JP4439804B2 - Cobalt recovery method - Google Patents

Cobalt recovery method Download PDF

Info

Publication number
JP4439804B2
JP4439804B2 JP2002351614A JP2002351614A JP4439804B2 JP 4439804 B2 JP4439804 B2 JP 4439804B2 JP 2002351614 A JP2002351614 A JP 2002351614A JP 2002351614 A JP2002351614 A JP 2002351614A JP 4439804 B2 JP4439804 B2 JP 4439804B2
Authority
JP
Japan
Prior art keywords
cobalt
solution
sulfuric acid
precipitate
recovery method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002351614A
Other languages
Japanese (ja)
Other versions
JP2004182533A (en
Inventor
和幸 松本
晶 永富
和良 尼崎
浩也 池田
真一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2002351614A priority Critical patent/JP4439804B2/en
Publication of JP2004182533A publication Critical patent/JP2004182533A/en
Application granted granted Critical
Publication of JP4439804B2 publication Critical patent/JP4439804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、不純物を含有するコバルト溶液からのコバルト回収方法、特にリチウム二次電池廃材からのコバルト回収方法に関するものである。
【0002】
【従来の技術】
リチウム二次電池は、軽量、高電気容量の電池としてよく知られており、各種携帯機器用二次電池として大量に使用されている。このリチウム二次電池の正極には、正極活物質として有価金属のコバルトを含むリチウムコバルト複合酸化物が使用されている。このリチウムコバルト複合酸化物から有価金属のコバルトを回収し再利用できる形態にすることは、資源リサイクルの観点から意義のあることである。
【0003】
このようなリチウム二次電池からのコバルトの回収方法としては、次の方法などが提案されている。すなわち、使用済みリチウム二次電池を焙焼、破砕、篩い分けして得られた篩下を二次焙焼し、次に酸で処理し、更に処理液に酸化性ガスを吹き込みながらpHを4〜5.5に調整して濾過した後、濾液にアルカリを添加し濾過して沈殿物を回収する方法がある(例えば、特許文献1参照。)。
【0004】
また、コバルト成分を含むリチウムイオン電池廃材を無機酸で浸出し、浸出した水溶液のリンとアルミニウムイオンのモル比を0.6〜1.2に調整し、酸化電位を500mV以上で、鉄イオンを酸化し、該水溶液のpHを3.0〜4.5に調整し、不純物金属を沈殿除去し、精製溶液を取得し、この精製溶液に蓚酸を添加してコバルト蓚酸塩を、又は、この精製溶液のpHを6〜10に調整してコバルト水酸化物又はコバルト炭酸塩を沈殿として取得する方法がある(例えば、特許文献2参照。)。
【0005】
さらに、コバルト化合物を含む電極材料又はこのような電極材料が金属箔に塗着されている金属箔塗着廃材からなる二次電池廃材を、アルキル燐酸を含む有機溶液と過酸化水素を含む水からなるエマルジョン抽出剤と接触させ、上記二次電池廃材中のコバルトを有機溶液中に選択的に溶出せしめ、得られた有機溶液からコバルトを回収する二次電池廃材からのコバルト回収方法がある(例えば、特許文献3参照。)。
【0006】
【特許文献1】
特開平7−207349号公報
【特許文献2】
特開平11−6020号公報
【特許文献3】
特開平9−111360号公報
【0007】
【発明が解決しようとする課題】
1.従来技術の問題点の抽出
(1)有価金属の回収を工業的に行う場合には、経済性と品質のバランスが重要になるが、例えば溶媒抽出法によるコバルトの回収は使用溶媒のコストや抽出段数による操作や設備の複雑さで経済的ではない。
(2)不純物としてアルミニウム、鉄を含有するコバルト含有溶液において、過酸化水素水を加えた後、苛性ソーダを用いてpHを調整し、不純物を沈殿によって除去しようとした場合、不純物を完全除去するpHに調整すると、コバルトも共沈しコバルトの回収率が悪くなる。一方で、コバルトの回収率を確保するpHに調整すると、不純物濃度が低減できない場合がある。つまりコバルト回収率と不純物濃度の低減のバランスに問題があった。
【0008】
2.解決すべき課題
本発明は、汎用薬品等を用いた経済的な方法において、上記のようなpH調整時のコバルトの回収率と不純物濃度の低減においてバランスのとれた、コバルトの回収方法を提供するものである。
【0009】
【課題を解決するための手段】
本発明者等は、硫酸や苛性ソーダ等の汎用的で比較的廉価な薬材を用いて、不純物を含有するコバルト溶液に対して、pH調整後、液温を調整しながら溶液と沈殿物を時間をかけ撹拌する熟成という操作を加えることによって、コバルトの回収率を維持しながら、不純物の濃度を低減させることができる効率的かつ低コストのコバルト回収方法をなすに至ったものである。
【0010】
