JP2004011010A - Method for recovering lithium and cobalt from lithium cobaltate - Google Patents

Method for recovering lithium and cobalt from lithium cobaltate Download PDF

Info

Publication number
JP2004011010A
JP2004011010A JP2002169576A JP2002169576A JP2004011010A JP 2004011010 A JP2004011010 A JP 2004011010A JP 2002169576 A JP2002169576 A JP 2002169576A JP 2002169576 A JP2002169576 A JP 2002169576A JP 2004011010 A JP2004011010 A JP 2004011010A
Authority
JP
Japan
Prior art keywords
lithium
cobalt
leaching
recovering
roasted product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002169576A
Other languages
Japanese (ja)
Inventor
Kazuya Maeba
前場 和也
Shuji Okada
岡田 修二
Toshiro Tan
丹 敏郎
Atsushi Kanesaka
金坂 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002169576A priority Critical patent/JP2004011010A/en
Publication of JP2004011010A publication Critical patent/JP2004011010A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for safely separating and recovering lithium and cobalt, of which the operation can be inexpensively conducted without using expensive chemicals. <P>SOLUTION: Lithium cobaltate is subjected to reduction roasting in an hydrogen current at the temperature ≥ 400°C or subjected to reduction roasting with carbon added thereto in an inert gas atmosphere at the temperature ≥ 700°C, so that the compound form of lithium cobaltate is changed. The roasted product is leached with water, so that lithium is recovered by elution and cobalt is recovered by distribution to a residue respectively. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、コバルト酸リチウムからのリチウムおよびコバルトの回収方法に関し、特に、例えばリチウム電池原料であるコバルト酸リチウムからの回収方法に関する。
【0002】
【従来の技術】
リチウムおよびコバルトからなる物質として、廃リチウム電池の正極のコバルト酸リチウムがあるが、コバルト酸リチウムは安定な岩塩構造であり、従来は、硝酸、硫酸、塩酸などの強酸を使用して溶解した後、中和反応を行い、目的に応じたコバルト化合物を製造していた。
【0003】
この方法では、硝酸、硫酸に対する溶解度が小さい問題に加えて、多量の還元剤を必要とし、また、溶解させた後、リチウムおよびコバルトの分離回収を行う必要があった。さらに、塩酸を使用した場合には塩素ガスが発生するという、安全上の問題があった。
【0004】
また、塩酸等の高価な薬品を使用するため、操業コストが高いという問題もあった。
【0005】
【発明が解決しようとする課題】
本発明の方法は、これらの問題を解決するために、高価な薬品を用いることなく、安価に操業を行うことができ、リチウムとコバルトとを安全に分離回収する方法を提供する。
【0006】
【課題を解決するための手段】
本発明者らは、あらかじめ水素気流中で還元させるか、あるいは炭素を添加して不活性ガス雰囲気中で還元させることによって、水浸出分離を可能とし、コバルトに対してリチウムを選択的に完全に水浸出させることが可能となることを見出した。
【0007】
さらに具体的には、水素ガスを供給しながら400℃以上でコバルト酸リチウムを焙焼する場合には、粉砕工程を行うことなく、リチウムを完全に水浸出させることができ、コバルトと分離回収することができる。
【0008】
一方、水素ガスを供給する代わりに、炭素等の還元剤を用いて不活性ガス雰囲気中、700℃以上の温度で還元焙焼することでも、水浸出分離が可能である。ただし、炭素を用いた還元の場合には、還元温度が炭酸リチウムの融点よりも高い温度を必要とするため、粉砕工程を必要とする。また、水素還元焙焼物よりも、リチウムが溶出しにくいため、レパルプ洗浄を必要とする。
【0009】
以上により、本発明のコバルト酸リチウムからのリチウムおよびコバルトの回収方法は、コバルト酸リチウムを、水素気流中で、かつ、400℃以上の温度にて、還元焙焼することにより、コバルト酸リチウムの化合物形態をLiOHあるいはLiOへ変化させ、焙焼物を水で浸出することにより、焙焼物中のリチウム分を溶出させて、かつ、コバルトを残渣中へ分配させて、それぞれ回収することを特徴とする。
【0010】
あるいは、コバルト酸リチウムに炭素を添加し、700℃以上の温度にて、不活性ガス雰囲気中にて、還元焙焼することにより、コバルト酸リチウムの化合物形態をLiCOへ変化させ、焙焼物を水で浸出することにより、焙焼物中のリチウム分を溶出させて、かつ、コバルトを残渣中へ分配させて、それぞれ回収することもできる。なお、この場合、前記焙焼物を水で浸出した後、レパルプ洗浄を3回以上行うことが望ましい。
【0011】
さらに、本発明は、得られたリチウム浸出液を、蒸発させることにより、リチウムを飽和溶解度まで濃縮し、晶析するか、得られたリチウム浸出液へ、炭酸ガスを吹き込むことにより、炭酸リチウムを生成することで回収することを特徴とする。
【0012】
以上のように、本発明によれば、還元焙焼することにより、酸を使用せずに、水のみでリチウムを浸出することが可能である。また、還元剤に水素あるいは炭素を使用することで、高価な酸を使用しなくて済み、また中和剤を必要としない。
【0013】
【発明の実施の形態】
本発明の方法は、コバルト酸リチウムからリチウムとコバルトとを完全に分離回収する方法であって、コバルト酸リチウムを最適温度で、水素還元焙焼あるいは炭素還元焙焼を行うことにより、コバルト酸リチウムの化合物形態を変化させ、次に、還元処理した焙焼物を水で浸出し、焙焼物中のリチウム分を溶出させることにより、コバルトを残渣中へ分配させて、それぞれ回収する。
