KR20210054946A - Method for producing lithium hydroxide monohydrate - Google Patents

Method for producing lithium hydroxide monohydrate Download PDF

Info

Publication number
KR20210054946A
KR20210054946A KR1020190141285A KR20190141285A KR20210054946A KR 20210054946 A KR20210054946 A KR 20210054946A KR 1020190141285 A KR1020190141285 A KR 1020190141285A KR 20190141285 A KR20190141285 A KR 20190141285A KR 20210054946 A KR20210054946 A KR 20210054946A
Authority
KR
South Korea
Prior art keywords
lithium
aluminum
sulfate
hydroxide
sodium
Prior art date
Application number
KR1020190141285A
Other languages
Korean (ko)
Inventor
박석준
이명규
박종선
이광석
홍정식
서범석
이민우
김다모아
변소영
김희상
박아람
박인수
Original Assignee
주식회사 에코프로이노베이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로이노베이션 filed Critical 주식회사 에코프로이노베이션
Priority to KR1020190141285A priority Critical patent/KR20210054946A/en
Publication of KR20210054946A publication Critical patent/KR20210054946A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a method for producing lithium hydroxide monohydrate from positive electrode material washing water, and more specifically, to a method for producing lithium hydroxide monohydrate, which can be used for a lithium ion secondary battery by recovering lithium from the positive electrode material washing water. According to the present invention, there is an effect that lithium contained in the positive electrode material washing water can be recycled to produce the lithium hydroxide monohydrate. In particular, there is an effect that the lithium hydroxide monohydrate that can be used for a lithium ion secondary battery can be produced by recovering the lithium from the washing water generated in a process of washing a waste positive electrode material of the lithium ion secondary battery.

Description

양극재 세척수로부터 배터리급 수산화리튬 일수화물을 제조하는 방법{METHOD FOR PRODUCING LITHIUM HYDROXIDE MONOHYDRATE}Method for producing battery-grade lithium hydroxide monohydrate from cathode material washing water{METHOD FOR PRODUCING LITHIUM HYDROXIDE MONOHYDRATE}

본 발명은 양극재 세척수로부터 배터리급 수산화리튬 일수화물을 제조하는 방법에 관한 것이다. 보다 상세하게는 양극재 세척수로부터 리튬을 회수하여 리튬이온 2차전지용으로 사용할 수 있는 수산화리튬 일수화물을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a battery-grade lithium hydroxide monohydrate from the positive electrode material washing water. More specifically, it relates to a method for producing lithium hydroxide monohydrate that can be used for a lithium ion secondary battery by recovering lithium from the positive electrode material washing water.

이차전지는 양극재, 음극재, 분리막 및 전해액 등의 주요 구성요소로 구성되는데, 이들 주요 구성요소의 원료비용이 이차전지 제조원가의 약 75%를 차지한다. 그 중 약 35~40%가 양극재 비용으로서, 양극재는 이차전지 제조원가의 약 25~30%를 차지한다.The secondary battery is composed of major components such as a positive electrode material, a negative electrode material, a separator and an electrolyte, and the raw material cost of these major components accounts for about 75% of the manufacturing cost of the secondary battery. Of these, about 35-40% is the cost of the cathode material, and the cathode material accounts for about 25-30% of the manufacturing cost of the secondary battery.

최근 전기자동차의 수요 증가에 따라 주행거리를 늘린 고용량 배터리의 필요성이 대두되어 60kWh 이상의 충전용량을 갖는 배터리 수요가 크게 증가하고 있으며, 전기자동차용 이차전지는 주로 안정성이 높거나 고용량과 더불어 고출력 특성을 갖춘 니켈함량 80 mol% 이상인 NCA나, 하이니켈계 (High-Ni) NCM 811 등의 양극재를 사용하는 추세이다.Recently, the need for high-capacity batteries with increased mileage has emerged as the demand for electric vehicles has increased, and the demand for batteries with a charging capacity of more than 60 kWh has been greatly increased, and secondary batteries for electric vehicles are mainly characterized by high stability or high capacity and high output characteristics. There is a trend of using cathode materials such as NCA and High-Ni NCM 811 with a nickel content of 80 mol% or more.

