JP4892925B2 - Method for recovering valuable metals from lithium-ion batteries - Google Patents

Method for recovering valuable metals from lithium-ion batteries Download PDF

Info

Publication number
JP4892925B2
JP4892925B2 JP2005309249A JP2005309249A JP4892925B2 JP 4892925 B2 JP4892925 B2 JP 4892925B2 JP 2005309249 A JP2005309249 A JP 2005309249A JP 2005309249 A JP2005309249 A JP 2005309249A JP 4892925 B2 JP4892925 B2 JP 4892925B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
ion battery
lithium ion
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005309249A
Other languages
Japanese (ja)
Other versions
JP2007122885A (en
Inventor
典久 土岐
法道 米里
正樹 今村
賢二 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005309249A priority Critical patent/JP4892925B2/en
Publication of JP2007122885A publication Critical patent/JP2007122885A/en
Application granted granted Critical
Publication of JP4892925B2 publication Critical patent/JP4892925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Description

本発明は、使用済みのリチウムイオン2次電池のリサイクルにおいて、電池を解体して、正極活物質に含まれるリチウムなどの有価金属を効率的に分離回収する方法に関する。   The present invention relates to a method of disassembling a battery and efficiently separating and recovering valuable metals such as lithium contained in a positive electrode active material in recycling a used lithium ion secondary battery.

最近の地球温暖化傾向に対し、電力の有効利用が叫ばれている。その一手段として電力貯蔵用2次電池が期待され、また大気汚染防止の立場から自動車用電源として、大型2次電池の早期実用化が期待されている。また、小型2次電池も、コンピュータ、ワープロ等のバックアップ用電源や小型家電機器の電源として、特に携帯用電気機具の普及と性能アップに伴って、需要は年々増大の一途を辿る状況にある。   In response to the recent global warming trend, the effective use of electric power has been screamed. As one means, a secondary battery for power storage is expected, and from the standpoint of preventing air pollution, an early practical application of a large secondary battery is expected as a power source for automobiles. In addition, the demand for small secondary batteries has been increasing year by year with the spread of portable electric devices and the improvement in performance, particularly as backup power sources for computers and word processors, and power sources for small household appliances.

これら2次電池としては、使用する機器に対応した性能の2次電池が要求されるが、一般にリチウムイオン電池が主に使用されている。このリチウムイオン電池は、アルミニウムや鉄などの金属製の外装缶内に、銅箔からなる負極基板に黒鉛などの負極活物質を固着した負極材、アルミニウム箔からなる正極基板にニッケル酸リチウムやコバルト酸リチウムなどの正極活物質が固着させた正極材、アルミニウムや銅からなる集電体、ポリプロピレンの多孔質フィルムなどの樹脂フィルム製セパレータ、及び電解液や電解質などが封入されている。   As these secondary batteries, secondary batteries having a performance corresponding to the equipment to be used are required, but generally lithium ion batteries are mainly used. This lithium ion battery has a negative electrode material in which a negative electrode active material such as graphite is fixed to a negative electrode substrate made of copper foil in a metal outer can such as aluminum or iron, and lithium nickelate or cobalt on a positive electrode substrate made of aluminum foil. A positive electrode material to which a positive electrode active material such as lithium acid is fixed, a current collector made of aluminum or copper, a resin film separator such as a polypropylene porous film, and an electrolytic solution or an electrolyte are enclosed.

また、リチウムイオン電池の拡大する需要に対して、使用済みのリチウムイオン電池による環境汚染対策の確立が強く要望され、有価金属を回収して有効利用することが検討されている。上記のような構造を備えたリチウムイオン電池から有価金属を回収する方法としては、例えば特開平07−207349号公報や特開平10−330855号公報に記載されるような乾式処理あるいは焼却処理される場合が多い。しかし、これらの方法は、熱エネルギーの消費が大きいうえ、リチウムやアルミニウムを回収できないなどの欠点があった。また、電解質として六フッ化リン酸リチウムが含有されている場合には、炉材の消耗が著しいなどの問題もあった。   In addition, in response to the growing demand for lithium ion batteries, there is a strong demand for establishment of environmental pollution countermeasures with used lithium ion batteries, and it has been studied to collect and effectively use valuable metals. As a method for recovering valuable metals from the lithium ion battery having the above-described structure, for example, dry processing or incineration processing as described in JP-A-07-207349 and JP-A-10-330855 is performed. There are many cases. However, these methods have drawbacks such as large consumption of heat energy and inability to recover lithium and aluminum. Further, when lithium hexafluorophosphate is contained as an electrolyte, there is a problem that the consumption of the furnace material is remarkable.

一方、湿式処理による場合でも、例えば特開平08−22846号公報や特開2003−157913号公報に記載されるように、一部に乾式処理を用いていた。例えば、特開平08−22846号公報に記載の方法では、正極材を燃焼して活物質を回収するが、得られる活物質に不純物が混入する恐れがあるなどの欠点があった。また、特開2003−157913号公報に記載の方法では、電解液及び電解質の処理工程において、高温オーブンで焼き付けるといった乾式処理が必要であり、焼却炉材の消耗が著しいなどの問題点が指摘されていた。   On the other hand, even in the case of wet processing, dry processing is partially used as described in, for example, Japanese Patent Application Laid-Open Nos. 08-22846 and 2003-157913. For example, in the method described in Japanese Patent Application Laid-Open No. 08-22846, the active material is recovered by burning the positive electrode material, but there is a drawback that impurities may be mixed into the obtained active material. Further, in the method described in Japanese Patent Application Laid-Open No. 2003-157913, a dry process such as baking in a high-temperature oven is required in the electrolytic solution and electrolyte processing steps, and problems such as significant consumption of incinerator materials are pointed out. It was.

特開平07−207349号公報Japanese Patent Application Laid-Open No. 07-207349 特開平10−330855号公報JP-A-10-330855 特開平08−022846号公報Japanese Patent Laid-Open No. 08-022846 特開2003−157913号公報JP 2003-157913 A

本発明は、このような従来の事情に鑑み、使用済みのリチウムイオン電池のリサイクルにおいて、加熱・焼却などの乾式処理を行わずに、正極活物質などに含まれているリチウム、ニッケル、コバルトなどの有価金属を効率よく分離回収する方法を提供することを目的とする。   In view of such conventional circumstances, the present invention provides lithium, nickel, cobalt, etc. contained in a positive electrode active material, etc. without performing dry treatment such as heating and incineration in recycling of used lithium ion batteries. An object of the present invention is to provide a method for efficiently separating and recovering valuable metals.

上記目的を達成するため、本発明が提供するリチウムイオン電池からの有価金属回収方法は、リチウムイオン電池から有価金属を回収する方法であって、リチウムイオン電池を解体する解体工程と、電池解体物をアルコール又は水で洗浄し、電解液及び電解質を除去する洗浄工程と、洗浄した電池解体物を硫酸水溶液に浸漬して、正極基板から正極活物質を剥離する正極活物質剥離工程と、剥離した正極活物質を固定炭素含有物の存在下に酸性溶液で浸出する浸出工程と、得られた浸出液から中和によりアルミニウム、銅を分離除去する中和工程と、中和工程後の浸出液からニッケル、コバルトを分離回収するニッケル・コバルト回収工程と、残った水溶液中のリチウムを溶媒抽出と逆抽出により濃縮した後、リチウムを炭酸リチウムの固体として分離回収するリチウム回収工程とを備えることを特徴とする。   In order to achieve the above object, a valuable metal recovery method from a lithium ion battery provided by the present invention is a method of recovering a valuable metal from a lithium ion battery, a disassembly step of disassembling a lithium ion battery, and a battery disassembly A step of washing with an alcohol or water to remove the electrolytic solution and the electrolyte, a step of removing the positive electrode active material from the positive electrode substrate by immersing the washed battery disassembly in a sulfuric acid aqueous solution, and peeling A leaching step of leaching the positive electrode active material with an acidic solution in the presence of a fixed carbon-containing material, a neutralization step of separating and removing aluminum and copper by neutralization from the obtained leachate, nickel from the leachate after the neutralization step, A nickel / cobalt recovery process for separating and recovering cobalt, and the lithium in the remaining aqueous solution is concentrated by solvent extraction and back extraction, and then the lithium is solidified with lithium carbonate. Characterized in that it comprises a lithium recovery process of to separate and recover.

上記本発明によるリチウムイオン電池からの有価金属回収方法では、前記洗浄工程において、アルコール又は水に電池解体物を10〜300g/l投入して振盪又は撹拌した後、電池解体物とアルコール又は水を分離し、更に新しいアルコール又は水を加えて上記洗浄操作を複数回繰り返し行うことが好ましい。   In the above method for recovering valuable metals from a lithium ion battery according to the present invention, in the washing step, 10 to 300 g / l of a battery disassembled product is charged into alcohol or water and shaken or stirred. It is preferable that the washing operation is repeated a plurality of times after separating and adding new alcohol or water.

また、上記本発明によるリチウムイオン電池からの有価金属回収方法では、前記正極活物質剥離工程において、電池解体物をpH0〜3.0の硫酸水溶液中で浸漬撹拌することより、正極基板から正極活物質を剥離して固体のまま分離回収することができる。   In the method for recovering valuable metals from a lithium ion battery according to the present invention, the disassembled battery is immersed and stirred in a sulfuric acid aqueous solution having a pH of 0 to 3.0 in the positive electrode active material peeling step, so that the positive electrode active material is removed from the positive electrode substrate. The substance can be peeled off and separated and recovered as a solid.

上記本発明によるリチウムイオン電池からの有価金属回収方法では、前記浸出工程において、固定炭素含有物として、黒鉛、活性炭、石炭、コークス、木炭、及びリチウムイオン電池から回収された負極粉から選ばれた少なくとも1種を用いることが好ましい。また、前記酸性溶液として硫酸を使用し且つpHを0.5〜1.5の範囲に保持すると共に、前記固定炭素含有物は溶解反応終了後に回収して再使用することが好ましい。   In the valuable metal recovery method from the lithium ion battery according to the present invention, the fixed carbon-containing material was selected from graphite, activated carbon, coal, coke, charcoal, and negative electrode powder recovered from the lithium ion battery in the leaching step. It is preferable to use at least one kind. Further, it is preferable that sulfuric acid is used as the acidic solution and the pH is maintained in the range of 0.5 to 1.5, and the fixed carbon-containing material is recovered and reused after the dissolution reaction.

