JP2004010929A - Method for recovering cobalt from scrap - Google Patents

Method for recovering cobalt from scrap Download PDF

Info

Publication number
JP2004010929A
JP2004010929A JP2002163725A JP2002163725A JP2004010929A JP 2004010929 A JP2004010929 A JP 2004010929A JP 2002163725 A JP2002163725 A JP 2002163725A JP 2002163725 A JP2002163725 A JP 2002163725A JP 2004010929 A JP2004010929 A JP 2004010929A
Authority
JP
Japan
Prior art keywords
cobalt
scrap
solution
recovering
contained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002163725A
Other languages
Japanese (ja)
Other versions
JP4210475B2 (en
Inventor
Hideyuki Mori
森 英之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2002163725A priority Critical patent/JP4210475B2/en
Publication of JP2004010929A publication Critical patent/JP2004010929A/en
Application granted granted Critical
Publication of JP4210475B2 publication Critical patent/JP4210475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inexpensively and efficiently recover cobalt from scrap of a waste material of battery positive pole etc. and to obtain a cobalt material particularly suitable for use in the production of organic metal such as cobalt soap or use as a raw material for cobalt electrolytic solution. <P>SOLUTION: The method consists of the following steps: a step where Co, Al, Cu, Mn, Fe, etc., contained in the scrap of the waste material of battery positive pole etc. are dissolved using sulfuric acid of 0.75 to 0.85 equivalent to the amount of the metals contained and then pH is regulated to 6 to 7 and the Al, Cu and Fe contained in the resultant solution are filtered out in the form of hydroxides to reduce the respective contents of these elements to ≤10 mg/L, respectively; and a step where an oxidizing agent of ≥2.5 equivalent to the Mn as an impurity is added and pH is regulated to 2.5 to 5 and the Mn is filtrated and removed in the form of an oxide to reduce the content of the Mn to ≤10 mg/L. The residual solution is recovered as a Co-containing purified solution. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電池正極廃材等のスクラップからコバルトを安価にかつ効率良く回収する方法に関する。
【0002】
【従来の技術】
近年、携帯電話やノート型パソコン等の電子機器の急速な普及に伴い、電池としての機能がより優れているリチウム二次電池の需要が急速に拡大しているが、それに伴って、使用後廃棄されるリチウム二次電池もその量が急増している。
リチウム二次電池には多くの有価金属が含まれており、再利用する必要性も高くコバルトもその一つである。しかし、効率の良い電池の機能を持たせるために多数の金属元素から構成されているのが普通であり、高純度の有価金属を回収しようとした場合、これらのうち構成元素であるいくつかの元素は不純物になり、これを分離除去し、利用できる元素を高純度化するためにかなりの工程が必要となる。
このようなことから、上記のコバルトのみを高純度化して回収しようとしても、普通の方法ではコスト増となって、効率的な回収が難しいという問題がある。
【0003】
リチウムイオン電池を焼却し、分別したコバルトを多く含有しているスクラップは、通常酸化物の形で、Co:40〜60wt%、Al:3〜6wt%、Cu:1〜5wt%、Ni:2wt%以下、Mn:2wt%以下、Fe:2wt%以下、Sn:0.2wt%以下、Li:3〜4wt%、その他の各種の成分が含有されている(ここでは、元素としてのwt%を示す)。
一方、コバルトを原料とするいくつかの製品は、必ずしも高純度化すなわち、全ての不純物の排除を要するということを必要としない場合もある。例えば、コバルト石鹸のような有機金属を製造する場合などである。
この場合には、回収工程を単純化し、製造コストをできるだけ低減することが最も望ましい方法である。しかしながら、金属の回収等は鉱石からの精錬方法又はできるだけ高純度化するという精製の高度な手法の開発に力を入れているが、より工程を単純化し製造コストを下げる工程の開発は、少なかったと言える。
【0004】
【発明が解決しようとする課題】
上記に鑑み、本発明は電池正極廃材等のスクラップからコバルトを安価にかつ効率良く回収する方法を提供することを課題とし、特にコバルト石鹸のような有機金属を製造する場合又はコバルト電解液用の原料として使用する場合に好適なコバルト材料の回収方法を提供する。
【0005】
【課題を解決するための手段】
本発明は、
1.電池正極廃材等のスクラップ中に含有されているCo,Al,Cu,Mn,Fe等を含有する金属量に対して0.75当量以上0.85当量以下の硫酸で溶解した後、pHを6〜7に調整して溶解液中に含有するAl,Cu,Feを水酸化物として濾過し、これらの元素をそれぞれ10mg/L以下にする工程、次に酸化剤を不純物であるMnに対して2.5当量以上添加し、pHを2.5〜5に調整してMnを酸化物として濾過除去し、Mn含有量を10mg/L以下とする工程からなり、残液をCo含有精製液として回収することを特徴とする電池正極廃材等のスクラップからのCo回収方法
2.酸化剤として次亜塩素酸ソーダを用いることを特徴とする上記1記載のスクラップからのCo回収方法
3.希硫酸で溶解する際に、空気吹き込みを行うことを特徴とする上記1又は2記載のスクラップからのCo回収方法
4.酸化剤を不純物であるMnに対して3〜6当量添加し、pHを3〜4に調整してMnを酸化物として濾過除去することを特徴とする上記1〜3記載のスクラップからのCo回収方法
5.Coの回収率が85%以上であることを特徴とする上記1〜4記載のスクラップからのCo回収方法
を提供する。
【0006】
【発明の実施の形態】
コバルト石鹸のような有機金属を製造する場合又はコバルト電解液用の原料として使用する場合のコバルト原料としては、Al、Cu、Mn、Fe等の元素をある程度低減する必要がある。
電池正極廃材等のスクラップ中に含有されているCo、Al、Cu、Mn、Fe等の不純物の代表的な例を表1に示す。なお、これらは酸化物として存在するが、表1では、各金属成分の含有量として表示する。
表1に示すように、Coが主要成分として多量に含有されているが、その外Al、Cu、Mn、Feが0.5〜4.5wt%の範囲で存在し、これらを除去する必要がある。その他の成分について、本プロセスで付随的に除去され、上記の原料としては特に問題となることはない。
【0007】
【表1】