【0014】
水素気流中では、400℃以上で還元焙焼することにより、リチウムを完全に水浸出させることが可能である。
【0015】
また、炭素を添加し、不活性ガス雰囲気中で700℃以上で焙焼することにより、リチウムを完全に水浸出させることが可能である。
【0016】
上記の還元操作を行うために、十分な水素あるいは炭素を供給し、リチウムの形態を完全に、LiOH、LiO、あるいはLiCOへ変化させることにより、リチウムを完全に水浸出させることができる。
【0017】
また、水に溶解したリチウム分は、晶析させ水酸化リチウムとして回収するか、あるいは炭酸ガスを吹き込んで、炭酸リチウムとして回収する。
【0018】
本発明の方法において、水素により還元焙焼を400℃以上で行った場合には、焙焼物の焼結が抑えられるので、粉砕工程を必要としない。
【0019】
一方、炭素による焙焼還元を行った場合には、還元温度が低いために、焼結後の粉砕と、炭素還元焙焼物を水浸出した後、レパルプ洗浄を数回、好ましくは3回以上、行うことで、完全にリチウムを水浸出させることができる。
【0020】
本発明の方法では、還元焙焼することにより、酸を使用せずに水のみで、リチウムを浸出させることが可能である。また、還元剤に水素あるいは炭素を供給することで、高価な酸を使用せず、かつ、中和剤を必要としないため、経済的な操業を行える。
【0021】
また、水による浸出後のリチウム分は、リチウム浸出液を蒸発させ、リチウムを飽和溶解度まで濃縮し、晶析させるか、あるいは、リチウム浸出液へ炭酸ガスを吹き込むことにより、炭酸リチウムとして回収することができる。
【0022】
【実施例】
(実施例1)
リチウム7質量%、コバルト60質量%および酸素33質量%のコバルト酸リチウム50gを、管状炉に装入し、1.15L/minの水素気流中、400℃にて1時間、焙焼を行った。供給した水素量(還元剤当量)は、還元反応式で計算される必要量の4倍に相当する。
【0023】
得られた焙焼物の質量と組成の分析を行い、次いで、焙焼物を常温にて1時間、50g/Lの純水中で攪拌浸出した後、水浸出後の浸出残渣と浸出液を分析した。得られた分析値から、リチウムおよびコバルトの浸出率を算出した。その測定結果を表1に示す。
【0024】
(実施例2)
実施例1と同じコバルト酸リチウム50gに、炭素6.9gを添加し、不活性ガス雰囲気中、800℃にて2時間、焙焼を行った。炭素添加量は、還元反応式で計算される必要量の1.5倍に相当する。
【0025】
得られた焙焼物の質量と組成の分析を行い、次いで、焙焼物を常温にて1時間、50g/Lの純水中で攪拌浸出した後、レパルプ洗浄を3回実施して、水浸出後の浸出残渣と浸出液を分析した。得られた分析値から、リチウムおよびコバルトの浸出率を算出した。その測定結果を表1に示す。
【0026】
表1の実施例1および実施例2に示すように、リチウムは99%以上の浸出率を示し、また、コバルトは0.1%以下の浸出率でほぼ全量が残渣に残っており、リチウムとコバルトを完全に分離回収できていることが、水素還元焙焼および炭素還元焙焼の両方法において可能であることがわかる。
【0027】
(比較例1)
実施例1と同じコバルト酸リチウム50gに、還元焙焼を行うことなく、常温にて1時間、50g/Lの純水中で攪拌浸出した後、レパルプ洗浄を3回実施して、水浸出後の浸出残渣と浸出液を分析した。浸出前のリチウムおよびコバルトの質量と、得られた分析値から、リチウムおよびコバルトの浸出率を算出した。その測定結果を表1に示す。
【0028】
表1の比較例1に示すように、コバルトの浸出率は0.1%以下でほぼ全量が残渣に残っていたが、リチウムの浸出率が5%程度と低く、完全分離ができていないことがわかる。
【0029】
(比較例2)
焙焼温度を300℃とした以外は、実施例1と同様にして水素還元焙焼を行い、それぞれの浸出率を算出した。その測定結果を表1に示す。
【0030】
(実施例3)
焙焼温度を600℃とした以外は、実施例1と同様にして水素還元焙焼を行い、それぞれの浸出率を算出した。その測定結果を表1に示す。
【0031】
(実施例4)
焙焼温度を800℃とした以外は、実施例1と同様にして水素還元焙焼を行い、それぞれの浸出率を算出した。その測定結果を表1に示す。
【0032】
表1の比較例2,実施例3および実施例4に示すように、焙焼温度が300℃(比較例2)ではリチウムの浸出率が80%程度と低く、焙焼温度が400℃以上の600℃(実施例3)および800℃(実施例4)では、リチウム浸出率が99%以上であるように、リチウムが完全に浸出されており、400℃以上の焙焼温度であれば還元が進行し、リチウムを完全に浸出可能であることがわかる。
【0033】
(比較例3)
還元剤当量を0.5とした以外は、実施例1と同様にして水素還元焙焼を行い、それぞれの浸出率を算出した。その測定結果を表1に示す。
【0034】
(比較例4)
還元剤当量を1とした以外は、実施例1と同様にして水素還元焙焼を行い、それぞれの浸出率を算出した。その測定結果を表1に示す。
【0035】
(比較例5)
還元剤当量を2とした以外は、実施例1と同様にして水素還元焙焼を行い、それぞれの浸出率を算出した。その測定結果を表1に示す。
【0036】
(実施例5)
還元剤当量を8とした以外は、実施例1と同様にして水素還元焙焼を行い、それぞれの浸出率を算出した。その測定結果を表1に示す。
【0037】
表1の比較例3〜5および実施例5に示すように、還元剤当量が4以上の8である実施例5で、リチウム浸出率が99%以上であり、詳細は示さないが、還元剤当量は、還元反応式で計算される必要量の4倍以上であれば、高いリチウム浸出率を得られることがわかる。
【0038】
(比較例6)
焙焼温度を600℃とした以外は、実施例2と同様にして炭素還元焙焼を行い、それぞれの浸出率を算出した。その測定結果を表1に示す。
【0039】
(比較例7)
焙焼温度を650℃とした以外は、実施例2と同様にして炭素還元焙焼を行い、それぞれの浸出率を算出した。その測定結果を表1に示す。
【0040】
(実施例6)
焙焼温度を700℃とした以外は、実施例2と同様にして炭素還元焙焼を行い、それぞれの浸出率を算出した。その測定結果を表1に示す。
【0041】
表1の比較例6、比較例7および実施例6に示すように、焙焼温度が600℃(比較例6)ではリチウム浸出率が70%程度であり、リチウムを完全に溶出することが不可能であるが、焙焼温度が700℃以上(実施例6)では、99%以上のリチウム浸出率に向上する。これにより、炭素還元の焙焼温度は、700℃以上であることが必要であるとわかる。
【0042】
(比較例8)
実施例1と同じコバルト酸リチウム50gに、炭素6.9gを添加し、不活性ガス雰囲気中、800℃にて2時間、焙焼を行った。炭素添加量は、還元反応式で計算される必要量の1.5倍に相当する。
【0043】
得られた焙焼物の質量と組成の分析を行い、次いで、焙焼物を常温にて1時間、50g/Lの純水中で攪拌浸出して、水浸出後の浸出残渣と浸出液とを分析した。得られた分析値から、リチウムおよびコバルトの浸出率を算出した。その測定結果を表1に示す。
【0044】
表1に示すように、レパルプ洗浄の有無だけが異なる実施例2および比較例8で、レパルプ洗浄を行わない比較例8では、リチウム浸出率が75%程度と低かった。このことから、レパルプ洗浄なしでは、完全にリチウムを除去することが不可能であることがわかる。
【0045】
【表1】