NCA와 NCM 811 양극재는 기존의 양극재와는 달리 리튬 소스로 탄산 리튬 대신 수산화리튬을 사용하여 제조하고 있는데, 이는 양극재 제조 공정에서 니켈함량이 80 mol% 이상인 경우는 반응성이 상대적으로 우수하고 낮은 온도에서 소성이 가능한 수산화리튬을 사용하여야 전기저장 용량 특성이 구현되기 때문이다. 따라서 High-Ni 양극재의 원료인 수산화리튬의 시장도 이와 비례하여 급성장할 것으로 전망된다.Unlike conventional cathode materials, NCA and NCM 811 cathode materials are manufactured using lithium hydroxide instead of lithium carbonate as a lithium source, which is relatively excellent and low in reactivity when the nickel content is 80 mol% or more in the cathode material manufacturing process. This is because the electric storage capacity characteristics are realized only when lithium hydroxide, which can be fired at temperature, is used. Therefore, the market for lithium hydroxide, a raw material for high-Ni cathode materials, is expected to grow rapidly in proportion to this.

양극재는 리튬화합물과 전구체(니켈, 코발트, 망간 등의 수산화물)를 혼합하여 소성한 후, 양극재의 불량률을 낮추기 위해 수용성 미반응물을 수세하는 공정이 필수로 포함되는데, 수세 과정에서 리튬이 포함된 공정 폐수(세척수)가 발생한다. 이 때 발생되는 세척수의 발생량은 양극재의 무게와 비교하였을때 1~10배수이며, 세척수 내에 포함된 리튬의 농도는 100~10,000ppm에 달하는 것으로 보고되고 있다. The cathode material includes a process of mixing and firing a lithium compound and a precursor (hydroxide such as nickel, cobalt, manganese, etc.), and then washing the water-soluble unreacted material with water to reduce the defect rate of the cathode material. Waste water (washing water) is generated. The amount of washing water generated at this time is 1 to 10 times the weight of the cathode material, and the concentration of lithium contained in the washing water is reported to reach 100 to 10,000 ppm.

전기차 시장이 증가하면서 향후 발생되는 양극재 생산 공정 세척수량도 증가할 것으로 예상되는데, 현재 양극재 제조공정에서 발생하는 공정 세척수로부터 배출되는 리튬은 추출 기술 미확보로 인하여 회수되지 못하고 있는 실정이므로 이에 대한 기술개발이 절실히 요구되고 있다.As the electric vehicle market increases, the amount of washing in the cathode material production process is expected to increase in the future.Since lithium discharged from the process washing water generated in the current cathode material manufacturing process cannot be recovered due to the lack of extraction technology, the technology for this Development is in desperate need.

공개번호 제10-2019-0119329호(2019.10.22. 공개)Publication No. 10-2019-0119329 (released on October 22, 2019)

본 발명의 목적은 리튬이온 2차전지의 폐양극재를 세척하는 공정에서 발생하는 세척수로부터 리튬을 회수하여 리튬이온 2차전지용으로 사용할 수 있는 수산화리튬 일수화물을 제조하는 방법을 제공하는 것이다.An object of the present invention is to provide a method for producing lithium hydroxide monohydrate that can be used for a lithium ion secondary battery by recovering lithium from the washing water generated in the process of washing the waste cathode material of a lithium ion secondary battery.

본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The object of the present invention is not limited to the above-mentioned object, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.

상술된 본 발명의 목적을 달성하기 위해 본 발명은 (a) 리튬이 함유되어 있는 양극재 세척수에 알루미늄 공급원을 첨가하여 리튬-알루미늄 화합물의 형태로 침전시키는 단계와, (b) 침전된 리튬-알루미늄 화합물에 황(S) 공급원을 첨가하고 로스팅하여 황산리튬과 산화알루미늄으로 분리하는 단계와, (c) 상기 (b)단계에서 분리한 황산리튬-산화알루미늄 수득물을 수침출하여 황산리튬 용액의 형태로 회수하는 단계와, (d) 상기 (c)단계에서 얻어진 황산리튬 용액에 수산화물을 첨가하여 수산화리튬과 황산염의 혼합 용액으로 전환하는 단계와, (e) 상기 수산화리튬과 황산염의 혼합 용액으로부터 상기 황산염을 분리하는 단계 및 (f) 증발 결정화 공정을 통하여 수산화리튬 일수화물을 제조하는 단계를 포함하는 수산화리튬 일수화물의 제조방법을 제공한다.In order to achieve the object of the present invention described above, the present invention comprises the steps of: (a) adding an aluminum source to the positive electrode material washing water containing lithium to precipitate it in the form of a lithium-aluminum compound, and (b) precipitated lithium-aluminum. The step of separating into lithium sulfate and aluminum oxide by adding and roasting a sulfur (S) source to the compound, and (c) leaching the lithium sulfate-aluminum oxide product separated in step (b) with water to form a lithium sulfate solution And (d) converting the solution into a mixed solution of lithium hydroxide and sulfate by adding hydroxide to the lithium sulfate solution obtained in step (c), and (e) from the mixed solution of lithium hydroxide and sulfate. It provides a method for producing lithium hydroxide monohydrate comprising the steps of separating sulfate and (f) preparing lithium hydroxide monohydrate through an evaporation crystallization process.