また、上記本発明によるリチウムイオン電池からの有価金属回収方法では、前記中和工程において、正極活物質の浸出液を中和剤によりpH3.0〜5.5に調整し、アルミニウム、銅を澱物として分離回収することができる。また、前記ニッケル・コバルト回収工程においては、中和工程後の浸出液をpH6.5〜10.0に調整し、ニッケル、コバルトを澱物として分離回収することができる。   Further, in the method for recovering valuable metals from the lithium ion battery according to the present invention, in the neutralization step, the leachate of the positive electrode active material is adjusted to pH 3.0 to 5.5 with a neutralizing agent, and aluminum and copper are converted into starch. Can be separated and recovered. In the nickel / cobalt recovery step, the leachate after the neutralization step can be adjusted to pH 6.5 to 10.0 to separate and recover nickel and cobalt as starch.

更に、上記本発明によるリチウムイオン電池からの有価金属回収方法では、前記リチウム回収工程において、ニッケル・コバルト回収工程後に残った水溶液をpH4.0以上に調整し、酸性系溶媒抽出剤と接触させてリチウムを抽出した後、その溶媒抽出剤をpH3.0以下の水溶液と接触させてリチウムを逆抽出し、得られた高濃度リチウム水溶液を60℃以上に保った状態で水溶性炭酸塩と混合することにより、リチウムを固体の炭酸リチウムとして回収することが好ましい。   Furthermore, in the method for recovering valuable metals from a lithium ion battery according to the present invention, in the lithium recovery step, the aqueous solution remaining after the nickel / cobalt recovery step is adjusted to pH 4.0 or more and brought into contact with an acidic solvent extractant. After extracting lithium, the solvent extractant is brought into contact with an aqueous solution having a pH of 3.0 or lower to reversely extract lithium, and the resulting high-concentration lithium aqueous solution is mixed with a water-soluble carbonate while being kept at 60 ° C. or higher. Therefore, it is preferable to recover lithium as solid lithium carbonate.

本発明によれば、使用済みのリチウムイオン電池を解体した後、加熱・焼却などの乾式処理を行うことなく、湿式処理のみによって、また高価な薬剤などを用いることなく、正極活物質などに含まれているリチウム、ニッケル、コバルトなどの有価金属を簡単に且つ効率よく分離回収することができる。   According to the present invention, after disassembling a used lithium ion battery, it is included in the positive electrode active material, etc., without performing a dry process such as heating and incineration, only by a wet process, and without using an expensive chemical. Valuable metals such as lithium, nickel and cobalt can be separated and recovered easily and efficiently.

本発明によるリチウムイオン電池からの有価金属の回収方法を、図1に示す工程図を参照して以下に説明する。
(1)リチウムイオン電池の解体工程
使用済みのリチウムイオン電池をリサイクルするには、まず電池を解体する必要がある。その場合、電池が充電された状態では危険であるから、解体に先立って、電池を放電させることにより無害化することが望ましい。無害化させた電池は、通常の破砕機や解砕機を用いて適度な大きさに解体する。また、外装缶を切断し、内部の正極材や負極材などを分離解体することもできるが、この場合は分離した各部分を更に適度な大きさに切断することが望ましい。
A method for recovering valuable metals from a lithium ion battery according to the present invention will be described below with reference to the process chart shown in FIG.
(1) Disassembling process of lithium ion battery To recycle a used lithium ion battery, it is necessary to first disassemble the battery. In that case, since it is dangerous when the battery is charged, it is desirable to make it harmless by discharging the battery prior to disassembly. The harmless battery is disassembled to an appropriate size using a normal crusher or crusher. In addition, the outer can can be cut to separate and disassemble the positive electrode material, the negative electrode material, and the like inside, but in this case, it is desirable to further cut each separated part into an appropriate size.

(2)洗浄工程
得られた電池解体物は、アルコール又は水で洗浄することにより、電解液及び電解質を除去する。リチウムイオン電池には、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネートなどの有機溶剤や、六フッ化リン酸リチウムのような電解質が含まれている。そのため、これらを予め除去することで、後の剥離工程での浸出液中に有機成分やリンあるいはフッ素などが不純物として混入することを防ぐことができる。
(2) Washing step The battery disassembled product is washed with alcohol or water to remove the electrolytic solution and the electrolyte. The lithium ion battery contains an organic solvent such as ethylene carbonate, propylene carbonate, diethyl carbonate, and dimethyl carbonate, and an electrolyte such as lithium hexafluorophosphate. Therefore, by removing these in advance, it is possible to prevent organic components, phosphorus, fluorine, or the like from being mixed as impurities into the leachate in the subsequent peeling step.

電池解体物の洗浄にはアルコール又は水を使用し、電池解砕物を好ましくは10〜300g/lの割合で投入して、振盪又は撹拌して有機成分及び電解質を除去する。アルコールとしては、エタノール、メタノール、これらの混合液が好ましい。一般的にカーボネート類は一般的には水に不溶であるが、炭酸エチレンは水に任意に溶け、その他の有機成分も水に多少の溶解度を有しているため、水でも洗浄可能である。アルコール又は水に対する電池解体物の量が10g/lより少ないと経済的ではなく、また300g/lよりも多くなると電池解体物がかさばって洗浄が難くなる。   Alcohol or water is used for washing the battery disassembled material, and the battery disintegrated material is charged preferably at a rate of 10 to 300 g / l, and the organic components and the electrolyte are removed by shaking or stirring. As the alcohol, ethanol, methanol, and a mixed solution thereof are preferable. In general, carbonates are generally insoluble in water, but ethylene carbonate is arbitrarily soluble in water, and other organic components have some solubility in water, so they can be washed with water. If the amount of the battery disassembly with respect to alcohol or water is less than 10 g / l, it is not economical, and if it exceeds 300 g / l, the battery disassembly becomes bulky and difficult to clean.

電池解体物の洗浄は、1回では十分とは言えない。そのため、1回目の洗浄が終了したら、電池解砕物とアルコール又は水を分離し、更に新しいアルコール又は水を加えて、上記と同様の洗浄操作を複数回繰り返して行うことが好ましい。しかし、洗浄回数が多すぎると経済的ではないため、10回以下とすることが好ましい。この洗浄工程により、有機成分及び電解質に由来するリンやフッ素などを後工程に影響を及ぼさない程度にまで除去することが出来る。例えば、後の剥離工程での浸出液中の濃度として、有機成分はTOC(Total Organic Carbon)濃度で0.1g/l以下に、またリン及びフッ素も10mg/l以下にすることができる。   Cleaning the battery disassembly is not enough. Therefore, after the first cleaning is completed, it is preferable to separate the battery crushed material and alcohol or water, add new alcohol or water, and repeat the same cleaning operation a plurality of times. However, since it is not economical if the number of times of cleaning is too large, it is preferable to set it to 10 times or less. By this washing step, phosphorus, fluorine and the like derived from the organic component and the electrolyte can be removed to such an extent that they do not affect the subsequent step. For example, as the concentration in the leachate in the subsequent stripping step, the organic component can have a TOC (Total Organic Carbon) concentration of 0.1 g / l or less, and phosphorus and fluorine can also be 10 mg / l or less.

(3)正極活物質剥離工程
洗浄後の電池解体物は、次に硫酸水溶液に浸漬させることにより、その正極基板から正極活物質を剥離して分離する。即ち、電池解体後も正極活物質は正極基板であるアルミニウム箔に固着しているが、硫酸水溶液中に投入して撹拌することにより正極活物質とアルミニウム箔を固体のままで分離することができる。これは、アルミニウム箔が微量溶出することによって、正極活物質がアルミニウム箔から剥離されるためと思われる。尚、この工程では、電池解体物全てを硫酸水溶液に浸漬しても良いが、電池解体物から正極材部分だけを選び出して硫酸水溶液に浸漬しても良い。
(3) Positive electrode active material peeling process The battery disassembled product after washing is then immersed in a sulfuric acid aqueous solution to peel and separate the positive electrode active material from the positive electrode substrate. That is, the positive electrode active material is fixed to the aluminum foil that is the positive electrode substrate even after the battery is disassembled. However, the positive electrode active material and the aluminum foil can be separated as they are in a solid state by being poured into an aqueous sulfuric acid solution and stirred. . This seems to be because the positive electrode active material is peeled off from the aluminum foil when the aluminum foil is eluted in a small amount. In this step, all the battery disassembled material may be immersed in the sulfuric acid aqueous solution, but only the positive electrode material portion may be selected from the battery disassembled material and immersed in the sulfuric acid aqueous solution.

使用する硫酸水溶液の濃度としては、硫酸濃度を連続的に適切な値に管理するのは難しいため、実際には水溶液のpH(水素イオン濃度)を管理するのが簡便で正確である。本発明においては、硫酸水溶液をpH0〜3に制御し、好ましくはpH1〜2の範囲とする。硫酸水溶液のpHが0未満になると、硫酸濃度が高過ぎるためアルミニウム箔と正極活物質の両方が溶出し、両者の分離が困難になる。また、pHが3を超えると、硫酸濃度が低すぎるため固着部分の溶出が進まず、正極活物質の剥離が不完全になる。   As the concentration of the sulfuric acid aqueous solution to be used, it is difficult to continuously control the sulfuric acid concentration to an appropriate value, so in practice it is simple and accurate to control the pH (hydrogen ion concentration) of the aqueous solution. In the present invention, the aqueous sulfuric acid solution is controlled to pH 0-3, preferably in the range of pH 1-2. When the pH of the aqueous sulfuric acid solution is less than 0, the sulfuric acid concentration is too high, so that both the aluminum foil and the positive electrode active material are eluted, making it difficult to separate them. On the other hand, if the pH exceeds 3, the concentration of sulfuric acid is too low, and the elution of the fixed portion does not proceed, and the positive electrode active material is not completely detached.

