JP5535717B2 - Lithium recovery method - Google Patents

Lithium recovery method Download PDF

Info

Publication number
JP5535717B2
JP5535717B2 JP2010068685A JP2010068685A JP5535717B2 JP 5535717 B2 JP5535717 B2 JP 5535717B2 JP 2010068685 A JP2010068685 A JP 2010068685A JP 2010068685 A JP2010068685 A JP 2010068685A JP 5535717 B2 JP5535717 B2 JP 5535717B2
Authority
JP
Japan
Prior art keywords
lithium
mass
carbon
parts
roasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010068685A
Other languages
Japanese (ja)
Other versions
JP2011094228A (en
Inventor
俊介 葛原
善弘 本間
浩示 藤田
智 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP2010068685A priority Critical patent/JP5535717B2/en
Publication of JP2011094228A publication Critical patent/JP2011094228A/en
Application granted granted Critical
Publication of JP5535717B2 publication Critical patent/JP5535717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Description

本発明は、リチウムイオン二次電池の正極材料であるコバルト酸リチウムから、リチウムを効率よく回収することができ、リチウムイオン二次電池の再利用を行うことができるリチウムの回収方法に関する。   The present invention relates to a lithium recovery method capable of efficiently recovering lithium from lithium cobalt oxide, which is a positive electrode material of a lithium ion secondary battery, and enabling reuse of the lithium ion secondary battery.

リチウムイオン二次電池は、従来の鉛蓄電池、ニッカド二次電池等に比較して軽量、高容量、高起電力の優れた二次電池であり、携帯電話、ノートパソコン等のモバイル機器などに広く使用されている。
このようなリチウムイオン二次電池の正極材料には、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)などが用いられており、これらには希少有価物質であるコバルトやリチウムが含まれている。そこで、使用済みのリチウムイオン二次電池からこれらの有価物質を回収し、再びリチウムイオン二次電池の正極材料としてリサイクル利用を図ることが望まれている。
Lithium-ion secondary batteries are secondary batteries that are lighter, have higher capacity, and have higher electromotive force than conventional lead-acid batteries and nickel-cadmium secondary batteries, and are widely used in mobile devices such as mobile phones and laptop computers. It is used.
As a positive electrode material of such a lithium ion secondary battery, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), and the like are used, and these include rare metals such as cobalt and lithium. include. Therefore, it is desired to recover these valuable substances from the used lithium ion secondary battery and to recycle them as a positive electrode material for the lithium ion secondary battery.

前記コバルト酸リチウムは、層状岩塩型構造又はスピネル構造を有していると考えられており、例えば硝酸、硫酸、塩酸等の強酸を使用して溶解した後、中和反応を行って、リチウム及びコバルトを回収していた(特許文献1参照)。
しかし、前記回収方法では、硝酸、硫酸に対する溶解度が小さいという問題に加えて、多量の還元剤が必要となる。また、リチウム及びコバルトを溶解させた後、リチウムとコバルトの分離回収を行う必要があり、設備が増大する。更に、塩酸を使用した場合には、有害な塩素ガスが発生してしまうという、安全上の問題があった。
The lithium cobaltate is considered to have a layered rock salt structure or a spinel structure. For example, the lithium cobaltate is dissolved using a strong acid such as nitric acid, sulfuric acid, hydrochloric acid, etc. Cobalt was recovered (see Patent Document 1).
However, the recovery method requires a large amount of reducing agent in addition to the problem of low solubility in nitric acid and sulfuric acid. Further, after lithium and cobalt are dissolved, it is necessary to separate and recover lithium and cobalt, which increases equipment. Further, when hydrochloric acid is used, there is a safety problem that harmful chlorine gas is generated.

また、特許文献2には、コバルト酸リチウムに炭素を添加し、700℃以上の温度で、不活性ガス雰囲気中にて、還元焙焼することにより、焙焼物を得て、該焙焼物を水で浸出することにより、焙焼物中のリチウム分を溶出させて、回収する方法が提案されている。
この提案の実施例2では、コバルト酸リチウム50gに炭素6.9gを添加(炭素濃度12.1質量%)し、不活性ガス雰囲気中、800℃にて2時間、焙焼を行っており、リチウムが99%以上の浸出率を示したと記載されている。しかし、前記特許文献2の実施例ではコバルト酸リチウムそのものを管状炉に装入して焙焼しており、コバルト酸リチウムの単品を焙焼することを想定しており、リチウムイオン二次電池の正極材料、リチウムイオン二次電池の粉砕物を回収原料として用いることを全く予定していないものである。
In Patent Document 2, carbon is added to lithium cobaltate, and reduced roasting is performed in an inert gas atmosphere at a temperature of 700 ° C. or higher to obtain a roasted product. A method has been proposed in which the lithium content in the baked product is eluted and leached and then recovered.
In Example 2 of this proposal, 6.9 g of carbon was added to 50 g of lithium cobaltate (carbon concentration 12.1% by mass), and roasting was performed at 800 ° C. for 2 hours in an inert gas atmosphere. It is described that lithium showed a leaching rate of 99% or more. However, in the embodiment of Patent Document 2, it is assumed that lithium cobaltate itself is charged into a tubular furnace and roasted, and it is assumed that a single lithium cobaltate is roasted. There is no plan to use the pulverized material of the positive electrode material or the lithium ion secondary battery as a recovered raw material.

特開平11−54159号公報JP-A-11-54159 特開2004−11010号公報JP 2004-11010 A

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、リチウムイオン二次電池の正極材料であるコバルト酸リチウムから、リチウムを効率よく回収することができ、リチウムイオン二次電池の再利用を行うことができるリチウムの回収方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, the present invention provides a lithium recovery method capable of efficiently recovering lithium from lithium cobalt oxide, which is a positive electrode material of a lithium ion secondary battery, and reusing the lithium ion secondary battery. The purpose is to do.

前記課題を解決するため本発明者らが鋭意検討を重ねた結果、安定な層状岩塩型構造又はスピネル構造をとるコバルト酸リチウムと炭素を混合した混合物を、所定の焙焼条件で、焙焼するとリチウムが酸化リチウム(LiO)となり、この焙焼物を水で浸出すると、水酸化リチウム(LiOH)及び炭酸リチウム(LiCO)となって溶出し、極めて効率よく、かつ簡便な操作でリチウムを回収できることを知見した。 As a result of repeated studies by the present inventors in order to solve the above problems, a mixture of lithium cobaltate and carbon having a stable layered rock salt structure or spinel structure is roasted under predetermined roasting conditions. When lithium becomes lithium oxide (Li 2 O) and this baked product is leached with water, it elutes as lithium hydroxide (LiOH) and lithium carbonate (Li 2 CO 3 ), which is extremely efficient and easy to operate. It was found that lithium can be recovered.

