WO2019198972A1 - Method for producing lithium hydroxide monohydrate by using waste cathode material of lithium ion secondary battery - Google Patents

Method for producing lithium hydroxide monohydrate by using waste cathode material of lithium ion secondary battery Download PDF

Info

Publication number
WO2019198972A1
WO2019198972A1 PCT/KR2019/003988 KR2019003988W WO2019198972A1 WO 2019198972 A1 WO2019198972 A1 WO 2019198972A1 KR 2019003988 W KR2019003988 W KR 2019003988W WO 2019198972 A1 WO2019198972 A1 WO 2019198972A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode material
lithium
waste cathode
secondary battery
ion secondary
Prior art date
Application number
PCT/KR2019/003988
Other languages
French (fr)
Korean (ko)
Inventor
박석준
박종선
이명규
서범석
이민우
김다모아
Original Assignee
주식회사 에코프로이노베이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로이노베이션 filed Critical 주식회사 에코프로이노베이션
Publication of WO2019198972A1 publication Critical patent/WO2019198972A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for producing lithium hydroxide monohydrate using a waste cathode material of a lithium ion secondary battery, and more specifically, by injecting water vapor in an inert atmosphere and pre-treating the waste cathode material containing lithium by water leaching
  • the present invention relates to a method for producing lithium hydroxide monohydrate using a waste cathode material of a lithium ion secondary battery capable of recovering lithium ions at a high recovery rate and producing high purity lithium hydroxide monohydrate.
  • Lithium-ion secondary battery has the advantage of having a small size and high-density energy, and is manufactured for each product use is used in various ways as well as smart phones, battery cars.
  • the lithium ion secondary battery battery includes a cathode material, an anode material, a separator, an electrolyte, and the cathode material contains valuable metals such as lithium, nickel, cobalt, and manganese.
  • lithium is the main raw material that enables the storage or release of electrical energy in the battery.
  • the existing technology of recycling lithium using waste lithium ion secondary battery is to recover valuable metals such as nickel and cobalt first through sulfuric acid leaching and solvent extraction process, and then recover lithium with residual impurities. have.
  • an object of the present invention is to recover the lithium ion with a high recovery rate by using the waste cathode material of the lithium ion secondary battery, high-purity lithium hydroxide work by minimizing impurities It is to provide a method for producing lithium hydroxide monohydrate using the waste cathode material of a lithium ion secondary battery capable of producing a hydrate.
  • the present invention provides a waste cathode material preparation step of preparing a waste cathode material of a lithium ion secondary battery;
  • the waste cathode material of the lithium ion secondary battery is lithium nickel cobalt aluminum oxide (LiNiCoAlO 2 , NCA), lithium nickel cobalt manganese oxide (LiNiCoMnO 2 , NCM), oxides of lithium iron (LiFePO 4 , LFP), Group consisting of lithium manganese iron oxides (LiMnFePO 4 , LMFP), lithium manganese oxides (LiMn 2 O 4 , LMO), lithium nickel manganese spinel (LiNi 0.5 Mn 1.5 O 4 , LNMO), lithium cobalt oxide (LiCoO 2 , LCO) At least one selected from.
  • the waste cathode material pretreatment step is reacted by Scheme 1 shown below.
  • Me is at least one selected from the group consisting of Ni, Co, Mn, Al.
  • the waste cathode material pretreatment step is nitrogen, carbon dioxide or hydrogen is injected at 0.1 to 1,000 LPM (Liter per minute) per 1g of the waste cathode material to form the inert atmosphere, the water vapor is the waste anode It is injected at 0.1 to 1,000 LPM (Liter per minute) per 1 g of ash, and is heat-treated at 500 ° C. to 1,000 ° C. for 100 to 600 minutes.
  • the water leaching step is mixed with 1 to 10 times the water based on the weight of the pretreatment result to the pretreatment result is stirred for 1 to 5 hours at a temperature of 20 °C to 100 °C .
  • the residue is used to separate Ni, Co, Mn or Al.
  • the crystallization step is concentrated by evaporation in a vacuum at a temperature of 60 °C to 120 °C for 30 minutes to 10 hours.
  • the present invention has the following excellent effects.
  • lithium is discharged by pre-treating the waste cathode material containing lithium in an inert atmosphere and then pre-treated with water There is an effect that can be recovered at a high recovery rate.
  • 1 is a step for explaining a method of manufacturing lithium hydroxide monohydrate using the waste cathode material of a lithium ion secondary battery according to an embodiment of the present invention.
  • NCA lithium nickel cobalt oxide
  • 3 is an XRD analysis result of the pretreatment result after the pretreatment step according to an embodiment of the present invention.
  • 1 is a step for explaining a method for producing lithium hydroxide monohydrate using the waste cathode material of a lithium ion secondary battery according to the present invention.
  • a method of manufacturing lithium hydroxide monohydrate using waste cathode materials of a secondary battery recovers lithium from waste cathode materials of a lithium ion secondary battery and converts the lithium hydroxide into lithium hydroxide monohydrate.
  • a waste cathode material of a lithium ion secondary battery is prepared (S100).
  • the waste cathode material is not limited as long as it is a cathode material containing lithium element, preferably lithium nickel cobalt aluminum oxide (LiNiCoAlO 2 , NCA), lithium nickel cobalt manganese oxide (LiNiCoMnO 2 , NCM), lithium iron oxide (LiFePO 4 , LFP), lithium manganese oxides (LiMnFePO 4 , LMFP), lithium manganese oxides (LiMn 2 O 4 , LMO), lithium nickel manganese spinel (LiNi 0.5 Mn 1.5 O 4 , LNMO), lithium cobalt oxide (LiCoO 2 , LCO) may be any one or more selected from the group consisting of.
  • lithium nickel cobalt aluminum oxide LiNiCoAlO 2 , NCA
  • LiNiCoMnO 2 , NCM lithium iron oxide
  • LiMnFePO 4 , LMFP lithium manganese oxides
  • the pretreatment step (S200) is a process for deforming the structure of the waste cathode material to transform lithium into the form of a water-soluble material, and is reacted by Scheme 1 shown below.
  • Me is at least one selected from the group consisting of Ni, Co, Mn, Al.
  • nitrogen, carbon dioxide or hydrogen may be injected at 0.1 to 1,000 LPM (Liter per minute) per 1g of the waste cathode material.
  • the water vapor is injected at 0.1 to 1,000 LPM (Liter per minute) per 1g of the waste cathode material, and induces physicochemical decomposition of the waste cathode material through a hydrolysis reaction by high temperature saturated steam.
  • the temperature is maintained in the range of 500 °C to 1,000 °C, heat treatment for 100 minutes to 600 minutes.
  • the water is added 1 to 10 times on the basis of the weight of the pretreatment result, it is stirred at 200rpm to 1,000rpm for 1 to 5 hours at a temperature of 20 °C to 100 °C.
  • a solid-liquid separation step (S400) of separating the water-leached mixture into solids and separating the leachate and residues is performed.
  • metallic elements such as nickel, cobalt, manganese, and aluminum, are separated into a cake residue, and lithium is dissolved and separated in a leach solution.
  • the residue is separated separately and recovered as elements such as nickel, cobalt, manganese, aluminum through sulfuric acid leaching or solvent extraction process, and synthesized as a precursor of a secondary battery cathode material using this as a raw material. Can be recycled.
  • the leachate is concentrated by evaporation at a temperature of 60 ° C to 120 ° C for 30 minutes to 10 hours in a vacuum to form lithium hydroxide monohydrate crystals.
  • LiNiCoAlO 2 , NCA lithium nickel cobalt aluminum oxide
  • Table 1 shows the results of ICP chemical component content analysis of the lithium nickel cobalt aluminum oxide
  • Figure 2 shows the lithium nickel cobalt aluminum oxide XRD analysis results.
  • the prepared waste cathode material powder was introduced into a tube kiln, and then heated to 800 ° C. ⁇ 10 ° C. at a temperature rising rate of 10 ° C. per minute, and then maintained for 120 minutes.
  • nitrogen gas was injected at 30cc per minute, and steam was injected at 650cc per minute.
  • natural cooling was performed to obtain a pretreatment result, and nitrogen and steam were not injected in the cooling section.
  • FIG. 3 shows the XRD analysis results of the pretreatment result.
  • the intensity value is reduced at 19 degrees. It was observed that the deformation of the intermolecular bonding structure in the waste cathode material was confirmed.
  • the leachate was concentrated by evaporation and crystallization, and the obtained crystals were washed with water and dried to obtain lithium hydroxide monohydrate that can be used in a secondary battery battery.
  • Lithium nickel cobalt aluminum oxide was prepared as a waste cathode material in the same manner as in Example, and the prepared waste cathode material powder was introduced into a tube kiln, and then heated up to 800 ° C. ⁇ 10 ° C. at a temperature rising rate of 10 ° C. per minute, and then 5. After cooling for an hour, it was naturally cooled.
  • the lithium concentration in the leachate obtained by solid-liquid separation of the solution from which the water leach was completed was analyzed, and the result confirmed that the lithium recovery was 11.6%.
  • Lithium component can be recovered with high recovery rate, and by leaching water without using acid, only lithium ions can be selectively extracted without nickel, cobalt, manganese or aluminum ions, thereby producing high purity lithium hydroxide monohydrate. It has the advantage to do it.
  • nickel, cobalt, manganese, or aluminum can be separated by using the residue separated from the water-leached mixture and recycled as a precursor of the secondary battery cathode material.
  • Recovering lithium from the waste cathode material it can be used as a raw material of the lithium ion secondary battery, it can be applied to various fields using lithium hydroxide monohydrate as a raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The present invention relates to a method for producing lithium hydroxide monohydrate by using a waste cathode material of a lithium ion secondary battery and, more specifically, to a method for producing lithium hydroxide monohydrate by using a waste cathode material of a lithium ion secondary battery, wherein the waste cathode material containing lithium is pretreated by injection of steam in an inert atmosphere, and then subjected to water leaching, whereby lithium ions can be recovered at a high recovery rate and high-purity lithium hydroxide monohydrate can be produced.