また、リチウムイオン電池を破砕などにより解体した際に、その正極材及び負極材は一般的に薄片となっている。従って、そのまま硫酸水溶液に投入してもよいが、解体の方法によっては効率よい分離を行うために、予め1辺の長さを30mm角以下に切断しておくことが好ましい。硫酸水溶液に対する電池解体物の投入量は、10〜100g/lが適当である。尚、正極基板からの正極活物質の分離に要する時間は、硫酸水溶液の濃度、正極材を含む電池解体物の投入量及び大きさなどによって異なるため、予め試験的に定めておくことが好ましい。   Further, when a lithium ion battery is disassembled by crushing or the like, the positive electrode material and the negative electrode material are generally thin pieces. Therefore, although it may be put into the sulfuric acid aqueous solution as it is, depending on the method of disassembly, it is preferable to cut the length of one side into 30 mm square or less in advance for efficient separation. The input amount of the battery disassembled product with respect to the sulfuric acid aqueous solution is suitably 10 to 100 g / l. The time required for separating the positive electrode active material from the positive electrode substrate varies depending on the concentration of the sulfuric acid aqueous solution, the amount of the battery disassembly containing the positive electrode material, the size thereof, and the like, and thus it is preferable to determine in advance on a trial basis.

正極活物質剥離工程を終了した電池解体物は、篩い分けして、正極基板から分離したニッケル酸リチウムやコバルト酸リチウムなどの正極活物質、及びこれに付随するものを回収する。電池解体物全てを処理した場合には、負極活物質である黒鉛などの負極粉、及びこれに付随するものも回収する。一方、正極基板や負極基板の部分、アルミニウムや鉄などからなる外装缶部分、ポリプロピレンの多孔質フィルムなどの樹脂フィルムからなるセパレータ部分、及びアルミニウムや銅からなる集電体部分などは、分離して各処理工程に供給する。   The battery disassembled matter after the positive electrode active material peeling step is sieved to collect the positive electrode active material such as lithium nickelate and lithium cobaltate separated from the positive electrode substrate, and the accompanying materials. When all the battery disassembled materials are treated, the negative electrode powder such as graphite, which is a negative electrode active material, and those accompanying it are also collected. On the other hand, the parts of the positive and negative substrates, the outer can part made of aluminum or iron, the separator part made of a resin film such as a porous film of polypropylene, and the current collector part made of aluminum or copper are separated. Supply to each processing step.

(4)浸出工程
次の浸出工程では、剥離回収された正極活物質を、固定炭素含有物の存在下に酸性溶液で浸出する。固定炭素含有物を酸性溶液に添加することにより、正極活物質からのニッケルやコバルトの浸出率を向上させることができる。使用する固定炭素含有物としては、例えば、黒鉛(固定炭素95%以上)、活性炭(固定炭素90%以上)、石炭(固定炭素30〜95%)、コークス(固定炭素75〜85%)、木炭(固定炭素約85%)等が挙げられる。また、この浸出工程までに回収された負極粉も黒鉛を主成分とするため使用することができ、トータルリサイクルの面から効果的である。
(4) Leaching step In the next leaching step, the peeled and collected positive electrode active material is leached with an acidic solution in the presence of a fixed carbon-containing material. By adding the fixed carbon-containing material to the acidic solution, the leaching rate of nickel and cobalt from the positive electrode active material can be improved. Examples of the fixed carbon-containing material used include graphite (fixed carbon 95% or more), activated carbon (fixed carbon 90% or more), coal (fixed carbon 30 to 95%), coke (fixed carbon 75 to 85%), charcoal. (Fixed carbon of about 85%). Moreover, since the negative electrode powder recovered by this leaching step is mainly composed of graphite, it can be used, which is effective in terms of total recycling.

固定炭素含有物の添加共存によりニッケル及びコバルトの浸出率が向上する理由は明らかではないが、固定炭素含有物が溶解反応により発生した酸素の吸着体として作用して反応場を形成している、若しくは固定炭素含有物がニッケル酸リチウムやコバルト酸リチウムの結晶構造体からリチウムを引き抜き、構造を不安定化させる触媒的作用を果たしている、などによるためと考えられる。従って、浸出促進効果を充分発揮するためには、粉状に破砕された固定炭素含有物を用いることが好ましい。   The reason why the leaching rate of nickel and cobalt is improved by the coexistence of the fixed carbon-containing material is not clear, but the fixed carbon-containing material acts as an adsorbent of oxygen generated by the dissolution reaction, forming a reaction field. Alternatively, it is considered that the fixed carbon-containing material has a catalytic action of drawing lithium from the crystal structure of lithium nickelate or lithium cobaltate and destabilizing the structure. Therefore, in order to fully exhibit the leaching promotion effect, it is preferable to use a fixed carbon-containing material crushed into a powder.

上記固定炭素含有物の添加量は、その固定炭素含有量によって若干異なるが、一般的には溶解させる正極活物質の重量に対して50〜300重量%程度が好ましく、固定炭素含有率の高い黒鉛や負極粉の場合は50〜100重量%程度が好ましい。固定炭素含有物の添加量が50重量%未満では、ニッケルやコバルトの浸出率は低くなり、300重量%を超えると固定炭素含有物の残渣量が増加し、その残渣に付着することで有価金属のロス分が多くなり、更にはハンドリングも悪くなるために好ましくない。また、固定炭素含有物は、溶解反応終了後に回収して再使用することができる。   Although the amount of the above-mentioned fixed carbon-containing material is slightly different depending on the fixed carbon content, it is generally preferably about 50 to 300% by weight based on the weight of the positive electrode active material to be dissolved, and graphite having a high fixed carbon content. And in the case of negative electrode powder, about 50 to 100 weight% is preferable. If the amount of fixed carbon-containing material added is less than 50% by weight, the leaching rate of nickel or cobalt will be low, and if it exceeds 300% by weight, the amount of fixed carbon-containing material residue will increase, and it will adhere to the residue, thereby precious metal. This is not preferable because the loss amount increases and handling becomes worse. The fixed carbon-containing material can be recovered and reused after the dissolution reaction is completed.

正極活物質の溶解に用いる酸性溶液としては、硫酸、硝酸、塩酸などの鉱酸のほか、有機酸なども使用可能である。しかし、コスト面、作業環境面、及び浸出液から更にニッケルやコバルト等を回収することを考慮すると、工業的には硫酸を使用することが好ましい。また、使用する酸性溶液のpHは、少なくとも2以下とすることが好ましく、反応性を考慮すると0.5〜1.5程度に制御することが更に好ましい。正極活物質の溶解反応が進むにつれてpHが上昇するので、反応中にも硫酸などの酸を補加して、pHを0.5〜1.5程度に保持することが好ましい。   As the acidic solution used for dissolving the positive electrode active material, organic acids can be used in addition to mineral acids such as sulfuric acid, nitric acid and hydrochloric acid. However, in view of cost, work environment, and further recovery of nickel, cobalt, and the like from the leachate, it is preferable to use sulfuric acid industrially. In addition, the pH of the acidic solution to be used is preferably at least 2 or less, and more preferably controlled to about 0.5 to 1.5 in consideration of reactivity. Since the pH rises as the dissolution reaction of the positive electrode active material proceeds, it is preferable to add an acid such as sulfuric acid during the reaction to maintain the pH at about 0.5 to 1.5.

(5)中和工程
上記浸出工程で得られた浸出液には、正極活物質に由来するニッケル、コバルト、リチウムと、正極及び負極の基板に由来する微量のアルミニウム、銅などが含有されている。中和工程では、この浸出液を中和剤でpH3.0〜5.5に調整することにより、アルミニウム、銅を澱物として分離回収することができる。中和剤としては、ソーダ灰や消石灰、水酸化ナトリウムなどの一般的な薬剤を用いることができ、これらの薬剤は安価で取り扱いも容易である。
(5) Neutralization step The leachate obtained in the leaching step contains nickel, cobalt, lithium derived from the positive electrode active material, and a trace amount of aluminum, copper, etc. derived from the positive and negative substrates. In the neutralization step, the leachate is adjusted to pH 3.0 to 5.5 with a neutralizing agent, whereby aluminum and copper can be separated and recovered as starch. As the neutralizing agent, common chemicals such as soda ash, slaked lime, and sodium hydroxide can be used. These chemicals are inexpensive and easy to handle.

上記のごとく浸出液のpHは、中和剤の添加によりpH3.0〜5.5に調整することが好ましく、浸出液のpHが3.0未満ではアルミニウム、銅を澱物として分離回収することができない。また、浸出液のpHが5.5より高い場合には、ニッケルやコバルトが同時に沈殿して、アルミニウム及び銅の澱物中に含有されるため好ましくない。尚、その他の元素として浸出液に鉄が含有されている場合でも、アルミニウム及び銅と同時に澱物中に分離することが可能である。   As described above, the pH of the leachate is preferably adjusted to pH 3.0 to 5.5 by adding a neutralizing agent. If the pH of the leachate is less than 3.0, aluminum and copper cannot be separated and recovered as starch. . In addition, when the pH of the leachate is higher than 5.5, nickel and cobalt are simultaneously precipitated and contained in aluminum and copper starch, which is not preferable. Even when iron is contained in the leachate as another element, it can be separated into the starch simultaneously with aluminum and copper.

(6)ニッケル・コバルト回収工程
上記中和工程を終了した浸出液からニッケル及びコバルトを分離・回収するにあたっては、その浸出液に更に中和剤を添加してpHを6.5〜10.0に調整する。浸出液のpHが6.5よりも低い場合は、ニッケル及びコバルトを澱物として分離回収することができない。また、浸出液のpHが10.0を超えると、中和剤の使用量が増加するため不経済である。この工程においても、ソーダ灰や消石灰、水酸化ナトリウムなどといった一般的な中和剤を用いることができる。尚、この工程において、リチウムは浸出液中に残留する。
(6) Nickel / cobalt recovery process When nickel and cobalt are separated and recovered from the leachate that has been subjected to the above neutralization process, a neutralizing agent is further added to the leachate to adjust the pH to 6.5 to 10.0. To do. When the pH of the leachate is lower than 6.5, nickel and cobalt cannot be separated and recovered as starch. On the other hand, if the pH of the leachate exceeds 10.0, the amount of neutralizing agent used is increased, which is uneconomical. Also in this step, a general neutralizing agent such as soda ash, slaked lime, sodium hydroxide or the like can be used. In this step, lithium remains in the leachate.