すなわち、本発明は第1に、コバルト(Coと表すことがある。)を含有し、不純物としてアルミニウム(Alと表すことがある。)と鉄(Feと表すことがある。)のうちの少なくとも一種を含有する溶液を酸化し、pHを4.0〜5.5に調整後、30〜90℃で120〜480分間熟成を行って固液分離することによってコバルトの回収率向上と不純物濃度の低減を両立することを特徴とするコバルト回収方法を、第2に、前記溶液が硫酸酸性溶液であり、前記酸化が過酸化水素水、過硫酸ソーダ、オゾンおよび空気からなる群から選ばれる少なくとも一種の酸化剤の添加によって行われ、前記pH調整が苛性ソーダ、消石灰および水酸化カリウムからなる群から選ばれる少なくとも一種のアルカリの添加によって行われる、第1記載のコバルト回収方法を、第3に、前記酸化は銀−塩化銀電極を用いた前記溶液の電位を500〜900mVとする、第1または2に記載のコバルト回収方法を、第4に、前記硫酸酸性溶液が硫酸を用いてリチウム二次電池廃材を浸出して得られたコバルト含有溶液である、第2または3に記載のコバルト回収方法を、第5に、前記リチウム二次電池廃材がリチウム二次電池を焙焼し、粉砕して得られた粉末である、第4記載のコバルト回収方法を提供するものである。
【0011】
【発明の実施の形態】
本発明の実施にあたっては、まず、硫酸溶液内でリチウム二次電池廃材からコバルトを浸出させる。この時の浸出液の温度は特に制限はないが、好ましくは30℃以上、より好ましくは40〜90℃である。また、上記硫酸溶液の硫酸濃度についても特に制限はないが、好ましくは5〜30wt%(wt%を単に%と表す。)、より好ましくは10〜25%である。また、リチウム二次電池廃材中のコバルトはリチウム二次電池の焙焼条件により酸化状態が異なり、コバルトが金属状態のものを多く含む廃材ではコバルトの浸出率が悪くなる場合がある。そのような場合は、酸化性ガスを硫酸溶液内に混合することで、廃材中の金属状態のコバルトの溶液内酸化を促進し、硫酸溶液内にイオンとして存在しやすくなると考えられ、あらゆる廃材に対応が可能となる。この酸化性ガスとしては空気、酸素等を用いることができ、経済性を考えれば空気が好ましい。
【0012】
次に浸出操作後の溶液を濾過し、不溶残渣(炭素成分、金属成分等)と濾液に分離する。この濾液内にはコバルトの他に、不純物としてアルミニウムと鉄のうちの少なくとも一種が含まれている。濾液に酸化剤、例えば過酸化水素水を添加した後、アルカリ、例えば苛性ソーダを添加することによってpHを調整する。ここで、酸化剤は過酸化水素水、過硫酸ソーダ、オゾンおよび空気等から選ばれ、アルカリは苛性ソーダ、消石灰および水酸化カリウム等から選ばれる。酸化剤は鉄イオンを2価から3価に酸化するために添加する。この溶液の電位は500〜900mVとするのがよい。500mV未満であると鉄イオンが十分に酸化されず鉄の除去が不十分となり、一方、900mVを超すとコバルトイオンが酸化されて中和(pH調整)時に不純物と共に沈殿する量が増え、コバルト回収率が悪くなる。3価に酸化された鉄イオンはpHが4.0以上で水酸化物として完全除去できる。アルミニウムについてはpHが4.0以上で鉄と共に沈殿し始めるので調整pHは4.0〜5.5、好ましくは4.5〜5.0である。ただし、このまま濾過に移ると水酸化アルミニウム、水酸化鉄と共に、局部中和で生成された水酸化コバルトが補集され、濾液内へのコバルト回収率が悪化してしまったり、溶液中に残存するアルミニウムが多くなるので、コバルトの回収率と不純物除去のバランスが良くない。
【0013】
このため、溶液、沈殿を共に温度調整し、撹拌を時間をかけて行う熟成操作を行う。この熟成中には、沈殿内のコバルトは分解され溶液中にイオンの形で溶出し、この時の分解によって生じる水酸イオンが溶液内のアルミニウムイオンと反応し溶液内のアルミニウムを更に低減しているものと思われる。また、水酸化アルミニウムの結晶性が良くなり、コバルトとの分離性が良くなると考えられる。この時、熟成中の温度は30〜90℃、好ましくは40〜80℃である。Alの除去としては、液中のAl濃度とCo濃度の比(単に、Al/Coと表す。)で0.2%以下が好ましく、熟成時間としてはアルミニウムやコバルトの濃度に応じて適正化する必要があり、120分間以上を必要とするが、480分間以上ではこの効果がほぼ飽和する。熟成終了後、濾過により水酸化アルミニウムと水酸化鉄の混合沈殿とコバルト含有水溶液とを固液分離する。
【0014】
上記熟成後の濾液は、アルカリ、例えば苛性ソーダを加え液性をアルカリ性にして水酸化コバルトを沈殿とし、液中のリチウム(Liと表すことがある。)、ナトリウム(Naと表すことがある。)と分離、回収できる。この時のpHは7以上、より好ましくは10以上である。濾過により水酸化コバルトと濾液とを固液分離後、得られた沈殿を水洗することで沈殿物に付着したリチウム、ナトリウム等の水溶性成分が除去でき、コバルト純度を高めることができる。
ここで得られた水酸化コバルトの沈殿は、適当な濃度の硫酸に溶解し、磁性粉等の原料の硫酸コバルトとして使用可能である。
【0015】
【実施例】
以下に実施例によって本発明をさらに具体的に示すが、本発明の技術的範囲はこの記載によって制限されるものではない。
【0016】
〔実施例1〕 コバルトを34.9%含有するリチウム二次電池廃材80gを、20%硫酸水溶液中に投入し、70℃で3時間浸出した。浸出後、得られた浸出液と不溶解残渣を濾過により分離し、コバルトを含有する硫酸水溶液500ml(lはリットルを表す。)を得た。この硫酸水溶液内のコバルト濃度は55.8g/lであった。この場合のリチウム二次電池廃材からのコバルトの浸出率は100%であった。上記のコバルトを含有する硫酸水溶液の組成を表1に示す。
【0017】
【表1】

Figure 0004439804
【0018】
上記の硫酸水溶液を200ml分取し、35%過酸化水素水を1g添加した。銀−塩化銀電極を用いてこの添加後の溶液の電位を測定したところ650mVであった。液温を50℃にして10%苛性ソーダでpHを5.0に調整後、撹拌しながら480分間熟成し、濾過した。この時点での熟成後の濾液量は356mlとなり、コバルトの回収率は92.6%となった。なお、Al/Coは0.07%であった。上記の熟成後の濾液の組成を表2に示す。
【0019】
【表2】
Figure 0004439804
【0020】
上記の濾液にさらに10%苛性ソーダをpHが10になるまで添加し水酸化コバルト沈殿を得た。この沈殿を1リットルの純水で水洗を行い洗浄後の沈殿を硫酸溶液に溶解させ、硫酸コバルト溶液を294ml得た。得られた水溶液の組成は表3のようになり、最終的なコバルトの収率は92.6%、純度は99.1%となり、磁性粉の原料としての硫酸コバルト溶液を得ることができた。