Description

리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법Method for manufacturing lithium hydroxide monohydrate using waste cathode material of lithium ion secondary battery
본 발명은 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법에 관한 것으로, 보다 구체적으로는 리튬을 함유하는 폐 양극재를 비활성분위기에서 수증기를 주입하여 전처리한 후 수침출 함으로써, 리튬이온을 높은 회수율로 회수할 수 있고, 고순도의 수산화리튬 일수화물을 제조할 수 있는 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법에 관한 것이다.The present invention relates to a method for producing lithium hydroxide monohydrate using a waste cathode material of a lithium ion secondary battery, and more specifically, by injecting water vapor in an inert atmosphere and pre-treating the waste cathode material containing lithium by water leaching The present invention relates to a method for producing lithium hydroxide monohydrate using a waste cathode material of a lithium ion secondary battery capable of recovering lithium ions at a high recovery rate and producing high purity lithium hydroxide monohydrate.
최근, 리튬이온 이차전지 시장은 IT용 전지 시장을 넘어, 전기자동차, 에너지 저장 장치(ESS) 등 시장을 확대하면서 수요가 나날이 증가하고 있는 추세이다.Recently, the lithium ion secondary battery market has been increasing in demand as the market for electric vehicles, energy storage devices (ESS), etc. has expanded beyond the IT battery market.
리튬이온 이차전지는 소형 크기에 고밀도의 에너지를 보유하는 장점을 지니고 있으며, 각 제품별 용도에 맞게 제작되어 스마트폰, 전지자동차 뿐만 아니라 여러 방면으로 다양하게 사용되고 있다.Lithium-ion secondary battery has the advantage of having a small size and high-density energy, and is manufactured for each product use is used in various ways as well as smart phones, battery cars.
이러한 리튬이온 이차전지 배터리는 양극재, 음극재, 분리막, 전해액을 포함하여 이루어지며, 양극재에는 리튬, 니켈, 코발트, 망간 등의 유가 금속이 함유되어 있다.The lithium ion secondary battery battery includes a cathode material, an anode material, a separator, an electrolyte, and the cathode material contains valuable metals such as lithium, nickel, cobalt, and manganese.
이 중, 리튬은 전지 내에서 전기 에너지를 저장 또는 방출을 가능하게 해주는 주원료이다.Of these, lithium is the main raw material that enables the storage or release of electrical energy in the battery.
최근에는, 배터리용 탄산리튬과 수산화리튬의 가격이 급등함에 따라, 폐 리튬 이온 전지를 재활용하여, 리튬을 효과적으로 회수하는 기술개발에 대한 수요가 증가되고 있는 실정이다.In recent years, as the prices of lithium carbonate and lithium hydroxide for batteries soar, demand for technology development for efficiently recovering lithium by recycling waste lithium ion batteries is increasing.
기존의 폐 리튬이온 2차전지를 이용하여 리튬을 재활용하는 기술은 양극재를 황산침출과 용매추출 공정을 통하여 니켈, 코발트 등의 유가 금속을 먼저 회수한 다음 잔류하는 불순물과 함께 리튬을 회수하여 이용되고 있다.The existing technology of recycling lithium using waste lithium ion secondary battery is to recover valuable metals such as nickel and cobalt first through sulfuric acid leaching and solvent extraction process, and then recover lithium with residual impurities. have.
하지만, 종래의 폐 리튬이온 2차전지를 이용하여 리튬을 재활용하는 기술들은 불순물이 다량 함유됨으로써 저순도의 리튬 화합물로 회수되며, 회수율이 떨어지는 문제점이 있었다.However, conventional technologies for recycling lithium using waste lithium ion secondary batteries have a problem in that they are recovered as low purity lithium compounds by containing a large amount of impurities, and the recovery rate is lowered.
본 발명은 이러한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 리튬이온 2차전지의 폐 양극재를 이용하여 리튬이온을 높은 회수율로 회수할 수 있고, 불순물을 최소화시킴으로써 고순도의 수산화리튬 일수화물을 제조할 수 있는 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법을 제공하는 것이다.The present invention has been made to solve such a problem, an object of the present invention is to recover the lithium ion with a high recovery rate by using the waste cathode material of the lithium ion secondary battery, high-purity lithium hydroxide work by minimizing impurities It is to provide a method for producing lithium hydroxide monohydrate using the waste cathode material of a lithium ion secondary battery capable of producing a hydrate.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기의 목적을 달성하기 위하여 본 발명은 리튬이온 2차전지의 폐 양극재를 준비하는 폐 양극재 준비 단계; 준비된 폐 양극재를 비활성분위기에서 수증기를 주입하여 전처리하는 폐 양극재 전처리 단계; 전처리된 전처리 결과물에 물을 첨가하여 교반시키는 수침출 단계; 수침출된 혼합물을 고액분리하여 침출액과 잔사물로 분리해내는 고액분리 단계; 상기 침출액을 농축하여 결정화시키는 결정화 단계; 결정화된 수산화리튬 일수화물을 세척 및 건조하는 세척 및 건조 단계;를 포함하는 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a waste cathode material preparation step of preparing a waste cathode material of a lithium ion secondary battery; A waste cathode material pretreatment step of pretreating the prepared waste cathode material by injecting water vapor in an inert atmosphere; A water leaching step of adding water to the pretreated pretreatment result and stirring; Solid-liquid separation step of separating the water-leached mixture into a solid solution to separate the leachate and the residue; A crystallization step of concentrating and crystallizing the leachate; It provides a method for producing lithium hydroxide monohydrate using the waste cathode material of a lithium ion secondary battery comprising a; washing and drying step of washing and drying the crystallized lithium hydroxide monohydrate.