アルミニウム・銅と、ニッケル・コバルトと、リチウムとを分離精製する方法として、上記した中和の他に、硫化や溶媒抽出などの方法も考えられる。しかし、硫化を用いる場合には、優先的に銅及びアルミニウムを硫化させ除去することが出来るが、同時にロスするニッケルやコバルトの量も大きくなる。また、硫化水素ガスの発生するため、その除害設備や硫化物の精製工程が必要になる。溶媒抽出を用いる場合は、ニッケルとコバルトは分離可能であるが、ニッケルと同時にリチウムが抽出される問題がある。また、油水分離のための設備負荷などが増大する点でも不利である。   As a method for separating and purifying aluminum / copper, nickel / cobalt, and lithium, in addition to the above-described neutralization, methods such as sulfidation and solvent extraction are also conceivable. However, when sulfurization is used, copper and aluminum can be preferentially sulfurized and removed, but at the same time, the amount of nickel and cobalt lost increases. Moreover, since hydrogen sulfide gas is generated, a detoxification facility and a sulfide purification process are required. When solvent extraction is used, nickel and cobalt can be separated, but there is a problem that lithium is extracted simultaneously with nickel. It is also disadvantageous in that the equipment load for oil-water separation increases.

(7)リチウム回収工程
リチウム回収工程では、まず、ニッケル・コバルト回収工程後に残った水溶液をpH4.0以上に調整し、酸性系溶媒抽出剤と接触させることによって、酸性系溶媒抽出剤中にリチウムを抽出する。酸性系溶媒抽出剤は、従来は軽金属の抽出にしか利用されていないが、本発明者らの研究により、pH4以上になるとpHの上昇につれてリチウムを抽出できることが判明した。
(7) Lithium recovery step In the lithium recovery step, first, the aqueous solution remaining after the nickel / cobalt recovery step is adjusted to pH 4.0 or higher, and brought into contact with the acidic solvent extractant. To extract. The acidic solvent extractant has hitherto been used only for extraction of light metals, but research by the present inventors has revealed that lithium can be extracted as the pH increases when the pH is 4 or more.

酸性系溶媒抽出剤としては、例えば、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル(pH4〜7)、ジ(2−エチルヘキシル)ホスホン酸(pH4〜6)、ビス(2,4,4−トリメチルペンチル)ホスホン酸(pH4〜8)、あるいは、フェニルアルキルベータジケトンとトリオクチルホスホン酸の混合物(pH4〜10)などを用いることができる。尚、各溶媒抽出剤の末尾に記したpH値は、リチウムイオンの抽出に適したpH値である。
Examples of the acidic solvent extractant include 2-ethylhexylphosphonic acid mono-2-ethylhexyl (pH 4 to 7), di (2-ethylhexyl) phosphonic acid (pH 4 to 6), and bis (2,4,4-trimethylpentyl). ) Phosphonic acid (pH 4-8) or a mixture of phenylalkyl beta diketone and trioctyl phosphonic acid (pH 4-10). In addition, the pH value described at the end of each solvent extractant is a pH value suitable for extraction of lithium ions.

また、調整したpH範囲において酸性系溶媒抽出剤に抽出される他の金属(例えば、ニッケル、鉄など)が水溶液中にイオンとして存在すると、リチウムと共に他の金属も同時に溶媒抽出剤側に抽出され、後の逆抽出時にも水溶液側に逆抽出されて、リチウムと同様に濃縮されてしまう。従って、これらの他の金属イオンは、このリチウム濃縮のための酸性系溶媒抽出剤による抽出操作を行う前に、中和操作などによって分離除去しておくことが望ましい。   In addition, when other metals (for example, nickel, iron, etc.) extracted to the acidic solvent extractant in the adjusted pH range are present as ions in the aqueous solution, other metals are also extracted to the solvent extractant side together with lithium. In the subsequent back extraction, it is back extracted to the aqueous solution side and concentrated in the same manner as lithium. Therefore, it is desirable to separate and remove these other metal ions by a neutralization operation or the like before performing an extraction operation with an acidic solvent extractant for concentration of lithium.

次に、リチウムを抽出した酸性系溶媒抽出剤を、pH3.0以下に調整した水溶液と接触させることにより、最初に抽出したリチウム水溶液の濃度(数g/l)よりも高い濃度でリチウムを水溶液に逆抽出することができる。これは、酸性系溶媒抽出剤の特徴として、抽出された金属イオンはpHを酸性側にすることにより、Hとイオン交換を行って金属イオンを放出する性質を有するためである。 Next, the acidic solvent extractant from which lithium has been extracted is brought into contact with an aqueous solution adjusted to a pH of 3.0 or lower, so that lithium is dissolved in an aqueous solution at a concentration higher than the concentration (several g / l) of the initially extracted lithium aqueous solution. Can be back-extracted. This is because, as a characteristic of the acidic solvent extractant, the extracted metal ions have a property of releasing metal ions by ion exchange with H + by bringing the pH to the acidic side.

好ましくは、この逆抽出側の水溶液を繰り返して使用し、上記した抽出と逆抽出の操作を複数回繰り返すことによって、水溶液中のリチウム濃度を炭酸化により固体の炭酸リチウムとするのに足りる数十g/l程度のレベルまで濃縮する。また、pHを正確に制御することで抽出率や逆抽出率を制御することができ、従って最終的なリチウム濃度の調節もコントロールすることが可能である。   Preferably, this aqueous solution on the back-extraction side is used repeatedly, and the above-described extraction and back-extraction operations are repeated a plurality of times, so that the lithium concentration in the aqueous solution is sufficient to be solid lithium carbonate by carbonation. Concentrate to a level of about g / l. In addition, the extraction rate and the back extraction rate can be controlled by accurately controlling the pH, and therefore the final adjustment of the lithium concentration can be controlled.

このようにして濃縮された高濃度リチウム水溶液は、次に炭酸ナトリウムなどの水溶性炭酸塩と混合撹拌することによって、水溶液中のリチウムを固体の炭酸リチウムとして析出させることができる。ただし、リチウムの炭酸塩である炭酸リチウムは、他の塩とは溶解性が異なり、水溶液温度が高くなると急激に溶解度が低下する。即ち、炭酸リチウムの溶解度は、25℃では1.28g/lであるが、60℃になると1.00g/lに低下し、更に100℃になると0.7g/lにまで減少する。   The concentrated aqueous lithium solution thus concentrated can then be mixed and stirred with a water-soluble carbonate such as sodium carbonate to precipitate lithium in the aqueous solution as solid lithium carbonate. However, lithium carbonate, which is a lithium carbonate, differs in solubility from other salts, and its solubility rapidly decreases as the aqueous solution temperature increases. That is, the solubility of lithium carbonate is 1.28 g / l at 25 ° C., but decreases to 1.00 g / l at 60 ° C., and decreases to 0.7 g / l at 100 ° C.

このため、高濃度リチウム水溶液の温度を60℃以上に高めると、溶解度の高い硫酸ナトリウム等の他の塩よりも溶解度が低くなり、炭酸リチウムが選択的に結晶として沈殿し、高純度の炭酸リチウム固体を得ることができる。高濃度リチウム水溶液の温度は高い方が良いが、一般的に80℃以上となると反応槽や周辺装置の耐熱温度の観点から操作が難しくなったりコスト増になったりし、更に90℃以上では沸点が近くなるため、一般的には60〜80℃が適当な温度範囲と言える。   Therefore, when the temperature of the high-concentration lithium aqueous solution is increased to 60 ° C. or higher, the solubility becomes lower than other salts such as sodium sulfate having a high solubility, and lithium carbonate is selectively precipitated as crystals, so that high purity lithium carbonate A solid can be obtained. The temperature of the high-concentration lithium aqueous solution should be high, but in general, if it is 80 ° C or higher, the operation becomes difficult and the cost increases from the viewpoint of the heat resistance temperature of the reaction vessel and peripheral devices, and if it is 90 ° C or higher, the boiling point is increased. In general, 60 to 80 ° C. can be said to be an appropriate temperature range.

[リチウムイオ電池の解体と洗浄工程]
二軸破砕機により、リチウムイオ電池を1〜3cmの大きさに解体した。この電池解体物10gを500mlの容器に入れ、99%以上のエタノール100mlに投入して封入し、ボールミル回転台を用いて200rpmにて60分間回転させ、撹拌洗浄を行った。エタノールによる撹拌洗浄後、電池解体物とエタノールを濾過して分離した。
[Disassembly and cleaning process of lithium-ion battery]
The lithium-ion battery was disassembled into a size of 1 to 3 cm 2 using a biaxial crusher. 10 g of this battery disassembled product was put in a 500 ml container, put in 100 ml of 99% or more ethanol and sealed, rotated for 60 minutes at 200 rpm using a ball mill rotary table, and washed with stirring. After stirring and washing with ethanol, the battery disassembled product and ethanol were separated by filtration.

[洗浄工程]
濾過後の電池解体物に再びエタノール100mlを混ぜ合わせ、上記と同様の手順を繰り返してエタノールによる撹拌洗浄を行った。即ち、この撹拌洗浄を3回繰り返して行い、それぞれのエタノール洗浄液についてリン(P)とフッ素(F)の分析を行った。その結果、P濃度とF濃度は、1回目エタノール洗浄液ではP:600mg/l及びF:120mg/l、2回目エタノール洗浄液ではP:48mg/l及びF:11mg/l、3回目エタノール洗浄液ではP:10mg/l以下及びF:10mg/l以下であった。
[Washing process]
100 ml of ethanol was again mixed with the disassembled battery after filtration, and the same procedure as above was repeated to perform stirring and washing with ethanol. That is, this stirring and washing was repeated three times, and phosphorus (P) and fluorine (F) were analyzed for each ethanol washing solution. As a result, P concentration and F concentration were P: 600 mg / l and F: 120 mg / l for the first ethanol washing solution, P: 48 mg / l and F: 11 mg / l for the second ethanol washing solution, and P for the third ethanol washing solution. : 10 mg / l or less and F: 10 mg / l or less.