【0021】
【表3】
Figure 0004439804
【0022】
〔実施例2〕 実施例1で得られた表1に示す硫酸水溶液を196ml分取し35%過酸化水素水を1g添加した。銀−塩化銀電極を用いてこの添加後の溶液の電位を測定したところ650mVであった。液温を50℃にして10%苛性ソーダでpHを5.0に調整後、撹拌しながら120分間熟成し、濾過した。この時点での溶液量は264mlとなり、コバルトの回収率は98.1%となった。なお、Al/Coは0.17%であった。上記の熟成後の濾液の組成を表4に示す。
【0023】
【表4】
Figure 0004439804
【0024】
上記以降の操作は実施例1と同様に試験をし、硫酸コバルトの水溶液を355ml得た。得られた水溶液の組成は表5のようになり、最終的なコバルトの収率は98.1%、純度は99.4%となり、磁性粉の原料としての硫酸コバルト溶液を得ることができた。
【0025】
【表5】
Figure 0004439804
【0026】
〔比較例〕 実施例1で得られた表1に示す硫酸水溶液の残り104mlを分取し35%過酸化水素水を1g添加した。銀−塩化銀電極を用いてこの添加後の溶液の電位を測定したところ650mVであった。液温を50℃にして10%苛性ソーダでpHを5.0に調整後、熟成を行わず濾過した。この時点での濾液量は141mlとなり、コバルトの回収率は90.1%となった。また、熟成を行わなかったので溶液内のアルミニウム濃度は前記の両実施例よりも濃度が高い結果となり、Al/Coは0.84%と高いものであった。上記の濾液の組成を表6に示す。
【0027】
【表6】
Figure 0004439804
【0028】
上記以降の操作は実施例1と同様に試験をし、硫酸コバルトの水溶液を140ml得た。得られた水溶液の組成は表7のようになり、最終的なコバルトの収率は90.1%、純度は98.1%となった。最終的なアルミニウム濃度は0.294g/lとなった。
【0029】
【表7】
Figure 0004439804
【0030】
また、実施例1と同様の硫酸水溶液を得て、熟成時間を10〜100分間(試験例5例)、1000〜10000分間(試験例1例)とした以外は実施例1と同様に行って熟成後の濾液のAl/Coを求め、前記の実施例1、実施例2および比較例における熟成後の濾液のAl/Coとともに図1に示した。熟成時間が120分間以上の場合に熟成後の濾液のAl/Coが目標値の0.2%以下に達すること明らかになった。
【0031】
【発明の効果】
本発明は、不純物とともにコバルトを含有するリチウム二次電池廃材からコバルトを回収する際に、苛性ソーダ等のアルカリでのpH調整後に温度を調整しながら溶液と沈殿物を時間をかけ撹拌する熟成という操作を加えることによって、中和時のコバルトの損失をなくしコバルトの回収率を維持しながら、不純物の濃度を低減させることができるものであり、さらには、使用する薬材が硫酸、苛性ソーダ等と汎用的で比較的廉価なものであって、コバルトの回収を効率的かつ経済的に行うことができるという効果を奏する。
【図面の簡単な説明】
【図1】熟成時間(分)と熟成後の濾液のAl/Coの比(%)との関係図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering cobalt from a cobalt solution containing impurities, and more particularly to a method for recovering cobalt from waste lithium secondary battery materials.
[0002]
[Prior art]
Lithium secondary batteries are well known as lightweight, high electric capacity batteries and are used in large quantities as secondary batteries for various portable devices. A lithium cobalt composite oxide containing a valuable metal cobalt as a positive electrode active material is used for the positive electrode of the lithium secondary battery. From the viewpoint of resource recycling, it is significant to recover the valuable metal cobalt from the lithium cobalt composite oxide so that it can be reused.
[0003]
As a method for recovering cobalt from such a lithium secondary battery, the following method has been proposed. That is, the used lithium secondary battery is roasted, crushed and sieved, and then the secondary sieve is subjected to secondary roasting, followed by treatment with acid, and a pH of 4 while blowing oxidizing gas into the treatment liquid. There is a method in which after adjusting to ˜5.5 and filtering, an alkali is added to the filtrate and filtered to collect a precipitate (see, for example, Patent Document 1).