바람직한 실시예에 있어서, 상기 (a)단계에서, 상기 알루미늄 공급원은 알루미늄(Al), 알루민산나트륨(NaAlO2), 수산화알루미늄(Al(OH)3), 알루미나수화물(AlOH), 산화알루미늄물(Al2O3), 알루민산나트륨 수화물(NaAl(OH)4), 알루민산칼륨(KAlO2), 알루민산칼륨 수화물(KAl(OH)4), 황산알루미늄나트륨(NaAl(SO4)2), 황산알루미늄칼륨(KAl(SO4)2), 황산알루미늄 (Al2(SO4)3), 황산알루미늄암모늄 ((NH4)Al(SO4)2), 염화알루미늄(AlCl3), 질산알루미늄(Al(NO3)3), 과염소산알루미늄(Al(ClO4)3), 알루미늄클로로하이드레이트(Al2(OH)5Cl) 및 이들의 조합으로 이루어진 군 중에서 선택된 1종을 포함한다.In a preferred embodiment, in the step (a), the aluminum source is aluminum (Al), sodium aluminate (NaAlO 2 ), aluminum hydroxide (Al (OH) 3 ), alumina hydrate (AlOH), aluminum oxide ( Al 2 O 3 ), sodium aluminate hydrate (NaAl(OH) 4 ), potassium aluminate (KAlO 2 ), potassium aluminate hydrate (KAl(OH) 4 ), sodium aluminum sulfate (NaAl(SO 4 ) 2 ), Potassium aluminum sulfate (KAl(SO 4 ) 2 ), aluminum sulfate (Al 2 (SO 4 ) 3 ), ammonium aluminum sulfate ((NH 4 )Al(SO 4 ) 2 ), aluminum chloride (AlCl 3 ), aluminum nitrate ( Al (NO 3 ) 3 ), aluminum perchlorate (Al (ClO 4 ) 3 ), aluminum chlorohydrate (Al 2 (OH) 5 Cl), and one selected from the group consisting of combinations thereof.

바람직한 실시예에 있어서, 상기 (a)단계는 알루미늄과 리튬의 몰비율이 1:1 내지 5:1이 되도록 알루미늄을 첨가한다.In a preferred embodiment, in step (a), aluminum is added so that the molar ratio of aluminum and lithium is 1:1 to 5:1.

바람직한 실시예에 있어서, 상기 (b)단계에서, 상기 황(S) 공급원은 황산(H2SO4) 또는 황산알루미늄(Al2(SO4)3)이다.In a preferred embodiment, in the step (b), the sulfur (S) source is sulfuric acid (H 2 SO 4 ) or aluminum sulfate (Al 2 ( SO 4 ) 3 ).

바람직한 실시예에 있어서, 상기 (b)단계는 황과 리튬의 몰비율이 0.2:1 내지 2:1이 되도록 황을 첨가하고, 로스팅 온도는 100 내지 1,000℃이며, 로스팅 시간은 0.5 내지 10 시간인 것을 특징으로 한다. In a preferred embodiment, in step (b), sulfur is added so that the molar ratio of sulfur and lithium is 0.2:1 to 2:1, the roasting temperature is 100 to 1,000°C, and the roasting time is 0.5 to 10 hours. It is characterized by that.

바람직한 실시예에 있어서, 상기 (d)단계에서 상기 수산화물은 수산화나트륨(NaOH)이며, 상기 황산염은 황산나트륨이다.In a preferred embodiment, in the step (d), the hydroxide is sodium hydroxide (NaOH), and the sulfate is sodium sulfate.

