JPH0477053B2 - - Google Patents

Info

Publication number
JPH0477053B2
JPH0477053B2 JP8187984A JP8187984A JPH0477053B2 JP H0477053 B2 JPH0477053 B2 JP H0477053B2 JP 8187984 A JP8187984 A JP 8187984A JP 8187984 A JP8187984 A JP 8187984A JP H0477053 B2 JPH0477053 B2 JP H0477053B2
Authority
JP
Japan
Prior art keywords
solution
added
valuable metals
concentration
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8187984A
Other languages
Japanese (ja)
Other versions
JPS60228627A (en
Inventor
Hiromi Kubo
Tetsuo Sekya
Kosuke Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP59081879A priority Critical patent/JPS60228627A/en
Publication of JPS60228627A publication Critical patent/JPS60228627A/en
Publication of JPH0477053B2 publication Critical patent/JPH0477053B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、有価金属浸出液から不純物であるフ
ツ素を除去する方法に関するものである。 〔従来技術〕 一般に湿式亜鉛製錬においては、鉱石に含まれ
る硫化亜鉛を焙焼して酸化亜鉛とし、これを硫酸
およびまたは硫酸酸性の電解廃液で浸出し、次い
で浸出液中のCu,Cd,Ni,Coなどの不純物を適
当な方法で除去して純度の高い硫酸亜鉛溶液を調
製する。この溶液を電気分解し、カソードに析出
した亜鉛を剥取り、電気炉で溶融した後鋳造す
る。高純度の亜鉛を安定した操業で採取するため
には、硫酸亜鉛溶液を電気分解するにあたつて、
予めこの液からトラブルの要因となる不純物を除
去してしまうことが肝要である。 各種の不純物が、亜鉛の電解採取に当つて、各
種のトラブルをもたらすことについてはよく知ら
れているが、その中でフツ素については、アルミ
ニウム製陰極板を腐蝕させ、亜鉛の析出物を陰極
板表面に固着させる結果、陰極板から析出した亜
鉛を剥取ることを極めて困難にすることが分つて
いる。 特にこのフツ素がもたらす問題は珪酸亜鉛鉱な
どのいわゆる酸化鉱を湿式処理する場合において
深刻である。なぜなら、硫化亜鉛鉱の場合、焙焼
によつて大部分のフツ素が揮発されるのに対し、
酸化鉱の場合には通常行なわれる焙焼によつて
は、フツ素の揮発が起らない。本発明者らの試験
では、100〜200ppmのフツ素を含む硫化亜鉛精鉱
を焙焼することにより10ppm以下とすることがで
きたのに対し150ppmのフツ素を含む炭酸亜鉛鉱
(Smithonite:ZnCO3)、異極鉱
(Hemimorphite:H2Zn2SiO5)などの鉱物から
なる酸化鉱を約800℃で焙焼してもフツ素は揮発
せず、むしろ炭酸亜鉛鉱の炭酸根が分解して揮発
するためにフツ素品位は250ppmと増加した。 このような経験から、かかる酸化鉱から乾式処
理によつてフツ素除去を図るには、酸化鉱に硫黄
源、例えば硫化鉱を添加して混合し、しかる後焙
焼する方法が考えられ、実際の工程への応用も可
能であるが、第1に設備費が嵩み、第2に環境汚
染対策を必要とし、経済的に有利な方法であると
は言えない。 酸性液中のフツ素イオンの除去手段としては、
フツ化カルシウムの溶解度が極めて小さいところ
から、生石灰、消石灰、炭酸カルシウムなどのカ
ルシウム塩を添加して中和し、沈殿物を生成せし
めた後、該沈殿物を分離することが考えられる
が、本発明者らが、硫酸亜鉛の酸性水溶液につい
て試験を行なつた結果十分にフツ素を除去するこ
とができなかつた。 すなわち、本発明者らは、フツ素を200mg/
含有する硫酸亜鉛の硫酸酸性液に、PH5になるま
で炭酸カルシウムなどのカルシウム塩を添加した
のであるが、生成した沈殿物を分離した液中のフ
ツ素濃度は、約90mg/であり、またCa濃度は
約500mg/であつて、CaF2の溶解度積から算出
したフツ素濃度の8.7mg/より、はるかに高い
濃度であつた。これは、カルシウムによつて遊離
硫酸を石膏に固定したにもかかわらず、液中に存
在する硫酸亜鉛の硫酸イオンがフツ素イオンのフ
ツ化カルシウムへの固定を妨害し、結果としてフ
ツ素の除去を不十分なものとしたと考えられる。 このことは、鉱石を硫酸により溶解して処理す
る亜鉛の湿式製錬におけるフツ素除去に対して致
命的な障害となるものであり、一般的には浸出液
からのフツ素の除去は困難視され、フツ素対策と
してカソードの表面を何らかの方法で処理するこ
とが講じられているのが現状である。 〔発明の目的〕 本発明は上述の従来のフツ素によるトラブルを
解決するためになされたものであり有価金属の湿
式処理における抽出液中のフツ素を20mg/以下
に効率良く除去し、比較的高フツ素含有原料よ
り、有利に有価金属を取得することを目的とす
る。 〔発明の構成〕 本発明は、亜鉛を含有する鉱石またはスクラツ
プまたは滓類等の原料を硫酸およびまたは電解尾
液によつて溶解浸出する時あるいはその前後の時
点で、溶解液中の2価鉄イオン濃度が0.1g/
〜10g/、望ましくは0.5g/〜2g/と
なるように、鉄屑、または硫酸第1鉄の如き2価
鉄を含有する塩を添加し、更に溶解液中の3価の
アルミニウムイオン濃度が10mg/〜2000mg/
、望ましくは100mg/〜1000mg/となるよ
うにアルミニウム屑、または硫酸アルミニウムの
如き酸可溶性の塩を添加する。次に、浸出が完了
した液に中和剤として生石灰、炭酸カルシウム、
消石灰、酸化亜鉛、亜鉛鉱石のいずれかないしい
くつかを組合わせたものを添加し、PHを2〜6、
望ましくは4〜6になるように調節する。また、
中和する直前から中和完了するまでの間に、浸出
液中の2価鉄イオンを3価に酸化させるために、
過マンガン酸カリウムまたは二酸化マンガンまた
は電解クラストマンガンの如き酸化剤を添加す
る。 中和完了液は、通常実施されている亜鉛末、亜
砒酸法やアンチモン法、α−ニトロソβ−ナフト
ール法などの方法によつて清浄され、さらに電気
分解される過程を経て、最終的に高純度の亜鉛を
析出する。 さらに、本発明は、有価金属含有物の溶解液か
らフツ素を除去する目的を達成するために鉱石等
を溶解する過程でアルミニウム屑や硫酸アルミニ
ウムなどの酸可溶性塩を添加することなく、溶解
液を炭酸カルシウム等で中和する過程において通
常の酸化アルミニウム粉や、活性アルミナ粉を
0.1g/以上添加するという方法をとることに
よつて上記の方法と同様の効果が得られる。 本発明において、鉄源の添加量は、浸出液中の
鉄濃度が0.1g/以上となるようにすれば、フ
ツ素除去の効果は認められるが、10g/以上に
すると、亜鉛の抽出率が低下し、また過性も落
ちる。0.5g/〜2g/の範囲では、浸出液
中のフツ素濃度が60mg/以上であるのを該浸出
液を中和してフツ素濃度を20mg/以下にできる
ばかりでなく、亜鉛抽出率と過性を、鉄が全く
含まれていない場合よりも高くすることが可能で
ある。 また、アルミニウムの添加量は、浸出液中のア
ルミニウム濃度が10mg/以上となるようにすれ
ば、フツ素除去の効果が認められ、アルミニウム
の添加量を増加するにつれフツ素除去の効果は大
きくなる。しかしながら、2000mg/以上では浸
出スラリーの過性が低下し、工業的に応用する
場合適切ではない。浸出液中のアルミニウム濃度
を100mg/〜1000mg/にすると、浸出液中の
フツ素が60mg/以上という高濃度であつても、
中和液の濃度を20mg/以下とすることができ、
かつ亜鉛の抽出率や過性を高く維持することが
可能である。 また、溶解の過程で、酸可溶性のアルミニウム
またはその塩を添加する代りに、中和の過程で酸
化アルミニウムを添加することによつても、中和
液のフツ素の濃度を20mg/以下とすることが可
能で、しかもこの場合原理的に水酸化アルミニウ
ムのゲルの形成を伴わないので、アルミニウム量
で2000mg/以上であつても過性を損うことが
ない。 本発明方法のフツ素除去におけるメカニズムに
ついて、反応機構論的に未だ完全には解明されて
いないが、鉄およびアルミニウムとの共沈反応な
いしこれらの水酸化物沈澱への吸着反応と考えら
れる。すなわち、浸出液中に溶解している2価鉄
イオンが過マンガン酸カリウムなどによつて酸化
され、該浸出液が中和される過程でアルミニウム
とともに水酸化物として析出するフツ素イオン
は、浸出液中の濃度が100mg/以上の高濃度で
あれば、中和によつて一部フツ化カルシウムとし
て沈澱することもあるが、それほどの濃度でなけ
ればイオンのまま鉄とアルミニウムの水酸化物が
複合した沈澱物に吸着などの作用により取り込ま
れて沈澱すると考えられる。 〔発明の実施例〕 以下本発明の実施例について比較例と共に述べ
る。 実施例 1 珪酸亜鉛鉱125gを、電解尾液を用いて溶解し
た。溶解の途中で、硫酸第1鉄を5.5g、硫酸ア
ルミニウムを3.5g添加した。これらの添加量は、
それぞれFe2+1g/ A3+500mg/に相当
するものとした。浸出終了後のPHは1.5、浸出ス
ラリーは1.2であつた。 浸出の終つたスラリーに、KMnO4を1.6g添加
した後炭酸カルシウムを水でといたスラリーを添
加して、PH5.0にした。 中和が終了したスラリーに、市販のフロツク剤
を添加し沈澱物を凝集させ、過した。 鉱石を溶解した液と、中和後過した液のFを
分析してFの除去率について調べた他、Zn抽出
率、残渣生成率、過速度を測定した結果を第1
表に示す。