本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
<1> コバルト酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、大気雰囲気下、酸化雰囲気下、及び還元性雰囲気下のいずれかで焙焼してなる酸化リチウムを含有する焙焼物を水で浸出することを特徴とするリチウムの回収方法である。
<2> コバルト酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、大気雰囲気下、500℃以上の温度で焙焼してなる酸化リチウムを含有する焙焼物を水で浸出する前記<1>に記載のリチウムの回収方法である。
<3> コバルト酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、酸化雰囲気下、500℃以上の温度で焙焼してなる酸化リチウムを含有する焙焼物を水で浸出する前記<1>に記載のリチウムの回収方法である。
<4> コバルト酸リチウム100質量部に対し、1質量部〜50質量部の炭素を混合する前記<1>から<3>のいずれかに記載のリチウムの回収方法である。
<5> コバルト酸リチウム100質量部に対し、10質量部以上の炭素を混合した混合物を、大気雰囲気下、700℃以上の温度で焙焼してなる酸化リチウムを含有する焙焼物を水で浸出する前記<1>から<2>のいずれかに記載のリチウムの回収方法である。
<6> コバルト酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、不活性雰囲気下、500℃以上700℃未満の温度で焙焼してなる酸化リチウムを含有する焙焼物を水で浸出することを特徴とするリチウムの回収方法である。
<7> コバルト酸リチウム100質量部に対し、15質量部〜50質量部の炭素を混合する前記<6>に記載のリチウムの回収方法である。
<8> コバルト酸リチウムと炭素を混合した混合物が、使用済リチウムイオン二次電池より得られたものである前記<1>から<7>のいずれかに記載のリチウムの回収方法である。
<9> 炭素が、カーボンブラック、黒鉛、活性炭、石炭、コークス、木炭、及び使用済リチウムイオン二次電池の負極、及び還元性を有する有機物のいずれかより得られたものである前記<1>から<8>のいずれかに記載のリチウムの回収方法である。
The present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is,
<1> Contains lithium oxide formed by roasting a mixture in which 1 part by mass or more of carbon is mixed with 100 parts by mass of lithium cobaltate in an air atmosphere, an oxidizing atmosphere, or a reducing atmosphere. The method for recovering lithium is characterized by leaching the roasted product to be washed with water.
<2> For 100 parts by mass of lithium cobaltate, a mixture obtained by mixing 1 part by mass or more of carbon is calcined at a temperature of 500 ° C. or higher in an air atmosphere, and a roasted product containing lithium oxide is leached with water. The method for recovering lithium according to <1>.
<3> For 100 parts by mass of lithium cobaltate, a mixture obtained by mixing 1 part by mass or more of carbon is baked at a temperature of 500 ° C. or higher in an oxidizing atmosphere, and a roasted product containing lithium oxide is leached with water. The method for recovering lithium according to <1>.
<4> The lithium recovery method according to any one of <1> to <3>, wherein 1 to 50 parts by mass of carbon is mixed with 100 parts by mass of lithium cobalt oxide.
<5> A baked product containing lithium oxide obtained by roasting a mixture obtained by mixing 10 parts by mass or more of carbon with respect to 100 parts by mass of lithium cobaltate at a temperature of 700 ° C. or higher in an air atmosphere with water. The method for recovering lithium according to any one of <1> to <2>.
<6> A roasted product containing lithium oxide obtained by roasting a mixture in which 1 part by mass or more of carbon is mixed with 100 parts by mass of lithium cobaltate in an inert atmosphere at a temperature of 500 ° C. or higher and lower than 700 ° C. This is a lithium recovery method characterized by leaching with water.
<7> The lithium recovery method according to <6>, wherein 15 parts by mass to 50 parts by mass of carbon are mixed with 100 parts by mass of lithium cobalt oxide.
<8> The lithium recovery method according to any one of <1> to <7>, wherein the mixture obtained by mixing lithium cobaltate and carbon is obtained from a used lithium ion secondary battery.
<9> The above <1>, wherein the carbon is obtained from any one of carbon black, graphite, activated carbon, coal, coke, charcoal, a negative electrode of a used lithium ion secondary battery, and a reducing organic substance. To <8>. The method for recovering lithium according to any one of <8>.

本発明によると、従来における問題を解決することができ、リチウムイオン二次電池の正極材料であるコバルト酸リチウムから、リチウムを効率よく回収することができ、リチウムイオン二次電池の再利用を行うことができるリチウムの回収方法を提供することができる。   According to the present invention, conventional problems can be solved, lithium can be efficiently recovered from lithium cobaltate, which is a positive electrode material of a lithium ion secondary battery, and the lithium ion secondary battery is reused. It is possible to provide a method for recovering lithium.

図1は、実施例1における、炭素濃度とLi浸出率との関係を示すグラフである。FIG. 1 is a graph showing the relationship between carbon concentration and Li leaching rate in Example 1. 図2は、実施例1における、焙焼温度とLi浸出率との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the roasting temperature and the Li leaching rate in Example 1. 図3は、実施例2における、炭素濃度とLi浸出率との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the carbon concentration and the Li leaching rate in Example 2. 図4は、実施例2における、焙焼温度とLi浸出率との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the roasting temperature and the Li leaching rate in Example 2. 図5は、実施例3における、炭素濃度とLi浸出率との関係を示すグラフである。FIG. 5 is a graph showing the relationship between carbon concentration and Li leaching rate in Example 3. 図6は、実施例3における、焙焼温度とLi浸出率との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the roasting temperature and the Li leaching rate in Example 3. 図7は、実施例4における、炭素濃度とLi浸出率との関係を示すグラフである。FIG. 7 is a graph showing the relationship between carbon concentration and Li leaching rate in Example 4. 図8は、実施例4における、焙焼温度とLi浸出率との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the roasting temperature and the Li leaching rate in Example 4.

本発明のリチウムの回収方法は、第1の形態では、コバルト酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、大気雰囲気下、酸化雰囲気下、及び還元性雰囲気下のいずれかで焙焼してなる酸化リチウムを含有する焙焼物を水で浸出する。
本発明のリチウムの回収方法は、第2の形態では、コバルト酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、不活性雰囲気下、500℃以上700℃未満の温度で焙焼してなる酸化リチウムを含有する焙焼物を水で浸出する。この場合、コバルト酸リチウム100質量部に対し、15質量部〜50質量部の炭素を混合することが好ましい。
ここで、前記第1の及び第2の形態において、前記コバルト酸リチウムと炭素を混合した混合物には、コバルト酸リチウムと炭素を個別に混合した混合物以外にも、リチウムイオン二次電池の粉砕物等のコバルト酸リチウム及び炭素を一緒に含むものも含まれる。
In the first aspect of the lithium recovery method of the present invention, in a first embodiment, a mixture in which 1 part by mass or more of carbon is mixed with 100 parts by mass of lithium cobaltate is mixed in an air atmosphere, an oxidizing atmosphere, and a reducing atmosphere. A roasted product containing lithium oxide, which is roasted with either one, is leached with water.
In the second aspect of the lithium recovery method of the present invention, a mixture obtained by mixing 1 part by mass or more of carbon with respect to 100 parts by mass of lithium cobaltate is heated at a temperature of 500 ° C. or higher and lower than 700 ° C. in an inert atmosphere. A roasted product containing lithium oxide obtained by roasting is leached with water. In this case, it is preferable to mix 15 parts by mass to 50 parts by mass of carbon with respect to 100 parts by mass of lithium cobalt oxide.
Here, in the first and second embodiments, the mixture obtained by mixing lithium cobaltate and carbon is not limited to a mixture obtained by individually mixing lithium cobaltate and carbon, but is also a pulverized product of a lithium ion secondary battery. And those containing lithium cobaltate and carbon together.