更に、3回目エタノール洗浄後の電池解体物が十分洗浄できているかを確かめるため、電池解体物を一旦乾燥させてエタノールを除去した後、硫酸で浸出した浸出液中のP濃度とF濃度、有機成分(TOP)濃度を測定した。その結果、P濃度は10mg/l以下、F濃度は10mg/l以下、TOP濃度0.1g/l以下であった。この結果から、3回のエタノールでの撹拌洗浄によって、電池解体物は十分に洗浄されていることが分かった。   Furthermore, in order to confirm whether the battery disassembled material after the third ethanol washing was sufficiently washed, the battery disassembled material was once dried to remove ethanol, and then the P and F concentrations in the leachate leached with sulfuric acid, organic components The (TOP) concentration was measured. As a result, the P concentration was 10 mg / l or less, the F concentration was 10 mg / l or less, and the TOP concentration was 0.1 g / l or less. From this result, it was found that the battery dismantled product was sufficiently washed by washing with ethanol three times.

上記したエタノールによる撹拌洗浄の代わりに、水による撹拌洗浄を上記と同様の方法で3回行った。それぞれの水洗浄液についてのPとFの分析結果は、1回目水洗浄液ではP:550mg/l及びF:100mg/l、2回目水洗浄液ではP:64mg/l及びF:10mg/l、3回目水洗浄液ではP:10mg/l以下及びF:10mg/l以下であった。   Instead of stirring and washing with ethanol as described above, stirring and washing with water was performed three times in the same manner as described above. The analysis results of P and F for each water washing solution are as follows: P: 550 mg / l and F: 100 mg / l for the first water washing solution, P: 64 mg / l and F: 10 mg / l for the second water washing solution, and 3rd time In the water washing solution, P was 10 mg / l or less and F: 10 mg / l or less.

また、3回目水洗浄後の電池解体物が十分洗浄できているかを確かめるため、電池解体物を硫酸で浸出した浸出液中のPとF、TOPの各濃度を測定した。その結果、P濃度は10mg/l以下、F濃度は10mg/l以下、及びTOP濃度0.05g/lであった。この結果から、3回の水での撹拌洗浄によっても、電池解体物は十分に洗浄されていることが分かった。   Further, in order to confirm whether or not the battery disassembled material after the third water washing was sufficiently washed, the respective concentrations of P, F, and TOP in the leachate obtained by leaching the battery disassembled material with sulfuric acid were measured. As a result, the P concentration was 10 mg / l or less, the F concentration was 10 mg / l or less, and the TOP concentration was 0.05 g / l. From this result, it was found that the battery dismantled product was sufficiently washed even by washing with water three times.

[正極活物質剥離工程]
上記したエタノールでの撹拌洗浄工程を終了した電池解体物から正極材の部分を選び出し、硫酸水溶液を入れた容器に投入し、希硫酸を滴下してpHを1.5〜2.0の範囲に調整しながら撹拌した。撹拌は室温で行い、反応後の硫酸水溶液は濾過し、残留物の状態を観察した。
[Positive electrode active material peeling process]
A portion of the positive electrode material is selected from the battery disassembled product after the stirring and washing step with ethanol described above, put into a container containing a sulfuric acid aqueous solution, and diluted sulfuric acid is dropped to adjust the pH to a range of 1.5 to 2.0. Stirring while adjusting. Stirring was performed at room temperature, and the aqueous sulfuric acid solution after the reaction was filtered, and the state of the residue was observed.

その結果、正極材部分の投入量を20g/lとした場合、約30分間の撹拌により、アルミニウム箔の正極基板表面に固着されている正極活物質がほぼ全量剥離されたことを確認できた。また、水溶液中に溶解したアルミニウムの濃度を測定したところ0.1g/l程度であり、一方投入した正極材部分中のアルミニウム箔は約3gであるから、正極基板であるアルミニウム箔は約1.7重量%の溶出しか認められなかった。   As a result, when the input amount of the positive electrode material portion was 20 g / l, it was confirmed that almost all of the positive electrode active material fixed to the positive electrode substrate surface of the aluminum foil was peeled off by stirring for about 30 minutes. The concentration of aluminum dissolved in the aqueous solution was measured to be about 0.1 g / l. On the other hand, the aluminum foil in the charged positive electrode material portion was about 3 g, so the aluminum foil as the positive electrode substrate was about 1. Only 7% by weight of elution was observed.

正極材部分の投入量を変えて上記と同様の剥離処理を行ったところ、投入量が100g/l程度になると、液の撹拌が困難になるだけでなく、剥離に要する時間が長くなり、また剥離状況も低下した。逆に、投入量が10g/l程度と少ない場合には、剥離に要する時間は短くなるが、相対的に硫酸の使用量が増えるなど、剥離効率が低下する。これらの結果から、正極材部分の投入量は、10〜100g/lの範囲が好ましいことが分った。   When the amount of the positive electrode material portion was changed and the same peeling treatment was performed as above, when the amount of input was about 100 g / l, not only the stirring of the liquid became difficult, but also the time required for peeling increased. The peeling situation also decreased. On the contrary, when the input amount is as small as about 10 g / l, the time required for stripping is shortened, but the stripping efficiency is lowered, for example, the amount of sulfuric acid used is relatively increased. From these results, it was found that the input amount of the positive electrode material portion is preferably in the range of 10 to 100 g / l.

[浸出工程]
上記正極活物質剥離工程で回収した正極活物質(LiNi0.85Co0.15)5.0gと、上記洗浄工程後に電池解体物中の負極材部分から回収した負極粉(固定炭素95%)4.0gを、pH1.0の硫酸酸性溶液50ml中に投入した。この硫酸酸性溶液を80℃にて4時間加熱し、その間64%硫酸を徐々に添加して溶液のpHを約1.0に保持した。
[Leaching process]
The positive electrode active material (LiNi 0.85 Co 0.15 O 2 ) recovered in the positive electrode active material peeling step (5.0 g) and the negative electrode powder (fixed carbon 95) recovered from the negative electrode material portion in the battery disassembled after the cleaning step. %) 4.0 g was put into 50 ml of sulfuric acid acidic solution having a pH of 1.0. The sulfuric acid acidic solution was heated at 80 ° C. for 4 hours, during which time 64% sulfuric acid was gradually added to maintain the pH of the solution at about 1.0.

反応終了後の溶液を0.45μmのメンブランフィルターを用いて濾過し、その濾液と残渣中のニッケル(Ni)、コバルト(Co)及びリチウム(Li)をICP発光分光分析装置で分析し、ニッケルとコバルトの浸出率を算出した。その結果、Niは90%、Coは90%、リチウムは100%浸出されていた。尚、浸出残渣の重量は4.0gであり、添加した負極粉は消費されておらず再使用が可能であった。   The solution after completion of the reaction was filtered using a 0.45 μm membrane filter, and nickel (Ni), cobalt (Co) and lithium (Li) in the filtrate and the residue were analyzed with an ICP emission spectrophotometer. The leaching rate of cobalt was calculated. As a result, 90% Ni, 90% Co, and 100% lithium were leached. The weight of the leaching residue was 4.0 g, and the added negative electrode powder was not consumed and could be reused.

[中和工程]
上記浸出工程で得られた浸出液を、回転数200rpmのテフロンペラで撹拌しながら、反応温度60℃の条件下にて、中和剤として100g/lのソーダ灰(NaCO)溶液を添加した。その際、浸出液のpHを3.0、3.5、4.0、4.5、5.0、5.5にそれぞれ調整して、アルミニウム(Al)と銅(Cu)の分離除去を行った。尚、上記浸出液として、Ni:20.0g/l、Co:3.4g/l、Li:3.2g/l、Al:2.72g/l、Cu:0.50g/lの組成のものを用いた。
[Neutralization process]
A 100 g / l soda ash (Na 2 CO 3 ) solution was added as a neutralizer under a reaction temperature of 60 ° C. while stirring the leachate obtained in the leaching step with a Teflon impeller having a rotation speed of 200 rpm. . At that time, the pH of the leachate is adjusted to 3.0, 3.5, 4.0, 4.5, 5.0, 5.5 to separate and remove aluminum (Al) and copper (Cu). It was. In addition, the said leaching solution has a composition of Ni: 20.0 g / l, Co: 3.4 g / l, Li: 3.2 g / l, Al: 2.72 g / l, Cu: 0.50 g / l. Using.

反応終了後に浸出液を濾過し、濾液中のNi、Co、Li、Al、Cuの各濃度を測定し、得られた結果を図2に示した。尚、各元素の分析は、Liは原子吸光法により、その他はICPによった。AlはpH3.0付近から澱物として除去され始め、pH4.5付近ではAl濃度0.1g/l以下まで除去された。CuはpH4.0付近から澱物として除去され始め、pH5.0付近でCu濃度0.1g/l以下まで除去された。この結果から、好ましくはpH3.0〜5.5、更に好ましくはpH4.5〜5.0に調整することにより、Ni、Co、Liのロスを抑えながら、Al及びCuを効率よく分離・除去し得ることが分かるる。   After completion of the reaction, the leachate was filtered, and the concentrations of Ni, Co, Li, Al, and Cu in the filtrate were measured. The results obtained are shown in FIG. Each element was analyzed by atomic absorption for Li and ICP for the others. Al began to be removed as starch from around pH 3.0, and was removed to an Al concentration of 0.1 g / l or less near pH 4.5. Cu began to be removed as a starch from around pH 4.0, and was removed to a Cu concentration of 0.1 g / l or less around pH 5.0. From this result, it is possible to efficiently separate and remove Al and Cu while suppressing loss of Ni, Co and Li by adjusting the pH to preferably 3.0 to 5.5, more preferably 4.5 to 5.0. I can see that

[ニッケル・コバルト回収工程]
上記中和工程が終了した後の浸出液を、回転数200rpmのテフロンペラで撹拌しながら、反応温度60℃の条件下にて、中和剤として100g/lのソーダ灰(NaCO)溶液を添加した。その際、浸出液のpHを5.5、6.0、6.5、7.0、7.5、8.0にそれぞれ調整して、NiとCoの分離・回収を行った。尚、上記浸出液には、Ni:13.9g/l、Co:2.4g/l、Li:1.3g/lの組成のものを用いた。
[Nickel / cobalt recovery process]
A 100 g / l soda ash (Na 2 CO 3 ) solution as a neutralizing agent was added as a neutralizing agent while stirring the leachate after completion of the neutralization step with a Teflon impeller having a rotation speed of 200 rpm under a reaction temperature of 60 ° C. Added. At that time, the pH of the leachate was adjusted to 5.5, 6.0, 6.5, 7.0, 7.5, and 8.0, respectively, and Ni and Co were separated and recovered. The leachate used had a composition of Ni: 13.9 g / l, Co: 2.4 g / l, Li: 1.3 g / l.

