JP4215547B2 - Cobalt recovery method - Google Patents

Cobalt recovery method Download PDF

Info

Publication number
JP4215547B2
JP4215547B2 JP2003093333A JP2003093333A JP4215547B2 JP 4215547 B2 JP4215547 B2 JP 4215547B2 JP 2003093333 A JP2003093333 A JP 2003093333A JP 2003093333 A JP2003093333 A JP 2003093333A JP 4215547 B2 JP4215547 B2 JP 4215547B2
Authority
JP
Japan
Prior art keywords
cobalt
solution
sulfuric acid
aluminum
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003093333A
Other languages
Japanese (ja)
Other versions
JP2004300490A (en
Inventor
和幸 松本
晶 永富
和良 尼崎
浩也 池田
真一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2003093333A priority Critical patent/JP4215547B2/en
Publication of JP2004300490A publication Critical patent/JP2004300490A/en
Application granted granted Critical
Publication of JP4215547B2 publication Critical patent/JP4215547B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、不純物を含有するコバルト粉末からコバルトを回収する方法に関し、特に、リチウム二次電池廃材からコバルトを回収する方法に関する。
【0002】
【従来の技術】
リチウム二次電池は、軽量で高電気容量の電池としてよく知られており、各種携帯機器用二次電池として大量に使用されている。このリチウム二次電池の正極には、正極活物質として有価金属のコバルトを含むリチウムコバルト複合酸化物が使用されている。このリチウムコバルト複合酸化物から有価金属のコバルトを回収して再利用可能な形態にすることは、資源リサイクルの観点から意義がある。
【0003】
このようなリチウム二次電池からのコバルトの回収方法として、使用済みリチウム二次電池を一次焙焼、破砕、篩分けして得られた篩下を二次焙焼し、酸で処理し、この処理液に酸化性ガスを吹き込みながらpHを4〜5.5に調整して濾過した後、濾液にアルカリを添加し、濾過して沈殿物を回収する方法が知られている(例えば、特許文献1参照)。
【0004】
また、コバルト成分を含むリチウムイオン電池廃材を無機酸で浸出し、浸出した水溶液のリンとアルミニウムイオンのモル比を0.6〜1.2に調整し、酸化電位を500mV以上で鉄イオンを酸化し、この水溶液のpHを3.0〜4.5に調整し、不純物金属を沈殿除去し、精製溶液を取得し、この精製溶液に蓚酸を添加してコバルト蓚酸塩を沈殿として取得するか、この精製溶液のpHを6〜10に調整してコバルト水酸化物またはコバルト炭酸塩を沈殿として取得する方法が知られている(例えば、特許文献2参照)。
【0005】
さらに、コバルト化合物を含む電極材料またはこのような電極材料が金属箔に塗着されている金属箔塗着廃材からなる二次電池廃材を、アルキル燐酸を含む有機溶液と過酸化水素を含む水からなるエマルジョン抽出剤と接触させ、二次電池廃材中のコバルトを有機溶液中に選択的に溶出させ、得られた有機溶液からコバルトを回収する方法が知られている(例えば、特許文献3参照)。
【0006】
【特許文献1】
特開平7−207349号公報(段落番号0005)
【特許文献2】
特開平11−6020号公報(段落番号0005)
【特許文献3】
特開平9−111360号公報(段落番号0016)
【0007】
【発明が解決しようとする課題】
しかし、特許文献1に開示された方法のように、コバルトを含有し、不純物としてアルミニウムと鉄のうち少なくとも一種を含有する粉末を浸出する場合、硫酸のみにより浸出すると、コバルトの浸出率が低くなり、最終的に回収できるコバルトの量が少なく、コバルトの損失が大きくなる場合がある。
【0008】
また、特許文献2に開示された方法のように、不純物としてアルミニウムと鉄を含有するコバルト含有溶液において、溶液を酸化した後、苛性ソーダを用いてpHを調整し、不純物を沈殿によって除去しようとする場合、不純物を完全に除去するpHに調整すると、コバルトも共沈してコバルトの回収率が悪くなり、一方、コバルトの回収率を確保するpHに調整すると、不純物の濃度を低減させることができない場合がある。すなわち、コバルトの回収率と不純物の濃度の低減のバランスに問題がある。
【0009】
さらに、有価金属の回収を工業的に行う場合には、経済性と品質のバランスが重要になるが、特許文献3に開示された方法のように、溶媒抽出法によるコバルトの回収は、使用溶媒のコストや抽出段数による操作や設備の複雑さにより経済的ではない。
【0010】
したがって、本発明は、このような従来の問題点に鑑み、不純物としてアルミニウムと鉄のうち少なくとも一種を含有するコバルト含有粉末から汎用薬品などを使用して経済的にコバルトを回収する方法において、浸出時のコバルトの損失を抑制し、且つpH調整時のコバルトの回収率と不純物の濃度の低減とのバランスに優れた、コバルトの回収方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究した結果、不純物としてアルミニウムと鉄のうち少なくとも一種を含有するコバルト含有被処理物を硫酸溶液に混合するとともに、この混合溶液に酸化性ガスを混合することによりコバルトを浸出させることによって、浸出時のコバルトの損失を解消し、且つpH調整時のコバルトの回収率と不純物の濃度の低減とのバランスに優れた、コバルトの回収方法を提供することができることを見出し、本発明を完成するに至った。