[Technical Field of the Invention] The present invention relates to a method for removing fluorine as an impurity from a valuable metal leachate. [Prior art] In general, in hydrometallurgical zinc smelting, zinc sulfide contained in ore is roasted to produce zinc oxide, which is leached with sulfuric acid and/or a sulfuric acid acidic electrolytic waste solution, and then Cu, Cd, and Ni in the leaching solution are , Co, and other impurities are removed using an appropriate method to prepare a highly pure zinc sulfate solution. This solution is electrolyzed to strip off the zinc deposited on the cathode, melted in an electric furnace, and then cast. In order to collect high-purity zinc with stable operation, when electrolyzing zinc sulfate solution,
It is important to remove impurities that may cause trouble from this liquid in advance. It is well known that various impurities cause various problems during the electrowinning of zinc, but among them, fluorine corrodes the aluminum cathode plate and removes zinc precipitates from the cathode. It has been found that adhesion to the plate surface makes it extremely difficult to strip the deposited zinc from the cathode plate. The problem caused by this fluorine is particularly serious when wet-processing so-called oxide ores such as zinc silicate ores. This is because, in the case of zinc sulfide ore, most of the fluorine is volatilized by roasting;
In the case of oxidized ores, the fluorine does not volatilize by roasting, which is usually carried out. In our tests, we were able to reduce zinc sulfide concentrate containing 100 to 200 ppm of fluorine to 10 ppm or less by roasting it; 3 ) Even if oxide ores made of minerals such as hemimorphite (H 2 Zn 2 SiO 5 ) are roasted at approximately 800°C, fluorine does not volatilize, but rather the carbonate roots of zinc carbonate ores decompose. The fluorine content increased to 250ppm due to the volatilization. Based on this experience, in order to remove fluorine from such oxidized ores by dry processing, it is possible to add a sulfur source, such as sulfide ores, to the oxidized ores, mix them, and then roast them. Although it is possible to apply this method to the process described above, firstly, the equipment cost increases, and secondly, it requires measures against environmental pollution, so it cannot be said that it is an economically advantageous method. As a means of removing fluoride ions from acidic liquid,
Since the solubility of calcium fluoride is extremely low, it may be possible to neutralize it by adding calcium salts such as quicklime, slaked lime, or calcium carbonate to form a precipitate, and then separate the precipitate. The inventors tested an acidic aqueous solution of zinc sulfate and found that fluorine could not be removed sufficiently. That is, the present inventors added fluorine to 200mg/
Calcium salts such as calcium carbonate were added to the sulfuric acid solution containing zinc sulfate until the pH reached 5, but the fluorine concentration in the solution from which the generated precipitate was separated was about 90 mg/day, and The concentration was approximately 500 mg/, which was much higher than the fluorine concentration of 8.7 mg/, which was calculated from the solubility product of CaF 2 . This is because although free sulfuric acid was fixed to the plaster by calcium, the sulfate ions of zinc sulfate present in the solution interfered with the fixation of fluoride ions to calcium fluoride, resulting in the removal of fluoride. It is considered that this was insufficient. This is a fatal obstacle to the removal of fluorine in zinc hydrometallurgy, which processes ore by dissolving it in sulfuric acid, and generally it is considered difficult to remove fluorine from leachate. Currently, as a countermeasure against fluorine, the surface of the cathode is treated by some method. [Object of the Invention] The present invention was made to solve the above-mentioned problems caused by conventional fluorine. The purpose is to advantageously obtain valuable metals from high fluorine-containing raw materials. [Structure of the Invention] The present invention provides a solution for dissolving and leaching zinc-containing raw materials such as ores, scraps, and slags with sulfuric acid and/or electrolytic tailings, or at a time before or after the dissolving and leaching of zinc-containing raw materials such as ores, scraps, and slags. Ion concentration is 0.1g/
Iron scrap or a salt containing divalent iron such as ferrous sulfate is added so that the concentration of trivalent aluminum ions in the solution is ~10 g/, preferably 0.5 g/~2 g/. 10mg/~2000mg/
, desirably 100 mg/~1000 mg/aluminum scrap or an acid-soluble salt such as aluminum sulfate. Next, quicklime and calcium carbonate are added to the leached liquid as a neutralizing agent.
Add slaked lime, zinc oxide, zinc ore, or a combination of some, and adjust the pH to 2-6.