Figure 2004011010
【0046】
(実施例7)
実施例1で得られたリチウム浸出液(リチウム濃度:18.8g/L)600mLを用いて、85℃で8時間、濃縮晶析を実施した。その結果、表2に示す分析値の水酸化リチウムを33.9g生成させることができた。
【0047】
本実施例により、本発明により得られたリチウム浸出液には、コバルト等の不純物がほとんど分配されないことがわかる。
【0048】
【表2】
Figure 2004011010
【0049】
(実施例8)
実施例1で得られたリチウム浸出液(リチウム濃度:18.8g/L)300mLに、炭酸ガスを300mL/minで50分間、供給した。その結果、表3に示す分析値の炭酸リチウムを25.2g生成させることができた。
【0050】
本実施例により、本発明により得られたリチウム浸出液には、コバルト等の不純物がほとんど分配されないことがわかる。
【0051】
【表3】
Figure 2004011010
【0052】
【発明の効果】
本発明の方法により、コバルト酸リチウムから、高価である薬品を用いずに安価で、リチウムとコバルトとを完全に分離回収することができる。
【0053】
さらに、従来方法で問題となっていた塩素ガスの発生を抑制できるので、本発明の方法は、経済性の点のみならず、安全性の点においても優れる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for recovering lithium and cobalt from lithium cobalt oxide, and more particularly, to a method for recovering lithium cobalt oxide, which is a raw material of a lithium battery, for example.
[0002]
[Prior art]
As a material composed of lithium and cobalt, there is lithium cobalt oxide as a positive electrode of a waste lithium battery.Lithium cobalt oxide has a stable rock salt structure, and has conventionally been dissolved using a strong acid such as nitric acid, sulfuric acid, or hydrochloric acid. A neutralization reaction was performed to produce a cobalt compound suitable for the purpose.
[0003]
In this method, in addition to the problem of low solubility in nitric acid and sulfuric acid, a large amount of a reducing agent is required, and it is necessary to separate and recover lithium and cobalt after dissolution. Furthermore, when hydrochloric acid is used, there is a safety problem that chlorine gas is generated.
[0004]
In addition, since expensive chemicals such as hydrochloric acid are used, there is a problem that operation costs are high.
[0005]
[Problems to be solved by the invention]
In order to solve these problems, the method of the present invention can operate at low cost without using expensive chemicals, and provides a method for safely separating and recovering lithium and cobalt.
[0006]
[Means for Solving the Problems]
The present inventors have made it possible to perform water leaching separation by previously reducing in a hydrogen gas stream or by adding carbon and reducing in an inert gas atmosphere, and to selectively completely remove lithium from cobalt. It has been found that water can be leached.
[0007]
More specifically, when roasting lithium cobaltate at 400 ° C. or higher while supplying hydrogen gas, lithium can be completely leached with water without performing a pulverizing step, and separated and recovered from cobalt. be able to.
[0008]
On the other hand, water leaching separation is also possible by performing reduction roasting at a temperature of 700 ° C. or more in an inert gas atmosphere using a reducing agent such as carbon instead of supplying hydrogen gas. However, in the case of reduction using carbon, a pulverizing step is required because the reduction temperature needs to be higher than the melting point of lithium carbonate. Further, since lithium is less likely to be eluted than the hydrogen reduced and roasted product, repulping washing is required.
[0009]
As described above, the method for recovering lithium and cobalt from lithium cobaltate according to the present invention comprises reducing and roasting lithium cobaltate in a hydrogen stream at a temperature of 400 ° C. or higher, whereby lithium cobaltate is recovered. By changing the compound form to LiOH or Li 2 O and leaching the roasted product with water, the lithium content in the roasted product is eluted, and the cobalt is distributed to the residue and collected. And
[0010]
Alternatively, carbon is added to lithium cobaltate and reduced and roasted in an inert gas atmosphere at a temperature of 700 ° C. or more to change the compound form of lithium cobaltate to Li 2 CO 3 , By leaching the fired product with water, the lithium content in the roasted product can be eluted, and the cobalt can be distributed into the residue to be recovered. In this case, it is desirable to perform repulping washing three or more times after leaching the roasted product with water.
[0011]
Further, the present invention produces lithium carbonate by evaporating the obtained lithium leachate, concentrating lithium to the saturation solubility and crystallizing, or blowing carbon dioxide gas into the obtained lithium leachate. It is characterized in that it is collected by collecting.
[0012]
As described above, according to the present invention, by performing reduction roasting, lithium can be leached only with water without using an acid. Further, by using hydrogen or carbon as a reducing agent, an expensive acid is not required, and a neutralizing agent is not required.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The method of the present invention is a method for completely separating and recovering lithium and cobalt from lithium cobaltate. The lithium cobaltate is subjected to hydrogen reduction roasting or carbon reduction roasting at an optimum temperature to obtain lithium cobaltate. Then, the reduced roasted product is leached with water, and the lithium content in the roasted product is eluted, thereby distributing cobalt into the residue and recovering each.
[0014]
Lithium can be completely leached in water by reducing and roasting at 400 ° C. or higher in a hydrogen stream.
[0015]
