KR20210075502A - Method for recovering valuable metals from cathodic active material of used lithium battery - Google Patents

Method for recovering valuable metals from cathodic active material of used lithium battery Download PDF

Info

Publication number
KR20210075502A
KR20210075502A KR1020190166658A KR20190166658A KR20210075502A KR 20210075502 A KR20210075502 A KR 20210075502A KR 1020190166658 A KR1020190166658 A KR 1020190166658A KR 20190166658 A KR20190166658 A KR 20190166658A KR 20210075502 A KR20210075502 A KR 20210075502A
Authority
KR
South Korea
Prior art keywords
ion battery
cathode material
lithium ion
lithium
valuable metals
Prior art date
Application number
KR1020190166658A
Other languages
Korean (ko)
Inventor
조성구
김종호
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020190166658A priority Critical patent/KR20210075502A/en
Publication of KR20210075502A publication Critical patent/KR20210075502A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a method for recovering valuable metals from a positive electrode active material of a wasted lithium battery, which includes: heat-treating a positive electrode material of a wasted lithium ion battery; adding the positive electrode material of the heat-treated wasted lithium ion battery to an aqueous solution containing a calcium compound to obtain a leachate containing lithium; separating the leachate into solid-liquid; concentrating the solid-liquid separated leachate to obtain lithium hydroxide; washing the lithium hydroxide with water; and dissolving the lithium hydroxide after washing with water and re-concentrating the lithium hydroxide. According to the present invention, a high concentration of lithium can be recovered from the lithium positive electrode material of a wasted lithium ion battery, and thus, the lithium recovery rate and economic efficiency can be improved. In addition, it is possible to recover valuable metals, such as nickel, cobalt, and manganese other than lithium in a solid form. Further, it is possible to recover valuable metals, such as nickel, cobalt, and manganese other than lithium in a solid form.

Description

폐 리튬이온전지의 양극재로부터 유가금속 회수방법 {METHOD FOR RECOVERING VALUABLE METALS FROM CATHODIC ACTIVE MATERIAL OF USED LITHIUM BATTERY}Method for recovering valuable metals from cathode materials of spent lithium ion batteries {METHOD FOR RECOVERING VALUABLE METALS FROM CATHODIC ACTIVE MATERIAL OF USED LITHIUM BATTERY}

본 발명은 폐 리튬이온전지의 양극재로부터 유가금속을 회수하는 방법에 관한 것이다.The present invention relates to a method for recovering valuable metals from a cathode material of a spent lithium ion battery.

리튬 이온전지는 높은 에너지 밀도와 경량의 특성을 지니고 있기 때문에 소형 휴대장비의 동력원으로 사용되고 있는 등, 최근 들어 리튬 이온전지의 사용량이 급증하고 있다. 특히, 최근에는 소형가전기기, 모바일용 제품뿐만 아니라 하이브리드 전기자동차(HEV/EV) 등의 동력원으로도 널리 이용되고 있다.Lithium ion batteries are used as power sources for small portable equipment because of their high energy density and light weight, and the use of lithium ion batteries is rapidly increasing in recent years. In particular, in recent years, it has been widely used as a power source for not only small home appliances and mobile products, but also hybrid electric vehicles (HEV/EV).

이러한 리튬 이온전지는 양극과 음극, 전해질 및 분리막으로 구성되어 있으며, 구체적으로 플라스틱 케이스(Plastic casing)와 여러 셀 단위(cell unit)안에 포함된 양극, 음극, 분리막, 전해질, 그리고 니켈-코팅 강철 케이스(Ni-coated steel casing)로 구성된다.Such a lithium ion battery is composed of a positive electrode, a negative electrode, an electrolyte and a separator, and specifically, a plastic casing and a positive electrode, a negative electrode, a separator, an electrolyte, and a nickel-coated steel case contained in several cell units. (Ni-coated steel casing).

한편, 리튬 이온전지의 양극은 양극재(active cathode materials), 도전제, 바인더 및 집전체로 이루어져 있으며, 양극재로는 가역성(reversibility)이 우수하고, 낮은 자가방전율, 고용량, 고에너지 밀도를 갖고, 합성이 용이한 리튬코발트산화물(LiCoO2)이 널리 사용되고 있다. On the other hand, the positive electrode of a lithium ion battery consists of an active cathode material, a conductive agent, a binder, and a current collector, and as a positive electrode material, it has excellent reversibility, low self-discharge rate, high capacity, and high energy density. , lithium cobalt oxide (LiCoO 2 ), which is easy to synthesize, is widely used.

또한, 최근에는 고가인 코발트(Co)의 사용량을 줄이기 위해 Ni, Mn등이 함께 포함된 Li(NiCoMn)Ox와 같은 3원계의 리튬 복합금속 산화물 등도 양극 물질로 이용되고 있다. 그러나 상기와 같은 양극물질 모두 적어도 5중량% 이상의 리튬, 및 니켈, 코발트, 망간과 같은 유가 금속을 다량 함유하고 있어, 폐 리튬 이온전지의 양극재(양극재 스크랩)로부터 고가의 유가 금속을 회수하기 위한 방법에 관심이 주목되고 있다.In addition, in recent years, in order to reduce the amount of expensive cobalt (Co) used, a ternary lithium composite metal oxide such as Li(NiCoMn)Ox containing Ni and Mn is also used as a cathode material. However, since all of the above cathode materials contain a large amount of valuable metals such as lithium, nickel, cobalt, and manganese in at least 5% by weight or more, it is difficult to recover expensive valuable metals from the cathode material (positive electrode material scrap) of the spent lithium ion battery. Attention is drawn to how to

양극재 스크랩은 양극재 또는 리튬이온전지 제조과정에서 발생하는 소위 공정스크랩과 사용 후 폐 리튬이온전지로부터 각종 분리 또는 선별 과정을 통해 취득한 소위 폐스크랩으로 대별된다. 전자의 공정스크랩은 탄소 등의 불순물이 거의 함유되어 있지 않으나, 후자의 폐스크랩은 분리 또는 선별 과정 특성상 음극재 등 리튬이온전지를 구성하는 물질들을 완벽하게 제거할 수 없기 때문에 탄소 등의 불순물이 함유되어 있다.The cathode material scrap is roughly divided into the so-called process scrap generated during the manufacturing process of the cathode material or lithium ion battery, and the so-called waste scrap obtained through various separation or selection processes from the spent lithium ion battery after use. The former process scrap contains almost no impurities such as carbon, but the latter waste scrap contains impurities such as carbon because the materials constituting the lithium ion battery such as anode material cannot be completely removed due to the nature of the separation or selection process. has been

이와 관련하여, 특허문헌 1에는 양극재 스크랩을 수소 또는 탄소로 환원시켜 리튬을 회수하는 방법을 제공하고 있다. 수소로 환원하는 경우에는 리튬이 수산화리튬(LiOH)이 되어 수세를 통해 회수되는 용액 중의 리튬 농도가 높아지는데, 이는 LiOH의 물에 대한 용해도가 리튬 기준으로 30~50g/L로 높기 때문이다. 그러나 탄소로 환원하는 경우에는 리튬이 환원과정에서 탄산리튬(Li2CO3)이 되므로 수세를 통해 회수되는 용액 중의 리튬 농도가 낮은 단점을 지니고 있다. 이는 Li2CO3의 물에 대한 용해도가 리튬 기준으로 1~3g/L로 낮기 때문이다. In this regard, Patent Document 1 provides a method of recovering lithium by reducing cathode material scrap with hydrogen or carbon. In the case of reduction with hydrogen, lithium becomes lithium hydroxide (LiOH) and the concentration of lithium in the solution recovered through washing with water increases, because the solubility of LiOH in water is as high as 30-50 g/L based on lithium. However, in the case of reduction to carbon, since lithium becomes lithium carbonate (Li 2 CO 3 ) in the reduction process, the lithium concentration in the solution recovered through washing with water is low. This is because the solubility of Li 2 CO 3 in water is as low as 1-3 g/L based on lithium.

이와 같이 리튬 농도가 낮은 용액으로부터 리튬을 회수하기 위해서는 증발농축 과정을 거칠 수 밖에 없으며, 리튬 농도가 낮을수록 상대적으로 증발시켜야 할 물의 양이 많아지고, 이에 따라 에너지 비용이 커지게 된다. As described above, in order to recover lithium from a solution having a low lithium concentration, it has to go through an evaporation and concentration process. As the lithium concentration is low, the amount of water to be evaporated relatively increases, and thus energy cost increases.

전술한 바와 같이 소위 폐스크랩은 탄소를 함유하고 있으며 이로 인해 리튬이 환원과정에서 Li2CO3로 전환된다. 따라서 특허문헌 1에 개시된 방법에 따르면, 리튬 농도가 너무 낮은 용액을 얻을 수 밖에 없으므로 경제성이 낮아지는 문제점이 있다.As described above, so-called waste scrap contains carbon, whereby lithium is converted into Li 2 CO 3 in the reduction process. Therefore, according to the method disclosed in Patent Document 1, there is a problem in that economic efficiency is lowered because a solution having too low lithium concentration has to be obtained.

대한민국 등록특허 10-1497041호Republic of Korea Patent Registration No. 10-1497041

본 발명은 이차전지 양극재 스크랩의 종류에 관계없이, 리튬을 고농도 용액 형태로 회수하는 방법을 제시하고자 한다. 또한, 회수되는 리튬 용액에 포함되는 불순물을 제거하는 방법과 니켈, 코발트, 망간 등 기타 유가금속을 회수하는 방법도 함께 제시하고자 한다.An object of the present invention is to propose a method for recovering lithium in the form of a high-concentration solution regardless of the type of secondary battery cathode material scrap. In addition, a method for removing impurities contained in the recovered lithium solution and a method for recovering other valuable metals such as nickel, cobalt, and manganese are also presented.

본 발명의 일 측면에 따르면, 폐 리튬이온전지의 양극재를 열처리하는 단계; 상기 열처리된 폐 리튬이온전지의 양극재를 칼슘화합물을 포함하는 수용액에 투입하여 리튬이 포함된 침출액을 수득하는 단계; 상기 침출액을 고액분리하는 단계; 상기 고액분리된 침출액을 농축하여 수산화리튬을 수득하는 단계; 상기 수산화리튬을 수세하는 단계; 및 상기 수세 후의 수산화리튬을 물에 용해시킨 후 재농축하는 단계를 포함하는 폐 리튬이온전지의 양극재로부터 유가금속 회수방법이 제공된다.According to one aspect of the present invention, the method comprising: heat-treating a cathode material of a waste lithium ion battery; adding a cathode material of the heat-treated waste lithium ion battery to an aqueous solution containing a calcium compound to obtain a leachate containing lithium; separating the leachate into solid-liquid; concentrating the solid-liquid separated leachate to obtain lithium hydroxide; washing the lithium hydroxide with water; And there is provided a method for recovering valuable metals from a cathode material of a waste lithium ion battery comprising the step of dissolving the lithium hydroxide after washing with water and then re-concentrating.

상기 폐 리튬이온전지의 양극재를 열처리하는 단계에서, 탄소함유 화합물이 투입될 수 있다.In the step of heat-treating the cathode material of the waste lithium ion battery, a carbon-containing compound may be added.

상기 탄소함유 화합물은 그래파이트, 유연탄 및 무연탄 중에서 선택된 1종 이상일 수 있다.The carbon-containing compound may be at least one selected from graphite, bituminous coal, and anthracite coal.

상기 탄소함유 화합물의 투입량은 폐 리튬이온전지의 양극재에 포함된 리튬의 중량 대비 1.5배 내지 5배일 수 있다. The input amount of the carbon-containing compound may be 1.5 to 5 times the weight of lithium contained in the cathode material of the spent lithium ion battery.

상기 열처리는 환원 분위기에서, 450 내지 1000℃의 온도범위에서 수행될 수 있다.The heat treatment may be performed in a reducing atmosphere in a temperature range of 450 to 1000 °C.