Preferably, the number is adjusted to 4 to 6. Also,
In order to oxidize the divalent iron ions in the leachate to trivalent from just before neutralization until the completion of neutralization,
Add an oxidizing agent such as potassium permanganate or manganese dioxide or electrolytically crusted manganese. The neutralized solution is purified using commonly used methods such as zinc powder, arsenous acid method, antimony method, and α-nitroso-β-naphthol method, and then undergoes an electrolysis process to finally achieve high purity. of zinc is deposited. Furthermore, in order to achieve the purpose of removing fluorine from a solution containing valuable metals, the present invention provides a solution without adding acid-soluble salts such as aluminum scraps or aluminum sulfate during the process of dissolving ores, etc. In the process of neutralizing aluminum with calcium carbonate, etc., ordinary aluminum oxide powder or activated alumina powder is used.
By adding 0.1 g or more, the same effect as the above method can be obtained. In the present invention, if the amount of iron source added is such that the iron concentration in the leachate is 0.1 g/or more, the effect of removing fluoride is recognized, but if the amount is 10 g/or more, the extraction rate of zinc decreases. Also, hypersensitivity decreases. In the range of 0.5g/~2g/, not only can the fluorine concentration in the leachate, which is 60mg/or more, be neutralized to reduce the fluorine concentration to 20mg/or less, but also the zinc extraction rate and hypersensitivity can be reduced. can be higher than if no iron was included. Further, the effect of removing fluorine is observed when the amount of aluminum added is such that the aluminum concentration in the leachate is 10 mg/or more, and the effect of removing fluorine increases as the amount of aluminum added increases. However, if the amount is 2000 mg/or more, the permeability of the leaching slurry decreases, making it unsuitable for industrial applications. If the aluminum concentration in the leachate is 100mg/~1000mg/, even if the fluorine concentration in the leachate is as high as 60mg/ or more,
The concentration of the neutralizing solution can be reduced to 20mg/or less,
Moreover, it is possible to maintain a high extraction rate and hypersensitivity of zinc. Alternatively, instead of adding acid-soluble aluminum or its salt during the dissolution process, aluminum oxide can be added during the neutralization process to reduce the concentration of fluorine in the neutralization solution to 20mg/or less. Moreover, in this case, in principle, no gel formation of aluminum hydroxide is involved, so even if the amount of aluminum is 2000 mg/or more, the hyperactivity will not be impaired. Although the mechanism of fluorine removal in the method of the present invention has not yet been completely elucidated in terms of reaction mechanism, it is thought to involve a coprecipitation reaction with iron and aluminum or an adsorption reaction of these to hydroxide precipitates. In other words, divalent iron ions dissolved in the leachate are oxidized by potassium permanganate, etc., and in the process of neutralizing the leachate, fluoride ions precipitate as hydroxides along with aluminum. If the concentration is as high as 100 mg/min or more, it may partially precipitate as calcium fluoride due to neutralization, but if the concentration is not that high, it remains as an ion and precipitates as a complex of iron and aluminum hydroxide. It is thought that it is taken up by things such as adsorption and precipitates. [Examples of the Invention] Examples of the present invention will be described below along with comparative examples. Example 1 125 g of zinc silicate ore was dissolved using electrolytic tailings. During the dissolution, 5.5 g of ferrous sulfate and 3.5 g of aluminum sulfate were added. The amount of these additions is
Each amount corresponded to 1 g of Fe 2+ / 500 mg of A 3+ . After the leaching was completed, the pH of the leaching slurry was 1.5 and 1.2. After leaching, 1.6 g of KMnO 4 was added to the slurry, and then a slurry of calcium carbonate dissolved in water was added to adjust the pH to 5.0. A commercially available flocculating agent was added to the neutralized slurry to flocculate the precipitate, which was then filtered. In addition to analyzing F in the solution in which the ore was dissolved and the solution filtered after neutralization to investigate the F removal rate, the results of measuring the Zn extraction rate, residue generation rate, and overrate were reported in the first study.
Shown in the table.