Figure 2004010929
【0008】
本発明は、まず表1に示すような成分の酸化物を含有する電池正極廃材のスクラップを溶解槽に入れ、スクラップ中の全金属物を溶解するのに必要な硫酸量の60〜90%、より好ましくは70〜80%の硫酸溶液で溶解する。
溶解温度は60°C以上の高温であると溶解速度が速いが、工業的にコスト高となるので、通常40〜60°Cで行う。しかし、必ずしもこの温度範囲で行う必要はなく、適宜調整できる。
この硫酸溶液で溶解する際に、AlやFeが水酸化物となり易いように、空気吹き込みを行う。処理時間は溶解槽のサイズやスクラップ量にもよるが、例えば120kg/mの場合には、約30〜50時間程度以上かけて溶解度がpH5以上になるまで溶解する。溶解時間が短い場合はCoの収率はそれだけ低下する。
【0009】
溶解液のpHが5以上、特にpHが6〜7にならない場合には、スクラップを加たり、水酸化ナトリウムなどのアルカリ化合物を加えてpHを6〜7に調整して、溶解液中に含有するAl、Cu、Feを水酸化物として沈殿させる。なお、アルカリ化合物を多く加えると、Coの共沈が増えるため、pH5未満の溶解液に加えることは好ましくない。
これらの液をろ過することによって、Al、Cu、Fe元素をそれぞれ10mg/L以下することができる。この濾液の中には、Mnが不純物として残存する。この際に、分離される沈殿物には、未溶解のCoやアルカリ化合物で共沈するCoが一部含まれるが、この沈殿物を再度硫酸で溶解し、溶解した液を前工程に戻すことでCoの回収率を上げることもできる。
【0010】
次に、次亜塩素酸ソーダ等の酸化剤を不純物であるMnに対して2〜10当量、好ましくは3〜8当量添加し、さらにpHを2.5〜5に調整してマンガンを酸化物として沈殿させ、これを濾過除去する。これによって、マンガン含有量を10mg/L以下とすることができる。
そして、残液をコバルト含有精製液として回収する。この工程によって、コバルトの収率を85%以上とすることができる。
以上のスクラップからのコバルトの回収工程の一例を示すフローを図1に示す。
前記マンガン酸化物を沈殿濾過する際に、同時に若干量の酸化コバルトも沈殿濾過される場合があるが、この沈殿物を再度硫酸で溶解し、同様の工程を経てコバルトを回収し、さらに収率を高めることができる。
【0011】
【実施例及び比較例】
以下に示す例は、理解を容易にするための一例であり、本発明はこの実施例に制限されるものではない。したがって、本発明の技術思想に基づく他の変形又は実施例は当然本発明に含まれる。
【0012】
(実施例1、2及び比較例1〜5)
表1中の分析例1に示すスクラップ原料を、溶解槽中の硫酸溶液に入れて溶解した。溶解速度は温度が高い方が好ましいが、加熱コストや装置の材質などから比較的安価にできる50°Cで溶解した。
酸当量、空気吹き込み、処理時間及び溶解後の液pHを変えて実施した結果を表2及び表3に示す。
比較例1は空気吹き込みを行なわなかった試験であり、溶解後のpHが4.1と低いため表3に示す通りAlやFeが酸化沈殿されずに残っている。
比較例2では空気吹き込みにより溶解後の液からAlやFeが除去できているものの酸当量が0.64と低いために目的のCo回収率が悪い。
【0013】
比較例3では酸当量を上げたためCo回収率は90%以上となったものの溶解後のpHが6以下であったためFeは除去できているものAlが少し残っている。
比較例4では、酸当量を0.90と高くしすぎたために、72時間溶解してもpHが上がらない。このため水酸化ナトリウムで中和したが、AlやFeが落ちたものの一旦溶解したCoも中和時に共沈してしまうため、Co回収率が悪くなった。
この際アルカリ液の希釈溶液や弱アルカリ剤を使用することでCo共沈をある程度抑えることもできるが、中和液が多すぎると溶解液のCo濃度が低下して、濃縮工程を入れなければCo石鹸の製造やCo電解液として使用できなくなるため、工業的に実用的でない。
比較例5は少量の空気吹き込みしかしなかった試験であり、これも酸当量が高い比較例4と同様にアルカリで中和した際のCo共沈によりCo回収率が悪くなった。
一方、実施例1及び2では、Co回収率が85%以上と高く、Al・Cu・Feなどを10mg/L以下とすることができる。しかし、この濾液の中には、Co石鹸の製造時に問題となる Mnが不純物として残存する。次の工程によってこれを除去する。
【0014】
【表2】
Figure 2004010929
【0015】
【表3】
Figure 2004010929
【0016】
(実施例3〜9、比較例6〜11)
次に、次亜塩素酸ソーダの添加量と添加後のpHを変えて、Mnを酸化物として沈殿させ、これを濾過除去した結果を表4〜6に示す。
表4には、次の次亜塩素酸ソーダによる脱Mnの条件検討結果(1)を示す。溶解試験後液(No.3)を使用して、次亜塩素酸ソーダによる脱Mnの最適条件の検討を行った。反応ではOHを消費し酸性化するため、水酸化Na溶液でpHを調整した。試験は全て室温25〜27°Cで反応時間は30分である。
なお、使用した次亜塩素酸ソーダは試薬特級11%品(約3.7mol/L)である。
反応式は、MnSO+NaClO+2NaOH+HO → Mn(OH)+NaSO+NaClである。
表5には、次亜塩素酸ソーダによる脱Mnの条件検討結果(添加量の再検討)の結果(2)を示す。
表6には、次亜塩素酸ソーダによる脱Mnの条件検討(pHの検討)結果(3)を示す。
【0017】
また、別の酸化剤として過酸化水素水を用いて試験した結果を表7に示す。
表5に示すように、次亜塩素酸ソーダの添加量が3当量以下の比較例8〜10ではMnが完全には除去されていない。
3.5当量以上の実施例5,6ではMnが10mg/L以下となるが、Coの共沈が起き始めている。そこで、3当量の添加でpHを調整した結果、表6の実施例7,8のようにpH3〜4で最もMnが低くなることがわかった。
ただし、表4でわかるように2当量の添加ではpH4でもMnは残ることから、次亜塩素酸ソーダの添加量は2.5当量以上とし、好ましくはpHを3〜4に調整した方がより効率的であることがわかる。
【0018】
一方、表7からわかるように同じ酸化剤でも過酸化水素水は酸化力が弱く効果がまつたくないことがわかった。
但し、ニッケルについては、この酸化工程によっては大きく減少することはない。しかし、このニッケルは用途によっては無害であり、存在は無視できる。
以上の工程によって、スクラップ中に含有されているAl、Cu、Mn、Fe等の元素をそれぞれ10mg/L以下することができ、またMnを同様に酸化除去してマンガン含有量を10mg/L以下とすることができる。
【0019】
【表4】
Figure 2004010929
【0020】
【表5】
Figure 2004010929
【0021】
【表6】
Figure 2004010929
【0022】
【表7】
Figure 2004010929
【0023】
【発明の効果】
本発明は、電池正極廃材等のスクラップからコバルトを安価にかつ効率良く回収することができるという優れた方法であり、特にコバルト石鹸のような有機金属を製造する場合又はコバルト電解液用の原料として使用する場合に好適なコバルト材料を得ることができる。
【図面の簡単な説明】
【図1】
スクラップからのコバルトの回収工程のフローを示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for efficiently and inexpensively recovering cobalt from scrap such as waste battery battery material.
[0002]
[Prior art]