−コバルト酸リチウム−
前記コバルト酸リチウムとしては、コバルト酸リチウム(LiCoO)を一定量以上含有しているものであれば特に制限はなく、目的に応じて適宜選択することができ、例えばコバルト酸リチウムの純品、使用済リチウムイオン二次電池の正極廃材、使用済リチウムイオン二次電池の正極廃材から分離したコバルト酸リチウム、マンガン・ニッケル・コバルト・リチウムにより形成される正極廃材、などが挙げられる。
これらの中でも、リチウムイオン二次電池のリサイクルを図れる点から、使用済リチウムイオン二次電池の正極廃材が特に好ましい。
-Lithium cobaltate-
The lithium cobaltate is not particularly limited as long as it contains a certain amount or more of lithium cobaltate (LiCoO 2 ), and can be appropriately selected according to the purpose. For example, a pure product of lithium cobaltate, Examples include a positive electrode waste material of a used lithium ion secondary battery, a lithium cobaltate separated from a positive electrode waste material of a used lithium ion secondary battery, and a positive electrode waste material formed of manganese, nickel, cobalt, and lithium.
Among these, a positive electrode waste material of a used lithium ion secondary battery is particularly preferable from the viewpoint that the lithium ion secondary battery can be recycled.

−炭素−
前記炭素としては、特に制限はなく、目的に応じて適宜選択することができ、例えばカーボンブラック、黒鉛、活性炭、石炭、コークス、木炭、使用済リチウムイオン二次電池の負極、還元性を有する有機物などが挙げられる。これらの中でも、リチウムイオン二次電池のリサイクルを図れる点から、使用済リチウムイオン二次電池の負極が特に好ましい。
前記還元性を有する有機物としては、例えば電解質の材料であるプロピレンカーボネート、エチレンカーボネート等、セパレーターの材料であるポリオレフィンフィルム等が挙げられる。
-Carbon-
The carbon is not particularly limited and may be appropriately selected depending on the intended purpose. For example, carbon black, graphite, activated carbon, coal, coke, charcoal, a negative electrode of a used lithium ion secondary battery, an organic substance having reducibility Etc. Among these, the negative electrode of the used lithium ion secondary battery is particularly preferable because the lithium ion secondary battery can be recycled.
Examples of the organic substance having reducibility include propylene carbonate and ethylene carbonate, which are electrolyte materials, and polyolefin films, which are separator materials.

前記炭素と前記コバルト酸リチウムを混合する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えばリチウムイオン二次電池の正極材料のみを取り出した場合、正極材料と炭素をミキサーで混合する方法がある。
前記ミキサーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えばV型ブレンダー、回転型ミキサー、ラインミキサーなどを使用でき、ロータリーキルンのような混合性能を含む炉を用いて、混合と焙焼を同時に行ってもよい。
なお、リチウムイオン二次電池の負極には、炭素(黒鉛)が含まれているので、リチウムイオン二次電池より得られたものを焙焼する場合には炭素の添加は不要である。
The method of mixing the carbon and the lithium cobalt oxide is not particularly limited and may be appropriately selected depending on the purpose. For example, when only the positive electrode material of a lithium ion secondary battery is taken out, the positive electrode material and the carbon are mixed. There is a method of mixing with a mixer.
The mixer is not particularly limited and can be appropriately selected according to the purpose. For example, a V-type blender, a rotary mixer, a line mixer, etc. can be used, and using a furnace having mixing performance such as a rotary kiln, Mixing and roasting may be performed simultaneously.
In addition, since carbon (graphite) is contained in the negative electrode of the lithium ion secondary battery, the addition of carbon is not necessary when the product obtained from the lithium ion secondary battery is roasted.

前記炭素の混合量は、第1の形態では、コバルト酸リチウム100質量部に対し1質量部以上であり、1質量部〜50質量部であることが好ましい。
また、前記炭素の混合量は、第2の形態では、コバルト酸リチウム100質量部に対し1質量部以上であり、15質量部〜50質量部であることが好ましい。
前記炭素の混合量が、1質量部未満であると、リチウムイオン二次電池の正極の結晶構造を破壊できないために、リチウムを溶出できないことがあり、50質量部を超えると、コバルト酸リチウムと炭素を混合した混合物を焙焼後に炭素成分が残留するため、炭素除去工程が必要となることがある。
In the first embodiment, the mixing amount of the carbon is 1 part by mass or more and 100 parts by mass to 50 parts by mass with respect to 100 parts by mass of lithium cobalt oxide.
Moreover, in the 2nd form, the mixing amount of the carbon is 1 part by mass or more and preferably 15 parts by mass to 50 parts by mass with respect to 100 parts by mass of lithium cobalt oxide.
If the amount of carbon is less than 1 part by mass, the crystal structure of the positive electrode of the lithium ion secondary battery cannot be destroyed, so lithium may not be eluted. If the amount exceeds 50 parts by mass, Since a carbon component remains after baking the mixture which mixed carbon, a carbon removal process may be needed.

前記コバルト酸リチウムと炭素を混合した混合物としては、代表的には、使用済リチウムイオン二次電池より得られたものを用いることが好ましい。
これは、前記前記コバルト酸リチウムと炭素を混合した混合物として、使用済リチウムイオン二次電池より得られたものを用いる場合には、特別な前処理(コバルト酸リチウムの分離処理)を施すことなく、リチウムを回収できる点から好ましい。
また、前記コバルト酸リチウムと炭素を混合した混合物として、使用済リチウムイオン二次電池より得られたものを用いる場合には、使用済リチウムイオン二次電池の負極には黒鉛(炭素)がコバルト酸リチウムに対し最大40質量%の量で含まれているので、炭素を添加する必要が無く、そのまま焙焼することができる点で特に好ましい。
更に、通常の正極分離の際には放電工程を必要とするが、リチウムイオン二次電池を焙焼することで放電を行うことができ、放電設備を設けなくてもよい点で優れている。
使用済リチウムイオン二次電池は、焙焼前に粉砕してもよく、粉砕を行う順序に特に制限はない。
使用済リチウムイオン二次電池を粉砕する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えばハンマークラッシャー、ロッドミル、ボールミル、ジョークラッシャー、ロールクラッシャー、カッターミル、ロータリークラッシャー等の粉砕機により、篩をかけた粉砕物を用いることができる。
As the mixture of lithium cobaltate and carbon, it is typically preferable to use a mixture obtained from a used lithium ion secondary battery.
This is because when the mixture obtained from the used lithium ion secondary battery is used as a mixture of the lithium cobaltate and carbon, a special pretreatment (separation treatment of lithium cobaltate) is not performed. From the viewpoint of recovering lithium.
Moreover, when using what was obtained from the used lithium ion secondary battery as a mixture which mixed the said lithium cobaltate and carbon, graphite (carbon) is cobalt acid in the negative electrode of a used lithium ion secondary battery. Since it is contained in a maximum amount of 40% by mass with respect to lithium, it is particularly preferable in that it is not necessary to add carbon and can be roasted as it is.
Further, although a discharge process is required for normal cathode separation, the discharge can be performed by roasting the lithium ion secondary battery, which is excellent in that it is not necessary to provide a discharge facility.
The used lithium ion secondary battery may be pulverized before roasting, and the order of pulverization is not particularly limited.
There is no restriction | limiting in particular as a method of grind | pulverizing a used lithium ion secondary battery, According to the objective, it can select suitably, For example, a hammer crusher, a rod mill, a ball mill, a jaw crusher, a roll crusher, a cutter mill, a rotary crusher etc. A pulverized product obtained by sieving with a pulverizer can be used.