反応終了後に浸出液を濾過し、濾液中のNi、Co、Liの各濃度を上記中和工程と同様に測定し、得られた結果を図3に示した。NiはpH6.5付近から澱物として除去され始め、pH8.0付近で濃度0.1g/l以下まで分離された。CoはpH6.5付近から澱物として除去され始め、pH8.0付近で濃度0.1g/l以下まで分離された。NiとCoはpH10.0以上でも分離できるが、中和剤の消費量を考えると適切ではない。よって、Ni及びCoを分離・回収する際のpHとしては、6.5〜10.0が好ましく、7.5〜8.0が更に好ましいことが分かる。   After completion of the reaction, the leachate was filtered, and the concentrations of Ni, Co, and Li in the filtrate were measured in the same manner as in the neutralization step. The results obtained are shown in FIG. Ni began to be removed as a starch from around pH 6.5, and was separated to a concentration of 0.1 g / l or less around pH 8.0. Co began to be removed as a starch from around pH 6.5, and was separated to a concentration of 0.1 g / l or less around pH 8.0. Ni and Co can be separated even at a pH of 10.0 or higher, but this is not appropriate in view of the consumption of the neutralizing agent. Therefore, it can be seen that the pH for separating and recovering Ni and Co is preferably 6.5 to 10.0, and more preferably 7.5 to 8.0.

[リチウム回収工程]
上記ニッケル・コバルト回収工程を終了したLi濃度5g/lの水溶液を用いて、その水溶液と抽出剤の体積比率が1:2になるように酸性系溶媒抽出剤を加え、更に5重量%NaOH溶液を滴下して混合後の水溶液のpHを7.0に調節しながら、接触混合させてリチウムを抽出した。上記酸性系溶媒抽出剤としては、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル(大八化学(株)製、商品名PC−88A)20体積%+希釈剤(新日本石油(株)製、商品名:テクリーンN20)80体積%を使用した。その結果、抽出終了後の抽出剤中のリチウム濃度は1.5g/lであった。
[Lithium recovery process]
Using an aqueous solution having a Li concentration of 5 g / l after completion of the nickel / cobalt recovery step, an acidic solvent extractant is added so that the volume ratio of the aqueous solution to the extractant is 1: 2, and a 5 wt% NaOH solution is further added. Was added dropwise and lithium was extracted by contact mixing while adjusting the pH of the mixed aqueous solution to 7.0. As the acidic solvent extractant, 2-ethylhexylphosphonic acid mono-2-ethylhexyl (manufactured by Daihachi Chemical Co., Ltd., trade name PC-88A) 20% by volume + diluent (manufactured by Shin Nippon Oil Co., Ltd., product) Name: Tecrine N20) 80% by volume was used. As a result, the lithium concentration in the extractant after completion of the extraction was 1.5 g / l.

次に、このリチウムを抽出した抽出剤を、純水と抽出剤の体積比率が1:2となるような純水と接触混合し、混合後の水溶液のpHが0.1になるように15重量%硫酸水溶液を滴下して調整することにより、リチウムを逆抽出した。この1回目の逆抽出操作の後残ったリチウム水溶液を、リチウムを含んだ抽出剤と再度接触混合させて、逆抽出操作を5回繰り返した。5回の逆抽出操作後に、残ったリチウム水溶液のリチウム濃度を測定したところ、17.3g/lの濃度まで濃縮されていた。   Next, the extractant from which lithium has been extracted is contact-mixed with pure water so that the volume ratio of pure water to the extractant is 1: 2, and the aqueous solution after mixing has a pH of 0.1. Lithium was back-extracted by dropwise addition of a weight% aqueous sulfuric acid solution. The aqueous lithium solution remaining after the first back extraction operation was contact-mixed again with an extractant containing lithium, and the back extraction operation was repeated 5 times. When the lithium concentration of the remaining aqueous lithium solution was measured after 5 back extraction operations, it was concentrated to a concentration of 17.3 g / l.

この濃縮リチウム水溶液の温度を60℃に調整し、濃度200g/lの炭酸ナトリウム水溶液を滴下混合することにより、炭酸リチウムを結晶として沈殿させた。得られた炭酸リチウム中の硫黄品位は0.05重量%と低く、純粋な炭酸リチウムを回収することができた。   The temperature of this concentrated lithium aqueous solution was adjusted to 60 ° C., and a sodium carbonate aqueous solution having a concentration of 200 g / l was dropped and mixed to precipitate lithium carbonate as crystals. The sulfur grade in the obtained lithium carbonate was as low as 0.05% by weight, and pure lithium carbonate could be recovered.

本発明によるリチウムイオン電池からの有価金属の回収方法を示す工程図である。It is process drawing which shows the collection | recovery method of the valuable metal from the lithium ion battery by this invention. 本発明方法の中和工程におけるpHと濾液中のNi、Co、Li、Al、Cuの濃度との関係を示すグラフである。It is a graph which shows the relationship between pH in the neutralization process of this invention method, and the density | concentration of Ni, Co, Li, Al, and Cu in a filtrate. 本発明方法のニッケル・コバルト回収工程におけるpHと濾液中のNi、Co、Liの濃度との関係を示すグラフである。It is a graph which shows the relationship between pH in the nickel * cobalt recovery process of this invention method, and the density | concentration of Ni, Co, and Li in a filtrate.

Claims (8)

リチウムイオン電池から有価金属を回収する方法であって、リチウムイオン電池を解体する解体工程と、電池解体物をアルコール又は水で洗浄し、電解液及び電解質を除去する洗浄工程と、洗浄した電池解体物を硫酸水溶液に浸漬して、正極基板から正極活物質を剥離する正極活物質剥離工程と、剥離した正極活物質を固定炭素含有物の存在下に酸性溶液で浸出する浸出工程と、得られた浸出液から中和によりアルミニウム、銅を分離除去する中和工程と、中和工程後の浸出液をpH6.5〜10.0に調整して、ニッケル、コバルトを澱物として分離回収するニッケル・コバルト回収工程と、残った水溶液中のリチウムを溶媒抽出と逆抽出により濃縮した後、リチウムを炭酸リチウムの固体として分離回収するリチウム回収工程とを備えることを特徴とするリチウムイオン電池からの有価金属回収方法。 A method for recovering valuable metals from a lithium ion battery, comprising: a disassembly process for disassembling the lithium ion battery; a cleaning process for removing the electrolytic solution and the electrolyte by washing the disassembled battery with alcohol or water; A positive electrode active material peeling step of detaching the positive electrode active material from the positive electrode substrate, and a leaching step of leaching the peeled positive electrode active material with an acidic solution in the presence of a fixed carbon-containing material. Neutralization step of separating and removing aluminum and copper from the leachate by neutralization, and adjusting the pH of the leachate after the neutralization step to 6.5 to 10.0 to separate and recover nickel and cobalt as starch A recovery step and a lithium recovery step of concentrating lithium in the remaining aqueous solution by solvent extraction and back extraction, and separating and recovering lithium as a lithium carbonate solid. Valuable metal recovery process from a lithium ion battery according to claim. 前記洗浄工程において、アルコール又は水に電池解体物を10〜300g/l投入して振盪又は撹拌した後、電池解体物とアルコール又は水を分離し、更に新しいアルコール又は水を加えて上記洗浄操作を複数回繰り返し行うことを特徴とする、請求項1に記載のリチウムイオン電池からの有価金属回収方法。   In the washing step, 10 to 300 g / l of battery disassembled material is added to alcohol or water and shaken or stirred, then the battery disassembled material and alcohol or water are separated, and further the above-described washing operation is performed by adding new alcohol or water. The method for recovering valuable metals from a lithium ion battery according to claim 1, wherein the method is repeated a plurality of times. 前記正極活物質剥離工程において、電池解体物をpH0〜3.0の硫酸水溶液中で浸漬撹拌することより、正極基板から正極活物質を剥離して固体のまま分離回収することを特徴とする、請求項1又は2に記載のリチウムイオン電池からの有価金属回収方法。   In the positive electrode active material peeling step, the battery disassembly is immersed and stirred in a sulfuric acid aqueous solution having a pH of 0 to 3.0, whereby the positive electrode active material is peeled from the positive electrode substrate and separated and recovered as a solid, A method for recovering valuable metals from a lithium ion battery according to claim 1 or 2. 前記浸出工程において、固定炭素含有物として、黒鉛、活性炭、石炭、コークス、木炭、及びリチウムイオン電池から回収された負極粉から選ばれた少なくとも1種を用いることを特徴とする、請求項1〜3のいずれかに記載のリチウムイオン電池からの有価金属回収方法。   In the leaching step, at least one selected from graphite, activated carbon, coal, coke, charcoal, and negative electrode powder recovered from a lithium ion battery is used as the fixed carbon-containing material. 4. A method for recovering valuable metals from a lithium ion battery according to any one of 3 above. 前記酸性溶液として硫酸を使用し且つpHを0.5〜1.5の範囲に保持すると共に、前記固定炭素含有物は溶解反応終了後に回収して再使用することを特徴とする、請求項4に記載のリチウムイオン電池からの有価金属回収方法。   The sulfuric acid is used as the acidic solution and the pH is maintained in the range of 0.5 to 1.5, and the fixed carbon-containing material is recovered and reused after the dissolution reaction. The valuable metal recovery method from the lithium ion battery as described in 2. 前記中和工程において、正極活物質の浸出液を中和剤によりpH3.0〜5.5に調整して、アルミニウム、銅を澱物として分離回収することを特徴とする、請求項1〜5のいずれかに記載のリチウムイオン電池からの有価金属回収方法。   In the neutralization step, the leachate of the positive electrode active material is adjusted to pH 3.0 to 5.5 with a neutralizing agent, and aluminum and copper are separated and recovered as a starch. A method for recovering valuable metals from a lithium ion battery according to any one of the above. 前記リチウム回収工程において、前記ニッケル・コバルト回収工程後に残った水溶液をpH4.0以上に調整し、酸性系溶媒抽出剤と接触させてリチウムを抽出した後、その溶媒抽出剤をpH3.0以下の水溶液と接触させてリチウムを逆抽出し、得られた高濃度リチウム水溶液を60℃以上に保った状態で水溶性炭酸塩と混合することにより、リチウムを固体の炭酸リチウムとして回収することを特徴とする、請求項1〜のいずれかに記載のリチウムイオン電池からの有価金属回収方法。 In the lithium recovery step, the aqueous solution remaining after the nickel / cobalt recovery step is adjusted to pH 4.0 or more, contacted with an acidic solvent extractant to extract lithium, and then the solvent extractant is adjusted to pH 3.0 or less. It is characterized by recovering lithium as solid lithium carbonate by bringing lithium into contact with an aqueous solution and back-extracting lithium, and mixing the obtained high-concentration lithium aqueous solution with a water-soluble carbonate in a state kept at 60 ° C. or higher. A method for recovering a valuable metal from a lithium ion battery according to any one of claims 1 to 6 . 前記酸性系溶媒抽出剤として、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、ジ(2−エチルヘキシル)ホスホン酸、ビス(2,4,4−トリメチルペンチル)ホスホン酸、フェニルアルキルベータジケトンとトリオクチルホスホン酸の混合物から選ばれたいずれか1種を用いることを特徴とする、請求項に記載のリチウムイオン電池からの有価金属回収方法。 Examples of the acidic solvent extractant include mono-2-ethylhexyl 2-ethylhexylphosphonate, di (2-ethylhexyl) phosphonic acid, bis (2,4,4-trimethylpentyl) phosphonic acid, phenylalkyl beta diketone and trioctylphosphone. The method for recovering valuable metals from a lithium ion battery according to claim 7 , wherein any one selected from a mixture of acids is used.
JP2005309249A 2005-10-25 2005-10-25 Method for recovering valuable metals from lithium-ion batteries Active JP4892925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005309249A JP4892925B2 (en) 2005-10-25 2005-10-25 Method for recovering valuable metals from lithium-ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005309249A JP4892925B2 (en) 2005-10-25 2005-10-25 Method for recovering valuable metals from lithium-ion batteries