【表】 比較例 1 実施例1に示したのと同様の方法で、珪酸亜鉛
鉱を溶解し、添加剤の量をFe2+は0,1,2,
4g/、KMnO4はそれぞれのFe2+をFe3+に酸
化するのに必要な量とし、A3+は添加しなかつ
た。結果を次の第2表に示す。
[Table] Comparative Example 1 Zinc silicate was dissolved in the same manner as shown in Example 1, and the amount of additive was changed to Fe 2+ of 0, 1, 2,
4 g/KMnO 4 was used in an amount necessary to oxidize each Fe 2+ to Fe 3+ , and A 3+ was not added. The results are shown in Table 2 below.

【表】 第2表から明らかな如く、Fe2+の添加量が増
加するにつれ、Fの除去の効果は増大するもの
の、Zn抽出率、過速度はFe2+1g/をピー
クにFe2+の添加量を増加するにつれ、低減した。 実施例 2 珪酸亜鉛鉱400gを、連続的に溶解、浸出し、
これと同時に硫酸第1鉄と硫酸第1鉄と硫酸アル
ミニウムを、それぞれFe2+濃度が1g/、A
3+濃度が500mg/となるように添加し、完全
に溶解せしめた。浸出が完了したスラリーに、炭
酸カルシウムを水でといたスラリーを添加し、PH
4.5〜5.0とした。中和の途中で過マンガン酸カリ
ウムを添加し、最終的に化学分析を行なつて、液
中のFe2+を完全に酸化せしめた。その後、市販
のフロツク剤を添加し、沈澱物を凝集せしめた。
中和完了スラリーを過し、約2800mlの液に亜
鉛末、亜砒酸を添加して液の清浄を行なつた。清
浄液を次の条件で電気分解した。
[Table] As is clear from Table 2, as the amount of Fe 2+ added increases, the effect of F removal increases, but the Zn extraction rate and overrate peak at 1 g/ Fe 2+ It decreased as the amount of addition increased. Example 2 400g of zinc silicate ore was continuously dissolved and leached,
At the same time, ferrous sulfate, ferrous sulfate, and aluminum sulfate were added, each with a Fe 2+ concentration of 1 g/A.
It was added so that the 3+ concentration was 500 mg/d, and completely dissolved. A slurry of calcium carbonate dissolved in water is added to the slurry after leaching, and the pH is adjusted.
It was set at 4.5 to 5.0. Potassium permanganate was added during neutralization, and a final chemical analysis was performed to ensure complete oxidation of Fe 2+ in the solution. Thereafter, a commercially available flocking agent was added to flocculate the precipitate.
The neutralized slurry was filtered, and zinc powder and arsenous acid were added to about 2800 ml of the solution to clean it. The cleaning solution was electrolyzed under the following conditions.