In recent years, with the rapid spread of electronic devices such as mobile phones and notebook computers, demand for lithium secondary batteries, which have better functions as batteries, is rapidly expanding. The amount of lithium secondary batteries being used is also increasing rapidly.
Lithium secondary batteries contain many valuable metals, and the need for reuse is high, and cobalt is one of them. However, in order to have an efficient battery function, it is common to use a large number of metal elements, and when trying to recover high-purity valuable metals, some of these constituent elements are used. The elements become impurities and require considerable steps to separate and remove them and to purify the available elements.
For this reason, even if it is attempted to purify and recover only the above-mentioned cobalt, there is a problem that the cost is increased by an ordinary method, and it is difficult to efficiently recover the cobalt.
[0003]
Scrap containing a large amount of cobalt, which has been incinerated and separated from a lithium ion battery, is usually in the form of an oxide in the form of Co: 40 to 60 wt%, Al: 3 to 6 wt%, Cu: 1 to 5 wt%, Ni: 2 wt% %, Mn: 2 wt% or less, Fe: 2 wt% or less, Sn: 0.2 wt% or less, Li: 3 to 4 wt%, and other various components (here, the wt% as an element is Shown).
On the other hand, some products based on cobalt may not necessarily require high purification, that is, elimination of all impurities. For example, there is a case where an organic metal such as cobalt soap is produced.
In this case, it is the most desirable method to simplify the recovery process and reduce the manufacturing cost as much as possible. However, for metal recovery, etc., we are focusing on the development of refining methods from ore or advanced purification methods of purifying as high as possible.However, there were few developments of processes that simplified the process and reduced the production cost. I can say.
[0004]
[Problems to be solved by the invention]
In view of the above, an object of the present invention is to provide a method for inexpensively and efficiently recovering cobalt from scrap such as battery cathode waste material, particularly when producing an organic metal such as cobalt soap or for a cobalt electrolyte. Provided is a method for recovering a cobalt material suitable for use as a raw material.
[0005]
[Means for Solving the Problems]
The present invention
1. After dissolving with sulfuric acid of 0.75 equivalent to 0.85 equivalent or less based on the amount of metal containing Co, Al, Cu, Mn, Fe, etc. contained in scraps of battery positive electrode waste material, the pH is adjusted to 6 Step of filtering the Al, Cu, and Fe contained in the solution as hydroxides to adjust the content of each element to 10 mg / L or less, and then converting the oxidizing agent to Mn as an impurity. A step of adding 2.5 equivalents or more, adjusting the pH to 2.5 to 5, removing Mn as an oxide by filtration, and reducing the Mn content to 10 mg / L or less. 1. A method for recovering Co from scrap such as battery positive electrode waste material, which is characterized by recovery. 2. The method for recovering Co from scrap as described in 1 above, wherein sodium hypochlorite is used as the oxidizing agent. 3. The method for recovering Co from scrap according to the above item 1 or 2, wherein air is blown when dissolving with dilute sulfuric acid. 3. Co recovery from scrap according to any one of the above 1 to 3, wherein an oxidizing agent is added in an amount of 3 to 6 equivalents to Mn as an impurity, the pH is adjusted to 3 to 4, and Mn is removed as an oxide by filtration. Method 5. 5. The method for recovering Co from scrap according to any one of the above items 1 to 4, wherein the recovery rate of Co is 85% or more.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