바람직한 실시예에 있어서, 상기 (d)단계는 상기 수산화나트륨(NaOH)을 첨가하여 8 내지 14의 pH 범위에서 0.5시간 내지 10시간 동안 반응하여 수산화리튬과 황산나트륨의 혼합용액으로 전환한다.In a preferred embodiment, in the step (d), the sodium hydroxide (NaOH) is added and reacted for 0.5 to 10 hours at a pH range of 8 to 14 to convert to a mixed solution of lithium hydroxide and sodium sulfate.

바람직한 실시예에 있어서, 상기 (e)단계는 황산나트륨의 온도에 의한 용해도 차이를 이용한 냉각분리를 통해 수행되는데, 상기 수산화리튬과 황산나트륨의 혼합용액을 -10 내지 10℃의 온도범위에서 0.5 내지 10 시간동안 반응시켜 수산화리튬 용액과 황산나트륨으로 분리한다.In a preferred embodiment, the step (e) is carried out through cooling separation using a difference in solubility depending on the temperature of sodium sulfate, and the mixed solution of lithium hydroxide and sodium sulfate is prepared in a temperature range of -10 to 10°C for 0.5 to 10 hours. During the reaction, it is separated into a lithium hydroxide solution and sodium sulfate.

본 발명은 다음과 같은 우수한 효과를 갖는다.The present invention has the following excellent effects.

본 발명에 의하면 양극재 세척수에 포함되어 있는 리튬을 재활용하여 수산화리튬 일수화물을 제조할 수 있는 효과가 있다. 특히, 리튬이온 2차전지의 폐양극재를 세척하는 공정에서 발생하는 세척수로부터 리튬을 회수하여 리튬이온 2차전지용으로 사용할 수 있는 수산화리튬 일수화물을 제조할 수 있는 효과가 있다.According to the present invention, there is an effect of recycling lithium contained in the positive electrode material washing water to produce lithium hydroxide monohydrate. In particular, there is an effect of recovering lithium from the washing water generated in the process of washing the waste cathode material of a lithium ion secondary battery to produce lithium hydroxide monohydrate that can be used for a lithium ion secondary battery.

도 1은 본 발명의 일실시예에 따른 양극재 세척수로부터 수산화리튬 일수화물을 제조하는 방법을 설명하는 공정도이다.
도 2는 본 발명의 실시예의 (b)단계를 통해 얻어진 Li-Al 화합물의 SEM사진이고, 도 3은 Li-Al 화합물의 XRD 분석결과이다.
도 4는 본 발명의 실시예에 따라 제조된 수산화리튬 일수화물의 XRD 분석결과이다.
1 is a flowchart illustrating a method of manufacturing lithium hydroxide monohydrate from washing water of a cathode material according to an embodiment of the present invention.
FIG. 2 is an SEM photograph of a Li-Al compound obtained through step (b) of an example of the present invention, and FIG. 3 is an XRD analysis result of the Li-Al compound.
4 is an XRD analysis result of lithium hydroxide monohydrate prepared according to an embodiment of the present invention.

본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.As for terms used in the present invention, general terms that are currently widely used are selected, but in certain cases, some terms are arbitrarily selected by the applicant. In this case, the meanings described or used in the detailed description of the invention are considered rather than the names of simple terms. Therefore, the meaning should be grasped.

본 발명의 기술적 특징은 리튬이온 2차전지의 폐양극재를 세척하는 공정에서 발생하는 세척수로부터 리튬을 회수하여 리튬이온 2차전지용으로 사용할 수 있는 수산화리튬 일수화물을 제조할 수 있는 방법에 있다. The technical feature of the present invention resides in a method for producing lithium hydroxide monohydrate that can be used for a lithium ion secondary battery by recovering lithium from the washing water generated in the process of washing the waste cathode material of a lithium ion secondary battery.