【表】 電解が終了した後、電解尾液は鉱石の溶解に繰
返し、この一連の連続した工程を4回繰返し続け
た。この連続繰返し試験の中で、浸出液と中和完
了液のF濃度を分析した結果を第1図に示す。 第1図から明らかな如く、中和の過程でF濃度
は20〜30mg/低減し、繰返しの回数を増すにつ
れ中和完了液中のF濃度は18mg/に平衡した。
繰返し回数4回目での浸出試験の結果は、次の通
りである。
[Table] After the electrolysis was completed, the electrolytic tailings was used repeatedly to dissolve the ore, and this series of continuous steps was repeated four times. Figure 1 shows the results of analyzing the F concentrations of the leachate and the neutralized liquid during this continuous repeated test. As is clear from FIG. 1, the F concentration decreased by 20 to 30 mg/during the neutralization process, and as the number of repetitions increased, the F concentration in the neutralized solution equilibrated to 18 mg/dc.
The results of the leaching test after the fourth repetition are as follows.

【表】 比較例 2 実施例3と同様の方法の中で、添加剤の量につ
いて、硫酸第1鉄を、浸出液中のFe2+濃度が1
g/となる分、過マンガン酸カリウムを、液中
のFe2+が全部Fe3+に酸化せしめるのに必要な分
とし、A源は添加しなかつた。 工程の連続繰返し回数を6回取り、浸出液と中
和完了後のF濃度を測定した結果を、第2図に示
す。第2図に明らかな如く、Feを添加するだけ
でもFは約10mg/低減するのであるが、工程を
繰返すにつれ浸出液と中和完了液のF濃度は次第
に高くなつてゆき、中和完了液で約40mg/に平
衡した。すなわち、Feとの共沈によつてある程
度のFの除去は可能であるが、亜鉛の電気製錬に
要求されるF濃度20mg/以下とすることはでき
なかつた。 実施例2と比較例2の結果を対比させて、Fe
とAを同時に沈澱させる本発明の効果が著しい
ことが認められる。繰返し回数6回目での、浸出
試験の結果は次の通りである。
[Table] Comparative Example 2 In the same method as in Example 3, ferrous sulfate was added in the amount of additive, and Fe 2+ concentration in the leachate was 1.
The amount of potassium permanganate required to oxidize all of the Fe 2+ in the solution to Fe 3+ was adjusted to be 1 g/g/, and no A source was added. The process was repeated six times and the F concentration of the exudate and after neutralization was measured. The results are shown in Figure 2. As is clear from Figure 2, just adding Fe reduces F by about 10 mg/kg, but as the process is repeated, the F concentration in the leachate and the neutralized solution gradually increases, and in the neutralized solution, the F concentration gradually increases. It was equilibrated to about 40mg/. That is, although it is possible to remove some F by co-precipitation with Fe, it has not been possible to reduce the F concentration to 20 mg/or less, which is required for zinc electrosmelting. Comparing the results of Example 2 and Comparative Example 2, Fe
It is recognized that the effect of the present invention of simultaneously precipitating A and A is remarkable. The results of the leaching test after the sixth repetition are as follows.