When producing an organic metal such as cobalt soap or when using it as a raw material for a cobalt electrolytic solution, it is necessary to reduce elements such as Al, Cu, Mn, and Fe to some extent.
Table 1 shows typical examples of impurities such as Co, Al, Cu, Mn, and Fe contained in scraps such as battery waste materials. Although these exist as oxides, they are shown in Table 1 as the content of each metal component.
As shown in Table 1, Co is contained in a large amount as a main component, but in addition, Al, Cu, Mn, and Fe are present in a range of 0.5 to 4.5 wt%, and it is necessary to remove these. is there. Other components are additionally removed in this process, and do not pose any particular problem as the raw material described above.
[0007]
[Table 1]
Figure 2004010929
[0008]
In the present invention, first, a scrap of a battery positive electrode waste material containing an oxide having a component shown in Table 1 is placed in a dissolving tank, and 60 to 90% of an amount of sulfuric acid necessary for dissolving all metal materials in the scrap is obtained. More preferably, it is dissolved in a 70-80% sulfuric acid solution.
When the dissolution temperature is as high as 60 ° C. or higher, the dissolution rate is high, but the cost is industrially high. Therefore, the dissolution is usually performed at 40 to 60 ° C. However, it is not always necessary to carry out in this temperature range, and it can be adjusted appropriately.
When dissolving with this sulfuric acid solution, air is blown so that Al and Fe easily become hydroxides. Although the treatment time depends on the size of the dissolving tank and the amount of scrap, for example, in the case of 120 kg / m 3 , the dissolution takes about 30 to 50 hours or more until the solubility reaches pH 5 or more. If the dissolution time is short, the yield of Co decreases accordingly.
[0009]
When the pH of the solution is 5 or more, especially when the pH does not reach 6 to 7, the pH is adjusted to 6 to 7 by adding scrap or an alkali compound such as sodium hydroxide to be contained in the solution. Al, Cu, and Fe are precipitated as hydroxides. It should be noted that addition of a large amount of an alkali compound increases the coprecipitation of Co, and therefore it is not preferable to add the alkaline compound to a solution having a pH of less than 5.
By filtering these liquids, Al, Cu, and Fe elements can each be reduced to 10 mg / L or less. Mn remains as an impurity in this filtrate. At this time, the precipitate to be separated contains a part of undissolved Co and Co that is co-precipitated with an alkali compound, but the precipitate is dissolved again with sulfuric acid, and the dissolved liquid is returned to the previous step. Can also increase the recovery rate of Co.
[0010]