따라서, 본 발명에 따른 수산화리튬 일수화물의 제조방법은 (a) 리튬이 함유되어 있는 양극재 세척수에 알루미늄 공급원을 첨가하여 리튬-알루미늄 화합물의 형태로 침전시키는 단계와, (b) 침전된 리튬-알루미늄 화합물에 황(S) 공급원을 첨가하고 로스팅하여 황산리튬과 산화알루미늄으로 분리하는 단계와, (c) 상기 (b)단계에서 분리한 황산리튬-산화알루미늄 수득물을 수침출하여 황산리튬 용액의 형태로 회수하는 단계와, (d) 상기 (c)단계에서 얻어진 황산리튬 용액에 수산화물을 첨가하여 수산화리튬과 황산염의 혼합 용액으로 전환하는 단계와, (e) 상기 수산화리튬과 황산염의 혼합 용액으로부터 상기 황산염을 분리하는 단계 및 (f) 증발 결정화 공정을 통하여 수산화리튬 일수화물을 제조하는 단계를 포함한다.Accordingly, the method for producing lithium hydroxide monohydrate according to the present invention includes the steps of: (a) adding an aluminum source to the positive electrode material washing water containing lithium to precipitate it in the form of a lithium-aluminum compound, and (b) precipitated lithium- The steps of separating into lithium sulfate and aluminum oxide by adding and roasting a sulfur (S) source to the aluminum compound, and (c) leaching the lithium sulfate-aluminum oxide product separated in step (b) with water to obtain a lithium sulfate solution. And (d) converting the solution into a mixed solution of lithium hydroxide and sulfate by adding hydroxide to the lithium sulfate solution obtained in step (c), and (e) from the mixed solution of lithium hydroxide and sulfate. Separating the sulfate and (f) preparing lithium hydroxide monohydrate through an evaporation crystallization process.

이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical configuration of the present invention will be described in detail with reference to the accompanying drawings and preferred embodiments.

그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 본 발명을 설명하기 위해 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. The same reference numerals used to describe the present invention throughout the specification denote the same elements.

도 1은 본 발명의 일실시예에 따른 양극재 세척수로부터 수산화리튬 일수화물을 제조하는 방법을 설명하는 공정도이다.1 is a flowchart illustrating a method of manufacturing lithium hydroxide monohydrate from washing water of a cathode material according to an embodiment of the present invention.

도 1을 참조하면, 먼저 (a)리튬이 함유되어 있는 양극재 세척수에 알루미늄 공급원을 첨가하여 리튬-알루미늄 화합물의 형태로 침전시킨다(S10). 본 발명에서는 리튬이온 2차전지의 폐양극재를 세척하는 공정에서 발생한 세척수를 사용하였으며, 세척수 내에 포함된 리튬의 농도는 약 100~10,000ppm 정도이다.Referring to FIG. 1, first (a) an aluminum source is added to the positive electrode material washing water containing lithium to precipitate it in the form of a lithium-aluminum compound (S10). In the present invention, the washing water generated in the process of washing the waste cathode material of the lithium ion secondary battery was used, and the concentration of lithium contained in the washing water is about 100 to 10,000 ppm.

상기 알루미늄 공급원은 알루미늄(Al), 알루민산나트륨(NaAlO2), 수산화알루미늄(Al(OH)3), 알루미나수화물(AlOH), 산화알루미늄물(Al2O3), 알루민산나트륨 수화물(NaAl(OH)4), 알루민산칼륨(KAlO2), 알루민산칼륨 수화물(KAl(OH)4), 황산알루미늄나트륨(NaAl(SO4)2), 황산알루미늄칼륨(KAl(SO4)2), 황산알루미늄 (Al2(SO4)3), 황산알루미늄암모늄 ((NH4)Al(SO4)2), 염화알루미늄(AlCl3), 질산알루미늄(Al(NO3)3), 과염소산알루미늄(Al(ClO4)3), 알루미늄클로로하이드레이트(Al2(OH)5Cl) 및 이들의 조합으로 이루어진 군 중에서 선택된 1종을 포함할 수 있다. The aluminum source is aluminum (Al), sodium aluminate (NaAlO 2 ), aluminum hydroxide (Al (OH) 3 ), alumina hydrate (AlOH), aluminum oxide (Al 2 O 3 ), sodium aluminate hydrate (NaAl ( OH) 4 ), potassium aluminate (KAlO 2 ), potassium aluminate hydrate (KAl(OH) 4 ), sodium aluminum sulfate (NaAl(SO 4 ) 2 ), potassium aluminum sulfate (KAl(SO 4 ) 2 ), sulfuric acid Aluminum (Al 2 (SO 4 ) 3 ), aluminum ammonium sulfate ((NH 4 )Al(SO 4 ) 2 ), aluminum chloride (AlCl 3 ), aluminum nitrate (Al(NO 3 ) 3 ), aluminum perchlorate (Al( ClO 4 ) 3 ), aluminum chlorohydrate (Al 2 (OH) 5 Cl), and may include one selected from the group consisting of a combination thereof.