[0004]
In addition, lithium ion battery waste containing cobalt components was leached with inorganic acid, the molar ratio of phosphorus and aluminum ions in the leached aqueous solution was adjusted to 0.6 to 1.2, the oxidation potential was 500 mV or more, and iron ions were Oxidize, adjust the pH of the aqueous solution to 3.0-4.5, precipitate and remove impurity metals, obtain a purified solution, add oxalic acid to this purified solution to obtain cobalt oxalate or this purified There is a method in which the pH of the solution is adjusted to 6 to 10 to obtain cobalt hydroxide or cobalt carbonate as a precipitate (for example, see Patent Document 2).
[0005]
Further, a secondary battery waste material made of an electrode material containing a cobalt compound or a metal foil coating waste material in which such an electrode material is coated on a metal foil is obtained from an organic solution containing alkylphosphoric acid and water containing hydrogen peroxide. There is a method for recovering cobalt from secondary battery waste material, for example, by contacting with an emulsion extractant to selectively elute cobalt in the secondary battery waste material into an organic solution and recovering cobalt from the resulting organic solution (for example, , See Patent Document 3).
[0006]
[Patent Document 1]
JP-A-7-207349 [Patent Document 2]
Japanese Patent Laid-Open No. 11-6020 [Patent Document 3]
Japanese Patent Laid-Open No. 9-111360
[Problems to be solved by the invention]
1. Extraction of problems in conventional technology
(1) When recovering valuable metals industrially, the balance between economy and quality is important. For example, the recovery of cobalt by the solvent extraction method involves complicated operation and equipment depending on the cost of the solvent used and the number of extraction stages. That's not economical.
(2) In a cobalt-containing solution containing aluminum and iron as impurities, after adding hydrogen peroxide water, the pH is adjusted with caustic soda, and the impurities are removed by precipitation. When adjusted to cobalt, cobalt is also co-precipitated and the recovery rate of cobalt deteriorates. On the other hand, when the pH is adjusted to ensure the cobalt recovery rate, the impurity concentration may not be reduced. That is, there was a problem in the balance between the cobalt recovery rate and the reduction in impurity concentration.
[0008]
2. Problem to be Solved The present invention provides a method for recovering cobalt, which is balanced in reducing the cobalt recovery rate and impurity concentration during pH adjustment as described above in an economical method using general-purpose chemicals and the like. Is.