바람직한 실시예에 있어서, 상기 리튬이온 2차전지의 폐 양극재는 리튬니켈코발트알루미늄 산화물(LiNiCoAlO 2, NCA), 리튬니켈코발트망간 산화물(LiNiCoMnO 2, NCM), 리튬철인 산화물(LiFePO 4, LFP), 리튬망간철인 산화물(LiMnFePO 4, LMFP), 리튬망간 산화물(LiMn 2O 4, LMO), 리튬니켈망간 스피넬(LiNi 0.5Mn 1.5O 4, LNMO), 리튬코발트 산화물 (LiCoO 2, LCO)로 이루어진 군에서 선택되는 적어도 어느 하나이다.In a preferred embodiment, the waste cathode material of the lithium ion secondary battery is lithium nickel cobalt aluminum oxide (LiNiCoAlO 2 , NCA), lithium nickel cobalt manganese oxide (LiNiCoMnO 2 , NCM), oxides of lithium iron (LiFePO 4 , LFP), Group consisting of lithium manganese iron oxides (LiMnFePO 4 , LMFP), lithium manganese oxides (LiMn 2 O 4 , LMO), lithium nickel manganese spinel (LiNi 0.5 Mn 1.5 O 4 , LNMO), lithium cobalt oxide (LiCoO 2 , LCO) At least one selected from.
바람직한 실시예에 있어서, 상기 폐 양극재 전처리 단계는 하기에 표기된 반응식 1로 반응된다.In a preferred embodiment, the waste cathode material pretreatment step is reacted by Scheme 1 shown below.
[반응식 1]Scheme 1
2LiMeO 2 + H 2O → 2LiOH + MeO·MeO 2 2LiMeO 2 + H 2 O → 2LiOH + MeOMeO 2
여기서, 상기 Me는 Ni, Co, Mn, Al로 이루어진 군에서 선택되는 적어도 어느 하나이다.Here, Me is at least one selected from the group consisting of Ni, Co, Mn, Al.
바람직한 실시예에 있어서, 상기 폐 양극재 전처리 단계는 질소, 이산화탄소 또는 수소가 상기 폐 양극재 1g 당 0.1 내지 1,000 LPM(Liter per minute)으로 주입되어 상기 비활성 분위기가 형성되고, 상기 수증기는 상기 폐 양극재 1g 당 0.1 내지 1,000 LPM(Liter per minute)으로 주입되며, 500℃ 내지 1,000℃에서 100분 내지 600분 동안 열처리된다.In a preferred embodiment, the waste cathode material pretreatment step is nitrogen, carbon dioxide or hydrogen is injected at 0.1 to 1,000 LPM (Liter per minute) per 1g of the waste cathode material to form the inert atmosphere, the water vapor is the waste anode It is injected at 0.1 to 1,000 LPM (Liter per minute) per 1 g of ash, and is heat-treated at 500 ° C. to 1,000 ° C. for 100 to 600 minutes.
바람직한 실시예에 있어서, 상기 수침출 단계는 상기 전처리 결과물에 상기 전처리 결과물의 무게를 기준으로 1배 내지 10배의 물을 혼합하여 20℃ 내지 100℃의 온도에서 1시간 내지 5시간 동안 교반처리된다.In a preferred embodiment, the water leaching step is mixed with 1 to 10 times the water based on the weight of the pretreatment result to the pretreatment result is stirred for 1 to 5 hours at a temperature of 20 ℃ to 100 ℃ .
바람직한 실시예에 있어서, 상기 잔사물을 이용하여 Ni, Co, Mn 또는 Al를 분리해낸다.In a preferred embodiment, the residue is used to separate Ni, Co, Mn or Al.
바람직한 실시예에 있어서, 상기 결정화단계는 진공상태에서 60℃ 내지 120℃의 온도에서 30분 내지 10시간 동안 증발 농축시킨다.In a preferred embodiment, the crystallization step is concentrated by evaporation in a vacuum at a temperature of 60 ℃ to 120 ℃ for 30 minutes to 10 hours.
본 발명은 다음과 같은 우수한 효과를 가진다.The present invention has the following excellent effects.
먼저, 본 발명의 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법에 의하면, 리튬을 함유하는 폐 양극재를 비활성분위기에서 수증기를 주입하여 전처리한 후 수침출함으로써, 리튬을 높은 회수율로 회수할 수 있는 효과가 있다.First, according to the method for producing lithium hydroxide monohydrate using the waste cathode material of the lithium ion secondary battery of the present invention, lithium is discharged by pre-treating the waste cathode material containing lithium in an inert atmosphere and then pre-treated with water There is an effect that can be recovered at a high recovery rate.
또한, 본 발명의 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법에 의하면, 산을 이용하지 않고 수침출함으로써, 니켈, 코발트, 망간 또는 알루미늄 이온이 제외된 채, 리튬 이온만을 선택적으로 추출할 수 있어 고순도의 수산화리튬 일수화물을 제조할 수 있는 장점을 지닌다. In addition, according to the method for producing lithium hydroxide monohydrate using the waste cathode material of the lithium ion secondary battery of the present invention, by leaching without using an acid, lithium ions are removed without nickel, cobalt, manganese or aluminum ions. Bay can be selectively extracted has the advantage of producing a high purity lithium hydroxide monohydrate.
또한, 본 발명의 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법에 의하면, 수침출된 혼합물로부터 분리된 잔사물을 이용하여 니켈, 코발트, 망간 또는 알루미늄 원소를 분리해 내어 2차전지 양극재의 전구체로 재활용할 수 있는 이점이 있다.In addition, according to the manufacturing method of lithium hydroxide monohydrate using the waste cathode material of the lithium ion secondary battery of the present invention, by using the residue separated from the water-leached mixture to separate nickel, cobalt, manganese or aluminum elements There is an advantage that can be recycled as a precursor of the secondary battery cathode material.
도 1은 본 발명의 일 실시예에 따른 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법을 설명하기 위한 단계도이다.1 is a step for explaining a method of manufacturing lithium hydroxide monohydrate using the waste cathode material of a lithium ion secondary battery according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 폐 양극재인 리튬니켈코발트 산화물(NCA)의 XRD 분석 결과이다.2 is an XRD analysis result of lithium nickel cobalt oxide (NCA) as a waste cathode material according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 전처리 단계 이후, 전처리 결과물의 XRD 분석 결과이다.3 is an XRD analysis result of the pretreatment result after the pretreatment step according to an embodiment of the present invention.