Next, an oxidizing agent such as sodium hypochlorite is added in an amount of 2 to 10 equivalents, preferably 3 to 8 equivalents to Mn as an impurity, and the pH is adjusted to 2.5 to 5 to convert manganese into an oxide. Which is filtered off. Thereby, the manganese content can be reduced to 10 mg / L or less.
Then, the residual liquid is recovered as a cobalt-containing purified liquid. By this step, the yield of cobalt can be 85% or more.
FIG. 1 shows a flow chart illustrating an example of the above-described step of recovering cobalt from scrap.
When the manganese oxide is subjected to precipitation filtration, a small amount of cobalt oxide may be precipitated and filtered at the same time, but this precipitate is dissolved again with sulfuric acid, and cobalt is recovered through the same process, and the yield is further reduced. Can be increased.
[0011]
[Examples and Comparative Examples]
The example shown below is an example for easy understanding, and the present invention is not limited to this example. Therefore, other modifications or embodiments based on the technical idea of the present invention are naturally included in the present invention.
[0012]
(Examples 1 and 2 and Comparative Examples 1 to 5)
The scrap raw material shown in Analysis Example 1 in Table 1 was dissolved in a sulfuric acid solution in a dissolving tank. Although the dissolution rate is preferably higher at the temperature, the dissolution was performed at 50 ° C., which can be made relatively inexpensive due to the heating cost and the material of the apparatus.
Tables 2 and 3 show the results obtained by changing the acid equivalent, air blowing, treatment time and pH of the solution after dissolution.
Comparative Example 1 was a test in which air was not blown, and since the pH after dissolution was as low as 4.1, Al and Fe remained without being oxidized and precipitated as shown in Table 3.
In Comparative Example 2, although the Al and Fe were removed from the liquid after being dissolved by blowing air, the target Co recovery rate was poor because the acid equivalent was as low as 0.64.
[0013]
In Comparative Example 3, the Co recovery rate was 90% or higher because the acid equivalent was increased, but the pH after dissolution was 6 or lower, but Fe was removed but Al remained a little.
In Comparative Example 4, since the acid equivalent was too high as 0.90, the pH did not increase even after dissolving for 72 hours. For this reason, although it neutralized with sodium hydroxide, although Al and Fe fell, once melt | dissolved Co also co-precipitated at the time of neutralization, Co recovery rate worsened.
At this time, Co coprecipitation can be suppressed to some extent by using a diluted solution of an alkaline solution or a weak alkaline agent, but if the neutralizing solution is too large, the Co concentration of the dissolved solution is reduced, and unless the concentration step is performed, It is not industrially practical because it cannot be used for producing Co soap or as a Co electrolyte.
Comparative Example 5 was a test in which only a small amount of air was blown, and also in the same manner as Comparative Example 4 in which the acid equivalent was high, the Co recovery rate was deteriorated due to Co coprecipitation when neutralized with an alkali.