[0009]
[Means for Solving the Problems]
The present inventors use a general and relatively inexpensive chemical material such as sulfuric acid and caustic soda, adjust the pH of the cobalt solution containing impurities, and adjust the solution temperature and precipitate for a while. By adding an operation of aging with stirring, an efficient and low-cost cobalt recovery method that can reduce the concentration of impurities while maintaining the cobalt recovery rate has been achieved.
[0010]
That is, the present invention first includes cobalt (sometimes referred to as Co), and contains at least one of aluminum (sometimes represented as Al) and iron (sometimes represented as Fe) as impurities. After oxidizing the solution containing one species and adjusting the pH to 4.0 to 5.5, aging at 30 to 90 ° C. for 120 to 480 minutes and solid-liquid separation to improve the recovery rate of cobalt and improve the impurity concentration Cobalt recovery method characterized by achieving both reductions, secondly, the solution is an acidic solution of sulfuric acid, and the oxidation is at least one selected from the group consisting of hydrogen peroxide, sodium persulfate, ozone and air First, wherein the pH adjustment is performed by adding at least one alkali selected from the group consisting of caustic soda, slaked lime, and potassium hydroxide. Third, the cobalt recovery method is the cobalt recovery method according to the first or second aspect, in which the potential of the solution using a silver-silver chloride electrode is 500 to 900 mV. The fourth is the sulfuric acid acidity. The cobalt recovery method according to 2 or 3, wherein the solution is a cobalt-containing solution obtained by leaching lithium secondary battery waste using sulfuric acid, and fifth, the lithium secondary battery waste is lithium secondary The cobalt recovery method according to the fourth aspect, which is a powder obtained by baking and pulverizing a battery.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In carrying out the present invention, first, cobalt is leached from the lithium secondary battery waste in a sulfuric acid solution. The temperature of the leachate at this time is not particularly limited, but is preferably 30 ° C or higher, more preferably 40 to 90 ° C. The sulfuric acid concentration of the sulfuric acid solution is not particularly limited, but is preferably 5 to 30 wt% (wt% is simply expressed as%), more preferably 10 to 25%. Moreover, the oxidation state of cobalt in the lithium secondary battery waste material varies depending on the roasting conditions of the lithium secondary battery, and the waste material containing a large amount of cobalt in the metal state may deteriorate the leaching rate of cobalt. In such a case, mixing oxidizing gas into the sulfuric acid solution promotes oxidation of cobalt in the metallic state in the waste material and is likely to exist as ions in the sulfuric acid solution. Correspondence becomes possible. As this oxidizing gas, air, oxygen, or the like can be used, and air is preferable in consideration of economy.
[0012]
Next, the solution after the leaching operation is filtered and separated into an insoluble residue (carbon component, metal component, etc.) and a filtrate. In addition to cobalt, this filtrate contains at least one of aluminum and iron as impurities. The pH is adjusted by adding an oxidant such as aqueous hydrogen peroxide to the filtrate and then adding an alkali such as caustic soda. Here, the oxidizing agent is selected from hydrogen peroxide, sodium persulfate, ozone, air, and the like, and the alkali is selected from caustic soda, slaked lime, potassium hydroxide, and the like. The oxidizing agent is added to oxidize iron ions from divalent to trivalent. The potential of this solution is preferably 500 to 900 mV. If it is less than 500 mV, the iron ions are not sufficiently oxidized and the removal of iron becomes insufficient. On the other hand, if it exceeds 900 mV, the cobalt ions are oxidized and the amount precipitated with impurities during neutralization (pH adjustment) increases, thereby recovering cobalt. The rate gets worse. Trivalent oxidized iron ions can be completely removed as hydroxides at a pH of 4.0 or higher. About aluminum, since pH begins to precipitate with iron at pH 4.0 or more, adjustment pH is 4.0-5.5, Preferably it is 4.5-5.0. However, if it moves to filtration as it is, cobalt hydroxide produced by local neutralization is collected together with aluminum hydroxide and iron hydroxide, and the cobalt recovery rate in the filtrate deteriorates or remains in the solution. Since the amount of aluminum increases, the balance between cobalt recovery and impurity removal is not good.
[0013]
For this reason, the aging operation is performed in which the temperature of both the solution and the precipitate is adjusted and stirring is performed over time. During this aging, the cobalt in the precipitate is decomposed and eluted in the form of ions in the solution, and the hydroxide ions generated by the decomposition at this time react with the aluminum ions in the solution to further reduce the aluminum in the solution. It seems that there is. Moreover, it is thought that the crystallinity of aluminum hydroxide is improved and the separability from cobalt is improved. At this time, the temperature during aging is 30 to 90 ° C, preferably 40 to 80 ° C. The removal of Al is preferably 0.2% or less in terms of the ratio of Al concentration to Co concentration (simply expressed as Al / Co) in the liquid, and the aging time is optimized according to the concentration of aluminum or cobalt. Necessary, 120 minutes or more are required, but this effect is almost saturated at 480 minutes or more. After completion of aging, the mixed precipitate of aluminum hydroxide and iron hydroxide and the cobalt-containing aqueous solution are separated into solid and liquid by filtration.