【表】 実施例 3 実施例1に示したのと同様の方法で、珪酸亜鉛
鉱を溶解し、添加剤の量について、浸出液中の
Fe2+の濃度が1g/、A3+の濃度が0,10,
100,500,1000,2000mg/となるようにそれぞ
れ硫酸第1鉄、硫酸アルミニウムを溶解の時点で
添加し、さらに、浸出液中のFe2+を全部Fe3+
酸化せしめるのに必要な量の過マンガン酸カリウ
ムを中和の途中で浸出液に添加して中和完了後
過した。 過速度、中和完了液のF濃度について得られ
た結果を第3図に示す。 第3図から明らかな如く、浸出液中のA3+
度を増大させる程、中和完了液のF濃度は急激に
低減した。一方、A3+濃度が500mg/までは
過速度はそれほど変化しないが、500mg/以
上にすると急激に低下し、2000mg/で500mg/
の場合の約1/3の0.6ml/cm2・mmであつた。 実施例 4 珪素亜鉛鉱125gを電解尾液で溶解し、これに
硫酸第1鉄5.5gを添加した。浸出スリラー量1.2
、PHは1.8とした。浸出スラリーにKMnO4
1.6g添加し、さらに炭酸カルシウムスラリー添
加して中和し、PH4.9にした。 中和完了直後に、純度99%のアルミナ粉を0.5
g添加し1時間攪拌を続けた。その後市販のフロ
ツク剤を添加し、沈澱物を凝集させ、過した。
鉱石を溶解した液と、液のFを分析してFの除
去率の他、Zn抽出率、残渣生成率、過速度を
測定した結果を、第5表に示す。
[Table] Example 3 Zinc silicate was dissolved in the same manner as in Example 1, and the amount of additive in the leachate was determined.
The concentration of Fe 2+ is 1 g/, the concentration of A 3+ is 0.10,
Ferrous sulfate and aluminum sulfate were added at the time of dissolution in amounts of 100, 500, 1000, and 2000 mg, respectively, and the amount necessary to oxidize all Fe 2+ in the leachate to Fe 3+ was added. Potassium permanganate was added to the leachate during neutralization and filtered after neutralization was completed. The results obtained regarding overrate and F concentration of the neutralized solution are shown in FIG. As is clear from FIG. 3, as the A 3+ concentration in the leachate was increased, the F concentration in the neutralized liquid decreased rapidly. On the other hand, the overrate does not change much when the A 3+ concentration is up to 500 mg/, but it decreases rapidly when the A 3+ concentration exceeds 500 mg/.
The amount was 0.6 ml/cm 2 mm, about 1/3 of that in the case of . Example 4 125 g of silicozinc ore was dissolved in electrolytic tailings, and 5.5 g of ferrous sulfate was added thereto. Leaching chiller amount 1.2
, PH was set to 1.8. KMnO4 to leaching slurry
1.6g was added, and calcium carbonate slurry was further added to neutralize it to a pH of 4.9. Immediately after neutralization, add 0.5% of 99% pure alumina powder.
g was added and stirring was continued for 1 hour. A commercially available flocking agent was then added to flocculate the precipitate and filtered.
Table 5 shows the results of analyzing the solution in which the ore was dissolved and the F of the solution to measure the F removal rate, Zn extraction rate, residue production rate, and overrate.

〔発明の効果〕〔Effect of the invention〕

本発明は、上述した如く鉱石などを溶解し該溶
解液を中和する過程で鉄源とアルミニウム源さら
に2価鉄を酸化せしめる酸化剤を適切に決められ
た量を添加するという、極めて簡単な方法により
フツ素品位の高い鉱石を湿式処理しても常に電解
液中のフツ素濃度を20mg/以下にすることがで
き、さらに該方法により亜鉛の抽出率を向上さ
せ、浸出スラリーの該過性を向上させることも可
能であり、湿式製錬法による高純度亜鉛を大量生
産するに際してのフツ素除去方法として甚だ有用
なものである。
The present invention is an extremely simple process in which, as described above, in the process of dissolving ore and neutralizing the solution, appropriately determined amounts of an iron source, an aluminum source, and an oxidizing agent for oxidizing divalent iron are added. This method makes it possible to always keep the fluorine concentration in the electrolyte below 20 mg even when ores with high fluorine content are wet-processed. Furthermore, this method improves the extraction rate of zinc and improves the superconcentration of the leaching slurry. This method is extremely useful as a method for removing fluorine when mass producing high-purity zinc by hydrometallurgical smelting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFe,Aを添加した場合の第2図は
Feだけ添加した場合の夫々連続くり返し試験に
おける繰返し回数と浸出液、中和完了液のF濃度
との関係グラフ、第3図は、Feを一定量、A
の添加量を変化した場合の中和完了液のF濃度と
過速度との関係グラフである。
Figure 1 shows the case where Fe and A are added. Figure 2 shows the case where Fe and A are added.
Figure 3 is a graph showing the relationship between the number of repetitions and the F concentration of the leachate and the neutralized liquid in each continuous repeated test when only Fe is added.
It is a graph showing the relationship between the F concentration of the neutralized solution and the overspeed when the amount of F added is changed.