Publications (2)

Publication Number Publication Date
JP2007122885A JP2007122885A (en) 2007-05-17
JP4892925B2 true JP4892925B2 (en) 2012-03-07

Family

ID=38146525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005309249A Active JP4892925B2 (en) 2005-10-25 2005-10-25 Method for recovering valuable metals from lithium-ion batteries

Country Status (1)

Country Link
JP (1) JP4892925B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950651A (en) * 2019-04-03 2019-06-28 中南大学 A kind of integrated conduct method of waste lithium iron phosphate battery recycling carbon

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088617A1 (en) * 2006-02-02 2007-08-09 Kawasaki Plant Systems Kabushiki Kaisha Method of recovering valuable substance from lithium secondary battery, and recovery apparatus therefor
JP4412412B2 (en) * 2008-05-28 2010-02-10 トヨタ自動車株式会社 Processing method for lithium battery
CN101919107B (en) 2009-03-16 2012-10-31 丰田自动车株式会社 Method for treating battery member
JP5004106B2 (en) * 2009-03-30 2012-08-22 Jx日鉱日石金属株式会社 Method for separating and recovering nickel and lithium
JP5074454B2 (en) * 2009-05-29 2012-11-14 Jx日鉱日石金属株式会社 Metal recovery method
JP5138640B2 (en) * 2009-07-06 2013-02-06 Jx日鉱日石金属株式会社 Method for producing lithium carbonate from recovered lithium ion secondary battery
JP5014394B2 (en) 2009-09-29 2012-08-29 Jx日鉱日石金属株式会社 Method for separating and recovering nickel and lithium
JP5535717B2 (en) * 2009-09-30 2014-07-02 Dowaエコシステム株式会社 Lithium recovery method
KR101086769B1 (en) 2009-12-03 2011-11-25 장봉영 Recovery Method of valuable Metal from the waste Lithium ion battery and the scrap
CN102029283B (en) * 2010-02-05 2012-07-25 伟翔环保科技发展(上海)有限公司 Recycling separation system of lithium battery component materials
JP5632169B2 (en) * 2010-02-22 2014-11-26 エコシステムリサイクリング株式会社 Method for producing lithium concentrate from lithium-containing liquid and method for producing lithium carbonate
CN102191382B (en) * 2010-03-19 2013-01-02 启东市北新无机化工有限公司 Method for recovering cobalt, aluminum and copper from waste mobile phone batteries
CN101831548B (en) * 2010-03-31 2012-01-04 奇瑞汽车股份有限公司 Method for recovering valuable metals from waste lithium manganese oxide battery
EP2591130B1 (en) * 2010-07-09 2017-05-03 Research Institute Of Industrial Science&Technology Method for economical extraction of lithium from solution including lithium
JP5577926B2 (en) * 2010-08-03 2014-08-27 住友金属鉱山株式会社 Method for leaching nickel and cobalt, and method for recovering valuable metals from lithium ion batteries
JP5510166B2 (en) * 2010-08-03 2014-06-04 住友金属鉱山株式会社 Method for removing phosphorus and / or fluorine, and method for recovering valuable metals from lithium ion batteries
JP5521873B2 (en) * 2010-08-05 2014-06-18 住友金属鉱山株式会社 Treatment method of valuable metal recovery treatment liquid
JP2012038572A (en) * 2010-08-06 2012-02-23 Sumitomo Metal Mining Co Ltd Method of peeling positive electrode active material and method of recovering valuable metal from a lithium ion battery
JP5459146B2 (en) * 2010-08-23 2014-04-02 住友金属鉱山株式会社 Lithium recovery method
JP5568414B2 (en) * 2010-08-27 2014-08-06 株式会社日立製作所 Metal recovery method and metal recovery apparatus
JP5501180B2 (en) * 2010-09-29 2014-05-21 株式会社日立製作所 Lithium extraction method and metal recovery method
JP5488376B2 (en) * 2010-09-29 2014-05-14 住友金属鉱山株式会社 Lithium recovery method
KR101254390B1 (en) 2010-11-01 2013-04-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for recovering metal
JP5651462B2 (en) 2010-12-27 2015-01-14 Dowaエコシステム株式会社 Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
JP5533700B2 (en) * 2011-01-27 2014-06-25 住友金属鉱山株式会社 Method for leaching valuable metals and method for recovering valuable metals using this leaching method
KR101220149B1 (en) * 2011-02-17 2013-01-11 한국지질자원연구원 Method for making sulfate solution of valuable metal from used battery and for making cathode active material
JP5675452B2 (en) * 2011-03-15 2015-02-25 三井金属鉱業株式会社 Manufacturing method of recycled materials
JP5767985B2 (en) * 2011-03-23 2015-08-26 Jx日鉱日石金属株式会社 Solvent extraction method for aluminum
CN103154282B (en) * 2011-05-27 2015-04-22 英派尔科技开发有限公司 Effective recovery of lithium from lithium ion battery waste
EP3006580B1 (en) * 2011-11-22 2020-06-24 Sumitomo Metal Mining Company Limited Method for producing nickel-containing acidic solution
WO2013114621A1 (en) * 2012-02-03 2013-08-08 住友金属鉱山株式会社 Lithium recovery method
US9677152B2 (en) 2012-02-10 2017-06-13 Sumitomo Metal Mining Co., Ltd. Method for recovering lithium
KR101405486B1 (en) * 2012-04-05 2014-06-13 주식회사 포스코 Method for manufacturing lithium hydroxide and method for manufacturing lithium carbonate using the same
KR101429647B1 (en) 2012-12-21 2014-08-14 주식회사 포스코 Mothod for recovery resource from scrap of positive active material
KR101516376B1 (en) * 2012-12-21 2015-05-11 주식회사 포스코 Mothod for recovery resource from scrap of lithium rechargable battery
KR101455093B1 (en) * 2013-04-17 2014-10-27 서울대학교산학협력단 Method for recovering metal from waste battery
KR101563338B1 (en) 2013-06-27 2015-10-27 성일하이텍(주) Recovery method of lithium from lithium containing waste liquid using solvent extraction process
KR102111827B1 (en) 2013-06-28 2020-05-15 미쓰비시 마테리알 가부시키가이샤 Method for processing fluorine-containing electrolyte solution
CN105594056B (en) 2013-09-30 2018-07-06 三菱综合材料株式会社 The processing method of fluorine-containing electrolyte
CN104009269B (en) * 2013-12-10 2016-06-01 宁波维科电池股份有限公司 The recovery and treatment method of waste and old lithium ion battery
CN103757294A (en) * 2013-12-29 2014-04-30 四川师范大学 Method for leaching positive pole material of waste lithium nickelate battery
CN103757283A (en) * 2013-12-29 2014-04-30 四川师范大学 Method for leaching positive pole material of waste lithium nickelate battery
JP6290633B2 (en) * 2014-01-22 2018-03-07 Jx金属株式会社 Lithium ion battery waste treatment method and metal recovery method using the same
CN103825064B (en) * 2014-02-27 2016-05-25 北京工业大学 Exemplary process method is reclaimed in a kind of waste and old power lithium iron phosphate battery environmental protection
KR101545859B1 (en) 2014-03-13 2015-08-20 명지대학교 산학협력단 Extractant of li+ and method for extracting li+ by liquid-liquid extraction using the same
CN103882226B (en) * 2014-04-14 2016-08-17 北京矿冶研究总院 Economic, clean and simple method for leaching cobalt from high-valence cobalt oxide
KR102512604B1 (en) * 2014-10-31 2023-03-21 알베마를 저머니 게엠베하 Method for recovering lithium from lithium-sulfur accumulators
JP6290770B2 (en) * 2014-11-06 2018-03-07 Jx金属株式会社 Lithium-ion battery waste treatment method
JP2016108588A (en) * 2014-12-03 2016-06-20 Jx金属株式会社 Method of treating aqueous solution comprising valuable metal
JP6267150B2 (en) * 2015-03-31 2018-01-24 Jx金属株式会社 Method for removing copper from copper ion-containing solution and method for recovering valuable metals
CN104733797B (en) * 2015-04-08 2017-03-08 湖北百杰瑞新材料股份有限公司 A kind of preparation method of pure Lithium Carbonate
JP6270059B2 (en) 2015-08-04 2018-01-31 トヨタ自動車株式会社 Performance degradation recovery method for lithium ion secondary battery
JP6483569B2 (en) * 2015-08-13 2019-03-13 Jx金属株式会社 Lithium-ion battery processing method
KR101621312B1 (en) 2015-10-15 2016-05-16 이치헌 Method Of Recycling Resource for lithium ion secondary battery
CN105655663A (en) * 2016-03-13 2016-06-08 周虎 Recycling method of power lithium-ion battery
CN105977568B (en) * 2016-07-12 2018-09-18 合肥国轩高科动力能源有限公司 Method and equipment for separating positive and negative current collectors and diaphragms of waste lithium ion batteries
CN106140796B (en) * 2016-08-25 2018-07-03 巩义市城区润达机械厂 Useless lithium battery processing system and treatment process
CN106390512A (en) * 2016-11-17 2017-02-15 浙江长兴中俄新能源材料技术研究院有限公司 Porous lithium ion battery phase separation device
JP6448684B2 (en) * 2017-03-03 2019-01-09 Jx金属株式会社 Lithium recovery method