【0012】
すなわち、本発明によるコバルトの回収方法は、不純物としてアルミニウムと鉄のうち少なくとも一種を含有するコバルト含有被処理物を硫酸溶液に混合するとともに、この混合溶液に酸化性ガスを混合することによりコバルトを浸出させることを特徴とする。
【0013】
このコバルトの回収方法において、酸化性ガスが、空気または酸素であるのが好ましく、ガラスフィルタなどを介して気泡を小さくした状態で混合溶液に吹き込まれるのが好ましい。また、コバルトを浸出させることにより得られた浸出液を酸化し、pHを4.0〜5.5に調整した後、30〜90℃で120〜480分間熟成を行い、固液分離することにより、浸出液中の不純物を除去するのが好ましい。なお、コバルト含有被処理物は、リチウム二次電池を焙焼した後に粉砕して得られた粉末であるのが好ましい。
【0014】
【発明の実施の形態】
本発明によるコバルトの回収方法の実施の形態では、まず、不純物としてアルミニウムと鉄のうち少なくとも一種を含有するコバルト含有粉末を、硫酸溶液および酸化性ガスと混合し、コバルトを硫酸溶液中に浸出させる。
【0015】
コバルト含有粉末に含まれるコバルトは、その過程によって、金属状態のコバルトと、酸化物状態のコバルトとして存在する。酸化物状態のコバルトは硫酸に浸出し易いが、金属状態のコバルトは硫酸に浸出し難い場合がある。金属状態のコバルトを浸出させるためには酸化力が求められるが、酸化力を付加するためには、硫酸濃度を高くしたり、酸化剤を添加することなどが考えられる。しかし、硫酸濃度を高くすると、コバルトは浸出するが、中和によって不純物を除去するときに使用するアルカリの量が多くなってコストがかかる。また、酸化剤として、例えば、固体の過マンガン酸カリウムを使用すると、マンガンやカリウムなどの不純物成分を添加してしまうことになり、新たに不純物を除去するための操作が必要になる。また、酸化剤として過酸化水素水を使用すると、コバルトを浸出させるための酸化力より過剰な酸化力を与え、銅などの不純物成分が浸出し易くなる。
【0016】
そこで、本発明によるコバルトの回収方法の実施の形態では、酸化力を適度に付加して硫酸濃度が低くてもコバルトを効率よく浸出させるために、酸化性ガスを吹き込むことにより十分な浸出を可能にしている。このように酸化性ガスを吹き込むことによって、溶液中のコバルトの酸化が促進し、硫酸溶液中のコバルトがイオンとして存在し易くなる。また、硫酸溶液中に酸化性ガスを吹き込む際に、ガラスフィルタなどを使用して気泡を小さくして硫酸と酸化性ガスを混合することによって、コバルトの浸出を効率よく行うことが可能になる。浸出液の温度は、特に制限はないが、好ましくは30℃以上、さらに好ましくは40〜90℃である。また、硫酸溶液中の硫酸濃度は、好ましくは5〜30重量%、さらに好ましくは10〜25重量%である。また、酸化性ガスとしては、好ましくは空気または酸素であり、経済性を考えると空気がより好ましい。
【0017】
次に、浸出操作後の溶液を濾過し、不溶残渣(炭素成分、金属成分など)と濾液に分離する。この濾液中には、コバルトの他に、不純物として鉄やアルミニウムなどが含まれている。この濾液に酸化剤、例えば、過酸化水素水を添加した後、アルカリ、例えば、苛性ソーダを添加することによってpHを調整する。この場合、酸化剤は、過酸化水素水、過硫酸ソーダ、オゾンおよび空気などから選ばれ、アルカリは、苛性ソーダ、消石灰および水酸化カリウムなどから選ばれる。この酸化剤は、鉄イオンを2価から3価に酸化するために添加される。3価に酸化された鉄イオンは、pH4.0以上で水酸化物として完全に除去することができる。アルミニウムはpH4.0以上で鉄と共に沈殿し始めるので、pHを4.0〜5.5、好ましくは4.5〜5.0に調整する。但し、このまま濾過すると、水酸化アルミニウムや水酸化鉄と共に、局部中和により生成した水酸化コバルトが補集され、濾液中へのコバルトの回収率が悪化したり、溶液中に残存するアルミニウムが多くなるので、コバルトの回収率と不純物の除去のバランスが良くない。
【0018】
このため、溶液および沈殿の温度を調整し、時間をかけて撹拌する熟成操作を行う。この熟成中に、沈殿中のコバルトが分解して溶液中にイオンの形態で溶出し、この時の分解によって生じる水酸イオンが溶液中のアルミニウムイオンと反応し、溶液中のアルミニウムをさらに低減させると考えられる。また、水酸化アルミニウムの結晶性が良くなって、コバルトと分離し易くなると考えられる。この時、熟成中の温度は30〜90℃、好ましくは40〜80℃である。アルミニウムを除去するためには、液中のコバルト濃度に対するアルミニウム濃度の比(×100%)(以下、「Al/Co比」という)が0.2%以下であるのが好ましい。また、熟成時間は、アルミニウムやコバルトの濃度に応じて適正化する必要があり、120分間以上を必要とするが、480分間以上では熟成の効果がほぼ飽和する。熟成の終了後、濾過により水酸化アルミニウムと水酸化鉄の混合沈殿とコバルト含有水溶液とを固液分離する。
【0019】
熟成後の濾液は、アルカリ、例えば、苛性ソーダを加えてアルカリ性にして水酸化コバルトを沈殿させ、液中のリチウム(Li)およびナトリウム(Na)から分離して回収できる。この時のpHは、好ましくは7以上、さらに好ましくは10以上である。濾過により水酸化コバルトと濾液とを固液分離した後、得られた沈殿を水洗することにより沈殿物に付着したリチウムやナトリウムなどの水溶性成分を除去することができ、コバルトの純度を高めることができる。
【0020】
ここで得られた水酸化コバルトの沈殿は、適当な濃度の硫酸に溶解して、磁性粉などの原料である硫酸コバルトとして使用することができる。
【0021】
【実施例】
以下、本発明によるコバルトの回収方法の実施例について詳細に説明する。
【0022】
[実施例1]
32.7重量%のコバルトを含有するリチウム二次電池焼却灰80gを、20%硫酸水溶液に混合するとともに、この硫酸水溶液中にガラスフィルタを介して0.4L/分の流量で空気を吹き込み、50℃で3時間浸出を行った。この浸出後、得られた浸出液と不溶解残渣を濾過により分離し、コバルトを含有する硫酸水溶液545mLを得た。この硫酸水溶液中のコバルト濃度は45.5g/Lであり、リチウム二次電池焼却灰からのコバルトの浸出率は94.8%であった。このコバルトを含有する硫酸水溶液の組成を表1に示す。
【0023】
【表1】