Further, by adding carbon and baking at 700 ° C. or more in an inert gas atmosphere, lithium can be completely leached with water.
[0016]
To perform the above reduction operation, supply sufficient hydrogen or carbon and completely change the form of lithium to LiOH, Li 2 O, or Li 2 CO 3 , thereby completely leaching lithium in water. Can be.
[0017]
Lithium dissolved in water is crystallized and recovered as lithium hydroxide, or is blown with carbon dioxide gas and recovered as lithium carbonate.
[0018]
In the method of the present invention, when the reduction roasting is performed at 400 ° C. or higher with hydrogen, the sintering of the roasted product is suppressed, so that a pulverizing step is not required.
[0019]
On the other hand, when the roasting reduction with carbon is performed, since the reduction temperature is low, pulverization after sintering, and after leaching the carbon reduction roasted product with water, several times of repulping washing, preferably three or more times, By doing so, lithium can be completely leached with water.
[0020]
In the method of the present invention, by performing reduction roasting, lithium can be leached with only water without using an acid. In addition, by supplying hydrogen or carbon to the reducing agent, an expensive acid is not used and a neutralizing agent is not required, so that economical operation can be performed.
[0021]
Further, the lithium content after leaching with water can be recovered as lithium carbonate by evaporating the lithium leaching solution, concentrating the lithium to the saturation solubility and crystallizing, or blowing carbon dioxide gas into the lithium leaching solution. .
[0022]
【Example】
(Example 1)
50 g of lithium cobalt oxide containing 7% by mass of lithium, 60% by mass of cobalt, and 33% by mass of oxygen were charged into a tubular furnace, and calcined at 400 ° C. for 1 hour in a hydrogen stream of 1.15 L / min. . The amount of supplied hydrogen (equivalent to a reducing agent) corresponds to four times the required amount calculated by the reduction reaction formula.
[0023]
The mass and composition of the obtained roasted product were analyzed, and then the roasted product was stirred and leached in 50 g / L pure water at room temperature for 1 hour, and the leaching residue and leaching solution after water leaching were analyzed. From the obtained analysis values, the leaching rates of lithium and cobalt were calculated. Table 1 shows the measurement results.
[0024]
(Example 2)
6.9 g of carbon was added to 50 g of the same lithium cobalt oxide as in Example 1, and roasting was performed at 800 ° C. for 2 hours in an inert gas atmosphere. The amount of carbon added is equivalent to 1.5 times the required amount calculated by the reduction reaction formula.
[0025]
The mass and composition of the obtained roasted product were analyzed, and then the roasted product was stirred and leached in pure water of 50 g / L for 1 hour at room temperature, and then repulp washing was performed three times, and after the water leaching, The leaching residue and the leaching solution were analyzed. From the obtained analysis values, the leaching rates of lithium and cobalt were calculated. Table 1 shows the measurement results.
[0026]
As shown in Example 1 and Example 2 of Table 1, lithium shows a leaching rate of 99% or more, and cobalt almost leaches at a leaching rate of 0.1% or less in the residue. It can be seen that complete separation and recovery of cobalt is possible in both the hydrogen reduction roasting and the carbon reduction roasting.
[0027]
(Comparative Example 1)
The same 50 g of lithium cobaltate as in Example 1 was stirred and leached in pure water of 50 g / L for 1 hour at room temperature without performing reduction roasting, and then, repulp washing was performed three times, followed by water leaching. The leaching residue and the leaching solution were analyzed. The leaching rates of lithium and cobalt were calculated from the masses of lithium and cobalt before leaching and the obtained analysis values. Table 1 shows the measurement results.
[0028]
As shown in Comparative Example 1 in Table 1, the leaching rate of cobalt was 0.1% or less and almost the entire amount remained in the residue. However, the leaching rate of lithium was as low as about 5%, and complete separation was not achieved. I understand.
[0029]
(Comparative Example 2)
Hydrogen reduction roasting was performed in the same manner as in Example 1 except that the roasting temperature was set to 300 ° C., and the respective leaching rates were calculated. Table 1 shows the measurement results.
[0030]
(Example 3)
Hydrogen reduction roasting was performed in the same manner as in Example 1 except that the roasting temperature was set to 600 ° C., and the respective leaching rates were calculated. Table 1 shows the measurement results.
[0031]
(Example 4)
Hydrogen reduction roasting was performed in the same manner as in Example 1 except that the roasting temperature was set to 800 ° C., and the respective leaching rates were calculated. Table 1 shows the measurement results.
[0032]
As shown in Comparative Example 2, Example 3 and Example 4 in Table 1, when the roasting temperature is 300 ° C. (Comparative Example 2), the leaching rate of lithium is as low as about 80%, and the roasting temperature is 400 ° C. or higher. At 600 ° C. (Example 3) and 800 ° C. (Example 4), lithium was completely leached such that the lithium leaching rate was 99% or more, and reduction was performed at a roasting temperature of 400 ° C. or more. It can be seen that lithium can be completely leached out.
[0033]
(Comparative Example 3)
Hydrogen reduction roasting was performed in the same manner as in Example 1 except that the reducing agent equivalent was set to 0.5, and each leaching rate was calculated. Table 1 shows the measurement results.
[0034]
(Comparative Example 4)
Hydrogen reduction roasting was performed in the same manner as in Example 1 except that the reducing agent equivalent was set to 1, and each leaching rate was calculated. Table 1 shows the measurement results.
[0035]
(Comparative Example 5)
Hydrogen reduction roasting was performed in the same manner as in Example 1 except that the reducing agent equivalent was set to 2, and the respective leaching rates were calculated. Table 1 shows the measurement results.
[0036]
(Example 5)
Hydrogen reduction roasting was performed in the same manner as in Example 1 except that the reducing agent equivalent was set to 8, and the respective leaching rates were calculated. Table 1 shows the measurement results.
[0037]
As shown in Comparative Examples 3 to 5 and Example 5 in Table 1, in Example 5 in which the reducing agent equivalent is 8 or more, the lithium leaching rate is 99% or more, and details are not shown. It can be seen that a high lithium leaching rate can be obtained if the equivalent is at least four times the required amount calculated by the reduction reaction formula.
[0038]
(Comparative Example 6)
Carbon reduction roasting was performed in the same manner as in Example 2 except that the roasting temperature was set to 600 ° C., and the respective leaching rates were calculated. Table 1 shows the measurement results.
[0039]
(Comparative Example 7)
Carbon reduction roasting was performed in the same manner as in Example 2 except that the roasting temperature was changed to 650 ° C., and the respective leaching rates were calculated. Table 1 shows the measurement results.
[0040]
(Example 6)
Except that the roasting temperature was set to 700 ° C., carbon reduction roasting was performed in the same manner as in Example 2, and the respective leaching rates were calculated. Table 1 shows the measurement results.
[0041]
As shown in Comparative Example 6, Comparative Example 7, and Example 6 in Table 1, when the roasting temperature was 600 ° C. (Comparative Example 6), the lithium leaching rate was about 70%, and it was impossible to completely elute lithium. Although it is possible, when the roasting temperature is 700 ° C. or more (Example 6), the lithium leaching rate is improved to 99% or more. This indicates that the roasting temperature for carbon reduction needs to be 700 ° C. or higher.
[0042]
(Comparative Example 8)
6.9 g of carbon was added to 50 g of the same lithium cobalt oxide as in Example 1, and roasting was performed at 800 ° C. for 2 hours in an inert gas atmosphere. The amount of carbon added is equivalent to 1.5 times the required amount calculated by the reduction reaction formula.
[0043]
The mass and composition of the obtained roasted product were analyzed, and then the roasted product was stirred and leached in 50 g / L pure water at room temperature for 1 hour, and the leaching residue and leaching solution after water leaching were analyzed. . From the obtained analysis values, the leaching rates of lithium and cobalt were calculated. Table 1 shows the measurement results.
[0044]
As shown in Table 1, in Example 2 and Comparative Example 8, which differ only in the presence or absence of repulping cleaning, in Comparative Example 8 in which repulping cleaning was not performed, the lithium leaching rate was as low as about 75%. This shows that it is impossible to completely remove lithium without repulping.
[0045]
[Table 1]
Figure 2004011010
[0046]
(Example 7)
Using 600 mL of the lithium leaching solution (lithium concentration: 18.8 g / L) obtained in Example 1, concentration crystallization was performed at 85 ° C. for 8 hours. As a result, 33.9 g of lithium hydroxide having the analysis values shown in Table 2 could be produced.
[0047]
This example shows that impurities such as cobalt are hardly distributed in the lithium leaching solution obtained by the present invention.
[0048]
[Table 2]
Figure 2004011010
[0049]
(Example 8)
Carbon dioxide gas was supplied to 300 mL of the lithium leachate (lithium concentration: 18.8 g / L) obtained in Example 1 at 300 mL / min for 50 minutes. As a result, 25.2 g of lithium carbonate having the analysis values shown in Table 3 could be produced.
[0050]
This example shows that impurities such as cobalt are hardly distributed in the lithium leaching solution obtained by the present invention.
[0051]
[Table 3]
Figure 2004011010
[0052]
【The invention's effect】
According to the method of the present invention, lithium and cobalt can be completely separated and recovered from lithium cobaltate at low cost without using expensive chemicals.
[0053]
Furthermore, since the generation of chlorine gas, which has been a problem in the conventional method, can be suppressed, the method of the present invention is excellent not only in economic efficiency but also in safety.