−焙焼に用いる雰囲気−
前記焙焼に用いる雰囲気としては、特に制限はなく、焙焼条件などに応じて適宜選択することができ、例えば大気雰囲気、酸化雰囲気、不活性雰囲気、還元性雰囲気、などが挙げられる。なお、前記雰囲気は、焙焼中は、通気させておくことが好ましい。
ここで、前記大気雰囲気とは、酸素が21%、窒素78%の大気(空気)を用いた雰囲気を意味する。
前記酸化雰囲気とは、窒素又はアルゴン等の不活性雰囲気中に酸素を1質量%〜21質量%含む雰囲気を意味し、酸素を1質量%〜5質量%含む雰囲気が好ましい。
前記不活性雰囲気とは、窒素又はアルゴンからなる雰囲気を意味する。
前記還元性雰囲気とは、例えば、窒素又はアルゴン等の不活性雰囲気中にCO、H、HS、SOなどを含む雰囲気を意味する。
-Atmosphere used for roasting-
There is no restriction | limiting in particular as atmosphere used for the said baking, According to baking conditions etc., it can select suitably, For example, an air atmosphere, an oxidizing atmosphere, an inert atmosphere, a reducing atmosphere etc. are mentioned. The atmosphere is preferably aerated during roasting.
Here, the air atmosphere means an atmosphere using air (air) of 21% oxygen and 78% nitrogen.
The oxidizing atmosphere means an atmosphere containing 1% by mass to 21% by mass of oxygen in an inert atmosphere such as nitrogen or argon, and an atmosphere containing 1% by mass to 5% by mass of oxygen is preferable.
The inert atmosphere means an atmosphere made of nitrogen or argon.
The reducing atmosphere means an atmosphere containing CO, H 2 , H 2 S, SO 2 and the like in an inert atmosphere such as nitrogen or argon.

−焙焼−
前記焙焼は、焙焼炉を用いて行うことが好ましい。前記焙焼炉としては、特に制限はなく、目的に応じて適宜選択することができ、例えばロータリーキルン、流動床炉、トンネル炉、マッフル等のバッチ式炉、キュウポラ、ストーカー炉、などが挙げられる。本発明においては、大気雰囲気下でも焙焼することができるので、例えばロータリーキルン炉等の普通に用いられている焙焼炉を使用することができ、焙焼炉の選択幅が広くなる。
前記焙焼温度は、特に制限はなく、目的に応じて適宜選択することができ、不活性雰囲気下では500℃以上700℃未満である。大気雰囲気下では500℃以上、酸化雰囲気下では500℃以上であることが好ましく、上限温度は、1,200℃以下であることが好ましい。
前記焙焼温度が、500℃未満であると、例えばリチウムイオン二次電池の正極の結晶構造を破壊できないために、リチウムを溶出させることができないことがあり、1,200℃を超えると、多大なエネルギーを必要とすると共に、焙焼物が焼結するため、粉砕工程が必要となることがある。
-Roasting-
The roasting is preferably performed using a roasting furnace. There is no restriction | limiting in particular as said roasting furnace, According to the objective, it can select suitably, For example, batch type furnaces, such as a rotary kiln, a fluidized bed furnace, a tunnel furnace, a muffle, a cupola, a stalker furnace, etc. are mentioned. In the present invention, since roasting can be performed even in an air atmosphere, a commonly used roasting furnace such as a rotary kiln furnace can be used, and the selection range of the roasting furnace is widened.
The roasting temperature is not particularly limited and may be appropriately selected depending on the purpose. The roasting temperature is 500 ° C. or higher and lower than 700 ° C. under an inert atmosphere. It is preferably 500 ° C. or higher in an air atmosphere and 500 ° C. or higher in an oxidizing atmosphere, and the upper limit temperature is preferably 1,200 ° C. or lower.
When the roasting temperature is less than 500 ° C., for example, the crystal structure of the positive electrode of the lithium ion secondary battery cannot be destroyed, so that lithium may not be eluted. A large amount of energy is required, and the baked product is sintered, which may require a pulverization step.

−リチウムの浸出−
得られた焙焼物を水で浸出することにより、焙焼物中からリチウムを溶出させて、リチウムを回収することができる。
前記焙焼物の水での浸出方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば水中に浸漬させた焙焼物に、必要に応じて超音波を当てながら緩やかに攪拌することにより行うことができる。
浸出によりリチウムが溶出した液をろ過し、残渣とろ液に分け、ろ液からリチウムを回収できる。回収方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えばろ液を自然乾燥する方法、加熱により乾燥固化する方法、炭酸を吹き込みながら晶析させる方法、などが挙げられる。
-Lithium leaching-
By leaching the obtained roasted product with water, lithium can be eluted from the roasted product and lithium can be recovered.
The method for leaching the roasted product with water is not particularly limited and can be appropriately selected according to the purpose. For example, the roasted product immersed in water is gently stirred while applying ultrasonic waves as necessary. This can be done.
The liquid from which lithium is eluted by leaching is filtered and separated into a residue and a filtrate, and lithium can be recovered from the filtrate. The recovery method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method of naturally drying the filtrate, a method of drying and solidifying by heating, and a method of crystallizing while blowing carbonic acid. .

本発明のリチウムの回収方法は、焙焼条件に応じて以下の第1の実施形態から第3の実施形態のいずれかであることが好ましい。   The lithium recovery method of the present invention is preferably one of the following first to third embodiments depending on roasting conditions.

<第1の実施形態>
前記第1の実施形態に係るリチウムの回収方法は、コバルト酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、大気雰囲気下、500℃以上の温度で焙焼してなる焙焼物を水で浸出するものである。
ここで、前記大気雰囲気とは、酸素が21%、窒素78%の大気(空気)を用いた雰囲気を意味する。この第1の実施形態では、大気雰囲気下において焙焼できるので、ロータリーキルン炉等の普通に用いられている焙焼炉を使用することができる。
前記炭素の混合量は、コバルト酸リチウム100質量部に対し、10質量部以上であることが好ましく、10質量部〜50質量部であることがより好ましく、10質量部〜40質量部であることが特に好ましい。
前記焙焼温度は、500℃以上であることが好ましく、700℃以上であることがより好ましく、700℃〜1,000℃であることが特に好ましい。前記焙焼温度が、500℃未満であると、例えばリチウムイオン二次電池の正極の結晶構造を破壊できないために、リチウムを溶出できないことがある。
焙焼時間は、昇温時間を含め1時間以上であることが好ましく、時間が長くなっても溶出効果は大きく変化しないため、省エネルギーの観点から1時間〜2時間がより好ましい。
<First Embodiment>
The lithium recovery method according to the first embodiment is obtained by roasting a mixture obtained by mixing 1 part by mass or more of carbon with respect to 100 parts by mass of lithium cobaltate at a temperature of 500 ° C. or more in an air atmosphere. The roasted product is leached with water.
Here, the air atmosphere means an atmosphere using air (air) of 21% oxygen and 78% nitrogen. In the first embodiment, since roasting can be performed in an air atmosphere, a commonly used roasting furnace such as a rotary kiln furnace can be used.
The amount of carbon mixed is preferably 10 parts by mass or more, more preferably 10 parts by mass to 50 parts by mass, and more preferably 10 parts by mass to 40 parts by mass with respect to 100 parts by mass of lithium cobalt oxide. Is particularly preferred.
The roasting temperature is preferably 500 ° C. or higher, more preferably 700 ° C. or higher, and particularly preferably 700 ° C. to 1,000 ° C. If the roasting temperature is lower than 500 ° C., for example, the crystal structure of the positive electrode of the lithium ion secondary battery cannot be destroyed, so that lithium may not be eluted.
The roasting time is preferably 1 hour or more including the temperature rising time, and the elution effect does not change greatly even if the time is long. Therefore, 1 hour to 2 hours is more preferable from the viewpoint of energy saving.