On the other hand, in Examples 1 and 2, the recovery rate of Co is as high as 85% or more, and the content of Al, Cu, Fe, etc. can be reduced to 10 mg / L or less. However, Mn, which is a problem during the production of Co soap, remains as an impurity in the filtrate. This is removed by the next step.
[0014]
[Table 2]
Figure 2004010929
[0015]
[Table 3]
Figure 2004010929
[0016]
(Examples 3 to 9, Comparative Examples 6 to 11)
Next, the amount of sodium hypochlorite added and the pH after the addition were changed to precipitate Mn as an oxide, and the result of filtration and removal of the oxide was shown in Tables 4 to 6.
Table 4 shows the results (1) of examining the conditions for removing Mn using the following sodium hypochlorite. Using the solution after the dissolution test (No. 3), the optimum conditions for removing Mn with sodium hypochlorite were examined. In the reaction, the pH was adjusted with a sodium hydroxide solution to consume and acidify OH. All tests are performed at room temperature of 25 to 27 ° C. and the reaction time is 30 minutes.
The sodium hypochlorite used was a reagent special grade 11% product (about 3.7 mol / L).
The reaction formula is MnSO 4 + NaClO + 2NaOH + H 2 O → Mn (OH) 4 + Na 2 SO 4 + NaCl.
Table 5 shows the results (2) of the results of the examination of the conditions for removing Mn using sodium hypochlorite (re-examination of the added amount).
Table 6 shows the results (3) of examining conditions (examining pH) for removing Mn using sodium hypochlorite.
[0017]
Table 7 shows the results of a test using hydrogen peroxide as another oxidizing agent.
As shown in Table 5, in Comparative Examples 8 to 10 in which the amount of sodium hypochlorite added was 3 equivalents or less, Mn was not completely removed.
In Examples 5 and 6 with 3.5 equivalents or more, Mn is 10 mg / L or less, but Co-precipitation of Co has started to occur. Therefore, as a result of adjusting the pH by adding 3 equivalents, as shown in Examples 7 and 8 in Table 6, it was found that Mn was lowest at pH 3 to 4.
However, as can be seen from Table 4, since addition of 2 equivalents leaves Mn even at pH 4, the addition amount of sodium hypochlorite should be 2.5 equivalents or more, and it is more preferable to adjust the pH to 3-4. It turns out that it is efficient.
[0018]
On the other hand, as can be seen from Table 7, even with the same oxidizing agent, it was found that the hydrogen peroxide solution had a weak oxidizing power and did not want to be effective.
However, nickel is not significantly reduced by this oxidation step. However, this nickel is harmless for some applications and its presence is negligible.
Through the above steps, elements such as Al, Cu, Mn, and Fe contained in the scrap can be reduced to 10 mg / L or less, respectively, and the manganese content can be reduced to 10 mg / L or less by similarly oxidizing and removing Mn. It can be.
[0019]
[Table 4]
Figure 2004010929
[0020]
[Table 5]
Figure 2004010929
[0021]
[Table 6]
Figure 2004010929
[0022]
[Table 7]
Figure 2004010929
[0023]
【The invention's effect】
The present invention is an excellent method capable of inexpensively and efficiently recovering cobalt from scrap such as battery cathode waste material, particularly when producing an organic metal such as cobalt soap or as a raw material for a cobalt electrolyte. A cobalt material suitable for use can be obtained.
[Brief description of the drawings]
FIG.
It is a figure showing the flow of the recovery process of cobalt from scrap.