Claims (6)

コバルト酸リチウムを、水素気流中で、かつ、400℃以上の温度にて、還元焙焼することにより、焙焼物を得て、該焙焼物を水で浸出することにより、焙焼物中のリチウム分を溶出させて、かつ、コバルトを残渣中へ分配させて、それぞれ回収することを特徴とするコバルト酸リチウムからのリチウムおよびコバルトの回収方法。Lithium cobaltate is reduced and roasted in a stream of hydrogen at a temperature of 400 ° C. or higher to obtain a roasted product, and by leaching the roasted product with water, lithium content in the roasted product is reduced. And recovering lithium by distributing cobalt into the residue and recovering lithium and cobalt from lithium cobaltate, respectively. コバルト酸リチウムに炭素を添加し、700℃以上の温度にて、不活性ガス雰囲気中にて、還元焙焼することにより、焙焼物を得て、該焙焼物を水で浸出することにより、焙焼物中のリチウム分を溶出させて、かつ、コバルトを残渣中へ分配させて、それぞれ回収することを特徴とするコバルト酸リチウムからのリチウムおよびコバルトの回収方法。Carbon is added to lithium cobalt oxide, and reduced roasting is performed in an inert gas atmosphere at a temperature of 700 ° C. or more to obtain a roasted product, and the roasted product is leached with water to obtain a roasted product. A method for recovering lithium and cobalt from lithium cobalt oxide, wherein lithium is eluted from the calcined product, and cobalt is distributed into the residue to recover the lithium, respectively. 前記焙焼物を水で浸出した後、レパルプ洗浄を3回以上行うことを特徴とする請求項2に記載のコバルト酸リチウムからのリチウムおよびコバルトの回収方法。The method for recovering lithium and cobalt from lithium cobaltate according to claim 2, wherein after the roasted product is leached with water, repulping is performed three times or more. 前記還元焙焼することにより、リチウムの形態をLiOH、LiO、あるいはLiCOへ変化させることを特徴とする請求項1〜3のいずれかに記載のコバルト酸リチウムからのリチウムおよびコバルトの回収方法。By the reduction roast, lithium and cobalt in the form of lithium LiOH, from lithium cobalt oxide according to any one of claims 1 to 3, characterized in that varying the Li 2 O or Li 2 CO 3, Collection method. 得られたリチウム浸出液を、蒸発させることにより、リチウムを飽和溶解度まで濃縮し、晶析することを特徴とする請求項1〜4のいずれかに記載のコバルト酸リチウムからのリチウムおよびコバルトの回収方法。The method for recovering lithium and cobalt from lithium cobaltate according to any one of claims 1 to 4, wherein the obtained lithium leachate is evaporated to concentrate lithium to a saturation solubility and crystallize. . 得られたリチウム浸出液へ、炭酸ガスを吹き込むことにより、炭酸リチウムを生成することを特徴とする請求項1〜4のいずれかに記載のコバルト酸リチウムからのリチウムおよびコバルトの回収方法。The method for recovering lithium and cobalt from lithium cobaltate according to any one of claims 1 to 4, wherein lithium carbonate is generated by blowing carbon dioxide gas into the obtained lithium leachate.
JP2002169576A 2002-06-11 2002-06-11 Method for recovering lithium and cobalt from lithium cobaltate Pending JP2004011010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002169576A JP2004011010A (en) 2002-06-11 2002-06-11 Method for recovering lithium and cobalt from lithium cobaltate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002169576A JP2004011010A (en) 2002-06-11 2002-06-11 Method for recovering lithium and cobalt from lithium cobaltate

Publications (1)

Publication Number Publication Date
JP2004011010A true JP2004011010A (en) 2004-01-15

Family

ID=30436098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169576A Pending JP2004011010A (en) 2002-06-11 2002-06-11 Method for recovering lithium and cobalt from lithium cobaltate

Country Status (1)

Country Link
JP (1) JP2004011010A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094228A (en) * 2009-09-30 2011-05-12 Dowa Eco-System Co Ltd Method for recovering lithium
JP2011154811A (en) * 2010-01-26 2011-08-11 Dowa Eco-System Co Ltd Method for leaching lithium and method for recovering lithium
JP2013527306A (en) * 2009-10-14 2013-06-27 エスジーエル カーボン エスイー Method and reactor for processing Li-containing bulk materials
JP2013224493A (en) * 2013-06-18 2013-10-31 Nippon Yakin Kogyo Co Ltd Reducing method for valuable metal raw material
CN103794832A (en) * 2012-10-29 2014-05-14 比亚迪股份有限公司 Recovery method of positive active material in lithium ion battery waste material
KR101623930B1 (en) * 2014-02-11 2016-05-24 타운마이닝캄파니(주) Method for recovering valuable metals from cathodic active material of used lithium battery
CN106129511A (en) * 2016-06-27 2016-11-16 北京科技大学 A kind of method of comprehensively recovering valuable metal from waste and old lithium ion battery material
CN106450549A (en) * 2016-10-24 2017-02-22 中国科学院过程工程研究所 Method for cleanly recycling nickel and/or cobalt from positive electrode material
CN106929664A (en) * 2017-03-10 2017-07-07 中南大学 A kind of method that lithium is reclaimed from waste and old ternary lithium ion battery
KR101828168B1 (en) 2016-08-23 2018-02-09 부경대학교 산학협력단 Recovery method of lithium carbonate and recovery system of lithium carbonate
CN108091956A (en) * 2016-11-23 2018-05-29 江苏凯力克钴业股份有限公司 A kind of circulation regeneration method for scrapping cobalt acid lithium battery positive electrode
WO2018113477A1 (en) * 2016-12-23 2018-06-28 江西合纵锂业科技有限公司 Method for recovering cobalt and lithium from positive electrode material of spent lithium cobalt oxide battery
CN108220607A (en) * 2018-02-23 2018-06-29 中国科学院过程工程研究所 A kind of method that lithium is recycled from waste material containing lithium electrode
KR101897134B1 (en) * 2018-04-09 2018-09-10 에스케이이노베이션 주식회사 Method of regenerating lithium precursor from used lithium secondary battery
CN109574048A (en) * 2019-01-30 2019-04-05 鲍君杰 A kind of processing method of discarded lithium iron phosphate positive material
CN109786739A (en) * 2019-01-29 2019-05-21 东北大学 A kind of method of fused salt auxiliary carbon thermal reduction recycling anode material of lithium battery
KR102020238B1 (en) * 2018-04-09 2019-09-10 에스케이이노베이션 주식회사 Method of recycling active metal of lithium secondary battery
WO2019198972A1 (en) * 2018-04-12 2019-10-17 주식회사 에코프로이노베이션 Method for producing lithium hydroxide monohydrate by using waste cathode material of lithium ion secondary battery
JP2020029613A (en) * 2018-08-20 2020-02-27 住友金属鉱山株式会社 Lithium recovery method
JP2020064855A (en) * 2018-10-11 2020-04-23 Dowaエコシステム株式会社 Method for recovering valuables from lithium ion secondary battery
CN111172396A (en) * 2019-12-30 2020-05-19 银隆新能源股份有限公司 Method for recovering metal elements in lithium battery anode and cathode materials
JP2020183559A (en) * 2019-05-07 2020-11-12 株式会社アサカ理研 Recovery method of lithium from lithium-ion battery
JP6869444B1 (en) * 2019-11-08 2021-05-12 Dowaエコシステム株式会社 Lithium separation method
WO2021090571A1 (en) * 2019-11-08 2021-05-14 Dowaエコシステム株式会社 Method for separating lithium
CN112930618A (en) * 2018-10-31 2021-06-08 捷客斯金属株式会社 Method for treating positive active material waste of lithium ion secondary battery
CN113117637A (en) * 2021-04-19 2021-07-16 重庆大学 Method for preparing carbon dioxide adsorbing material by using waste lithium cobaltate battery as raw material
CN113481368A (en) * 2021-05-26 2021-10-08 广东佳纳能源科技有限公司 Method for leaching valuable metals from waste lithium cobaltate battery powder
WO2021246721A1 (en) * 2020-06-01 2021-12-09 에스케이이노베이션 주식회사 Method for recovering active metals from lithium secondary battery
JP2022506626A (en) * 2018-11-07 2022-01-17 エスケー イノベーション カンパニー リミテッド Lithium precursor regeneration method and lithium precursor regeneration system
US11482737B2 (en) 2020-01-03 2022-10-25 Dowa Eco-System Co., Ltd. Method for recovering valuable material from lithium ion secondary battery
WO2024034754A1 (en) * 2022-08-08 2024-02-15 (주)에코프로머티리얼즈 Method for recycling secondary battery material

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094228A (en) * 2009-09-30 2011-05-12 Dowa Eco-System Co Ltd Method for recovering lithium
JP2013527306A (en) * 2009-10-14 2013-06-27 エスジーエル カーボン エスイー Method and reactor for processing Li-containing bulk materials
JP2011154811A (en) * 2010-01-26 2011-08-11 Dowa Eco-System Co Ltd Method for leaching lithium and method for recovering lithium
CN103794832A (en) * 2012-10-29 2014-05-14 比亚迪股份有限公司 Recovery method of positive active material in lithium ion battery waste material
JP2013224493A (en) * 2013-06-18 2013-10-31 Nippon Yakin Kogyo Co Ltd Reducing method for valuable metal raw material
KR101623930B1 (en) * 2014-02-11 2016-05-24 타운마이닝캄파니(주) Method for recovering valuable metals from cathodic active material of used lithium battery
CN106129511A (en) * 2016-06-27 2016-11-16 北京科技大学 A kind of method of comprehensively recovering valuable metal from waste and old lithium ion battery material
KR101828168B1 (en) 2016-08-23 2018-02-09 부경대학교 산학협력단 Recovery method of lithium carbonate and recovery system of lithium carbonate
CN106450549A (en) * 2016-10-24 2017-02-22 中国科学院过程工程研究所 Method for cleanly recycling nickel and/or cobalt from positive electrode material
CN108091956A (en) * 2016-11-23 2018-05-29 江苏凯力克钴业股份有限公司 A kind of circulation regeneration method for scrapping cobalt acid lithium battery positive electrode
WO2018113477A1 (en) * 2016-12-23 2018-06-28 江西合纵锂业科技有限公司 Method for recovering cobalt and lithium from positive electrode material of spent lithium cobalt oxide battery
CN106929664A (en) * 2017-03-10 2017-07-07 中南大学 A kind of method that lithium is reclaimed from waste and old ternary lithium ion battery
CN106929664B (en) * 2017-03-10 2018-11-09 中南大学 A method of recycling lithium from waste and old ternary lithium ion battery
CN108220607A (en) * 2018-02-23 2018-06-29 中国科学院过程工程研究所 A kind of method that lithium is recycled from waste material containing lithium electrode
WO2019199015A1 (en) * 2018-04-09 2019-10-17 에스케이이노베이션 주식회사 Method for recovering active metal of lithium secondary battery
JP7395496B2 (en) 2018-04-09 2023-12-11 エスケー イノベーション カンパニー リミテッド Method for recovering active metals from lithium secondary batteries
CN111937220A (en) * 2018-04-09 2020-11-13 Sk新技术株式会社 Method for recovering active metal of lithium secondary battery
KR102020238B1 (en) * 2018-04-09 2019-09-10 에스케이이노베이션 주식회사 Method of recycling active metal of lithium secondary battery
WO2019199014A1 (en) * 2018-04-09 2019-10-17 에스케이이노베이션 주식회사 Method for recovering active metals from lithium secondary battery
KR101897134B1 (en) * 2018-04-09 2018-09-10 에스케이이노베이션 주식회사 Method of regenerating lithium precursor from used lithium secondary battery
WO2019198972A1 (en) * 2018-04-12 2019-10-17 주식회사 에코프로이노베이션 Method for producing lithium hydroxide monohydrate by using waste cathode material of lithium ion secondary battery
KR20190119329A (en) * 2018-04-12 2019-10-22 주식회사 에코프로이노베이션 Manufacturing method of lithium hydroxide monohydrate using waste cathode material of lithium ion secondary battery
KR102043711B1 (en) 2018-04-12 2019-11-12 주식회사 에코프로이노베이션 Manufacturing method of lithium hydroxide monohydrate using waste cathode material of lithium ion secondary battery
JP2020029613A (en) * 2018-08-20 2020-02-27 住友金属鉱山株式会社 Lithium recovery method
JP7271833B2 (en) 2018-08-20 2023-05-12 住友金属鉱山株式会社 Lithium recovery method
JP2020064855A (en) * 2018-10-11 2020-04-23 Dowaエコシステム株式会社 Method for recovering valuables from lithium ion secondary battery
CN112930618A (en) * 2018-10-31 2021-06-08 捷客斯金属株式会社 Method for treating positive active material waste of lithium ion secondary battery
JP2022506626A (en) * 2018-11-07 2022-01-17 エスケー イノベーション カンパニー リミテッド Lithium precursor regeneration method and lithium precursor regeneration system
CN109786739B (en) * 2019-01-29 2020-08-25 东北大学 Method for recycling lithium battery positive electrode material through molten salt assisted carbon thermal reduction
CN109786739A (en) * 2019-01-29 2019-05-21 东北大学 A kind of method of fused salt auxiliary carbon thermal reduction recycling anode material of lithium battery
CN109574048B (en) * 2019-01-30 2021-12-10 鲍君杰 Treatment method of waste lithium iron phosphate cathode material
CN109574048A (en) * 2019-01-30 2019-04-05 鲍君杰 A kind of processing method of discarded lithium iron phosphate positive material
JP2020183559A (en) * 2019-05-07 2020-11-12 株式会社アサカ理研 Recovery method of lithium from lithium-ion battery
WO2021090571A1 (en) * 2019-11-08 2021-05-14 Dowaエコシステム株式会社 Method for separating lithium
JP6869444B1 (en) * 2019-11-08 2021-05-12 Dowaエコシステム株式会社 Lithium separation method
CN111172396A (en) * 2019-12-30 2020-05-19 银隆新能源股份有限公司 Method for recovering metal elements in lithium battery anode and cathode materials
US11482737B2 (en) 2020-01-03 2022-10-25 Dowa Eco-System Co., Ltd. Method for recovering valuable material from lithium ion secondary battery
WO2021246721A1 (en) * 2020-06-01 2021-12-09 에스케이이노베이션 주식회사 Method for recovering active metals from lithium secondary battery
CN113117637A (en) * 2021-04-19 2021-07-16 重庆大学 Method for preparing carbon dioxide adsorbing material by using waste lithium cobaltate battery as raw material
CN113481368A (en) * 2021-05-26 2021-10-08 广东佳纳能源科技有限公司 Method for leaching valuable metals from waste lithium cobaltate battery powder
WO2024034754A1 (en) * 2022-08-08 2024-02-15 (주)에코프로머티리얼즈 Method for recycling secondary battery material

Similar Documents

Publication Publication Date Title
JP2004011010A (en) Method for recovering lithium and cobalt from lithium cobaltate
JP6718495B2 (en) Method for treating lithium-containing material
KR102206086B1 (en) Method for producing nickel sulfate, manganese, lithium, cobalt and cobalt oxides from battery waste
CN113166846B (en) Method for recovering lithium
JP5791917B2 (en) Lithium recovery method
JP5847742B2 (en) Waste cathode material and method for recovering metal from waste battery
KR101713600B1 (en) Method of recovering lithium in wastewater obtained from waste lithium battery recycling process
JP6986997B2 (en) Lithium carbonate manufacturing method and lithium carbonate
JP6448684B2 (en) Lithium recovery method
EP3341330A1 (en) Methods for treating lithium-containing materials
KR20190065882A (en) Method of recovery of valuable metals from scrap containing cathode materials of lithium ion battery
WO2012068620A1 (en) Process for recovering zinc and/or zinc oxide ii
WO1994023073A1 (en) Method for collecting valuable metal from nickel-hydrogen secondary cell
CN109055719A (en) A method of recycling valuable metal from selenic acid mud
JP7094877B2 (en) How to recover valuable metals
CN102304620A (en) Comprehensive recovery and treatment method of waste nickel-hydrogen battery
CN110184471A (en) A kind of method of steel ash synthetical recovery enrichment multiple elements gold and silver noble metal
US6264903B1 (en) Method for recycling industrial waste streams containing zinc compounds
CN111118296A (en) Method and system for recovering black powder of waste lithium ion battery
JPH10509212A (en) Recovery of metal and chemical value
JP6682480B2 (en) Method for dissolving lithium compound and method for producing lithium carbonate
JP4215547B2 (en) Cobalt recovery method
WO2009157620A1 (en) Method of recovering a compound comprising manganese from dust of electronic furnace
EP0783593B1 (en) Method for recovering metal and chemical values
JP2021014630A (en) Method of recovering lithium from lithium ion battery