본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.The terms used in the present invention are selected as general terms as widely used as possible, but in some cases, the terms arbitrarily selected by the applicant, in which case, the meanings described or used in the detailed description of the present invention, rather than simply the names of the terms, are considered. The meaning should be grasped.
이하, 첨부한 도면에 도시된 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, with reference to the preferred embodiments shown in the accompanying drawings will be described in detail the technical configuration of the present invention.
그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Like numbers refer to like elements throughout the specification.
도 1은 본 발명에 따른 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법을 설명하기 위한 단계도이다.1 is a step for explaining a method for producing lithium hydroxide monohydrate using the waste cathode material of a lithium ion secondary battery according to the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법은 리튬이온 2차전지의 폐 양극재로부터 리튬을 회수하여 수산화리튬 일수화물로 제조하기 위한 기술로서, 먼저 리튬이온 2차전지의 폐 양극재를 준비한다(S100).Referring to FIG. 1, a method of manufacturing lithium hydroxide monohydrate using waste cathode materials of a secondary battery according to an embodiment of the present invention recovers lithium from waste cathode materials of a lithium ion secondary battery and converts the lithium hydroxide into lithium hydroxide monohydrate. As a technology for manufacturing, first, a waste cathode material of a lithium ion secondary battery is prepared (S100).
여기서, 상기 폐 양극재는 리튬 원소를 함유하는 양극재이면 제한되진 않으며, 바람직하게는 리튬니켈코발트알루미늄 산화물(LiNiCoAlO 2, NCA), 리튬니켈코발트망간 산화물(LiNiCoMnO 2, NCM), 리튬철인 산화물(LiFePO 4, LFP), 리튬망간철인 산화물(LiMnFePO 4, LMFP), 리튬망간 산화물(LiMn 2O 4, LMO), 리튬니켈망간 스피넬(LiNi 0.5Mn 1.5O 4, LNMO), 리튬코발트 산화물 (LiCoO 2, LCO)로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다.Here, the waste cathode material is not limited as long as it is a cathode material containing lithium element, preferably lithium nickel cobalt aluminum oxide (LiNiCoAlO 2 , NCA), lithium nickel cobalt manganese oxide (LiNiCoMnO 2 , NCM), lithium iron oxide (LiFePO 4 , LFP), lithium manganese oxides (LiMnFePO 4 , LMFP), lithium manganese oxides (LiMn 2 O 4 , LMO), lithium nickel manganese spinel (LiNi 0.5 Mn 1.5 O 4 , LNMO), lithium cobalt oxide (LiCoO 2 , LCO) may be any one or more selected from the group consisting of.
다음, 준비된 폐 양극재를 비활성분위기에서 수증기를 주입하여 전처리시키는 전처리 단계가 수행된다(S200).Next, a pretreatment step of pre-treating the prepared waste cathode material by injecting water vapor in an inert atmosphere is performed (S200).
상기 전처리 단계(S200)는 폐 양극재의 구조를 분해하여 리튬을 수용성 물질의 형태로 변형시키기 위한 공정으로, 하기에 표기된 반응식 1로 반응된다.The pretreatment step (S200) is a process for deforming the structure of the waste cathode material to transform lithium into the form of a water-soluble material, and is reacted by Scheme 1 shown below.
[반응식 1]Scheme 1
2LiMeO 2 + H 2O → 2LiOH + M eO·MeO 2 2LiMeO 2 + H 2 O → 2LiOH + M e OMeO 2
여기서, 상기 Me는 Ni, Co, Mn, Al로 이루어진 군에서 선택되는 적어도 어느 하나이다.Here, Me is at least one selected from the group consisting of Ni, Co, Mn, Al.
이때, 비활성 분위기를 형성하기 위해서, 질소, 이산화탄소 또는 수소가 상기 폐 양극재 1g 당 0.1 내지 1,000 LPM(Liter per minute)으로 주입될 수 있다.At this time, in order to form an inert atmosphere, nitrogen, carbon dioxide or hydrogen may be injected at 0.1 to 1,000 LPM (Liter per minute) per 1g of the waste cathode material.
또한, 상기 수증기는 상기 폐 양극재 1g 당 0.1 내지 1,000 LPM(Liter per minute)으로 주입되어, 고온의 포화 수증기에 의한 가수분해 반응을 통하여 상기 폐 양극재의 물리화학적 분해를 유도한다. In addition, the water vapor is injected at 0.1 to 1,000 LPM (Liter per minute) per 1g of the waste cathode material, and induces physicochemical decomposition of the waste cathode material through a hydrolysis reaction by high temperature saturated steam.
이때, 온도는 500℃ 내지 1,000℃의 범위로 유지하고, 100분 내지 600분 동안 열처리된다.At this time, the temperature is maintained in the range of 500 ℃ to 1,000 ℃, heat treatment for 100 minutes to 600 minutes.
다음, 전처리된 전처리 결과물에 물을 첨가하여 교반시키는 수침출 단계가 수행된다(S300).Next, a water leaching step of adding and stirring water to the pretreated pretreatment result is performed (S300).
상기 수침출 단계(S300)는 상기 전처리 결과물에 산을 사용하지 않고, 물을 투입하여 리튬을 추출하는 것이 바람직하다.In the water leaching step (S300), it is preferable to extract lithium by adding water to the pretreatment result without using an acid.