[0014]
The filtrate after the above aging is made alkaline by adding caustic soda, for example, so that the liquidity becomes alkaline and cobalt hydroxide is precipitated, and lithium (sometimes expressed as Li) and sodium (sometimes expressed as Na) in the liquid. Can be separated and recovered. The pH at this time is 7 or more, more preferably 10 or more. After the cobalt hydroxide and the filtrate are separated into solid and liquid by filtration, the resulting precipitate is washed with water, so that water-soluble components such as lithium and sodium attached to the precipitate can be removed, and the cobalt purity can be increased.
The obtained cobalt hydroxide precipitate is dissolved in sulfuric acid having an appropriate concentration, and can be used as a raw material cobalt sulfate such as magnetic powder.
[0015]
【Example】
The present invention will be described more specifically with reference to the following examples. However, the technical scope of the present invention is not limited by this description.
[0016]
[Example 1] 80 g of lithium secondary battery waste material containing 34.9% cobalt was put into a 20% sulfuric acid aqueous solution and leached at 70 ° C for 3 hours. After leaching, the obtained leachate and insoluble residue were separated by filtration to obtain 500 ml of a sulfuric acid aqueous solution containing cobalt (l represents liter). The cobalt concentration in this aqueous sulfuric acid solution was 55.8 g / l. In this case, the leaching rate of cobalt from the lithium secondary battery waste was 100%. Table 1 shows the composition of the sulfuric acid aqueous solution containing cobalt.
[0017]
[Table 1]
Figure 0004439804
[0018]
200 ml of the above sulfuric acid aqueous solution was collected, and 1 g of 35% hydrogen peroxide solution was added. When the potential of the solution after this addition was measured using a silver-silver chloride electrode, it was 650 mV. After adjusting the liquid temperature to 50 ° C. and adjusting the pH to 5.0 with 10% caustic soda, the mixture was aged with stirring for 480 minutes and filtered. The amount of filtrate after aging at this time was 356 ml, and the recovery rate of cobalt was 92.6%. Al / Co was 0.07%. The composition of the filtrate after the aging is shown in Table 2.
[0019]
[Table 2]
Figure 0004439804
[0020]
Further, 10% caustic soda was added to the above filtrate until the pH reached 10 to obtain a cobalt hydroxide precipitate. This precipitate was washed with 1 liter of pure water, and the washed precipitate was dissolved in a sulfuric acid solution to obtain 294 ml of a cobalt sulfate solution. The composition of the obtained aqueous solution was as shown in Table 3. The final cobalt yield was 92.6% and the purity was 99.1%, and a cobalt sulfate solution as a raw material for magnetic powder could be obtained. .
[0021]
[Table 3]
Figure 0004439804
[0022]
Example 2 196 ml of the sulfuric acid aqueous solution shown in Table 1 obtained in Example 1 was collected, and 1 g of 35% hydrogen peroxide solution was added. When the potential of the solution after this addition was measured using a silver-silver chloride electrode, it was 650 mV. The liquid temperature was adjusted to 50 ° C. with 10% caustic soda, and the pH was adjusted to 5.0, followed by aging for 120 minutes with stirring and filtration. The amount of solution at this point was 264 ml, and the recovery rate of cobalt was 98.1%. Al / Co was 0.17%. The composition of the filtrate after the aging is shown in Table 4.
[0023]
[Table 4]
Figure 0004439804
[0024]
The subsequent operations were tested in the same manner as in Example 1 to obtain 355 ml of an aqueous solution of cobalt sulfate. The composition of the obtained aqueous solution was as shown in Table 5. The final cobalt yield was 98.1% and the purity was 99.4%, and a cobalt sulfate solution as a raw material for magnetic powder could be obtained. .
[0025]
[Table 5]
Figure 0004439804
[0026]
Comparative Example The remaining 104 ml of the sulfuric acid aqueous solution shown in Table 1 obtained in Example 1 was collected, and 1 g of 35% hydrogen peroxide solution was added. When the potential of the solution after this addition was measured using a silver-silver chloride electrode, it was 650 mV. The liquid temperature was adjusted to 50 ° C. and the pH was adjusted to 5.0 with 10% sodium hydroxide, followed by filtration without aging. At this point, the filtrate amount was 141 ml, and the cobalt recovery rate was 90.1%. Further, since aging was not performed, the aluminum concentration in the solution was higher than those in both of the above examples, and Al / Co was as high as 0.84%. The composition of the filtrate is shown in Table 6.