상기 열처리는 질소 및 아르곤 중에서 선택된 1종 이상의 환원성 가스를 투입하여 수행될 수 있다. The heat treatment may be performed by introducing at least one reducing gas selected from nitrogen and argon.

상기 칼슘화합물을 포함하는 수용액에서 칼슘화합물의 농도는 50g/L 내지 100g/L일 수 있다.The concentration of the calcium compound in the aqueous solution containing the calcium compound may be 50 g / L to 100 g / L.

상기 칼슘화합물을 포함하는 수용액의 온도는 50 내지 99℃일 수 있다. The temperature of the aqueous solution containing the calcium compound may be 50 to 99 ℃.

상기 칼슘화합물은 수산화칼슘, 산화칼슘, 소석회 및 및 생석회 중에서 선택된 1종 이상일 수 있다. The calcium compound may be at least one selected from calcium hydroxide, calcium oxide, slaked lime, and quicklime.

상기 농축은 50℃ 내지 100℃의 온도에서 증발 농축되는 것일 수 있다.The concentration may be concentrated by evaporation at a temperature of 50 °C to 100 °C.

상기 재농축은 50℃ 내지 100℃의 온도에서 증발 농축되는 것일 수 있다. The re-concentration may be concentrated by evaporation at a temperature of 50 °C to 100 °C.

상기 고액분리 후 얻어진 잔사물을 산 침출 또는 용매 추출하여 니켈, 코발트, 망간 및 알루미늄 중에서 선택된 1종 이상을 수득하는 단계를 포함할 수 있다.The method may include acid leaching or solvent extraction of the residue obtained after the solid-liquid separation to obtain at least one selected from nickel, cobalt, manganese and aluminum.

본 발명에 따르면, 폐 리튬이온전지의 양극재로부터 고농도의 리튬을 회수할 수 있고, 이에 따라, 리튬 회수율 및 경제성을 향상시킬 수 있다. 또한, 리튬 이외의 니켈, 코발트, 망간 등의 유가금속을 고체 형태로 회수하는 것이 가능하다.According to the present invention, it is possible to recover a high concentration of lithium from the cathode material of a waste lithium ion battery, and thus, it is possible to improve the lithium recovery rate and economic efficiency. In addition, it is possible to recover valuable metals other than lithium, such as nickel, cobalt, and manganese in a solid form.

이하, 다양한 실시예를 참조하여 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described with reference to various examples. However, the embodiment of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.

본 발명은 폐 리튬이온전지의 양극재로부터 유가금속을 회수하는 방법에 관한 것이다.The present invention relates to a method for recovering valuable metals from a cathode material of a spent lithium ion battery.

본 발명의 일 측면에 따르면, 폐 리튬이온전지의 양극재를 열처리하는 단계; 상기 열처리된 폐 리튬이온전지의 양극재를 칼슘화합물을 포함하는 수용액에 투입하여 리튬이 포함된 침출액을 수득하는 단계; 상기 침출액을 고액분리하는 단계; 상기 고액분리된 침출액을 농축하여 수산화리튬을 수득하는 단계; 상기 수산화리튬을 수세하는 단계; 및 상기 수세 후의 수산화리튬을 물에 용해시킨 후 재농축하는 단계를 포함하는 폐 리튬이온전지의 양극재로부터 유가금속 회수방법이 제공된다. According to one aspect of the present invention, the method comprising: heat-treating a cathode material of a waste lithium ion battery; adding a cathode material of the heat-treated waste lithium ion battery to an aqueous solution containing a calcium compound to obtain a leachate containing lithium; separating the leachate into solid-liquid; concentrating the solid-liquid separated leachate to obtain lithium hydroxide; washing the lithium hydroxide with water; And there is provided a method for recovering valuable metals from a cathode material of a waste lithium ion battery comprising the step of dissolving the lithium hydroxide after washing with water and then re-concentrating.

본 발명에서 폐 리튬이온전지의 양극재는 양극재 또는 리튬이온전지 제조과정에서 발생하는 공정 스크랩과 사용 후 폐 리튬이온전지로부터 각종 분리 또는 선별 과정을 통해 취득한 폐스크랩을 모두 포함한다. 상기 폐 리튬이온전지의 양극재는 특별하게 한정하는 것은 아니며, 리튬니켈코발트알루미늄 산화물(LiNiCoAlO2, NCA), 리튬니켈코발트망간 산화물(LiNiCoMnO2, NCM), 리튬철인 산화물(LiFePO4, LFP), 리튬망간철인 산화물(LiMnFePO4, LMFP), 리튬망간 산화물(LiMn2O4, LMO) 및 리튬니켈망간 스피넬(LiNi0 . 5Mn1 . 5O4, LNMO), 리튬코발트 산화물 (LiCoO2, LCO) 중에서 선택된 1종 이상을 포함할 수 있다. 이에 따라, 상기 폐 리튬이온전지의 양극재는 니켈, 코발트, 망간 및 리튬으로 이루어진 군에서 선택된 1종 이상의 유가금속을 포함할 수 있다.In the present invention, the cathode material of the waste lithium ion battery includes both the cathode material or process scrap generated during the manufacturing process of the lithium ion battery and the waste scrap obtained through various separation or selection processes from the waste lithium ion battery after use. The cathode material of the waste lithium ion battery is not particularly limited, lithium nickel cobalt aluminum oxide (LiNiCoAlO 2 , NCA), lithium nickel cobalt manganese oxide (LiNiCoMnO 2 , NCM), lithium iron phosphate oxide (LiFePO 4 , LFP), lithium manganese iron phosphate (LiMnFePO 4, LMFP), lithium manganese oxide (LiMn 2 O 4, LMO), and lithium nickel-manganese spinel (LiNi 0. 5 Mn 1. 5 O 4, LNMO), lithium cobalt oxide (LiCoO 2, LCO) It may include one or more selected from among. Accordingly, the cathode material of the waste lithium ion battery may include at least one valuable metal selected from the group consisting of nickel, cobalt, manganese and lithium.

상기 열처리는 산소 농도가 낮은 환원분위기에서 실시되는 것이 바람직하다. 폐 리튬이온전지 양극재를 직접 가열하는 경우, 불완전 연소를 통하여 산소 농도를 낮게 제어할 수 있고, 폐 리튬이온전지 양극재를 간접적으로 가열하는 경우, 열처리 장지 내에 질소 및 아르곤 중에서 선택된 1종 이상의 환원성 가스를 투입하여 환원 분위기를 조성하는 것이 바람직하다. 열처리는 반응성 및 생산성을 고려하여, 로터리 킬른을 사용하여 수행될 수 있으나, 본 발명에서는 반드시 로터리 킬른을 사용하는 것에 국한하지 않고, 고온 열처리가 가능한 어떠한 장치라도 사용할 수 있다.The heat treatment is preferably carried out in a reducing atmosphere having a low oxygen concentration. When the cathode material of a waste lithium ion battery is directly heated, the oxygen concentration can be controlled low through incomplete combustion, and when the cathode material of a waste lithium ion battery is indirectly heated, one or more reducing properties selected from nitrogen and argon in the heat treatment device It is preferable to introduce a gas to create a reducing atmosphere. The heat treatment may be performed using a rotary kiln in consideration of reactivity and productivity, but the present invention is not limited to using a rotary kiln, and any device capable of high temperature heat treatment may be used.

한편, 상기 열처리는 450 내지 1000℃의 온도범위에서 수행되는 것이 바람직하다. 450℃ 미만인 경우, 환원반응 속도가 너무 느려 생산성을 확보하기가 어려운 반면, 1000℃를 초과하는 경우, 소결 또는 용융 현상이 발생하여, 공업적으로 적용하기 어려운 문제가 발생할 수 있다.On the other hand, the heat treatment is preferably performed in a temperature range of 450 to 1000 ℃. If it is less than 450 ℃, the reduction reaction rate is too slow to ensure productivity, whereas, if it exceeds 1000 ℃, sintering or melting may occur, which may cause a problem that is difficult to apply industrially.

한편, 필요에 따라, 상기 폐 리튬이온전지의 양극재를 열처리하는 단계에서, 탄소함유 화합물을 투입하고 열처리를 수행할 수 있다. 보다 상세하게, 탄소 성분을 충분하게, 예를 들어, 25중량% 이상 함유하는 폐 리튬이온전지의 양극재는 그대로 열처리를 실시하며, 탄소 성분이 없거나 불충분하게, 예를 들어, 25중량% 미만으로 함유하고 있는 폐 리튬이온전지의 양극재는 탄소함유 화합물을 투입하고 열처리를 수행함으로써, 리튬 성분을 탄산리튬(Li2CO3)의 형태로 전환하는 것이 바람직하다. On the other hand, if necessary, in the step of heat-treating the cathode material of the waste lithium ion battery, a carbon-containing compound may be added and heat treatment may be performed. More specifically, the cathode material of a waste lithium ion battery containing a carbon component sufficiently, for example, 25% by weight or more, is subjected to heat treatment as it is, and contains no or insufficient carbon component, for example, less than 25% by weight. It is preferable to convert the lithium component into the form of lithium carbonate (Li2CO 3 ) by adding a carbon-containing compound to the cathode material of the spent lithium ion battery and performing heat treatment.

상기 탄소함유 화합물은 특별하게 한정되는 것은 아니며, 예를 들어, 그래파이트, 유연탄 및 무연탄 중에서 선택된 1종 이상일 수 있다. The carbon-containing compound is not particularly limited, and may be, for example, at least one selected from graphite, bituminous coal, and anthracite coal.

상기 탄소함유 화합물은 폐 리튬이온전지의 양극재에 포함된 리튬의 중량 대비 1.5배 내지 5배의 양으로 투입되는 것이 바람직하다. 1.5배 미만인 경우, 환원이 불충분하여 탄산리튬으로의 전환반응 또한 불충분하며, 이에 따라, 후속하는 리튬 회수 공정에서 리튬의 회수율이 저하되는 문제점이 있고, 5배 초과인 경우, 비용이 증가할 뿐만 아니라 후공정에서 폐기물 증가 요인이 된다.The carbon-containing compound is preferably added in an amount of 1.5 to 5 times the weight of lithium contained in the cathode material of the spent lithium ion battery. When the amount is less than 1.5 times, the reduction is insufficient and the conversion reaction to lithium carbonate is also insufficient. Accordingly, there is a problem in that the recovery rate of lithium in the subsequent lithium recovery process is lowered, and when it is more than 5 times, the cost not only increases It becomes a factor of increasing waste in the post-process.

다음으로, 상기 열처리된 폐 리튬이온전지의 양극재를 칼슘화합물을 포함하는 수용액에 투입하여 리튬이 포함된 침출액을 수득한다. 상기 열처리된 폐 리튬이온전지의 양극재에 포함된 니켈, 코발트 및 망간 등이 환원되어 리튬과의 해리가 발생하며, 탄소 성분에 의해 리튬은 탄산리튬의 형태로 존재하게 된다. 상기 열처리된 폐 리튬이온전지의 양극재로부터 리튬을 침출하기 위해 물에 투입하되, 칼슘 화합물과 반응시켜 탄산리튬을 수산화리튬(LiOH)으로 변환함으로써, 리튬 농도가 높은 침출액을 얻을 수 있다. 보다 상세하게, 탄산리튬의 물에 대한 용해도는 리튬 기준으로 1 내지 3g/L로 낮은 반면, 수산화리튬은 30 내지 50g/L로 높기 때문에, 칼슘화합물과의 반응을 통해 용액 중 리튬 농도를 증가시키는 것이 바람직하다.Next, the cathode material of the heat-treated waste lithium ion battery is put into an aqueous solution containing a calcium compound to obtain a leachate containing lithium. Nickel, cobalt, manganese, etc. contained in the positive electrode material of the heat-treated waste lithium ion battery is reduced to cause dissociation with lithium, and lithium is present in the form of lithium carbonate by the carbon component. In order to leach lithium from the cathode material of the heat-treated waste lithium ion battery, it is added to water and reacted with a calcium compound to convert lithium carbonate into lithium hydroxide (LiOH), thereby obtaining a leachate having a high lithium concentration. More specifically, since the solubility of lithium carbonate in water is as low as 1 to 3 g/L based on lithium, while lithium hydroxide is as high as 30 to 50 g/L, it is possible to increase the lithium concentration in the solution through reaction with a calcium compound. it is preferable

상기 칼슘화합물은 특별하게 한정하는 것은 아니나, 예를 들어, 수산화칼슘, 산화칼슘, 소석회 및 생석회 중에서 선택된 1종 이상일 수 있다. 칼슘화합물이 수산화칼슘인 경우, 폐 리튬이온전지의 양극재의 탄산리튬과 수산화칼슘의 반응식은 다음과 같다. The calcium compound is not particularly limited, but may be, for example, at least one selected from calcium hydroxide, calcium oxide, slaked lime and quicklime. When the calcium compound is calcium hydroxide, the reaction formula of lithium carbonate and calcium hydroxide in the cathode material of the spent lithium ion battery is as follows.

[화학식 1][Formula 1]

Li2CO3 + Ca(OH)2 → 2LiOH + CaCO3 Li 2 CO 3 + Ca(OH) 2 → 2LiOH + CaCO 3

상기 칼슘화합물을 포함하는 수용액에서 칼슘화합물의 농도는 50g/L 내지 100g/L인 것이 바람직하다. 50g/L 미만인 경우, 반응이 불충분하게 일어날 수 있고, 100g/L g/L를 초과하는 경우, 비용이 증가할 뿐만 아니라 후공정에서 폐기물 증가 요인이 된다.The concentration of the calcium compound in the aqueous solution containing the calcium compound is preferably 50g/L to 100g/L. If it is less than 50 g/L, the reaction may occur insufficiently, and if it exceeds 100 g/L g/L, not only cost increases, but also becomes a factor of increasing waste in the post-process.

칼슘화합물을 포함하는 수용액의 온도는 50℃ 이상, 100℃ 미만인 것이 바람직하다. 50℃ 미만인 경우, 반응속도가 지나치게 느리고, 99℃를 초과하여 100℃가 되는 경우, 물의 비등으로 인한 추가적인 에너지의 소모 문제가 발생할 수 있다.The temperature of the aqueous solution containing the calcium compound is preferably 50 ℃ or more and less than 100 ℃. When the temperature is less than 50°C, the reaction rate is too slow, and when it exceeds 99°C and becomes 100°C, an additional energy consumption problem may occur due to boiling of water.

상기 리튬이 포함된 침출액을 수득하는 단계 이후 고액분리하는 단계를 수행하여, 잔사물과 침출액을 분리할 수 있다. 여기서, 니켈, 코발트, 망간 및 알루미늄 등의 금속 원소들은 케이크 상태의 잔사물로 분리되고, 리튬은 침출액에 용해된 상태로 분리된다. 이후, 상기 잔사물은 별도로 분리해내어, 황산 침출 또는 용매추출 공정을 통해 니켈, 코발트, 망간, 알루미늄 등의 원소로 회수해낼 수 있으며, 이를 원료물질로 이용하여 이차전지 양극재의 전구체로 합성하여 재활용할 수 있다. 한편, 고액분리는 필터프레스와 같은 통상의 고체-액체 분리설비를 사용하여 수행될 수 있다. After obtaining the lithium-containing leachate, a solid-liquid separation step may be performed to separate the residue and the leachate. Here, metal elements such as nickel, cobalt, manganese, and aluminum are separated into cake residues, and lithium is separated in a dissolved state in the leachate. Thereafter, the residue is separated and recovered as elements such as nickel, cobalt, manganese, and aluminum through sulfuric acid leaching or solvent extraction process, which is used as a raw material to be synthesized as a precursor of a secondary battery cathode material and recycled can do. Meanwhile, solid-liquid separation may be performed using a conventional solid-liquid separation equipment such as a filter press.

상기 고액분리된 침출액을 농축하여 고상의 수산화리튬을 수득한다. 상기 농축은 50℃ 내지 100℃의 온도에서 증발 농축시키는 것이 바람직하다. 50℃ 이하인 경우, 농축속도가 지나치게 느리고, 100℃가 되면 물의 온도가 더 이상 올라가지 않으므로, 100℃ 이하의 온도가 바람직하다.The solid-liquid separated leachate is concentrated to obtain solid lithium hydroxide. The concentration is preferably concentrated by evaporation at a temperature of 50 °C to 100 °C. When the temperature is 50° C. or less, the concentration rate is too slow, and when it reaches 100° C., the temperature of the water does not rise any more, so a temperature of 100° C. or less is preferable.

고액분리 공정을 거친 후라도, 침출액에는 불순물이 포함되어 있으므로, 이차전지 양극재로 사용할 수 있는 수준의 고순도 수산화리튬을 제조하기 위해, 수득된 고상의 수산화리튬을 수세하여 불순물을 제거하는 것이 바람직하다. 상기 수세는 증류수 및 탈이온수 등을 이용하여 수행될 수 있다.Even after the solid-liquid separation process, the leachate contains impurities. Therefore, in order to manufacture high-purity lithium hydroxide that can be used as a cathode material for a secondary battery, it is preferable to wash the obtained solid lithium hydroxide with water to remove impurities. The water washing may be performed using distilled water or deionized water.

이와 같이, 불순물이 제거된 고상의 수산화리튬을 물에 재용해시킨 후 재농축함으로써, 고순도 수산화리튬을 수득할 수 있다. 상기 재농축은 50℃ 내지 100℃의 온도에서 증발 농축시키는 것이 바람직하다. 50℃ 이하인 경우, 농축속도가 지나치게 느리고, 100℃가 되면 물의 온도가 더 이상 올라가지 않으므로, 100℃ 이하의 온도가 바람직하다.As described above, by re-dissolving solid lithium hydroxide from which impurities have been removed in water and re-concentrating it, high-purity lithium hydroxide can be obtained. The re-concentration is preferably concentrated by evaporation at a temperature of 50 °C to 100 °C. When the temperature is 50° C. or less, the concentration rate is too slow, and when it reaches 100° C., the temperature of the water does not rise any more, so a temperature of 100° C. or less is preferable.

이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through specific examples. The following examples are merely examples to help the understanding of the present invention, and the scope of the present invention is not limited thereto.

실시예Example

실시예Example

하기 표 1의 성분 및 함량을 갖는 폐 리튬이온전지의 양극재를 질소 분위기 및 600℃에서 1시간 동안 열처리하였다. 상기 양극재는 탄소를 29중량% 함유하고 있어, 추가적인 탄소함유 화합물의 투입은 불필요하였다. 열처리 된 폐 리튬이온전지의 양극재를 70g/L의 수산화칼슘이 포함된 물과 90℃에서 1시간 동안 반응시킨 후, 고액분리를 실시하였다.A cathode material of a waste lithium ion battery having the components and contents of Table 1 below was heat-treated in a nitrogen atmosphere and 600° C. for 1 hour. Since the cathode material contained 29 wt% of carbon, it was not necessary to add an additional carbon-containing compound. After the heat-treated cathode material of the waste lithium ion battery was reacted with water containing 70 g/L of calcium hydroxide at 90° C. for 1 hour, solid-liquid separation was performed.

고액분리를 통해 잔사물이 분리된 침출액을 80℃에서 2시간 동안 농축하여 고상의 수산화리튬을 획득하였다. 상기 고상의 수산화리튬을 증류수를 이용하여 세척한 후, 물에 다시 용해시켰으며, 이 때, 상기 용액의 조성을 표 2에 나타내었다. The leachate from which the residue was separated through solid-liquid separation was concentrated at 80° C. for 2 hours to obtain solid lithium hydroxide. The solid lithium hydroxide was washed with distilled water and then dissolved again in water, and the composition of the solution is shown in Table 2.

성분ingredient LiLi NiNi CoCo MnMn CC 함량(중량%)content (wt%) 3.33.3 14.414.4 5.45.4 7.57.5 2929

성분ingredient LiLi NiNi CoCo MnMn 함량(g/L)Content (g/L) 12.312.3 <0.01<0.01 <0.01<0.01 <0.01<0.01

표 2를 참조하면, 용액 중 리튬 농도가 12.3g/L으로 매우 높은 것을 확인할 수 있으며, 이는 열처리 된 폐 리튬이온전지의 양극재 중의 탄산리튬이 수산화리륨으로 전환되고, 수세를 통해 불순물이 제거된 결과인 것으로 판단할 수 있다. 리튬 이외의 미량의 원소는 거의 전량 고체 형태로 잔존하며 이로부터 이로부터 침출, 정제, 용매추출 등의 과정을 거치면 니켈, 코발트, 망간의 회수가 가능하다. 상기에 나타난 일련의 방법을 사용하여 리튬 농도가 높은 용액을 얻을 수 있으며, 또한 니켈, 코발트, 망간을 고체 형태로 회수할 수 있음을 확인할 수 있었다.Referring to Table 2, it can be seen that the lithium concentration in the solution is very high as 12.3 g/L, which means that lithium carbonate in the cathode material of the heat-treated waste lithium ion battery is converted to lithium hydroxide, and impurities are removed through washing with water. It can be considered as a result. Trace elements other than lithium remain almost entirely in solid form, and nickel, cobalt, and manganese can be recovered by leaching, refining, and solvent extraction therefrom. It was confirmed that a solution having a high lithium concentration can be obtained by using the series of methods shown above, and nickel, cobalt, and manganese can be recovered in solid form.

비교예comparative example

상기 표 1의 성분 및 함량을 갖는 폐 리튬이온전지의 양극재를 질소 분위기 및 600℃에서 1시간 동안 열처리하였다. 열처리 된 폐 리튬이온전지의 양극재를 물에 투입하여 침출시킨 후 고액분리를 실시하고, 침출액의 성분 및 조성을 하기 표 3에 나타내었다.The cathode material of the waste lithium ion battery having the components and contents of Table 1 was heat-treated in a nitrogen atmosphere and 600° C. for 1 hour. After the cathode material of the heat-treated waste lithium ion battery was put into water and leached, solid-liquid separation was performed, and the components and composition of the leaching solution are shown in Table 3 below.

성분ingredient LiLi NiNi CoCo MnMn 함량(g/L)Content (g/L) 2.82.8 <0.01<0.01 <0.01<0.01 <0.01<0.01

표 3을 참조하면, 침출액 중 리튬 농도는 2.8g/L로 실시예에 비해 현저하게 낮은 것을 확인할 수 있다. 이는 열처리 된 폐 리튬이온전지의 양극재 중의 리튬은 탄산리튬의 형태로 존재하고, 농축, 수세 및 재농축에 따른 정제가 이루어지지 않음에 따른 결과로 판단할 수 있다. Referring to Table 3, it can be seen that the lithium concentration in the leachate was 2.8 g/L, which was significantly lower than that of the Example. This can be judged as a result of the fact that lithium in the cathode material of the heat-treated waste lithium ion battery is present in the form of lithium carbonate, and purification by concentration, washing and re-concentration is not performed.

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and variations are possible within the scope without departing from the technical spirit of the present invention described in the claims. It will be apparent to those of ordinary skill in the art.

Claims (12)

폐 리튬이온전지의 양극재를 열처리하는 단계;
상기 열처리된 폐 리튬이온전지의 양극재를 칼슘화합물을 포함하는 수용액에 투입하여 리튬이 포함된 침출액을 수득하는 단계;
상기 침출액을 고액분리하는 단계;
상기 고액분리된 침출액을 농축하여 수산화리튬을 수득하는 단계;
상기 수산화리튬을 수세하는 단계; 및
상기 수세 후의 수산화리튬을 물에 용해시킨 후 재농축하는 단계를 포함하는 폐 리튬이온전지의 양극재로부터 유가금속 회수방법.
heat-treating the cathode material of the spent lithium-ion battery;
adding a cathode material of the heat-treated waste lithium ion battery to an aqueous solution containing a calcium compound to obtain a leachate containing lithium;
separating the leachate into solid-liquid;
concentrating the solid-liquid separated leachate to obtain lithium hydroxide;
washing the lithium hydroxide with water; and
A method for recovering valuable metals from a cathode material of a waste lithium ion battery comprising the step of dissolving the washed lithium hydroxide in water and then re-concentrating.
제1항에 있어서,
상기 폐 리튬이온전지의 양극재를 열처리하는 단계에서, 탄소함유 화합물을 투입하는 것을 특징으로 하는 폐 리튬이온전지의 양극재로부터 유가금속 회수방법.
According to claim 1,
In the step of heat-treating the cathode material of the waste lithium ion battery, a method for recovering valuable metals from the cathode material of a waste lithium ion battery, characterized in that by adding a carbon-containing compound.
제2항에 있어서,
상기 탄소함유 화합물은 그래파이트, 유연탄 및 무연탄 중에서 선택된 1종 이상인 것을 특징으로 하는 폐 리튬이온전지의 양극재로부터 유가금속 회수방법.
3. The method of claim 2,
The carbon-containing compound is a method for recovering valuable metals from a cathode material of a waste lithium ion battery, characterized in that at least one selected from graphite, bituminous coal and anthracite.
제2항에 있어서,
상기 탄소함유 화합물의 투입량은 폐 리튬이온전지의 양극재에 포함된 리튬의 중량 대비 1.5배 내지 5배인 것을 특징으로 하는 폐 리튬이온전지의 양극재로부터 유가금속 회수방법.
3. The method of claim 2,
The method for recovering valuable metals from the cathode material of a waste lithium ion battery, characterized in that the input amount of the carbon-containing compound is 1.5 to 5 times the weight of lithium contained in the cathode material of the waste lithium ion battery.
제1항에 있어서,
상기 열처리는 환원 분위기에서, 450 내지 1000℃의 온도범위에서 수행되는 것을 특징으로 하는 폐 리튬이온전지의 양극재로부터 유가금속 회수방법.
According to claim 1,
The heat treatment is a method for recovering valuable metals from a cathode material of a waste lithium ion battery, characterized in that it is performed in a temperature range of 450 to 1000 °C in a reducing atmosphere.
제5항에 있어서
상기 열처리는 질소 및 아르곤 중에서 선택된 1종 이상의 환원성 가스를 투입하여 수행되는 것을 특징으로 하는 폐 리튬이온전지의 양극재로부터 유가금속 회수방법.
6. The method of claim 5
The heat treatment is a method for recovering valuable metals from a cathode material of a waste lithium ion battery, characterized in that it is performed by introducing at least one reducing gas selected from nitrogen and argon.
제1항에 있어서,
상기 칼슘화합물을 포함하는 수용액에서 칼슘화합물의 농도는 50g/L 내지 100g/L인 것을 특징으로 하는 폐 리튬이온전지의 양극재로부터 유가금속 회수방법.
According to claim 1,
The method for recovering valuable metals from the cathode material of a waste lithium ion battery, characterized in that the concentration of the calcium compound in the aqueous solution containing the calcium compound is 50g/L to 100g/L.
제1항에 있어서,
상기 칼슘화합물을 포함하는 수용액의 온도는 50 내지 99℃인 것을 특징으로 하는 폐 리튬이온전지의 양극재로부터 유가금속 회수방법.
According to claim 1,
The method for recovering valuable metals from the cathode material of a waste lithium ion battery, characterized in that the temperature of the aqueous solution containing the calcium compound is 50 to 99 ℃.
제1항에 있어서,
상기 칼슘화합물은 수산화칼슘, 산화칼슘, 소석회 및 생석회 중에서 선택된 1종 이상인 것을 특징으로 하는 폐 리튬이온전지의 양극재로부터 유가금속 회수방법.
According to claim 1,
The calcium compound is a method for recovering valuable metals from a cathode material of a waste lithium ion battery, characterized in that at least one selected from calcium hydroxide, calcium oxide, slaked lime and quicklime.
제1항에 있어서,
상기 농축은 50℃ 내지 100℃의 온도에서 증발 농축시키는 것을 특징으로 하는 폐 리튬이온전지의 양극재로부터 유가금속 회수방법.
According to claim 1,
The concentration is a method for recovering valuable metals from a cathode material of a waste lithium ion battery, characterized in that the concentration is concentrated by evaporation at a temperature of 50°C to 100°C.
제1항에 있어서,
상기 재농축은 50℃ 내지 100℃의 온도에서 증발 농축시키는 것을 특징으로 하는 폐 리튬이온전지의 양극재로부터 유가금속 회수방법.
According to claim 1,
The re-concentration is a method for recovering valuable metals from a cathode material of a waste lithium ion battery, characterized in that evaporation and concentration at a temperature of 50°C to 100°C.
제1항에 있어서,
상기 고액분리 후 얻어진 잔사물을 산 침출 또는 용매 추출하여 니켈, 코발트, 망간 및 알루미늄 중에서 선택된 1종 이상을 수득하는 단계를 포함하는 것을 특징으로 하는 폐 리튬이온전지의 양극재로부터 유가금속 회수방법.
According to claim 1,
A method for recovering valuable metals from a cathode material of a waste lithium ion battery, comprising the step of obtaining at least one selected from nickel, cobalt, manganese and aluminum by acid leaching or solvent extraction of the residue obtained after the solid-liquid separation.
KR1020190166658A 2019-12-13 2019-12-13 Method for recovering valuable metals from cathodic active material of used lithium battery KR20210075502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190166658A KR20210075502A (en) 2019-12-13 2019-12-13 Method for recovering valuable metals from cathodic active material of used lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190166658A KR20210075502A (en) 2019-12-13 2019-12-13 Method for recovering valuable metals from cathodic active material of used lithium battery

Publications (1)

Publication Number Publication Date
KR20210075502A true KR20210075502A (en) 2021-06-23

Family

ID=76599114

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190166658A KR20210075502A (en) 2019-12-13 2019-12-13 Method for recovering valuable metals from cathodic active material of used lithium battery

Country Status (1)

Country Link
KR (1) KR20210075502A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113846225A (en) * 2021-10-28 2021-12-28 贵州中伟资源循环产业发展有限公司 Method for combined treatment of crude cobalt hydroxide and waste ternary positive electrode
KR102350008B1 (en) * 2021-07-05 2022-01-11 주식회사 에코프로이노베이션 Method for recovering lithium and valuable metals from waste electrode materials
CN114388922A (en) * 2021-12-23 2022-04-22 广东邦普循环科技有限公司 Method for recovering electrode material of retired lithium ion battery and application thereof
KR102453517B1 (en) 2022-04-27 2022-10-14 (주)지우텍 A method for recovering cobalt and lithium from a waste cathode active material
WO2023029898A1 (en) * 2021-09-01 2023-03-09 格林美股份有限公司 Method for recovering valuable metals from spent lithium-ion batteries
WO2023048430A1 (en) * 2021-09-23 2023-03-30 에스케이이노베이션 주식회사 Method for recovering lithium precursor from lithium secondary battery
WO2023063677A1 (en) * 2021-10-13 2023-04-20 에스케이이노베이션 주식회사 Method for recovering lithium precursor from lithium secondary battery
WO2023182561A1 (en) * 2022-03-21 2023-09-28 전남대학교산학협력단 Method using solvent extraction for selective recovery of valuable metal from lithium secondary battery waste material
CN117230312A (en) * 2023-11-13 2023-12-15 帕瓦(长沙)新能源科技有限公司 Alkaline leaching process of waste lithium ion battery anode material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497041B1 (en) 2013-04-24 2015-03-02 타운마이닝캄파니(주) Method for recovering valuable metals from cathodic active material of used lithium battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497041B1 (en) 2013-04-24 2015-03-02 타운마이닝캄파니(주) Method for recovering valuable metals from cathodic active material of used lithium battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102350008B1 (en) * 2021-07-05 2022-01-11 주식회사 에코프로이노베이션 Method for recovering lithium and valuable metals from waste electrode materials
WO2023029898A1 (en) * 2021-09-01 2023-03-09 格林美股份有限公司 Method for recovering valuable metals from spent lithium-ion batteries
WO2023048430A1 (en) * 2021-09-23 2023-03-30 에스케이이노베이션 주식회사 Method for recovering lithium precursor from lithium secondary battery
WO2023063677A1 (en) * 2021-10-13 2023-04-20 에스케이이노베이션 주식회사 Method for recovering lithium precursor from lithium secondary battery
CN113846225A (en) * 2021-10-28 2021-12-28 贵州中伟资源循环产业发展有限公司 Method for combined treatment of crude cobalt hydroxide and waste ternary positive electrode
CN113846225B (en) * 2021-10-28 2023-09-08 贵州中伟资源循环产业发展有限公司 Method for combined treatment of coarse hydrogen-producing cobalt oxide and waste ternary anode
CN114388922A (en) * 2021-12-23 2022-04-22 广东邦普循环科技有限公司 Method for recovering electrode material of retired lithium ion battery and application thereof
CN114388922B (en) * 2021-12-23 2024-05-31 广东邦普循环科技有限公司 Method for recycling electrode material of retired lithium ion battery and application thereof
WO2023182561A1 (en) * 2022-03-21 2023-09-28 전남대학교산학협력단 Method using solvent extraction for selective recovery of valuable metal from lithium secondary battery waste material
KR102453517B1 (en) 2022-04-27 2022-10-14 (주)지우텍 A method for recovering cobalt and lithium from a waste cathode active material
CN117230312A (en) * 2023-11-13 2023-12-15 帕瓦(长沙)新能源科技有限公司 Alkaline leaching process of waste lithium ion battery anode material
CN117230312B (en) * 2023-11-13 2024-03-19 帕瓦(长沙)新能源科技有限公司 Alkaline leaching process of waste lithium ion battery anode material

Similar Documents

Publication Publication Date Title
KR20210075502A (en) Method for recovering valuable metals from cathodic active material of used lithium battery
CN109935922B (en) Method for recovering valuable metals from waste lithium ion battery materials
CN111392750B (en) Method for removing impurities and recovering lithium from waste lithium ion batteries
KR102043711B1 (en) Manufacturing method of lithium hydroxide monohydrate using waste cathode material of lithium ion secondary battery
KR102132120B1 (en) A recycling method for the spent lithium ion secondary battery using carbon dioxide
CN112158894A (en) Method for recovering anode material of waste lithium battery
KR101049937B1 (en) Method of recovering lithium compound from positive electrode material of spent lithium secondary battery
KR102313447B1 (en) Method for recovering metal from secondary battery
KR102205442B1 (en) Method for recovering valuable metals using lithium carbonate from waste electrode materials of lithium-ion batteries
KR102249266B1 (en) Method of recovery of nickel and cobalt
JP2012121780A (en) Method for manufacturing lithium oxide
CN113802002A (en) Method for recovering valuable metals in lithium battery by wet process
CN114388922A (en) Method for recovering electrode material of retired lithium ion battery and application thereof
CN113415813A (en) Method for recovering lithium nickel cobalt manganese from waste ternary battery material
CN112877548B (en) Method for recovering valuable metals from waste lithium ion battery anode powder
CN114335781A (en) Method for extracting precious metal from waste lithium battery
KR20220034687A (en) Method for recovering cathode material
CN114477240A (en) Preparation method of battery-grade lithium hydroxide
CN115304059A (en) Recycling treatment method for retired battery carbon slag
CN115744857B (en) Method for preparing lithium iron phosphate positive electrode material by directional circulation of waste lithium iron phosphate battery
KR101372622B1 (en) Method for preparing nmc(ni-co-mn) hydroxide from ni ore
CN112591806A (en) Method for recovering and regenerating anode active material of waste lithium ion battery
CN116590538A (en) Method for preferentially extracting lithium from waste lithium battery
CN115818674A (en) Method for recovering lithium by using waste lithium ion battery
CN113355516B (en) Method for recovering valuable metals from waste lithium iron phosphate battery positive electrode materials through reduction smelting

Legal Events

Date Code Title Description
E601 Decision to refuse application