Figure 0004215547
【0024】
[比較例1]
実施例1と同じリチウム二次電池焼却灰80gを、20%硫酸水溶液に混合し、50℃で3時間浸出を行った。この浸出後、得られた浸出液と不溶解残渣を濾過により分離し、コバルトを含有する硫酸水溶液544mLを得た。この硫酸水溶液中のコバルト濃度は40.0g/L、リチウム二次電池焼却灰からのコバルトの浸出率は83.2%であり、実施例1に比べてコバルトの浸出率が10%以上低くなった。この硫酸水溶液の組成を表2に示す。
【0025】
【表2】
Figure 0004215547
【0026】
[実施例2]
実施例1で得られた表1に示す硫酸水溶液200mLを分取し、35%過酸化水素水1gを添加し、50℃で10%苛性ソーダによりpH5.0に調整した後、撹拌しながら120分間熟成し、濾過した。この時点での溶液量は281mLになり、浸出液からのコバルトの回収率は95.1%であった。また、Al/Co比は0.17%であった。この熟成後の濾液の組成を表3に示す。
【0027】
【表3】
Figure 0004215547
【0028】
上記の濾液にpHが10になるまでさらに10%苛性ソーダを添加し、水酸化コバルトの沈殿を得た。この沈殿を1リットルの純水で水洗し、洗浄後の沈殿を硫酸溶液に溶解させ、硫酸コバルト溶液295mLを得た。得られた水溶液の組成は、表4に示すようになり、最終的なコバルトの収率は90.3%、純度は99.1%であり、磁性粉の原料としての硫酸コバルト溶液を得ることができた。
【0029】
【表4】
Figure 0004215547
【0030】
[比較例2]
実施例1で得られた表1に示す硫酸水溶液200mLを分取し、35%過酸化水素水1gを添加し、50℃で10%苛性ソーダによりpH5.0に調整した後、熟成を行わずに濾過した。この時点での濾液量は272mLになり、浸出液からのコバルトの回収率は90.0%であった。また、熟成を行わなかったので、溶液中のアルミニウム濃度が実施例2よりも高くなり、Al/Co比は0.83%と高かった。この濾液の組成を表5に示す。
【0031】
【表5】
Figure 0004215547
【0032】
その後、実施例2と同様の操作により、硫酸コバルト水溶液288mLを得た。得られた水溶液の組成は表6に示すようになり、最終的なコバルトの収率は85.2%、純度は98.1%であった。また、最終的なアルミニウム濃度は0.223g/Lであった。
【0033】
【表6】
Figure 0004215547
【0034】
【発明の効果】
上述したように、本発明によれば、不純物を含有するにコバルト含有粉末からコバルトを回収する際に、硫酸と酸化性ガスを混合した状態でコバルトの浸出を行うことにより、コバルトを損失することなく浸出させることができ、また、使用する薬剤が硫酸や空気などの汎用の比較的廉価なものであるため、コバルトの回収を効率的且つ経済的に行うことができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering cobalt from a cobalt powder containing impurities, and more particularly to a method for recovering cobalt from a lithium secondary battery waste material.
[0002]
[Prior art]
Lithium secondary batteries are well known as lightweight and high electric capacity batteries, and are used in large quantities as secondary batteries for various portable devices. A lithium cobalt composite oxide containing a valuable metal cobalt as a positive electrode active material is used for the positive electrode of the lithium secondary battery. It is significant from the viewpoint of resource recycling to recover the valuable metal cobalt from the lithium cobalt composite oxide to a reusable form.
[0003]
As a method for recovering cobalt from such a lithium secondary battery, the used lithium secondary battery is subjected to primary roasting, crushing, and sieving, and then secondary roasting is performed and treated with an acid. A method is known in which the pH is adjusted to 4 to 5.5 while an oxidizing gas is blown into the treatment liquid and filtered, and then alkali is added to the filtrate and the precipitate is collected by filtration (for example, Patent Documents). 1).
[0004]
In addition, lithium ion battery waste containing cobalt components is leached with inorganic acid, the molar ratio of phosphorus and aluminum ions in the leached aqueous solution is adjusted to 0.6 to 1.2, and iron ions are oxidized at an oxidation potential of 500 mV or more. Adjusting the pH of the aqueous solution to 3.0 to 4.5, precipitating and removing the impurity metal, obtaining a purified solution, adding oxalic acid to the purified solution to obtain cobalt oxalate as a precipitate, A method is known in which the pH of this purified solution is adjusted to 6 to 10 to obtain cobalt hydroxide or cobalt carbonate as a precipitate (see, for example, Patent Document 2).
[0005]
Further, a secondary battery waste material comprising an electrode material containing a cobalt compound or a metal foil coating waste material in which such an electrode material is applied to a metal foil is obtained from an organic solution containing alkylphosphoric acid and water containing hydrogen peroxide. A method of recovering cobalt from the obtained organic solution by selectively eluting cobalt in the secondary battery waste material into the organic solution by contacting with the resulting emulsion extractant (see, for example, Patent Document 3). .
[0006]
[Patent Document 1]
JP-A-7-207349 (paragraph number 0005)
[Patent Document 2]
JP 11-6020 A (paragraph number 0005)
[Patent Document 3]
JP-A-9-111360 (paragraph number 0016)
[0007]
[Problems to be solved by the invention]
However, when leaching a powder containing cobalt and containing at least one of aluminum and iron as impurities as in the method disclosed in Patent Document 1, leaching with only sulfuric acid reduces the leaching rate of cobalt. In some cases, the amount of cobalt that can be finally recovered is small and the loss of cobalt increases.
[0008]
Further, as in the method disclosed in Patent Document 2, in a cobalt-containing solution containing aluminum and iron as impurities, the solution is oxidized, and then the pH is adjusted using caustic soda to remove the impurities by precipitation. In this case, when the pH is adjusted to completely remove impurities, cobalt is coprecipitated and the cobalt recovery rate is deteriorated. On the other hand, when the pH is adjusted to ensure the cobalt recovery rate, the impurity concentration cannot be reduced. There is a case. That is, there is a problem in the balance between the cobalt recovery rate and the reduction in impurity concentration.
[0009]
Furthermore, when industrially recovering valuable metals, the balance between economy and quality is important. However, as in the method disclosed in Patent Document 3, the recovery of cobalt by the solvent extraction method is not possible. It is not economical due to the complexity of the operation and equipment due to the cost and number of extraction stages.
[0010]
Therefore, in view of such conventional problems, the present invention provides a method for economically recovering cobalt from a cobalt-containing powder containing at least one of aluminum and iron as impurities using a general-purpose chemical. An object of the present invention is to provide a cobalt recovery method that suppresses the loss of cobalt at the time and has an excellent balance between the recovery rate of cobalt during pH adjustment and the reduction of the concentration of impurities.
[0011]
[Means for Solving the Problems]
As a result of diligent research to solve the above-mentioned problems, the present inventors mixed a cobalt-containing workpiece containing at least one of aluminum and iron as impurities into a sulfuric acid solution, and added an oxidizing gas to the mixed solution. Cobalt leaching is performed by mixing, thereby eliminating the loss of cobalt during leaching and providing a method for recovering cobalt that has an excellent balance between cobalt recovery and pH reduction during pH adjustment. As a result, the present invention has been completed.
[0012]
That is, in the method for recovering cobalt according to the present invention, a cobalt-containing workpiece containing at least one of aluminum and iron as impurities is mixed with a sulfuric acid solution, and an oxidizing gas is mixed with the mixed solution to thereby remove cobalt. It is characterized by leaching.
[0013]
In this cobalt recovery method, the oxidizing gas is preferably air or oxygen, and is preferably blown into the mixed solution in a state in which bubbles are reduced through a glass filter or the like. Moreover, after oxidizing the leaching solution obtained by leaching cobalt and adjusting the pH to 4.0 to 5.5, aging at 30 to 90 ° C. for 120 to 480 minutes, and solid-liquid separation, It is preferable to remove impurities in the leachate. In addition, it is preferable that a cobalt containing to-be-processed object is the powder obtained by grind | pulverizing after baking a lithium secondary battery.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the embodiment of the method for recovering cobalt according to the present invention, first, a cobalt-containing powder containing at least one of aluminum and iron as impurities is mixed with a sulfuric acid solution and an oxidizing gas, and cobalt is leached into the sulfuric acid solution. .
[0015]
Cobalt contained in the cobalt-containing powder exists as cobalt in a metal state and cobalt in an oxide state depending on the process. Although cobalt in an oxide state is easily leached in sulfuric acid, cobalt in a metal state may be difficult to leach into sulfuric acid. An oxidizing power is required for leaching cobalt in a metallic state, but in order to add an oxidizing power, it is conceivable to increase the sulfuric acid concentration or add an oxidizing agent. However, when the sulfuric acid concentration is increased, cobalt is leached, but the amount of alkali used when removing impurities by neutralization increases and costs increase. For example, when solid potassium permanganate is used as the oxidizing agent, impurity components such as manganese and potassium are added, and an operation for newly removing impurities is required. Further, when hydrogen peroxide water is used as the oxidizing agent, an oxidizing power that is excessive than the oxidizing power for leaching cobalt is given, and impurity components such as copper are easily leached.
[0016]
Therefore, in the embodiment of the method for recovering cobalt according to the present invention, sufficient leaching is possible by blowing in an oxidizing gas in order to efficiently add oxidization power and efficiently leach cobalt even if the sulfuric acid concentration is low. I have to. By blowing the oxidizing gas in this way, the oxidation of cobalt in the solution is promoted, and the cobalt in the sulfuric acid solution tends to exist as ions. Further, when the oxidizing gas is blown into the sulfuric acid solution, cobalt can be efficiently leached by mixing bubbles with sulfuric acid and oxidizing gas by using a glass filter or the like. Although there is no restriction | limiting in particular in the temperature of a leaching solution, Preferably it is 30 degreeC or more, More preferably, it is 40-90 degreeC. The sulfuric acid concentration in the sulfuric acid solution is preferably 5 to 30% by weight, more preferably 10 to 25% by weight. Further, the oxidizing gas is preferably air or oxygen, and air is more preferable in view of economy.
[0017]
Next, the solution after the leaching operation is filtered and separated into an insoluble residue (carbon component, metal component, etc.) and a filtrate. This filtrate contains iron, aluminum, and the like as impurities in addition to cobalt. The pH is adjusted by adding an oxidant such as hydrogen peroxide to the filtrate and then adding an alkali such as caustic soda. In this case, the oxidizing agent is selected from hydrogen peroxide, sodium persulfate, ozone, air, and the like, and the alkali is selected from caustic soda, slaked lime, potassium hydroxide, and the like. This oxidizing agent is added to oxidize iron ions from divalent to trivalent. The trivalently oxidized iron ions can be completely removed as hydroxides at pH 4.0 or higher. Since aluminum begins to precipitate with iron above pH 4.0, the pH is adjusted to 4.0-5.5, preferably 4.5-5.0. However, if it is filtered as it is, cobalt hydroxide generated by local neutralization is collected together with aluminum hydroxide and iron hydroxide, and the recovery rate of cobalt in the filtrate deteriorates, or much aluminum remains in the solution. Therefore, the balance between the recovery rate of cobalt and the removal of impurities is not good.
[0018]
For this reason, the temperature of solution and precipitation is adjusted, and the aging operation which stirs over time is performed. During this aging, the cobalt in the precipitate decomposes and elutes in the form of ions in the solution, and the hydroxide ions generated by the decomposition at this time react with the aluminum ions in the solution, further reducing the aluminum in the solution. it is conceivable that. Further, it is considered that the crystallinity of aluminum hydroxide is improved and it is easy to separate from cobalt. At this time, the temperature during aging is 30 to 90 ° C, preferably 40 to 80 ° C. In order to remove aluminum, the ratio of aluminum concentration to the cobalt concentration in the liquid (× 100%) (hereinafter referred to as “Al / Co ratio”) is preferably 0.2% or less. Further, the aging time needs to be optimized according to the concentration of aluminum or cobalt and needs 120 minutes or more, but the effect of aging is almost saturated after 480 minutes or more. After completion of aging, the mixed precipitate of aluminum hydroxide and iron hydroxide and the cobalt-containing aqueous solution are separated into solid and liquid by filtration.
[0019]
The filtrate after aging can be recovered by separating it from lithium (Li) and sodium (Na) in the liquid by adding alkali, for example, caustic soda to make it alkaline to precipitate cobalt hydroxide. The pH at this time is preferably 7 or more, more preferably 10 or more. After solid-liquid separation of cobalt hydroxide and filtrate by filtration, water-soluble components such as lithium and sodium adhering to the precipitate can be removed by washing the resulting precipitate with water to increase the purity of cobalt Can do.
[0020]
The obtained cobalt hydroxide precipitate can be dissolved in an appropriate concentration of sulfuric acid and used as a raw material for cobalt sulfate, such as magnetic powder.
[0021]
【Example】
Examples of the cobalt recovery method according to the present invention will be described below in detail.
[0022]
[Example 1]
80 g of lithium secondary battery incineration ash containing 32.7% by weight of cobalt was mixed with 20% sulfuric acid aqueous solution, and air was blown into this sulfuric acid aqueous solution through a glass filter at a flow rate of 0.4 L / min. Leaching was performed at 50 ° C. for 3 hours. After the leaching, the obtained leachate and the insoluble residue were separated by filtration to obtain 545 mL of an aqueous sulfuric acid solution containing cobalt. The cobalt concentration in this sulfuric acid aqueous solution was 45.5 g / L, and the leaching rate of cobalt from the lithium secondary battery incineration ash was 94.8%. The composition of this sulfuric acid aqueous solution containing cobalt is shown in Table 1.
[0023]
[Table 1]
Figure 0004215547
[0024]
[Comparative Example 1]
The same lithium secondary battery incineration ash 80g as Example 1 was mixed with 20% sulfuric acid aqueous solution, and leaching was performed at 50 ° C for 3 hours. After the leaching, the obtained leachate and the insoluble residue were separated by filtration to obtain 544 mL of a sulfuric acid aqueous solution containing cobalt. The cobalt concentration in this sulfuric acid aqueous solution was 40.0 g / L, the leaching rate of cobalt from the lithium secondary battery incineration ash was 83.2%, and the leaching rate of cobalt was 10% or more lower than that in Example 1. It was. Table 2 shows the composition of this sulfuric acid aqueous solution.
[0025]
[Table 2]
Figure 0004215547
[0026]
[Example 2]
200 mL of the sulfuric acid aqueous solution shown in Table 1 obtained in Example 1 was collected, 1 g of 35% hydrogen peroxide solution was added, the pH was adjusted to 5.0 with 10% caustic soda at 50 ° C., and then 120 minutes with stirring. Aged and filtered. The amount of solution at this point was 281 mL, and the recovery rate of cobalt from the leachate was 95.1%. The Al / Co ratio was 0.17%. The composition of the filtrate after this aging is shown in Table 3.
[0027]
[Table 3]
Figure 0004215547
[0028]
To the above filtrate, 10% sodium hydroxide was further added until the pH reached 10, and a precipitate of cobalt hydroxide was obtained. This precipitate was washed with 1 liter of pure water, and the washed precipitate was dissolved in a sulfuric acid solution to obtain 295 mL of a cobalt sulfate solution. The composition of the obtained aqueous solution is as shown in Table 4. The final cobalt yield is 90.3%, the purity is 99.1%, and a cobalt sulfate solution as a raw material for magnetic powder is obtained. I was able to.
[0029]
[Table 4]
Figure 0004215547
[0030]
[Comparative Example 2]
200 mL of the sulfuric acid aqueous solution shown in Table 1 obtained in Example 1 was collected, 1 g of 35% hydrogen peroxide solution was added, the pH was adjusted to 5.0 with 10% caustic soda at 50 ° C., and then aging was not performed. Filtered. At this time, the filtrate amount was 272 mL, and the recovery rate of cobalt from the leachate was 90.0%. Further, since aging was not performed, the aluminum concentration in the solution was higher than that in Example 2, and the Al / Co ratio was as high as 0.83%. The composition of this filtrate is shown in Table 5.
[0031]
[Table 5]
Figure 0004215547
[0032]
Then, 288 mL of cobalt sulfate aqueous solution was obtained by the same operation as Example 2. The composition of the obtained aqueous solution was as shown in Table 6. The final cobalt yield was 85.2% and the purity was 98.1%. The final aluminum concentration was 0.223 g / L.
[0033]
[Table 6]
Figure 0004215547
[0034]
【The invention's effect】
As described above, according to the present invention, when recovering cobalt from a cobalt-containing powder containing impurities, cobalt is leached in a state where sulfuric acid and oxidizing gas are mixed, thereby losing cobalt. Cobalt can be recovered efficiently and economically because the chemicals used can be leached without any problems and the chemicals used are general-purpose, relatively inexpensive ones such as sulfuric acid and air.

Claims (5)

不純物としてアルミニウムと鉄のうち少なくとも一種を含有するコバルト含有被処理物を硫酸溶液に混合するとともに、この混合溶液に酸化性ガスを混合することによって得られた浸出液を酸化した後、アルカリを加えてpH4.0〜5.5に調整し、30〜90℃で120〜480分間熟成させて、液中のコバルト濃度に対するアルミニウム濃度の比(×100%)を0.2%以下にし、その後、固液分離して得られたコバルト含有水溶液にアルカリを加えてpH7以上にして水酸化コバルトを沈澱させることを特徴とする、コバルトの回収方法。The cobalt-containing treatment object containing at least one of aluminum and iron as well as mixed in a sulfuric acid solution as an impurity, after oxidizing the leachate obtained I by admixing an oxidizing gas into the mixed solution, alkali To adjust the pH to 4.0 to 5.5, aging at 30 to 90 ° C. for 120 to 480 minutes, the ratio of aluminum concentration to cobalt concentration in the liquid (× 100%) to 0.2% or less, Thereafter, an alkali is added to the cobalt-containing aqueous solution obtained by solid-liquid separation to adjust the pH to 7 or higher, thereby precipitating cobalt hydroxide . 前記水酸化コバルトを沈澱させた後に、固液分離して得られた水酸化コバルトの沈澱を水洗することを特徴とする、請求項1に記載のコバルトの回収方法。The method for recovering cobalt according to claim 1, wherein after the cobalt hydroxide is precipitated, the precipitate of cobalt hydroxide obtained by solid-liquid separation is washed with water. 前記酸化性ガスが空気または酸素であることを特徴とする、請求項1または2に記載のコバルトの回収方法。The method for recovering cobalt according to claim 1 or 2 , wherein the oxidizing gas is air or oxygen. 前記酸化性ガスが、ガラスフィルタを介して前記混合溶液に吹き込まれることを特徴とする、請求項1乃至3のいずれかに記載のコバルトの回収方法。It said oxidizing gas, characterized in that it is blown into the mixed solution through a glass filter, a method of recovering cobalt according to any one of claims 1 to 3. 前記コバルト含有被処理物がリチウム二次電池を焙焼した後に粉砕して得られた粉末であることを特徴とする、請求項1乃至のいずれかに記載のコバルトの回収方法。The method for recovering cobalt according to any one of claims 1 to 4 , wherein the cobalt-containing workpiece is a powder obtained by pulverizing a lithium secondary battery after firing.
JP2003093333A 2003-03-31 2003-03-31 Cobalt recovery method Expired - Lifetime JP4215547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093333A JP4215547B2 (en) 2003-03-31 2003-03-31 Cobalt recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093333A JP4215547B2 (en) 2003-03-31 2003-03-31 Cobalt recovery method

Publications (2)

Publication Number Publication Date
JP2004300490A JP2004300490A (en) 2004-10-28
JP4215547B2 true JP4215547B2 (en) 2009-01-28

Family

ID=33406158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093333A Expired - Lifetime JP4215547B2 (en) 2003-03-31 2003-03-31 Cobalt recovery method

Country Status (1)

Country Link
JP (1) JP4215547B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066166B1 (en) 2009-11-20 2011-09-20 한국지질자원연구원 Method for Recovering Cobalt from Waste Lithium Ion Battery
KR101069807B1 (en) * 2010-04-14 2011-10-04 한국과학기술연구원 Method of electro-reduction extraction of cobalt from cathodic active material of lithium battery
KR102174545B1 (en) * 2012-07-10 2020-11-05 바스프 에스이 Method for producing aqueous solutions of cobalt sulphate
KR101392616B1 (en) * 2012-10-30 2014-05-07 (주)이엠티 Regeneration method of precursor material using disposed cathod material of lithum-ion battery, precursor, anode material and lithum-ion battery using the regenerated material by the method
JP5958316B2 (en) * 2012-12-07 2016-07-27 住友金属鉱山株式会社 Method for separating and removing aluminum, and method for recovering valuable metals from lithium ion batteries
CN105803212B (en) * 2016-03-15 2017-12-22 中南大学 A kind of method of Call Provision in heavy cobalt slag from oxidation
KR102064668B1 (en) 2018-04-24 2020-01-09 (주)이엠티 A Method of Recycling Material for Precursor of Anode Active Material, Precursor of Anode Active Material, Anode Active Material, Anode, and Lithium Ion Secondary Battery Using The Same
CN110172579B (en) * 2019-04-01 2020-08-04 武汉理工大学 Method for recovering cobalt in perovskite cathode material of solid oxide fuel cell
JP7232119B2 (en) * 2019-04-26 2023-03-02 Jx金属株式会社 Method for processing lithium-ion battery waste and method for producing sulfate
CN110616331B (en) * 2019-10-16 2021-11-30 衢州华友资源再生科技有限公司 Method for recycling all metals of power lithium ion battery
JP7350318B2 (en) 2020-03-09 2023-09-26 株式会社ササクラ Cobalt recovery method
CN114164344B (en) * 2021-10-26 2023-04-14 江西理工大学 Method for separating and recovering zinc and cobalt from cobalt-containing zinc slag

Also Published As

Publication number Publication date
JP2004300490A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
EP3431618B1 (en) Processing method for lithium ion battery scrap
JP6622998B2 (en) Method for removing iron and aluminum from lithium ion battery scrap and method for recovering valuable metals
WO2017159745A1 (en) Processing method for lithium ion battery scrap
JP5791917B2 (en) Lithium recovery method
EP3904546B1 (en) Process for recovering components from alkaline batteries
JP5326610B2 (en) Method for recovering metals from used nickel metal hydride batteries
JP5495418B2 (en) Method for recovering manganese
KR101325176B1 (en) Method of manufacturing chemical manganese dioxide from trivalent cathode active material, the chemical manganese dioxide manufactured by the method and secondary battery including the chemical manganese dioxide
KR20200065503A (en) Method of recovery of valuable metals from scrap containing cathode materials of lithium ion battery
US20200109462A1 (en) Method for the production of cobalt and associated oxides from various feed materials
JP7232119B2 (en) Method for processing lithium-ion battery waste and method for producing sulfate
US4162294A (en) Process for working up nonferrous metal hydroxide sludge waste
JP6996723B1 (en) Metal recovery method from lithium-ion batteries
JP4215547B2 (en) Cobalt recovery method
KR20240049385A (en) Method and equipment for recovering metal from black mass
JP2013112859A (en) Method for manufacturing manganese sulfate
KR101447324B1 (en) Method for separating aluminium and manganese
CN118145611A (en) Method for recycling lithium iron phosphate lithium extraction slag
JP4801372B2 (en) Method for removing manganese from cobalt sulfate solution
JP6314730B2 (en) Method for recovering valuable metals from waste nickel metal hydride batteries
JP2011129336A (en) Recovery method of manganese from battery
JP4439804B2 (en) Cobalt recovery method
KR20230136948A (en) Selective recovery method of valuable metals using solvent extraction from lithium secondary battery waste
JP2004010929A (en) Method for recovering cobalt from scrap
JP7243749B2 (en) Valuable metal recovery method and recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

R150 Certificate of patent or registration of utility model

Ref document number: 4215547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term