<第2の実施形態>
前記第2の実施形態に係るリチウムの回収方法は、コバルト酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、酸化雰囲気下、500℃以上の温度で焙焼してなる焙焼物を水で浸出するものである。
前記炭素の混合量は、コバルト酸リチウム100質量部に対し、1質量部〜50質量部であることが好ましく、5質量部〜40質量部であることがより好ましい。
前記焙焼温度は、500℃以上であることが好ましく、500℃〜1,000℃であることがより好ましい。前記焙焼温度が、500℃未満であると、例えばリチウムイオン二次電池の正極の結晶構造を破壊できないために、リチウムを溶出できないことがある。
焙焼時間は、昇温時間を含め1時間以上であることが好ましく、時間が長くなっても溶出効果は大きく変化しないため、省エネルギーの観点から1時間〜2時間がより好ましい。
<Second Embodiment>
The lithium recovery method according to the second embodiment is obtained by roasting a mixture obtained by mixing 1 part by mass or more of carbon with respect to 100 parts by mass of lithium cobaltate in an oxidizing atmosphere at a temperature of 500 ° C. or more. The roasted product is leached with water.
The mixing amount of carbon is preferably 1 part by mass to 50 parts by mass, and more preferably 5 parts by mass to 40 parts by mass with respect to 100 parts by mass of lithium cobalt oxide.
The roasting temperature is preferably 500 ° C. or higher, and more preferably 500 ° C. to 1,000 ° C. If the roasting temperature is lower than 500 ° C., for example, the crystal structure of the positive electrode of the lithium ion secondary battery cannot be destroyed, so that lithium may not be eluted.
The roasting time is preferably 1 hour or more including the temperature rising time, and the elution effect does not change greatly even if the time is long. Therefore, 1 hour to 2 hours is more preferable from the viewpoint of energy saving.

<第3の実施形態>
前記第3の実施形態に係るリチウムの回収方法は、コバルト酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、不活性雰囲気下、500℃以上700℃未満の温度で焙焼してなる焙焼物を水で浸出するものである。
前記炭素の混合量は、コバルト酸リチウム100質量部に対し、15質量部〜50質量部であることがより好ましく、15質量部〜40質量部であることが更に好ましい。
ここで、前記不活性雰囲気とは、窒素又はアルゴンからなる雰囲気を意味する。
前記焙焼温度は、500℃以上700℃未満である。前記焙焼温度が、500℃未満であると、例えばリチウムイオン二次電池の正極の結晶構造を破壊できないために、リチウムを溶出できないことがある。
焙焼時間は、昇温時間を含め1時間以上であることが好ましく、時間が長くなっても溶出効果は大きく変化しないため、省エネルギーの観点から1時間〜2時間がより好ましい。
<Third Embodiment>
In the lithium recovery method according to the third embodiment, a mixture obtained by mixing 1 part by mass or more of carbon with respect to 100 parts by mass of lithium cobaltate is roasted at a temperature of 500 ° C. or higher and lower than 700 ° C. in an inert atmosphere. The baked product is leached with water.
The mixing amount of the carbon is more preferably 15 parts by mass to 50 parts by mass, and still more preferably 15 parts by mass to 40 parts by mass with respect to 100 parts by mass of lithium cobalt oxide.
Here, the inert atmosphere means an atmosphere made of nitrogen or argon.
The roasting temperature is 500 ° C. or higher and lower than 700 ° C. If the roasting temperature is lower than 500 ° C., for example, the crystal structure of the positive electrode of the lithium ion secondary battery cannot be destroyed, so that lithium may not be eluted.
The roasting time is preferably 1 hour or more including the temperature rising time, and the elution effect does not change greatly even if the time is long. Therefore, 1 hour to 2 hours is more preferable from the viewpoint of energy saving.

本発明のリチウムの回収方法は、リチウムイオン二次電池の正極材料であるコバルト酸リチウムから効率よくリチウムを回収することができ、リチウムイオン二次電池のリサイクルを図ることができる。
本発明のリチウムの回収方法においては、特別な前処理(コバルト酸リチウムの分離処理)を施すことなく、リチウムイオン二次電池より得られるものをそのまま粉砕して、焙焼できるので、極めて効率よくリチウムを回収することができる。
本発明のリチウムの回収方法においては、特に酸化雰囲気下で焙焼した場合には、カーボン残渣の発生が少なく、エネルギーの使用量が少なくて済むという利点がある。
本発明のリチウムの回収方法においては、特に大気雰囲気下で焙焼する場合には、一般的な焙焼炉で焙焼を行うことができ、気密性の高い焙焼炉を用いる必要がなく、焙焼炉の選択幅が広くなる利点がある。
本発明のリチウムの回収方法においては、簡単な操作により、リチウムの回収物の中にコバルトが検出されないほどに、リチウムとコバルトを高度に分離できる。そのため、回収したリチウムは、コバルト酸リチウムのみならず、マンガン酸リチウムなどの他のリチウム含有化合物への再利用が可能である。また、従来のリチウムの回収方法に必要であったリチウムとコバルトを分離回収する工程が不要となり、従来のリチウムの回収方法に比べ、回収工程の短縮及び回収コストの低減が可能である。
The lithium recovery method of the present invention can efficiently recover lithium from lithium cobaltate, which is a positive electrode material of a lithium ion secondary battery, and can recycle the lithium ion secondary battery.
In the method for recovering lithium according to the present invention, the product obtained from the lithium ion secondary battery can be pulverized and roasted as it is without performing any special pretreatment (separation treatment of lithium cobaltate). Lithium can be recovered.
The lithium recovery method of the present invention has the advantage that the generation of carbon residue is small and the amount of energy used is small, especially when roasting in an oxidizing atmosphere.
In the lithium recovery method of the present invention, in particular, when roasting in an air atmosphere, it can be roasted in a general roasting furnace, there is no need to use a highly airtight roasting furnace, There is an advantage that the selection range of the roasting furnace is widened.
In the lithium recovery method of the present invention, lithium and cobalt can be separated to a high degree by simple operations such that cobalt is not detected in the lithium recovery. Therefore, the recovered lithium can be reused not only for lithium cobaltate but also for other lithium-containing compounds such as lithium manganate. In addition, the process of separating and recovering lithium and cobalt, which is necessary for the conventional lithium recovery method, is not required, and the recovery process can be shortened and the recovery cost can be reduced as compared with the conventional lithium recovery method.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
<リチウム電池正極材料の分離>
市販のリチウムイオン二次電池(au社製、正極にコバルト酸リチウム、負極に黒鉛を使用、炭素含有量はコバルト酸リチウムに対して40質量%)を、電解液(5%NaCl)中に浸漬し、0.1mVになるまで放電させた。その後、手分解により正極材料を取り出し、カッターミルを用いて粉砕し正極材料粉体を得た。その組成を表1に示す。分析の結果、分離された粉体はコバルト酸リチウムであることが確認された。
Example 1
<Separation of lithium battery positive electrode material>
A commercially available lithium ion secondary battery (manufactured by AU, using lithium cobaltate as the positive electrode and graphite as the negative electrode, carbon content of 40% by mass with respect to lithium cobaltate) is immersed in an electrolytic solution (5% NaCl). Then, it was discharged until it became 0.1 mV. Thereafter, the positive electrode material was taken out by manual decomposition and pulverized using a cutter mill to obtain a positive electrode material powder. The composition is shown in Table 1. As a result of analysis, it was confirmed that the separated powder was lithium cobaltate.