상기 (a)단계(S10)는 알루미늄과 리튬의 몰비율이 1:1 내지 5:1이 되도록 알루미늄을 첨가하고, 0.1 내지 24시간 동안 반응시켜 리튬-알루미늄 화합물의 침전반응을 유도하였다. 침전공정에서 발생하는 반응 매커니즘은 [반응식 1]과 같다.In the step (a) (S10), aluminum was added so that the molar ratio of aluminum and lithium was 1:1 to 5:1, and reacted for 0.1 to 24 hours to induce a precipitation reaction of the lithium-aluminum compound. The reaction mechanism occurring in the precipitation process is as shown in [Scheme 1].

[반응식 1][Scheme 1]

Li+ + Al2+ + xH2O = LiAl2(OH)7·xH2OLi + + Al 2+ + xH 2 O = LiAl 2 (OH) 7 xH 2 O

이어서, (b)침전된 리튬-알루미늄 화합물에 황(S) 공급원을 첨가하고 로스팅하여 황산리튬과 산화알루미늄으로 분리한다(S20).Subsequently, (b) a sulfur (S) source is added to the precipitated lithium-aluminum compound and roasted to separate lithium sulfate and aluminum oxide (S20).

상기 (a)단계에서 수득한 리튬-알루미늄 화합물에 황산화를 위하여 황(S) 공급원을 첨가하여 리튬은 황산리튬의 액상 형태로 분리하고, 알루미늄은 산화물의 고상 형태로 분리할 수 있다. 상기 황 공급원은 황산(H2SO4) 또는 황산알루미늄(Al2(SO4)3)이다.A sulfur (S) source is added to the lithium-aluminum compound obtained in step (a) for sulfation, so that lithium can be separated in a liquid form of lithium sulfate, and aluminum can be separated in a solid form of an oxide. The sulfur source is sulfuric acid (H 2 SO 4 ) or aluminum sulfate (Al 2 ( SO 4 ) 3 ).

여기서, 황과 리튬의 몰비율이 0.2:1 내지 2:1이 되도록 황 공급원을 투입하고, 로스팅 온도는 100℃ 내지 1,000℃에서 0.5 내지 10시간 동안 반응시켜 리튬과 알루미늄의 충분한 열분해 반응을 유도한다. 황산화 공정에서 발생하는 화학 반응 매커니즘은 [반응식 2]와 같다.Here, the sulfur source is added so that the molar ratio of sulfur and lithium is 0.2:1 to 2:1, and the roasting temperature is reacted at 100°C to 1,000°C for 0.5 to 10 hours to induce a sufficient thermal decomposition reaction of lithium and aluminum. . The chemical reaction mechanism that occurs in the sulfation process is shown in [Scheme 2].

[반응식 2][Scheme 2]

LiAl2(OH)7·xH2O + SO4 2- = Li2SO4 + Al2O3 + xH2O LiAl 2 (OH) 7 · xH 2 O + SO 4 2- = Li 2 SO 4 + Al 2 O 3 + xH 2 O

이어서, (c) 상기 (b)단계에서 분리한 황산리튬-산화알루미늄 수득물을 수침출하여 황산리튬 용액의 형태로 회수한다(S30). 즉, 상기 (b)단계에서 수득한 배소물에 물을 배소물질 대비 0.1배 내지 100배의 비율로 투입하여 액상 황산리튬 수용액을 수득한다.Subsequently, (c) the lithium sulfate-aluminum oxide obtained separated in step (b) is leached with water and recovered in the form of a lithium sulfate solution (S30). That is, water is added to the roasted product obtained in step (b) at a ratio of 0.1 to 100 times that of the roasted material to obtain a liquid lithium sulfate aqueous solution.

본 발명의 실시예에 따른 수침출 공정에서는 산화 알루미늄이 물에 용해되는 양을 최소화 하고, 수침출 용액의 리튬 농도를 가능한 높게 하여 10 g/L 내지 25 g/L 이상의 리튬 농도를 갖도록 하며, 0.5 내지 10시간 이상 수행하여 리튬이 충분이 침출되도록 하는 것이 바람직하다.In the water leaching process according to the embodiment of the present invention, the amount of aluminum oxide dissolved in water is minimized, and the lithium concentration of the water leaching solution is increased as much as possible to have a lithium concentration of 10 g/L to 25 g/L or more, and 0.5 It is preferable to carry out to 10 hours or more so that sufficient lithium is leached.