그 이유는 산을 이용할 경우에는 추출 대상인 리튬이외에 니켈, 코발트, 망간, 알루미늄 등의 금속 물질이 동반 침출되어 고순도의 리튬 제품을 제조하는데 어려움이 있으나, 물을 이용할 경우에는 니켈, 코발트 망간 알루미늄 등은 제외되고, 리튬만이 선택적으로 추출될 수 있어 고순도의 리튬 제품을 제조할 수 있기 때문이다. The reason is that when acid is used, it is difficult to produce high purity lithium products by leaching metal materials such as nickel, cobalt, manganese, and aluminum in addition to lithium to be extracted, but when using water, nickel, cobalt manganese aluminum, etc. This is because only lithium can be selectively extracted to produce a high purity lithium product.
이때, 상기 물은 상기 전처리 결과물의 무게를 기준으로 1배 내지 10배가 투입되며, 20℃ 내지 100℃의 온도에서 1시간 내지 5시간 동안 200rpm 내지 1,000rpm으로 교반처리된다.At this time, the water is added 1 to 10 times on the basis of the weight of the pretreatment result, it is stirred at 200rpm to 1,000rpm for 1 to 5 hours at a temperature of 20 ℃ to 100 ℃.
즉, 상기 수침출 단계(S300)에서는, 상기 전처리 단계(S200)를 통해 형성된 수산화리튬은 하기 반응식 2과 같이 반응된다.That is, in the water leaching step (S300), the lithium hydroxide formed through the pretreatment step (S200) is reacted as in Scheme 2 below.
[반응식 2] Scheme 2
LiOH + H 2O→ Li + + OH - + H 2O LiOH + H 2 O → Li + + OH - + H 2 O
다음, 수침출된 혼합물을 고액분리하여 침출액과 잔사물로 분리해내는 고액분리단계(S400)가 수행된다.Next, a solid-liquid separation step (S400) of separating the water-leached mixture into solids and separating the leachate and residues is performed.
여기서, 니켈, 코발트, 망간, 알루미늄 등의 금속 원소들은 케이크 상태의 잔사물로 분리되고, 리튬은 침출액에 용해되어 분리된다.Here, metallic elements, such as nickel, cobalt, manganese, and aluminum, are separated into a cake residue, and lithium is dissolved and separated in a leach solution.
이후, 상기 잔사물은 별도로 분리해내어, 황산 침출 또는 용매추출 공정을 통해 니켈, 코발트, 망간, 알루미늄 등의 원소로 회수해낼 수 있으며, 이를 원료물질로 이용하여 2차전지 양극재의 전구체로 합성하여 재활용할 수 있다.Thereafter, the residue is separated separately and recovered as elements such as nickel, cobalt, manganese, aluminum through sulfuric acid leaching or solvent extraction process, and synthesized as a precursor of a secondary battery cathode material using this as a raw material. Can be recycled.
다음, 리튬이 용해되어 있는 침출액을 농축하여 결정화시키는 결정화단계(S500)가 수행된다.Next, a crystallization step (S500) of concentrating and crystallizing the leaching solution in which lithium is dissolved is performed.
상기 결정화단계(S500)에서는 상기 침출액을 진공상태에서 60℃ 내지 120℃의 온도에서 30분 내지 10시간 동안 증발 농축시켜 수산화리튬 일수화물 결정이 형성된다.In the crystallization step (S500), the leachate is concentrated by evaporation at a temperature of 60 ° C to 120 ° C for 30 minutes to 10 hours in a vacuum to form lithium hydroxide monohydrate crystals.
즉, 물이 증발되면서 수산화 리튬의 용해도보다 높은 농도로 리튬이 농축되면서 결정이 생성된다.That is, as water is evaporated, crystals are formed by concentrating lithium to a concentration higher than the solubility of lithium hydroxide.
다음, 생성된 수산화리튬 일수화물 결정을 물을 이용하여 세척한 후 건조하여 최종 수산화리튬 일수화물을 수득한다(S600).Next, the resulting lithium hydroxide monohydrate crystals are washed with water and dried to obtain a final lithium hydroxide monohydrate (S600).
실시예 EXAMPLE
폐 양극재 준비단계Waste cathode material preparation stage
2차 전지의 폐 양극재로 리튬니켈코발트알루미늄 산화물(LiNiCoAlO 2, NCA) 150g을 사용하였다.150 g of lithium nickel cobalt aluminum oxide (LiNiCoAlO 2 , NCA) was used as a waste cathode material of a secondary battery.
한편, 하기 표 1에는 상기 리튬니켈코발트알루미늄 산화물의 ICP 화학성분 함량 분석결과를 나타내었으며, 도 2에는 상기 리튬니켈코발트알루미늄 산화물 XRD 분석 결과를 도시하였다.On the other hand, Table 1 shows the results of ICP chemical component content analysis of the lithium nickel cobalt aluminum oxide, Figure 2 shows the lithium nickel cobalt aluminum oxide XRD analysis results.
구분division MgMg NaNa LiLi CoCo NiNi ZnZn AlAl SS
함량(wt%)Content (wt%) 0.020.02 0.070.07 6.676.67 6.656.65 54.3754.37 0.220.22 0.40.4 0.140.14
전처리 단계다음, 준비된 폐 양극재 분말을 튜브 소성로에 투입시킨 후, 1분 당 10℃의 승온속도로 800℃ ± 10℃ 까지 승온한 후 120분 동안 유지하였다. After the pretreatment step , the prepared waste cathode material powder was introduced into a tube kiln, and then heated to 800 ° C. ± 10 ° C. at a temperature rising rate of 10 ° C. per minute, and then maintained for 120 minutes.
이때, 비활성 분위기를 유지하기 위하여 질소가스를 분당 30cc로 주입하였고, 증기를 분당 650cc로 주입하였다. 등온 기간이 끝난 후 자연 냉각 처리하여 전처리 결과물을 수득하였으며, 냉각구간에서는 질소와 증기를 주입하지 않았다.At this time, in order to maintain an inert atmosphere, nitrogen gas was injected at 30cc per minute, and steam was injected at 650cc per minute. After the end of the isothermal period, natural cooling was performed to obtain a pretreatment result, and nitrogen and steam were not injected in the cooling section.
도 3에는 상기 전처리 결과물의 XRD 분석결과를 도시하였으며, 도 2 및 도 3을 참조하면, 질소가스에 의한 비활성 분위기에서 증기가 주입되어 전치리됨으로써, 19도에서 인텐시티(Intensity) 값이 감소하는 것이 관찰되었으며, 이로부터 폐양극재 내의 분자간 결합구조의 변형이 발생하였음을 확인할 수 있었다.FIG. 3 shows the XRD analysis results of the pretreatment result. Referring to FIGS. 2 and 3, since the steam is injected and pretreated in an inert atmosphere by nitrogen gas, the intensity value is reduced at 19 degrees. It was observed that the deformation of the intermolecular bonding structure in the waste cathode material was confirmed.
수침출 단계Water leaching stage