<コバルト酸リチウムの焙焼>
得られたコバルト酸リチウム10gに、コバルト酸リチウムの質量に対する炭素の質量の割合が表2に示す、炭素濃度(質量%)になるようにカーボンブラック(和光純薬工業株式会社製)を添加し、管状炉(KOYO LINDBERG社製)に挿入した。雰囲気として、表2に示す、5L/分の不活性雰囲気(窒素)を通気しながら焙焼を行った。焙焼時間は、表2に示す各温度に到達してから1時間とした。
得られた各焙焼物について、以下のようにして、組成を分析した。
<Roasting of lithium cobaltate>
Carbon black (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 10 g of the obtained lithium cobaltate so that the mass ratio of carbon to the mass of lithium cobaltate was the carbon concentration (mass%) shown in Table 2. And inserted into a tubular furnace (manufactured by KOYO LINDBERG). As the atmosphere, roasting was performed while passing an inert atmosphere (nitrogen) of 5 L / min shown in Table 2. The roasting time was 1 hour after reaching the temperatures shown in Table 2.
About each obtained roasted material, the composition was analyzed as follows.

<焙焼物(固形物)中のリチウム及びコバルトの分析>
0.1gの各焙焼物を王水中で乾固直前まで加温溶解し、ろ過後、イオン交換水で100mLまでメスアップし、分析用溶液を得た。その溶液を高周波プラズマ発光分光分析装置(日本ジャーレル・アッシュ株式会社製、ICAP−575II)により分析し、焙焼物(固形物)中のリチウム濃度及びコバルト濃度を計算した。
<Analysis of Lithium and Cobalt in Roasted Product (Solid)>
0.1 g of each baked product was dissolved by heating in aqua regia until immediately before drying, and after filtration, it was made up to 100 mL with ion-exchanged water to obtain a solution for analysis. The solution was analyzed with a high frequency plasma emission spectroscopic analyzer (manufactured by Nippon Jarrell-Ash Co., Ltd., ICAP-575II), and the lithium concentration and cobalt concentration in the roasted product (solid material) were calculated.

<リチウムの浸出操作>
得られた各焙焼物0.5gを100mLのメスフラスコ内に入れ、水を100mLまでメスアップし、ビーカーに移した後、超音波を当てながら緩やかに攪拌しながら、30分間リチウムを溶出させた。その液をろ過し、残渣とろ液に分け、それぞれを分析した。残渣は上述の方法により分析し、ろ液を直接、高周波プラズマ発光分光分析装置(日本ジャーレル・アッシュ株式会社製、ICAP−575II)により分析した。
<Lithium leaching operation>
0.5 g of each of the obtained roasted products was placed in a 100 mL volumetric flask, water was made up to 100 mL, transferred to a beaker, and then lithium was eluted for 30 minutes while gently stirring while applying ultrasonic waves. . The liquid was filtered and divided into a residue and a filtrate, and each was analyzed. The residue was analyzed by the above-described method, and the filtrate was directly analyzed by a high-frequency plasma emission spectroscopic analyzer (manufactured by Nippon Jarrell-Ash, ICAP-575II).

リチウムの浸出率及びコバルトの浸出率は、焙焼物(固形物)中のリチウム含有量及びコバルト含有量と、ろ液中に溶けたリチウム量及びコバルト量とから算出した。結果を表2に示す。また、図1に、炭素濃度とLi浸出率との関係を示し、図2に、焙焼温度とLi浸出率との関係を示す。   The leaching rate of lithium and the leaching rate of cobalt were calculated from the lithium content and cobalt content in the roasted product (solid matter), and the lithium amount and cobalt amount dissolved in the filtrate. The results are shown in Table 2. FIG. 1 shows the relationship between the carbon concentration and the Li leaching rate, and FIG. 2 shows the relationship between the roasting temperature and the Li leaching rate.

なお、Co浸出率の「<0.01」は、コバルトの浸出率が0.01%未満であったこと、詳細には検出下限値(3.46×10−4%)以下であったことを示す。 In addition, “<0.01” of the Co leaching rate was that the leaching rate of cobalt was less than 0.01%, specifically, the lower limit of detection (3.46 × 10 −4 %) or less. Indicates.

(実施例2)
実施例1において、酸化雰囲気(酸素:5質量%、窒素:95質量%)を5L/分で通気しながら、表3に示す焙焼温度で焙焼を行った以外は、実施例1と同様にして、各焙焼物を得た。
得られた各焙焼物について、実施例1と同様にして、組成を分析した。結果を表3に示す。また、図3に、炭素濃度とLi浸出率との関係を示し、図4に、焙焼温度とLi浸出率との関係を示す。
(Example 2)
In Example 1, it was the same as Example 1 except that the baking was performed at the baking temperature shown in Table 3 while ventilating the oxidizing atmosphere (oxygen: 5 mass%, nitrogen: 95 mass%) at 5 L / min. Thus, each roasted product was obtained.
About each obtained roasted material, it carried out similarly to Example 1, and analyzed the composition. The results are shown in Table 3. FIG. 3 shows the relationship between the carbon concentration and the Li leaching rate, and FIG. 4 shows the relationship between the roasting temperature and the Li leaching rate.

なお、Co浸出率の「<0.01」は、コバルトの浸出率が0.01%未満であったこと、詳細には検出下限値(3.46×10−4%)以下であったことを示す。 In addition, “<0.01” of the Co leaching rate was that the leaching rate of cobalt was less than 0.01%, specifically, the lower limit of detection (3.46 × 10 −4 %) or less. Indicates.

(実施例3)
実施例1において、酸化雰囲気(酸素:10質量%、窒素:90質量%)を5L/分で通気しながら、表4に示す焙焼温度で焙焼を行った以外は、実施例1と同様にして、各焙焼物を得た。
得られた各焙焼物について、実施例1と同様にして、組成を分析した。結果を表4に示す。また、図5に、炭素濃度とLi浸出率との関係を示し、図6、焙焼温度とLi浸出率との関係を示す。
(Example 3)
In Example 1, it was the same as Example 1 except that the baking was performed at the baking temperature shown in Table 4 while ventilating the oxidizing atmosphere (oxygen: 10% by mass, nitrogen: 90% by mass) at 5 L / min. Thus, each roasted product was obtained.
About each obtained roasted material, it carried out similarly to Example 1, and analyzed the composition. The results are shown in Table 4. FIG. 5 shows the relationship between carbon concentration and Li leaching rate, and FIG. 6 shows the relationship between roasting temperature and Li leaching rate.

なお、Co浸出率の「<0.01」は、コバルトの浸出率が0.01%未満であったこと、詳細には検出下限値(3.46×10−4%)以下であったことを示す。 In addition, “<0.01” of the Co leaching rate was that the leaching rate of cobalt was less than 0.01%, specifically, the lower limit of detection (3.46 × 10 −4 %) or less. Indicates.

(実施例4)
実施例1において、大気雰囲気(酸素21%、窒素78%)5L/分で通気しながら、表5に示す焙焼温度で焙焼を行った以外は、実施例1と同様にして、各焙焼物を得た。
得られた各焙焼物について、実施例1と同様にして、組成を分析した。結果を表5に示す。また、図7に、炭素濃度とLi浸出率との関係を示し、図8に、焙焼温度とLi浸出率との関係を示す。
Example 4
In Example 1, each roasting was performed in the same manner as in Example 1 except that the baking was performed at the roasting temperature shown in Table 5 while aeration was performed at 5 L / min in the air atmosphere (21% oxygen, 78% nitrogen). A pottery was obtained.
About each obtained roasted material, it carried out similarly to Example 1, and analyzed the composition. The results are shown in Table 5. FIG. 7 shows the relationship between the carbon concentration and the Li leaching rate, and FIG. 8 shows the relationship between the roasting temperature and the Li leaching rate.