[0027]
[Table 6]
Figure 0004439804
[0028]
The subsequent operations were tested in the same manner as in Example 1 to obtain 140 ml of an aqueous solution of cobalt sulfate. The composition of the obtained aqueous solution was as shown in Table 7. The final cobalt yield was 90.1% and the purity was 98.1%. The final aluminum concentration was 0.294 g / l.
[0029]
[Table 7]
Figure 0004439804
[0030]
Moreover, it carried out similarly to Example 1 except having obtained the sulfuric acid aqueous solution similar to Example 1, and having made the ripening time into 10 to 100 minutes (Test Example 5 examples) and 1000 to 10,000 minutes (Test Example 1 examples). The Al / Co of the filtrate after aging was determined and shown in FIG. 1 together with the Al / Co of the filtrate after aging in Examples 1, 2 and Comparative Examples. It was found that when the aging time was 120 minutes or longer, the Al / Co in the filtrate after aging reached 0.2% or less of the target value.
[0031]
【The invention's effect】
In the present invention, when recovering cobalt from lithium secondary battery waste containing cobalt together with impurities, an operation of aging to stir the solution and the precipitate over time while adjusting the temperature after adjusting the pH with alkali such as caustic soda In addition, it is possible to reduce the concentration of impurities while eliminating the loss of cobalt during neutralization and maintaining the recovery rate of cobalt. Furthermore, the chemicals used are general-purpose such as sulfuric acid and caustic soda. Therefore, the cobalt can be recovered efficiently and economically.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the aging time (minutes) and the Al / Co ratio (%) of the filtrate after aging.

Claims (5)

コバルトを含有し、不純物としてアルミニウムと鉄を含有する硫酸酸性溶液を過酸化水素水、過硫酸ソーダ、オゾンおよび空気からなる群から選ばれる少なくとも一種の酸化剤の添加によって酸化し、苛性ソーダ、消石灰および水酸化カリウムからなる群から選ばれる少なくとも一種のアルカリの添加によってpHを4.0〜5.5に調整後、30〜90℃で120〜480分間撹拌しながら熟成を行って固液分離することにより前記不純物を除去し、次いで得られた液にアルカリを加えpH7以上にして水酸化コバルトを沈殿させ、固液分離して得た該沈殿を水洗することを特徴とするコバルト回収方法。A sulfuric acid acidic solution containing cobalt and containing aluminum and iron as impurities is oxidized by addition of at least one oxidizing agent selected from the group consisting of hydrogen peroxide, sodium persulfate, ozone and air , caustic soda, slaked lime and After adjusting the pH to 4.0 to 5.5 by adding at least one alkali selected from the group consisting of potassium hydroxide, the mixture is aged with stirring at 30 to 90 ° C. for 120 to 480 minutes to perform solid-liquid separation. The cobalt recovery method is characterized in that the impurities are removed by the following step, alkali is added to the obtained liquid to adjust the pH to 7 or higher to precipitate cobalt hydroxide, and the precipitate obtained by solid-liquid separation is washed with water. コバルトを含有し、不純物としてアルミニウムと鉄を含有する硫酸酸性溶液を過酸化水素水、過硫酸ソーダ、オゾンおよび空気からなる群から選ばれる少なくとも一種の酸化剤の添加によって酸化し、苛性ソーダ、消石灰および水酸化カリウムからなる群から選ばれる少なくとも一種のアルカリの添加によってpHを4.0〜5.5に調整後、30〜90℃で120〜480分間撹拌しながら熟成を行って固液分離することにより前記不純物を除去し、次いで得られた液にアルカリを加えpH7以上にして水酸化コバルトを沈殿させ、固液分離して得た該沈殿を水洗し、さらに該水洗された沈殿を硫酸溶液に溶解させ硫酸コバルト溶液を得ることを特徴とするコバルト回収方法。A sulfuric acid acidic solution containing cobalt and containing aluminum and iron as impurities is oxidized by addition of at least one oxidizing agent selected from the group consisting of hydrogen peroxide, sodium persulfate, ozone and air , caustic soda, slaked lime and After adjusting the pH to 4.0 to 5.5 by adding at least one alkali selected from the group consisting of potassium hydroxide, the mixture is aged with stirring at 30 to 90 ° C. for 120 to 480 minutes to perform solid-liquid separation. Then, alkali is added to the resulting solution to adjust the pH to 7 or more to precipitate cobalt hydroxide, the precipitate obtained by solid-liquid separation is washed with water, and the washed precipitate is further added to a sulfuric acid solution. A cobalt recovery method comprising dissolving and obtaining a cobalt sulfate solution. 前記酸化は銀−塩化銀電極を用いた前記溶液の電位を500〜900mVとする、請求項1または2に記載のコバルト回収方法。 The cobalt recovery method according to claim 1 or 2, wherein the oxidation is performed by setting the potential of the solution using a silver-silver chloride electrode to 500 to 900 mV. 前記硫酸酸性溶液が硫酸を用いてリチウム二次電池廃材を浸出して得られたコバルト含有溶液である、請求項1〜3のいずれかに記載のコバルト回収方法。 The cobalt recovery method according to any one of claims 1 to 3, wherein the sulfuric acid acidic solution is a cobalt-containing solution obtained by leaching lithium secondary battery waste using sulfuric acid. 前記リチウム二次電池廃材がリチウム二次電池を焙焼し、粉砕して得られた粉末である、請求項4記載のコバルト回収方法。 The cobalt recovery method according to claim 4 , wherein the lithium secondary battery waste is a powder obtained by roasting and pulverizing a lithium secondary battery.
JP2002351614A 2002-12-03 2002-12-03 Cobalt recovery method Expired - Lifetime JP4439804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351614A JP4439804B2 (en) 2002-12-03 2002-12-03 Cobalt recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351614A JP4439804B2 (en) 2002-12-03 2002-12-03 Cobalt recovery method

Publications (2)

Publication Number Publication Date
JP2004182533A JP2004182533A (en) 2004-07-02
JP4439804B2 true JP4439804B2 (en) 2010-03-24

Family

ID=32753480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351614A Expired - Lifetime JP4439804B2 (en) 2002-12-03 2002-12-03 Cobalt recovery method

Country Status (1)

Country Link
JP (1) JP4439804B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101069807B1 (en) * 2010-04-14 2011-10-04 한국과학기술연구원 Method of electro-reduction extraction of cobalt from cathodic active material of lithium battery
JP5254407B2 (en) * 2010-08-30 2013-08-07 Jx日鉱日石金属株式会社 Cathode active material leaching method
KR101312086B1 (en) * 2011-07-28 2013-09-27 희성금속 주식회사 Method for collecting alloy-metal from MEA
EP2872447B1 (en) * 2012-07-10 2016-12-28 Basf Se Procédé de fabrication de solutions aqueuses de sulfate de cobalt
KR101516376B1 (en) * 2012-12-21 2015-05-11 주식회사 포스코 Mothod for recovery resource from scrap of lithium rechargable battery
KR20200096965A (en) * 2017-12-19 2020-08-14 바스프 에스이 Battery recycling by treatment of leachate using metallic nickel
JP7350318B2 (en) 2020-03-09 2023-09-26 株式会社ササクラ Cobalt recovery method

Also Published As

Publication number Publication date
JP2004182533A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
EP3431618B1 (en) Processing method for lithium ion battery scrap
WO2017159745A1 (en) Processing method for lithium ion battery scrap
JP6622998B2 (en) Method for removing iron and aluminum from lithium ion battery scrap and method for recovering valuable metals
JP5791917B2 (en) Lithium recovery method
WO2010090176A1 (en) Method for collecting nickel from acidic sulfuric acid solution
JP5495418B2 (en) Method for recovering manganese
JP6336469B2 (en) Method for producing scandium-containing solid material with high scandium content
WO2020196046A1 (en) Method for manufacturing nickel and cobalt-containing solution from hydroxide containing nickel and cobalt
EP4140558A1 (en) Method for producing metal mixture solution and method for producing mixed metal salt
JP7246570B2 (en) Method for producing mixed metal salt
KR20210120669A (en) Method for recovery of manganese compounds from cathode active material of waste lithium ion battery
EP3607101B1 (en) A method for preparing a leach feed material
EP1456426B1 (en) A method for the recovery of cobalt
JP4215547B2 (en) Cobalt recovery method
JP6996723B1 (en) Metal recovery method from lithium-ion batteries
US4594102A (en) Recovery of cobalt and nickel from sulphidic material
JP4439804B2 (en) Cobalt recovery method
JP3411320B2 (en) Zinc smelting method
JP2004285368A (en) Method for refining cobalt aqueous solution
WO2001021846A1 (en) Recovery of metallic lead and salt value from lead ores or from spent lead-acid storage batteries with acetic acid lixiviant
KR20240049385A (en) Method and equipment for recovering metal from black mass
KR20230136948A (en) Selective recovery method of valuable metals using solvent extraction from lithium secondary battery waste
JP2021008385A (en) Method for producing zinc carbonate
JPH0477053B2 (en)
JP7243749B2 (en) Valuable metal recovery method and recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4439804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term