이후, 전처리 결과물 10g을 물 198.82g에 혼합하여, 상온에서 마그네틱 교반기를 사용하여 500rpm으로 120분 동안 교반을 수행하여, 리튬을 회수하였다.Thereafter, 10 g of the pretreatment product was mixed with 198.82 g of water, and stirred at 500 rpm for 120 minutes using a magnetic stirrer at room temperature to recover lithium.
고액분리 단계Solid-liquid Separation Step
이후, 수침출된 혼합물을 고액분리하여 침출액과 잔사물로 분리하였으며, 침출액의 성분을 분석하여 하기 표 2에 나타내었다.Thereafter, the water-leached mixture was separated into a solid solution and separated into a leach solution and a residue, and the components of the leach solution were shown in Table 2 below.
구분division LiLi SS NaNa SiSi NiNi CoCo MnMn AlAl
침출액(ppm)Leachate (ppm) 32123212 33 77 22 N/DN / D N/DN / D N/DN / D N/DN / D
표 2를 참조하면, 리튬의 회수율은 약 80%임을 확인할 수 있었으며, 침축액에 니켈, 코발트, 망간, 알루미늄은 검출되지 않았음을 확인할 수 있었다.Referring to Table 2, it was confirmed that the recovery of lithium is about 80%, nickel, cobalt, manganese, aluminum was not detected in the immersion liquid.
이후, 침출액은 증발 농축 및 결정화시켰으며, 얻어진 결정을 수세 및 건조하여 2차 전지 배터리에 사용될 수 있는 수산화리튬 일수화물을 수득하였다.Thereafter, the leachate was concentrated by evaporation and crystallization, and the obtained crystals were washed with water and dried to obtain lithium hydroxide monohydrate that can be used in a secondary battery battery.
비교예Comparative example
실시예와 동일하게 폐 양극재로 리튬니켈코발트알루미늄 산화물을 준비하였으며, 준비된 폐 양극재 분말을 튜브 소성로에 투입시킨 후, 1분 당 10℃의 승온속도로 800℃ ± 10℃ 까지 승온한 후 5시간 동안 유지한 뒤 자연냉각하였다.Lithium nickel cobalt aluminum oxide was prepared as a waste cathode material in the same manner as in Example, and the prepared waste cathode material powder was introduced into a tube kiln, and then heated up to 800 ° C. ± 10 ° C. at a temperature rising rate of 10 ° C. per minute, and then 5. After cooling for an hour, it was naturally cooled.
이때, 질소와 수증기는 주입하지 않고 반응시켰으며, 전처리 결과물 50g을 취득하여 물 232.57g에 혼합하여 수 침출을 수행하여 리튬을 회수하였다. 70℃에서 마그네틱 교반기를 사용하여 500 rpm으로 교반을 실시하였고 반응시간은 120분으로 하였다.At this time, nitrogen and water vapor were reacted without injecting, 50g of the pretreatment result was obtained, mixed with 232.57g of water, and water leaching was performed to recover lithium. Stirring was performed at 500 rpm using a magnetic stirrer at 70 ° C., and the reaction time was 120 minutes.
수 침출이 완료된 용액을 고액 분리하여 얻은 침출물 내 리튬 농도를 분석하였으며, 그 결과를 리튬 회수율이 11.6% 인 것으로 확인되었다.The lithium concentration in the leachate obtained by solid-liquid separation of the solution from which the water leach was completed was analyzed, and the result confirmed that the lithium recovery was 11.6%.
이로부터, 질소가스를 주입하여 비활성 분위기를 형성함과 동시에 증기를 주입하여 전처리시키는 본 발명에 따른 전처리 공정이, 양극재의 구조를 분해하여 리튬을 수용성 물질의 형태로 변형시키는데 매우 효율적임을 알 수 있었다. From this, it was found that the pretreatment process according to the present invention, in which nitrogen gas is injected to form an inert atmosphere and steam is pretreated by injecting steam, decomposes the structure of the cathode material and transforms lithium into a water-soluble material. .
상술한 바와 같이, 본 발명에 따른 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법은 리튬을 함유하는 폐 양극재를 비활성분위기에서 수증기를 주입하여 전처리한 후 수침출함으로써, 리튬성분을 높은 회수율로 회수할 수 있으며, 산을 이용하지 않고 수침출함으로써, 니켈, 코발트, 망간 또는 알루미늄 이온이 제외된 채, 리튬 이온만을 선택적으로 추출할 수 있어 고순도의 수산화리튬 일수화물을 제조할 수 있는 장점을 지닌다.As described above, in the method for producing lithium hydroxide monohydrate using the waste cathode material of the lithium ion secondary battery according to the present invention, by pre-treating the waste cathode material containing lithium in an inert atmosphere by pre-treatment with water vapor and then leaching water, Lithium component can be recovered with high recovery rate, and by leaching water without using acid, only lithium ions can be selectively extracted without nickel, cobalt, manganese or aluminum ions, thereby producing high purity lithium hydroxide monohydrate. It has the advantage to do it.
동시에, 수침출된 혼합물로부터 분리된 잔사물을 이용하여 니켈, 코발트, 망간 또는 알루미늄 원소를 분리해 내어 2차전지 양극재의 전구체로 재활용할 수 있는 효과가 있다.At the same time, nickel, cobalt, manganese, or aluminum can be separated by using the residue separated from the water-leached mixture and recycled as a precursor of the secondary battery cathode material.
이상에서 살펴본 바와 같이 본 발명은 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.As described above, the present invention has been illustrated and described with reference to preferred embodiments, but is not limited to the above-described embodiments, and is provided to those skilled in the art without departing from the spirit of the present invention. Various changes and modifications will be possible.
폐 양극재로부터 리튬을 회수하여, 리튬이온 2차전지의 원료물질로 활용될 수 있으며, 수산화리튬 일수화물을 원료로 이용하는 다양한 분야에 적용될 수 있다.Recovering lithium from the waste cathode material, it can be used as a raw material of the lithium ion secondary battery, it can be applied to various fields using lithium hydroxide monohydrate as a raw material.