なお、Co浸出率の「<0.01」は、コバルトの浸出率が0.01%未満であったこと、詳細には検出下限値(3.46×10−4%)以下であったことを示す。 In addition, “<0.01” of the Co leaching rate was that the leaching rate of cobalt was less than 0.01%, specifically, the lower limit of detection (3.46 × 10 −4 %) or less. Indicates.

(実施例5)
市販の使用済リチウムイオン二次電池(正極にコバルト酸リチウム、負極に黒鉛を使用、コバルト酸リチウムに対する炭素含有量は40質量%)を、そのまま大気雰囲気(酸素21%、窒素78%)下、850℃で管状炉(KOYO LINDBERG社製)に挿入し、1.5時間焙焼を行った。加熱前の電池重量は17g、加熱後の焙焼物重量が11.6gであった。
得られた焙焼物について、カッターミルで粉砕し、目に見える大きな金属部分は除去した。粉砕により得られた粉末の合計量は8.3g、除去した金属部分は3.3gであった。得られた粉末の組成を実施例1と同様の方法で分析したところ、Liは2.9質量%、Coは33.6質量%であった。
次に、得られた粉末について、実施例1と同様の方法でLiを浸出し、分析したところ、Li浸出率は30.7%、Co浸出率は0.01%以下(詳細には検出下限値(3.46×10−4%)以下)であった。
(Example 5)
A commercially available used lithium ion secondary battery (lithium cobaltate for the positive electrode, graphite for the negative electrode, carbon content with respect to lithium cobaltate is 40% by mass) as it is in an atmospheric atmosphere (oxygen 21%, nitrogen 78%), It inserted in the tubular furnace (made by KOYO LINDBERG) at 850 degreeC, and baked for 1.5 hours. The weight of the battery before heating was 17 g, and the weight of the roasted product after heating was 11.6 g.
The obtained baked product was pulverized by a cutter mill to remove a large metal portion that was visible. The total amount of powder obtained by grinding was 8.3 g, and the removed metal portion was 3.3 g. The composition of the obtained powder was analyzed in the same manner as in Example 1. As a result, Li was 2.9% by mass and Co was 33.6% by mass.
Next, the obtained powder was leached and analyzed in the same manner as in Example 1. As a result, the Li leaching rate was 30.7% and the Co leaching rate was 0.01% or less (in detail, the detection lower limit). Value (3.46 × 10 −4 %) or less).

(実施例6)
実施例5と同じ使用済リチウムイオン二次電池を用い、実施例5と同様の方法で、大気雰囲気(酸素21%、窒素78%)5L/分で通気しながら、焙焼温度を700℃、炭素含有量を30%とし、700℃での保持時間を設けずに焙焼を行った。得られた焙焼物を実施例1と同様の方法により、粉砕し、金属部分を除去した粉末について、実施例1と同様の方法でLiを浸出し、分析したところ、Li浸出率は66%であった。
(Example 6)
Using the same used lithium-ion secondary battery as in Example 5, the roasting temperature was set to 700 ° C. while venting in the air atmosphere (21% oxygen, 78% nitrogen) at 5 L / min in the same manner as in Example 5. Roasting was carried out with a carbon content of 30% and no holding time at 700 ° C. The obtained roasted product was pulverized by the same method as in Example 1 and the powder from which the metal portion was removed was leached and analyzed in the same manner as in Example 1. As a result, the Li leaching rate was 66%. there were.

本発明のリチウムの回収方法は、リチウムイオン二次電池の正極材料であるコバルト酸リチウムから、リチウムを効率よく回収することができ、リチウムイオン二次電池の再利用を図ることができる。   The lithium recovery method of the present invention can efficiently recover lithium from lithium cobaltate, which is a positive electrode material of a lithium ion secondary battery, and can reuse the lithium ion secondary battery.

Claims (9)

コバルト酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、大気雰囲気下、酸化雰囲気下、及び還元性雰囲気下のいずれかで焙焼してなる酸化リチウムを含有する焙焼物を水で浸出することを特徴とするリチウムの回収方法。   A roasted product containing lithium oxide, which is obtained by roasting a mixture obtained by mixing 1 part by mass or more of carbon with respect to 100 parts by mass of lithium cobaltate in any of an air atmosphere, an oxidizing atmosphere, and a reducing atmosphere. Lithium recovery method characterized by leaching with water. コバルト酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、大気雰囲気下、500℃以上の温度で焙焼してなる酸化リチウムを含有する焙焼物を水で浸出する請求項1に記載のリチウムの回収方法。   A baked product containing lithium oxide formed by roasting a mixture obtained by mixing 1 part by mass or more of carbon with respect to 100 parts by mass of lithium cobaltate in an air atmosphere at a temperature of 500 ° C. or higher is leached with water. 2. The method for recovering lithium according to 1. コバルト酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、酸化雰囲気下、500℃以上の温度で焙焼してなる酸化リチウムを含有する焙焼物を水で浸出する請求項1に記載のリチウムの回収方法。   A baked product containing lithium oxide formed by roasting a mixture obtained by mixing 1 part by mass or more of carbon with respect to 100 parts by mass of lithium cobaltate in an oxidizing atmosphere at a temperature of 500 ° C or higher is leached with water. 2. The method for recovering lithium according to 1. コバルト酸リチウム100質量部に対し、1質量部〜50質量部の炭素を混合する請求項1から3のいずれか一項に記載のリチウムの回収方法。 The method for recovering lithium according to any one of claims 1 to 3, wherein 1 to 50 parts by mass of carbon is mixed with 100 parts by mass of lithium cobalt oxide. コバルト酸リチウム100質量部に対し、10質量部以上の炭素を混合した混合物を、大気雰囲気下、700℃以上の温度で焙焼してなる酸化リチウムを含有する焙焼物を水で浸出する請求項1から2のいずれか一項に記載のリチウムの回収方法。 A baked product containing lithium oxide formed by roasting a mixture obtained by mixing 10 parts by mass or more of carbon with respect to 100 parts by mass of lithium cobaltate in an air atmosphere at a temperature of 700 ° C or higher is leached with water. The method for recovering lithium according to any one of 1 to 2. コバルト酸リチウム100質量部に対し、1質量部以上の炭素を混合した混合物を、不活性雰囲気下、500℃以上700℃未満の温度で焙焼してなる酸化リチウムを含有する焙焼物を水で浸出することを特徴とするリチウムの回収方法。   A roasted product containing lithium oxide obtained by roasting a mixture of 1 part by mass or more of carbon with respect to 100 parts by mass of lithium cobaltate at a temperature of 500 ° C. or higher and lower than 700 ° C. in an inert atmosphere with water. Lithium recovery method characterized by leaching. コバルト酸リチウム100質量部に対し、15質量部〜50質量部の炭素を混合する請求項6に記載のリチウムの回収方法。   The method for recovering lithium according to claim 6, wherein 15 parts by mass to 50 parts by mass of carbon is mixed with 100 parts by mass of lithium cobalt oxide. コバルト酸リチウムと炭素を混合した混合物が、使用済リチウムイオン二次電池より得られたものである請求項1から7のいずれか一項に記載のリチウムの回収方法。 Mixture obtained by mixing lithium cobalt oxide and carbon, the method of recovering lithium according to any one of claims 1 were obtained from spent lithium ion secondary battery 7. 炭素が、カーボンブラック、黒鉛、活性炭、石炭、コークス、木炭、及び使用済リチウムイオン二次電池の負極、及び還元性を有する有機物のいずれかより得られたものである請求項1から8のいずれか一項に記載のリチウムの回収方法。 The carbon is obtained from any one of carbon black, graphite, activated carbon, coal, coke, charcoal, a negative electrode of a used lithium ion secondary battery, and an organic substance having reducibility. The method for recovering lithium according to claim 1 .
JP2010068685A 2009-09-30 2010-03-24 Lithium recovery method Active JP5535717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010068685A JP5535717B2 (en) 2009-09-30 2010-03-24 Lithium recovery method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009228430 2009-09-30
JP2009228430 2009-09-30
JP2010068685A JP5535717B2 (en) 2009-09-30 2010-03-24 Lithium recovery method

Publications (2)

Publication Number Publication Date
JP2011094228A JP2011094228A (en) 2011-05-12
JP5535717B2 true JP5535717B2 (en) 2014-07-02

Family

ID=44111458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010068685A Active JP5535717B2 (en) 2009-09-30 2010-03-24 Lithium recovery method

Country Status (1)

Country Link
JP (1) JP5535717B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11718895B2 (en) 2017-08-02 2023-08-08 Jx Nippon Mining & Metals Corporation Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap
EP4372113A1 (en) * 2022-11-18 2024-05-22 Ascend Elements, Inc. Lithium recovery from lithium-ion batteries
US12123074B2 (en) 2017-08-02 2024-10-22 Jx Metals Circular Solutions Co., Ltd. Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100991B2 (en) * 2011-05-25 2017-03-22 Dowaエコシステム株式会社 Method for recovering valuable material from positive electrode of lithium ion secondary battery
JP5269222B1 (en) * 2012-02-29 2013-08-21 Jx日鉱日石金属株式会社 Method for separating and collecting current collector and positive electrode active material from positive electrode material for lithium ion battery
JP5269228B1 (en) * 2012-03-30 2013-08-21 Jx日鉱日石金属株式会社 Method for separating and recovering positive electrode active material from positive electrode material for lithium ion battery
JP5898021B2 (en) * 2012-09-11 2016-04-06 株式会社日立製作所 Method and apparatus for recycling lithium ion battery
KR101708149B1 (en) * 2016-05-20 2017-02-20 (주)이엠티 A Method For Recovering Lithium Compound From An Anode Material In Spent Lithium Batteries By Wet-Milling
KR101802071B1 (en) * 2016-05-20 2017-11-27 (주)이엠티 A Method For Recovering Lithium Compound From An Anode Material In Spent Lithium Batteries By Wet-Milling
KR101731213B1 (en) * 2016-05-26 2017-04-27 (주)이엠티 A Method For Recovering Lithium Compound From A Spent Lithium Batteries
KR101792753B1 (en) * 2017-03-10 2017-11-01 문준호 A method for recovering lithium compound from waste comprising lithium
KR101927044B1 (en) * 2017-06-12 2019-03-12 재단법인 포항산업과학연구원 Rotary kiln and method for reducing valuable metals from used lithium battery using the same
JP6998241B2 (en) * 2018-03-07 2022-01-18 Jx金属株式会社 Lithium recovery method
KR102020238B1 (en) * 2018-04-09 2019-09-10 에스케이이노베이션 주식회사 Method of recycling active metal of lithium secondary battery
KR101897134B1 (en) * 2018-04-09 2018-09-10 에스케이이노베이션 주식회사 Method of regenerating lithium precursor from used lithium secondary battery
WO2019197192A1 (en) 2018-04-11 2019-10-17 Basf Se Process for the recovery of lithium and transition metal using heat
JP7217612B2 (en) * 2018-10-31 2023-02-03 Jx金属株式会社 Method for processing positive electrode active material waste of lithium ion secondary battery
KR102685070B1 (en) 2019-10-02 2024-07-12 에스케이이노베이션 주식회사 Method of recycling lithium precursor
KR20220092885A (en) * 2019-11-08 2022-07-04 도와 에코 시스템 가부시키가이샤 Lithium Separation Method
WO2021090571A1 (en) * 2019-11-08 2021-05-14 Dowaエコシステム株式会社 Method for separating lithium
KR102332465B1 (en) * 2019-12-27 2021-11-30 (주)다원화학 Method for Collecting Valuable Metal from Cathode Materials of Waste Lithium Ion Battery
JP7402733B2 (en) * 2020-03-31 2023-12-21 Jx金属株式会社 Heat treatment method for battery waste and lithium recovery method
CN113117637A (en) * 2021-04-19 2021-07-16 重庆大学 Method for preparing carbon dioxide adsorbing material by using waste lithium cobaltate battery as raw material
CN113481368B (en) * 2021-05-26 2023-04-07 广东佳纳能源科技有限公司 Method for leaching valuable metals from waste lithium cobaltate battery powder
CN114335781A (en) * 2021-12-27 2022-04-12 上海电力大学 Method for extracting precious metal from waste lithium battery
CN114890441B (en) * 2022-05-16 2023-05-23 昆明理工大学 Method for recycling lithium chloride and cobalt oxide from waste lithium cobalt oxide battery positive plate
JP2023177724A (en) * 2022-06-03 2023-12-14 株式会社エンビプロ・ホールディングス Waste residue of lithium ion battery and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011010A (en) * 2002-06-11 2004-01-15 Sumitomo Metal Mining Co Ltd Method for recovering lithium and cobalt from lithium cobaltate
JP4892925B2 (en) * 2005-10-25 2012-03-07 住友金属鉱山株式会社 Method for recovering valuable metals from lithium-ion batteries

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11718895B2 (en) 2017-08-02 2023-08-08 Jx Nippon Mining & Metals Corporation Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap
US12123074B2 (en) 2017-08-02 2024-10-22 Jx Metals Circular Solutions Co., Ltd. Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap
EP4372113A1 (en) * 2022-11-18 2024-05-22 Ascend Elements, Inc. Lithium recovery from lithium-ion batteries

Also Published As

Publication number Publication date
JP2011094228A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP5535717B2 (en) Lithium recovery method
JP5535716B2 (en) Lithium recovery method
JP7161272B2 (en) How to recycle lithium batteries
CN108075203B (en) Method for recycling valuable metal components in waste lithium ion battery material
EP3956485B1 (en) Process for the preparation of precursor compounds for lithium battery cathodes
JP5651462B2 (en) Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
JP2024105422A (en) Recycling process for used lithium-ion batteries
WO2019026978A1 (en) Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap
JP2019026916A (en) Method for recovering lithium from lithium ion secondary battery scrap
JP2012079630A (en) Recovery method of valuables from lithium ion secondary battery and recovered material having valuables
CN115136386A (en) Method for recycling active material using anode scrap
JP2016037661A (en) Method for recovering valuable metal
JP2016191143A (en) Lithium extraction method
KR102460833B1 (en) A method of recycling secondary battery materials
JP7520144B2 (en) Method for reusing active material using cathode scraps
KR100358528B1 (en) recycling method of lithium ion secondary battery
KR100448273B1 (en) Recovery Method of Cobalt from spent lithium ion battery
WO2022085222A1 (en) Method for recovering lithium and method for producing lithium carbonate
KR20220034687A (en) Method for recovering cathode material
KR20220070764A (en) Method for recycling cathode material of used lithium ion battery
JP7286085B2 (en) Method for recovering lithium from lithium-ion batteries
KR20220170745A (en) System for Recovering Valuable Metals from Wasted Batteries
CN110791668A (en) Method for recovering manganese from manganese-containing lithium ion battery anode waste
JP6571123B2 (en) Method for leaching lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
JP2021055159A (en) Method for leaching out manganese from lithium ion secondary battery and metal recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5535717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250