Claims (1)

【特許請求の範囲】 1 有価金属を含む鉱石またはスクラツプまたは
滓類等の原料を硫酸などの鉱酸酸性水溶液によつ
て溶解し、有価金属を浸出し、有価金属を採取す
るに際し、該原料を溶解中またはその前後におい
て、鉄屑または2価の鉄を含有する塩を溶解液中
のFe2+濃度が0.1g/〜10g/となるよう、
またアルミニウム屑、または酸可溶性のアルミニ
ウム塩を前記溶解液中のA3+濃度が10mg/〜
2000mg/となるように添加し、その後溶解液中
のFe2+の全量ないし一部をFe3+に酸化するため
に酸化剤を必要量添加し、中和剤を添加し、溶解
液のPHを2〜6とし、鉄とアルミニウムの水酸化
物を沈殿せしめると同時にフツ素を共沈させるこ
とを特徴とする有価金属の湿式処理におけるフツ
素除去方法。 2 前記鉄屑、または2価の鉄を含有する塩を溶
解液中のFe2+濃度が0.5g/〜2g/の範囲
で、またアルミニウム屑、または酸可溶性のアル
ミニウム塩を溶解液中のA3+濃度が100mg/
〜1000mg/の範囲で添加することを特徴とする
特許請求の範囲第1項記載の有価金属の湿式処理
におけるフツ素鉱除去方法。 3 溶解液のPHが4〜6の範囲となるように中和
剤を添加し中和することを特徴とする特許請求の
範囲第1項記載の有価金属の湿式処理におけるフ
ツ素除去方法。 4 有価金属を含む鉱石またはスクラツプまたは
滓類等の原料を硫酸などの鉱酸酸性水溶液によつ
て溶解し、有価金属を浸出し有価金属を採取する
に際し、該原料鉱石等を溶解中またはその前後に
おいて、鉄屑または2価鉄を含有する塩を溶解液
中のFe2+濃度が0.1g/〜10g/となるよう
添加し、その後溶解液中の2価鉄の全量ないし一
部を2価鉄に酸化するために酸化剤を必要量添加
し、次いで中和剤を添加し、溶解液のPHを2〜6
とし、さらに酸化アルミニウムを0.1g/以上
添加し、鉄の水酸化物と酸化アルミニウムの沈殿
物と共に、フツ素を共沈させることを特徴とす
る、有価金属の湿式処理におけるフツ素除去方
法。 5 前記鉄屑または2価鉄を含有する塩を溶解液
中のFe2+濃度が0.5g/〜2g/の範囲で添
加することを特徴とする特許請求範囲第4項記載
の有価金属の湿式処理におけるフツ素除去方法。 6 溶解液のPHを4〜6の範囲となるように中和
剤を添加し中和することを特徴とする特許請求の
範囲第4項記載の有価金属の湿式処理におけるフ
ツ素除去方法。
[Scope of Claims] 1. When extracting valuable metals by dissolving raw materials such as ores, scraps, or slags containing valuable metals in an acidic mineral acid solution such as sulfuric acid, and extracting valuable metals, During or before and after dissolution, iron scrap or salt containing divalent iron is added so that the Fe 2+ concentration in the solution is 0.1 g/~10 g/.
In addition, aluminum scrap or acid-soluble aluminum salt is added to the solution with an A 3+ concentration of 10 mg/~
2000mg/, then add the necessary amount of oxidizing agent to oxidize all or part of the Fe 2+ in the solution to Fe 3+ , add a neutralizing agent, and adjust the pH of the solution. 2 to 6, and a method for removing fluorine in wet processing of valuable metals, characterized by precipitating iron and aluminum hydroxides and co-precipitating fluorine at the same time. 2. The iron scraps or salts containing divalent iron are dissolved in a solution with an Fe 2+ concentration in the range of 0.5 g/~2 g/, and the aluminum scraps or acid-soluble aluminum salts are mixed with A in the solution solution. 3+ concentration is 100mg/
2. The method for removing fluorite in wet processing of valuable metals according to claim 1, wherein the amount is added in the range of ~1000 mg/. 3. The method for removing fluorine in wet processing of valuable metals according to claim 1, characterized in that a neutralizing agent is added to neutralize the solution so that the pH thereof is in the range of 4 to 6. 4 When raw materials such as ores containing valuable metals or scraps or slags are dissolved in an aqueous solution of mineral acids such as sulfuric acid, and valuable metals are leached out and valuable metals are collected, the raw material ores, etc., are dissolved during or before or after the melting. In the process, iron scrap or a salt containing divalent iron is added so that the Fe 2+ concentration in the solution is 0.1 g/~10 g/, and then all or part of the divalent iron in the solution is added to the divalent iron. Add the necessary amount of oxidizing agent to oxidize iron, then add a neutralizing agent to adjust the pH of the solution to 2 to 6.
A method for removing fluorine in wet processing of valuable metals, the method comprising: further adding 0.1 g/or more of aluminum oxide to co-precipitate fluorine together with iron hydroxide and aluminum oxide precipitates. 5. The wet method for valuable metals according to claim 4, characterized in that the iron scrap or the salt containing divalent iron is added at a concentration of Fe 2+ in the solution in the range of 0.5 g/ to 2 g/. Fluoride removal method in processing. 6. The method for removing fluorine in wet processing of valuable metals according to claim 4, which comprises adding a neutralizing agent to neutralize the solution so that the pH thereof falls within the range of 4 to 6.
JP59081879A 1984-04-25 1984-04-25 Method for removing fluorine in wet treating of worthy metal Granted JPS60228627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081879A JPS60228627A (en) 1984-04-25 1984-04-25 Method for removing fluorine in wet treating of worthy metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081879A JPS60228627A (en) 1984-04-25 1984-04-25 Method for removing fluorine in wet treating of worthy metal