Claims (7)

  1. 리튬이온 2차전지의 폐 양극재를 준비하는 폐 양극재 준비 단계;A waste cathode material preparation step of preparing waste cathode material of a lithium ion secondary battery;
    준비된 폐 양극재를 비활성분위기에서 수증기를 주입하여 전처리하는 폐 양극재 전처리 단계;A waste cathode material pretreatment step of pretreating the prepared waste cathode material by injecting water vapor in an inert atmosphere;
    전처리된 전처리 결과물에 물을 첨가하여 교반시키는 수침출 단계;A water leaching step of adding water to the pretreated pretreatment result and stirring;
    수침출된 혼합물을 고액분리하여 침출액과 잔사물로 분리해내는 고액분리 단계;Solid-liquid separation step of separating the water-leached mixture into a solid solution to separate the leachate and the residue;
    상기 침출액을 농축하여 결정화시키는 결정화 단계;A crystallization step of concentrating and crystallizing the leachate;
    결정화된 수산화리튬 일수화물을 세척 및 건조하는 세척 및 건조 단계;를 포함하는 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법.The washing and drying step of washing and drying the crystallized lithium hydroxide monohydrate; Method for producing lithium hydroxide monohydrate using the waste cathode material of a lithium ion secondary battery.
  2. 제 1항에 있어서,The method of claim 1,
    상기 리튬이온 2차전지의 폐 양극재는 리튬니켈코발트알루미늄 산화물(LiNiCoAlO 2, NCA), 리튬니켈코발트망간 산화물(LiNiCoMnO 2, NCM), 리튬철인 산화물(LiFePO 4, LFP), 리튬망간철인 산화물(LiMnFePO 4, LMFP), 리튬망간 산화물(LiMn 2O 4, LMO), 리튬니켈망간 스피넬(LiNi 0.5Mn 1.5O 4, LNMO), 리튬코발트 산화물 (LiCoO 2, LCO)로 이루어진 군에서 선택되는 적어도 어느 하나인 것을 특징으로 하는 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법.The waste cathode material of the lithium ion secondary battery is lithium nickel cobalt aluminum oxide (LiNiCoAlO 2 , NCA), lithium nickel cobalt manganese oxide (LiNiCoMnO 2 , NCM), lithium iron oxide (LiFePO 4 , LFP), lithium manganese iron oxide (LiMnFePO 4 , LMFP), lithium manganese oxide (LiMn 2 O 4 , LMO), lithium nickel manganese spinel (LiNi 0.5 Mn 1.5 O 4 , LNMO), at least one selected from the group consisting of lithium cobalt oxide (LiCoO 2 , LCO) A method for producing lithium hydroxide monohydrate using the waste cathode material of a lithium ion secondary battery, characterized in that.
  3. 제 1항에 있어서,The method of claim 1,
    상기 폐 양극재 전처리 단계는 하기에 표기된 반응식 1로 반응되는 것을 특징으로 하는 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법. The waste cathode material pretreatment step is a method for producing lithium hydroxide monohydrate using the waste cathode material of a lithium ion secondary battery, characterized in that the reaction by reaction 1 shown below.
    [반응식 1]Scheme 1
    2LiMeO 2 + H 2O → 2LiOH + M eO·MeO 2 2LiMeO 2 + H 2 O → 2LiOH + M e OMeO 2
    여기서, 상기 Me는 Ni, Co, Mn, Al로 이루어진 군에서 선택되는 적어도 어느 하나이다.Here, Me is at least one selected from the group consisting of Ni, Co, Mn, Al.
  4. 제 1항에 있어서,The method of claim 1,
    상기 폐 양극재 전처리 단계는The waste cathode material pretreatment step
    질소, 이산화탄소 또는 수소가 상기 폐 양극재 1g 당 0.1 내지 1,000 LPM(Liter per minute)으로 주입되어 상기 비활성 분위기가 형성되고, 상기 수증기는 상기 폐 양극재 1g 당 0.1 내지 1,000 LPM(Liter per minute)으로 주입되며, 500℃ 내지 1,000℃에서 100분 내지 600분 동안 열처리되는 것을 특징으로 하는 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법. Nitrogen, carbon dioxide, or hydrogen is injected at 0.1 to 1,000 LPM (Liter per minute) per 1g of the waste cathode material to form the inert atmosphere, and the water vapor is 0.1 to 1,000 LPM (Liter per minute) per 1g of the waste cathode material. A method of manufacturing lithium hydroxide monohydrate using the spent positive electrode material of a lithium ion secondary battery, which is injected and heat treated at 500 ° C. to 1,000 ° C. for 100 to 600 minutes.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 수침출 단계는The water leaching step
    상기 전처리 결과물에 상기 전처리 결과물의 무게를 기준으로 1배 내지 10배의 물을 혼합하여 20℃ 내지 100℃의 온도에서 1시간 내지 5시간 동안 교반처리되는 것을 특징으로 하는 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법.1 to 10 times of water is mixed with the pretreatment result on the basis of the weight of the pretreatment result, which is then agitated for 1 to 5 hours at a temperature of 20 ° C to 100 ° C. Method for producing lithium hydroxide monohydrate using a cathode material.
  6. 제 3항에 있어서,The method of claim 3, wherein
    상기 잔사물을 이용하여 Ni, Co, Mn 또는 Al를 분리해내는 것을 특징으로 하는 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법.A method for producing lithium hydroxide monohydrate using the waste cathode material of a lithium ion secondary battery, characterized in that to separate Ni, Co, Mn or Al using the residue.
  7. 제 1항에 있어서,The method of claim 1,
    상기 결정화단계는 진공상태에서 60℃ 내지 120℃의 온도에서 30분 내지 10시간 동안 증발 농축시키는 것을 특징으로 하는 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법.The crystallization step is a lithium hydroxide monohydrate manufacturing method using a waste cathode material of a lithium ion secondary battery, characterized in that the evaporation and concentration for 30 minutes to 10 hours at a temperature of 60 ℃ to 120 ℃ in a vacuum state.
PCT/KR2019/003988 2018-04-12 2019-04-04 Method for producing lithium hydroxide monohydrate by using waste cathode material of lithium ion secondary battery WO2019198972A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180042642A KR102043711B1 (en) 2018-04-12 2018-04-12 Manufacturing method of lithium hydroxide monohydrate using waste cathode material of lithium ion secondary battery
KR10-2018-0042642 2018-04-12