JP6599396B2 (en) * 2017-03-30 2019-10-30 Jx金属株式会社 Lithium recovery method
JP6640783B2 (en) * 2017-03-31 2020-02-05 Jx金属株式会社 Lithium recovery method
PL3535803T3 (en) * 2017-05-30 2022-06-27 Li-Cycle Corp. A process, apparatus, and system for recovering materials from batteries
US10450633B2 (en) * 2017-07-21 2019-10-22 Larry Lien Recovery of lithium from an acid solution
CN107706478B (en) * 2017-10-13 2020-06-09 宁波中车新能源科技有限公司 Recovery method of battery capacitor
JP2018021261A (en) * 2017-10-20 2018-02-08 Jx金属株式会社 Treatment method of lithium ion battery waste
CN107999519B (en) * 2017-12-28 2023-09-01 贵州大学 Full-automatic disassembly, sorting and recycling machine for soft-package waste power batteries
CN108666643A (en) * 2018-04-17 2018-10-16 祝融峰 Method for recycling anode material of lithium ion battery and device
CN108728671B (en) * 2018-08-31 2024-05-31 江西海汇龙洲锂业有限公司 Stirring and washing device convenient for lepidolite lithium extraction and leaching of solid materials
JP6703077B2 (en) * 2018-10-12 2020-06-03 Jx金属株式会社 Lithium recovery method
CN109706320B (en) * 2019-01-29 2020-03-31 东北大学 Method for recovering Co and Li in waste lithium battery by wet process by taking ethanol as reducing agent
US11591670B2 (en) 2019-06-24 2023-02-28 William Marsh Rice University Recycling Li-ion batteries using green chemicals and processes
CN114630915A (en) * 2019-11-04 2022-06-14 巴斯夫公司 Method for extracting Li and Ni from solution
CN111136091A (en) * 2020-02-05 2020-05-12 龙游志达环保设备有限公司 Old and useless multilayer piece formula ceramic capacitor recovery processing device
KR102205442B1 (en) * 2020-05-26 2021-01-20 주식회사 에코프로이노베이션 Method for recovering valuable metals using lithium carbonate from waste electrode materials of lithium-ion batteries
EP4240880A4 (en) * 2020-11-04 2024-07-24 Basf Corp Methods of obtaining water for downstream processes
CN112331970B (en) * 2020-11-16 2022-12-30 河北零点新能源科技有限公司 Method for removing yellow dirt generated in cap sealing ring by oxalic acid solution
CN112718800A (en) * 2020-12-16 2021-04-30 天津华庆百胜能源有限公司 Recovery processing method of waste lithium battery
CN112919440A (en) * 2021-01-21 2021-06-08 南昌航空大学 Method for extracting lithium from retired lithium battery
CN113897488A (en) * 2021-09-01 2022-01-07 格林美股份有限公司 Method for recovering valuable metals from waste lithium ion batteries
CN114107673B (en) * 2021-11-24 2023-10-31 宁波正博能源科技股份有限公司 Recycling method of waste lithium battery anode material and recycled material
CN114317970B (en) * 2021-11-30 2023-06-13 广东邦普循环科技有限公司 Recovery method of waste lithium cobalt oxide battery
JP2023086495A (en) * 2021-12-10 2023-06-22 株式会社Jera Storage battery recycling device
JP2023086494A (en) * 2021-12-10 2023-06-22 株式会社Jera Storage battery recycling method
CN114497793A (en) * 2022-01-25 2022-05-13 宁波大学 Method for realizing rapid stripping of recovered electrode active material by mechanical bending mixed gas tension
CN114597530B (en) * 2022-03-04 2024-04-26 宁波蔚孚科技有限公司 Recovery method of phosphate positive electrode material
CN114606394B (en) * 2022-03-11 2024-02-06 衢州华友钴新材料有限公司 Method for recycling aluminum from waste anode material
WO2023191030A1 (en) 2022-03-31 2023-10-05 三菱マテリアル株式会社 Electrode material leaching method and method for separating cobalt and nickel
CN114990333A (en) * 2022-06-02 2022-09-02 浙江泰恒新能源有限公司 Method for recycling high-purity silicon and precious metals of solar cell
WO2024014521A1 (en) * 2022-07-14 2024-01-18 Jx Metals Corporation Method for removing aluminum and method for recovering metals
CN115074540B (en) * 2022-08-16 2022-11-25 矿冶科技集团有限公司 Comprehensive recovery method for valuable components of waste power battery
CN115945057A (en) * 2022-12-19 2023-04-11 上海第二工业大学 Application method for targeted degradation of VOCs (volatile organic compounds) by using waste battery and zero-valent iron composite material
CN116422383A (en) * 2023-04-16 2023-07-14 贺州学院 Method for recycling ternary anode material and preparing carbon-based multi-metal catalytic material
CN117684009A (en) * 2023-12-18 2024-03-12 深圳汇能储能材料工程研究中心有限公司 Method for extracting and recovering metal elements in lithium battery by wet method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500352B2 (en) * 1993-03-25 1996-05-29 工業技術院長 Separation and recovery method of lithium
JP3935594B2 (en) * 1997-03-14 2007-06-27 三菱重工業株式会社 Nonaqueous solvent battery processing method
JPH10255862A (en) * 1997-03-14 1998-09-25 Toshiba Corp Valuable material separating method from lithium ion secondary battery
JPH10287864A (en) * 1997-04-14 1998-10-27 Nippon Chem Ind Co Ltd Recovery of valuable metal from active material of positive electrode for lithium ion secondary battery
JP3452769B2 (en) * 1997-09-18 2003-09-29 株式会社東芝 Battery treatment method
JP3515444B2 (en) * 1999-09-29 2004-04-05 株式会社東芝 Battery pack sorting device
JP4411881B2 (en) * 2003-07-02 2010-02-10 トヨタ自動車株式会社 Lithium battery treatment and recycling methods
TWI231063B (en) * 2003-11-14 2005-04-11 Ind Tech Res Inst Process of recovering valuable metals from waste secondary batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950651A (en) * 2019-04-03 2019-06-28 中南大学 A kind of integrated conduct method of waste lithium iron phosphate battery recycling carbon
CN109950651B (en) * 2019-04-03 2021-05-11 中南大学 Comprehensive treatment method for recycling carbon from waste lithium iron phosphate batteries

Also Published As

Publication number Publication date
JP2007122885A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4892925B2 (en) Method for recovering valuable metals from lithium-ion batteries
CA3076688C (en) Lithium-ion batteries recycling process
CN108075203B (en) Method for recycling valuable metal components in waste lithium ion battery material
Ordoñez et al. Processes and technologies for the recycling and recovery of spent lithium-ion batteries
CN109449523B (en) Comprehensive recovery method for waste lithium ion battery
Xu et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries
CN111392750B (en) Method for removing impurities and recovering lithium from waste lithium ion batteries
Zheng et al. Leaching procedure and kinetic studies of cobalt in cathode materials from spent lithium ion batteries using organic citric acid as leachant
JP2024105422A (en) Recycling process for used lithium-ion batteries
Chandran et al. Comprehensive review on recycling of spent lithium-ion batteries
JP2019530795A (en) Method for producing nickel sulfate, manganese sulfate, lithium sulfate, cobalt sulfate and tricobalt tetroxide from battery waste
CN100595970C (en) Method for selectively removing copper from waste lithium ion battery
CN110343864B (en) Method for recovering lithium and cobalt in waste electrode material by microwave roasting assistance
CN107739830A (en) A kind of recovery method of positive material of waste lithium iron phosphate
JP2019160429A (en) Lithium recovery method
JP2019178395A (en) Collection method of lithium from lithium ion battery scrap
CN110997568A (en) Method for dissolving lithium compound, method for producing lithium carbonate, and method for recovering lithium from lithium ion secondary battery scrap
CA3136878A1 (en) Process for the preparation of battery precursors
WO2013114621A1 (en) Lithium recovery method
US20230104094A1 (en) A method for processing lithium iron phosphate batteries
JP5459146B2 (en) Lithium recovery method
JP2012106874A (en) Method for purifying lithium hydroxide
JP2012121780A (en) Method for manufacturing lithium oxide
CN114614133A (en) Combined treatment method for areca residue and waste cathode material
CN112062143A (en) Acid-free lithium carbonate preparation method using waste lithium ion battery as raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Ref document number: 4892925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3