Claims (5)

電池正極廃材等のスクラップ中に含有されているCo,Al,Cu,Mn,Fe等を含有する金属量に対して0.75当量以上0.85当量以下の硫酸で溶解した後、pHを6〜7に調整して溶解液中に含有するAl,Cu,Feを水酸化物として濾過し、これらの元素をそれぞれ10mg/L以下にする工程、次に酸化剤を不純物であるMnに対して2.5当量以上添加し、pHを2.5〜5に調整してMnを酸化物として濾過除去し、Mn含有量を10mg/L以下とする工程からなり、残液をCo含有精製液として回収することを特徴とする電池正極廃材等のスクラップからのCo回収方法。After dissolving with sulfuric acid of 0.75 equivalent to 0.85 equivalent or less based on the amount of metal containing Co, Al, Cu, Mn, Fe, etc. contained in scraps of battery positive electrode waste material, the pH is adjusted to 6 Step of filtering the Al, Cu, and Fe contained in the solution as hydroxides to adjust the content of each element to 10 mg / L or less, and then converting the oxidizing agent to Mn as an impurity. A step of adding 2.5 equivalents or more, adjusting the pH to 2.5 to 5, removing Mn as an oxide by filtration, and reducing the Mn content to 10 mg / L or less. A method of recovering Co from scrap such as battery positive electrode waste material, which is characterized in that it is recovered. 酸化剤として次亜塩素酸ソーダを用いることを特徴とする請求項1記載のスクラップからのCo回収方法。2. The method for recovering Co from scrap according to claim 1, wherein sodium chlorite is used as the oxidizing agent. 希硫酸で溶解する際に、空気吹き込みを行うことを特徴とする請求項1又は2記載のスクラップからのCo回収方法。The method for recovering Co from scrap according to claim 1 or 2, wherein air is blown when dissolving with dilute sulfuric acid. 酸化剤を不純物であるMnに対して3〜6当量添加し、pHを3〜4に調整してMnを酸化物として濾過除去することを特徴とする請求項1〜3記載のスクラップからのCo回収方法。4. The method according to claim 1, wherein the oxidizing agent is added in an amount of 3 to 6 equivalents to Mn as an impurity, the pH is adjusted to 3 to 4, and Mn is removed as an oxide by filtration. Collection method. Coの回収率が85%以上であることを特徴とする請求項1〜4記載のスクラップからのCo回収方法。5. The method for recovering Co from scrap according to claim 1, wherein the recovery rate of Co is 85% or more.
JP2002163725A 2002-06-05 2002-06-05 Method for recovering cobalt from scrap Expired - Fee Related JP4210475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163725A JP4210475B2 (en) 2002-06-05 2002-06-05 Method for recovering cobalt from scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163725A JP4210475B2 (en) 2002-06-05 2002-06-05 Method for recovering cobalt from scrap