Publications (1)

Publication Number Publication Date
WO2019198972A1 true WO2019198972A1 (en) 2019-10-17

Family

ID=68164291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003988 WO2019198972A1 (en) 2018-04-12 2019-04-04 Method for producing lithium hydroxide monohydrate by using waste cathode material of lithium ion secondary battery

Country Status (2)

Country Link
KR (1) KR102043711B1 (en)
WO (1) WO2019198972A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112267026A (en) * 2020-10-13 2021-01-26 湖南金凯循环科技有限公司 Method for preparing lithium hydroxide by taking waste lithium metal as raw material
GB2609212A (en) * 2021-07-22 2023-02-01 Mexichem Fluor Sa De Cv Process
CN115786731A (en) * 2021-09-09 2023-03-14 釜庆大学校 Method for selectively recovering lithium from lithium manganese iron phosphate

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210054946A (en) 2019-11-06 2021-05-14 주식회사 에코프로이노베이션 Method for producing lithium hydroxide monohydrate
KR102332465B1 (en) * 2019-12-27 2021-11-30 (주)다원화학 Method for Collecting Valuable Metal from Cathode Materials of Waste Lithium Ion Battery
KR20210101647A (en) * 2020-02-10 2021-08-19 에스케이이노베이션 주식회사 Method of recycling active metal of lithium secondary battery
KR102520392B1 (en) * 2020-12-22 2023-04-11 부경대학교 산학협력단 Lithium oxide recovery method from lithium manganese oxide(LMO)
KR102350008B1 (en) * 2021-07-05 2022-01-11 주식회사 에코프로이노베이션 Method for recovering lithium and valuable metals from waste electrode materials
KR20230052569A (en) * 2021-10-13 2023-04-20 에스케이이노베이션 주식회사 Recovery method of lithium precursor from lithium secondary battery
KR102444732B1 (en) 2022-01-20 2022-09-16 이원희 Cathode material and method for manufacturing cathode material
KR102643085B1 (en) 2022-03-03 2024-03-05 (주)선영시스텍 Apparatus for manufacturing cathode material
KR20240071711A (en) * 2022-11-16 2024-05-23 국립부경대학교 산학협력단 Producing method of lithium hydroxide
KR20240071905A (en) * 2022-11-16 2024-05-23 국립부경대학교 산학협력단 Producing method of lithium hydroxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011010A (en) * 2002-06-11 2004-01-15 Sumitomo Metal Mining Co Ltd Method for recovering lithium and cobalt from lithium cobaltate
JP2012229481A (en) * 2011-04-27 2012-11-22 Japan Metals & Chem Co Ltd Method for separating and recovering valuable material from used lithium ion battery
KR20130069538A (en) * 2009-10-14 2013-06-26 에스지엘 카본 에스이 Method and reactor for processing bulk material containing li
KR101724289B1 (en) * 2015-10-06 2017-04-10 재단법인 포항산업과학연구원 Method for producing lithium hydroxide monohydrate
KR101828168B1 (en) * 2016-08-23 2018-02-09 부경대학교 산학협력단 Recovery method of lithium carbonate and recovery system of lithium carbonate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011010A (en) * 2002-06-11 2004-01-15 Sumitomo Metal Mining Co Ltd Method for recovering lithium and cobalt from lithium cobaltate
KR20130069538A (en) * 2009-10-14 2013-06-26 에스지엘 카본 에스이 Method and reactor for processing bulk material containing li
JP2012229481A (en) * 2011-04-27 2012-11-22 Japan Metals & Chem Co Ltd Method for separating and recovering valuable material from used lithium ion battery
KR101724289B1 (en) * 2015-10-06 2017-04-10 재단법인 포항산업과학연구원 Method for producing lithium hydroxide monohydrate
KR101828168B1 (en) * 2016-08-23 2018-02-09 부경대학교 산학협력단 Recovery method of lithium carbonate and recovery system of lithium carbonate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112267026A (en) * 2020-10-13 2021-01-26 湖南金凯循环科技有限公司 Method for preparing lithium hydroxide by taking waste lithium metal as raw material
GB2609212A (en) * 2021-07-22 2023-02-01 Mexichem Fluor Sa De Cv Process
CN115786731A (en) * 2021-09-09 2023-03-14 釜庆大学校 Method for selectively recovering lithium from lithium manganese iron phosphate

Also Published As

Publication number Publication date
KR102043711B1 (en) 2019-11-12
KR20190119329A (en) 2019-10-22

Similar Documents

Publication Publication Date Title
WO2019198972A1 (en) Method for producing lithium hydroxide monohydrate by using waste cathode material of lithium ion secondary battery
WO2020116795A1 (en) Method for producing lithium hydroxide from lithium concentrate by mixing and roasting lithium concentrate with sodium sulfate
CN111206148B (en) Method for recycling and preparing ternary cathode material by using waste ternary lithium battery
CN112375913B (en) Waste lithium ion battery recovery method
CN111392750B (en) Method for removing impurities and recovering lithium from waste lithium ion batteries
WO2021241944A1 (en) Method for recovering valuable metal from waste electrode material of lithium secondary battery by using lithium carbonate
WO2020101089A1 (en) Method for recovery of nickel and cobalt
KR20210075502A (en) Method for recovering valuable metals from cathodic active material of used lithium battery
WO2022055272A1 (en) Method for recovering cathode material
WO2021256732A1 (en) Method for recovering active metal of lithium secondary battery
WO2021241817A1 (en) Method for reusing active material by using positive electrode scrap
WO2023191414A1 (en) Method for preparing secondary battery material from black mass
WO2021172688A1 (en) Methods for manufacturing positive electrode active material precursor material and positive electrode active material for secondary lithium battery, and positive electrode active material for secondary lithium battery manufactured thereby
WO2024034754A1 (en) Method for recycling secondary battery material
WO2023158008A1 (en) Solvent extraction method using two-stage extraction for separating and recovering nickel, cobalt, and manganese
WO2022045747A1 (en) Method for manufacturing lithium hydroxide from lithium-containing source
CN114715922A (en) Method for recycling lithium ion battery electrolyte
WO2021066362A1 (en) Recovery method for lithium precursor
WO2021060873A1 (en) Method for treating waste battery
WO2016190669A1 (en) Method for recovering cobalt powder from lithium-cobalt oxide
WO2022197022A1 (en) Method for preparing cobalt sulfate salt
KR20200071987A (en) Method for separation and extraction of lithium hydroxide from waste cathode material of lithium ion secondary battery
WO2023211260A1 (en) Method for producing manganese(ii) sulfate monohydrate from by-product of zinc refining process
WO2022119262A1 (en) Method for recovering lithium precursor from waste lithium secondary battery positive electrode material
CN118221082A (en) Method for recycling iron and phosphorus in waste lithium iron phosphate battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785274

Country of ref document: EP

Kind code of ref document: A1