Publications (2)

Publication Number Publication Date
JPS60228627A JPS60228627A (en) 1985-11-13
JPH0477053B2 true JPH0477053B2 (en) 1992-12-07

Family

ID=13758733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081879A Granted JPS60228627A (en) 1984-04-25 1984-04-25 Method for removing fluorine in wet treating of worthy metal

Country Status (1)

Country Link
JP (1) JPS60228627A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936656A (en) * 2012-11-20 2013-02-20 东北大学 Method for removing fluorine in bastnaesite sulfuric acid leaching liquid by aluminiferous adsorbing agent
JP6742596B2 (en) * 2016-08-30 2020-08-19 三菱マテリアル株式会社 High-quality gypsum manufacturing method
JP6986226B2 (en) 2017-12-27 2021-12-22 三菱マテリアル株式会社 Wastewater treatment method
JP6970917B2 (en) 2017-12-27 2021-11-24 三菱マテリアル株式会社 Wastewater treatment method
CN110669933B (en) * 2019-10-21 2021-04-27 金驰能源材料有限公司 Method for removing fluorine in nickel-cobalt-manganese solution
CN113621800B (en) * 2021-08-11 2023-05-16 郑州大学 Treatment method of fluorine-containing pickle liquor

Also Published As

Publication number Publication date
JPS60228627A (en) 1985-11-13

Similar Documents

Publication Publication Date Title
CA2437549C (en) Production of zinc oxide from complex sulfide concentrates using chloride processing
CA2721518C (en) Treatment of indium gallium alloys and recovery of indium and gallium
CA2833281C (en) A method for recovering indium, silver, gold and other rare, precious and base metals from complex oxide and sulfide ores
CN101157987A (en) Method for preparing electrolytic zinc by processing complex secondary zinc oxide material
PL110632B1 (en) Method of hydro-metallurgical treatment of ores or concentrates comprising sulphur
JP6471912B2 (en) Method for producing high purity cobalt sulfate aqueous solution
JP7016463B2 (en) How to collect tellurium
EP1456426B1 (en) A method for the recovery of cobalt
CA1074727A (en) Process for recovering electrolytic copper of high purity by means of reduction electrolysis
US5431713A (en) Method for the reclamation of metallic compounds from zinc and lead containing dust
JP3254501B2 (en) Method for removing arsenic from acidic solution containing arsenic and iron
CN106430118B (en) A kind of method from separation and concentration tellurium in solution containing tellurium
CN109402410B (en) Method for enriching precious metals through iron matte acid slag pretreatment
FI82715B (en) FOERFARANDE FOER HYDROMETALLURGISK FRAMSTAELLNING AV ZINK.
JPH0477053B2 (en)
JP5062111B2 (en) Method for producing high-purity arsenous acid aqueous solution from copper-free slime
WO2018138917A1 (en) Bismuth purification method
EP2963132A1 (en) Method for leaching gold from gold ore containing pyrite
JP4439804B2 (en) Cobalt recovery method
Barakat Recovery of metal values from zinc solder dross
CN113355517A (en) Method for harmlessly treating and recycling magnesium fluoride waste acid in zinc smelting process
US4992248A (en) Method for neutralizing sulfuric acid containing zinc ion
CN1970801A (en) Method for separating Fe-Mn and Mn-Zn
JP2005256068A (en) Method for recovering cadmium
CA1200701A (en) Dehalogenation of oxidic zinc-bearing materials