Publications (2)

Publication Number Publication Date
JP2004010929A true JP2004010929A (en) 2004-01-15
JP4210475B2 JP4210475B2 (en) 2009-01-21

Family

ID=30432069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163725A Expired - Fee Related JP4210475B2 (en) 2002-06-05 2002-06-05 Method for recovering cobalt from scrap

Country Status (1)

Country Link
JP (1) JP4210475B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316293A (en) * 2005-05-10 2006-11-24 Seidou Kagaku Kogyo Kk Method for removing manganese from cobalt sulfate solution
CN1318619C (en) * 2004-08-30 2007-05-30 金川集团有限公司 Process for removing copper of cobalt electrolytic solution
CN102162031A (en) * 2011-04-11 2011-08-24 乔国昌 De-ironing method for cobalt electrolyte
JP2012072488A (en) * 2010-08-30 2012-04-12 Jx Nippon Mining & Metals Corp Method for leaching positive electrode active material
CN101736151B (en) * 2010-01-28 2012-07-25 浙江华友钴业股份有限公司 Method for removing iron by oxidation and neutralization in cobalt wet smelting process
KR101174731B1 (en) * 2010-05-12 2012-08-16 성일하이텍(주) Method and apparatus for precipitation of manganese
CN108946826A (en) * 2018-07-31 2018-12-07 金川集团股份有限公司 A method of handling copper in nickeliferous cobalt sulfate solution, manganese impurity
WO2020116607A1 (en) * 2018-12-07 2020-06-11 住友金属鉱山株式会社 Production method for lithium-containing solution

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318619C (en) * 2004-08-30 2007-05-30 金川集团有限公司 Process for removing copper of cobalt electrolytic solution
JP2006316293A (en) * 2005-05-10 2006-11-24 Seidou Kagaku Kogyo Kk Method for removing manganese from cobalt sulfate solution
CN101736151B (en) * 2010-01-28 2012-07-25 浙江华友钴业股份有限公司 Method for removing iron by oxidation and neutralization in cobalt wet smelting process
KR101174731B1 (en) * 2010-05-12 2012-08-16 성일하이텍(주) Method and apparatus for precipitation of manganese
JP2012072488A (en) * 2010-08-30 2012-04-12 Jx Nippon Mining & Metals Corp Method for leaching positive electrode active material
CN102162031A (en) * 2011-04-11 2011-08-24 乔国昌 De-ironing method for cobalt electrolyte
CN108946826A (en) * 2018-07-31 2018-12-07 金川集团股份有限公司 A method of handling copper in nickeliferous cobalt sulfate solution, manganese impurity
WO2020116607A1 (en) * 2018-12-07 2020-06-11 住友金属鉱山株式会社 Production method for lithium-containing solution

Also Published As

Publication number Publication date
JP4210475B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
JP5791917B2 (en) Lithium recovery method
WO2017159743A1 (en) Processing method for lithium ion battery scrap
JP5719792B2 (en) Method for producing chemical manganese dioxide from ternary positive electrode active material, chemical manganese dioxide produced by the production method, and secondary battery containing chemical manganese dioxide
JP5539942B2 (en) Method for separating iron and aluminum
JP7232119B2 (en) Method for processing lithium-ion battery waste and method for producing sulfate
WO2020196046A1 (en) Method for manufacturing nickel and cobalt-containing solution from hydroxide containing nickel and cobalt
JP2022509811A (en) Battery recycling by injecting hydrogen gas into the leachate
CN103290221A (en) Method for recovering copper, arsenium and antimony from black copper sludge
JP2013112859A (en) Method for manufacturing manganese sulfate
US20230344030A1 (en) Method for removing elemental copper from ternary battery waste and application thereof
JP4210475B2 (en) Method for recovering cobalt from scrap
JP4215547B2 (en) Cobalt recovery method
JP4506002B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP4078838B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP6996723B1 (en) Metal recovery method from lithium-ion batteries
JP2011129336A (en) Recovery method of manganese from battery
CN103221557B (en) Method for producing nickel-ontaining acidic solution
JP4801372B2 (en) Method for removing manganese from cobalt sulfate solution
KR101553388B1 (en) Method of recovering effective metal material from positive electrode scrab
CN113921932B (en) Precursor solution, preparation method thereof, positive electrode material and lithium ion battery
JP2013253273A (en) Method for recovering nickel
CN110342581A (en) A method of high purity manganese sulfate being made from copper manganese calcium sulfate liquor
JP4439804B2 (en) Cobalt recovery method
JP2013209267A (en) Method of manufacturing manganese sulfate
JP2009221084A (en) Method for producing aqueous cobalt sulfate solution and method for preparing cobalt compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees