion battery cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019101084A JP7120158B2 (en) 2019-05-30 2019-05-30 Dismantling method of lithium ion battery cell

Publications (2)

Publication Number Publication Date
JP2020194749A JP2020194749A (en) 2020-12-03
JP7120158B2 true JP7120158B2 (en) 2022-08-17

Family

ID=73546566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019101084A Active JP7120158B2 (en) 2019-05-30 2019-05-30 Dismantling method of lithium ion battery cell

Country Status (1)

Country Link
JP (1) JP7120158B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112803088B (en) * 2021-01-13 2022-02-11 江苏科耐尔新能源科技有限公司 Waste lithium battery recovery processing device
CN113042497A (en) * 2021-03-01 2021-06-29 安徽南都华铂新材料科技有限公司 Lithium iron phosphate battery electrode cutting and recycling system
WO2024091004A1 (en) * 2022-10-27 2024-05-02 (주)위드 Material separation apparatus for recycling waste battery and method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145015A1 (en) 2008-05-28 2009-12-03 トヨタ自動車株式会社 Method for treating lithium batteries
JP2011154833A (en) 2010-01-26 2011-08-11 Jx Nippon Mining & Metals Corp Aluminum foil and positive electrode active material separating method
JP2014127417A (en) 2012-12-27 2014-07-07 Nissan Motor Co Ltd Method for collecting and reusing negative electrode active material of lithium ion battery
US20180013181A1 (en) 2016-07-07 2018-01-11 Grst International Limited Method for recycling lithium-ion battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3452769B2 (en) * 1997-09-18 2003-09-29 株式会社東芝 Battery treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145015A1 (en) 2008-05-28 2009-12-03 トヨタ自動車株式会社 Method for treating lithium batteries
JP2011154833A (en) 2010-01-26 2011-08-11 Jx Nippon Mining & Metals Corp Aluminum foil and positive electrode active material separating method
JP2014127417A (en) 2012-12-27 2014-07-07 Nissan Motor Co Ltd Method for collecting and reusing negative electrode active material of lithium ion battery
US20180013181A1 (en) 2016-07-07 2018-01-11 Grst International Limited Method for recycling lithium-ion battery

Also Published As

Publication number Publication date
JP2020194749A (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP7120158B2 (en) Dismantling method of lithium ion battery cell
Lei et al. Lithium ion battery recycling using high-intensity ultrasonication
KR20130124341A (en) Method and system for cutting sheet-like or plate-like objects
JP5105206B2 (en) Drying equipment
KR20210095900A (en) Method and system for scalable direct recycling of batteries
JP2023511520A (en) electrode separation
JP2014502407A (en) Cleaning method and cleaning system for sheet-like or plate-like object
CN111316473B (en) Method for producing an electrode
JP2013069676A (en) Dismantling method of battery and collecting method of electrode group from battery dismantled
WO2019205984A1 (en) Method for recycling of positive electrode plates from lithium-ion battery
KR20150069002A (en) Electrical device separator severing apparatus and severing method
JP2014167881A (en) Battery and method of manufacturing battery
CN113517485A (en) Power battery disassembling and recycling process and device
JP2011154833A (en) Aluminum foil and positive electrode active material separating method
KR20170022391A (en) Device for Manufacturing Secondary Battery Capable of Removing Gas by Vibration
KR101802297B1 (en) Manufacturing Method of Electrode for Secondary Battery
JP2015191830A (en) Repair method for power storage device
CN107293814B (en) Method for ultrasonically separating electrode current collector and electrode material of lithium ion battery
JP2006073216A (en) Disassembly method of nas battery
KR101590671B1 (en) Ultrasonic welding assembly and Fabricating method of secondary battery using the same
KR101197439B1 (en) Separation Method of Active Cathodic Material from Scrap of Positive Plate in Lithium Rechargeable Battery
JP7188090B2 (en) Battery manufacturing method
CN114927784A (en) Battery fine recycling method
WO2023106416A1 (en) Storage battery recycling device
WO2023106417A1 (en) Storage battery recycling method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R150 Certificate of patent or registration of utility model

Ref document number: 7120158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150