이어서, (d)상기 (c)단계에서 얻어진 황산리튬 용액에 수산화물을 첨가하여 수산화리튬과 황산염의 혼합 용액으로 전환한다(S40). 여기서, 상기 수산화물은 수산화나트륨(NaOH)이며, 전환되는 상기 황산염은 황산나트륨이다. Subsequently, (d) hydroxide is added to the lithium sulfate solution obtained in step (c) to convert the solution into a mixed solution of lithium hydroxide and sulfate (S40). Here, the hydroxide is sodium hydroxide (NaOH), and the sulfate to be converted is sodium sulfate.

즉, 상기 (d)단계에서는 (c) 단계에서 수득한 황산리튬 용액에 수산화 나트륨을 첨가하여 수산화리튬으로의 전환반응을 유도하여 황산나트륨과 수산화리튬의 혼합용액을 제조한다. 이때, 황산리튬의 수산화리튬 전환 공정에서는 수산화기 공급원으로 수산화나트륨과 리튬의 몰비율을 0.5 내지 2의 몰비율로 첨가(8 내지 14의 pH 범위 유지)하고, 0.5시간 내지 10시간 동안 20℃ 내지 80℃에서 진행하여 충분한 반응이 이루어질 수 있도록 하는 것이 바람직하다. 황산리튬의 수산화리튬 전환 반응의 메카니즘은 [반응식 3]과 같다.That is, in step (d), sodium hydroxide is added to the lithium sulfate solution obtained in step (c) to induce a conversion reaction to lithium hydroxide to prepare a mixed solution of sodium sulfate and lithium hydroxide. At this time, in the lithium hydroxide conversion process of lithium sulfate, a molar ratio of sodium hydroxide and lithium as a source of hydroxyl groups is added in a molar ratio of 0.5 to 2 (maintaining a pH range of 8 to 14), and 20° C. to 80 for 0.5 to 10 hours. It is preferable to proceed at ℃ so that a sufficient reaction can be made. The mechanism of the conversion reaction of lithium sulfate to lithium hydroxide is as shown in [Scheme 3].

[반응식 3][Scheme 3]

Li2SO4 + 2NaOH = 2LiOH + Na2SO4 Li 2 SO 4 + 2NaOH = 2LiOH + Na 2 SO 4

계속해서, (e)상기 수산화리튬과 황산염의 혼합 용액으로부터 상기 황산염을 분리한다(S50). 본 발명의 실시예에서는 수산화리튬과 황산나트륨의 혼합용액을 냉각 분리를 통하여 황산나트륨을 분리해냈다. Subsequently, (e) the sulfate is separated from the mixed solution of the lithium hydroxide and sulfate (S50). In the embodiment of the present invention, sodium sulfate was separated by cooling the mixed solution of lithium hydroxide and sodium sulfate.

여기서, 상기 (e)단계에서는 황산나트륨의 온도에 의한 용해도 차이를 이용한 냉각분리를 통해 수행되는데, 상기 수산화리튬과 황산나트륨의 혼합용액을 -10 내지 10℃의 온도범위에서 0.5 내지 10 시간동안 반응시켜 수산화리튬 용액과 황산나트륨으로 분리하다. 즉, 냉각 분리를 통하여 황산나트륨의 결정화를 유도하였으며, 고상으로 수득한 황산나트륨 결정은 고액분리를 실시하여 수산화리튬 용액과 분리하였다.Here, in the step (e), it is carried out through cooling separation using a difference in solubility depending on the temperature of sodium sulfate, and the mixture solution of lithium hydroxide and sodium sulfate is reacted at a temperature range of -10 to 10°C for 0.5 to 10 hours to oxidize. Separated into lithium solution and sodium sulfate. That is, crystallization of sodium sulfate was induced through cooling separation, and the sodium sulfate crystal obtained in a solid phase was separated from the lithium hydroxide solution by performing solid-liquid separation.

마지막으로, (f)증발 결정화 공정을 통하여 수산화리튬 일수화물을 제조한다(S60). 본 발명의 실시예에서는 상기 황산나트륨 분리 공정에서 수득한 수산화리튬 용액을은 결정화공정, 재용해공정 및 재결정화 공정을 거쳐 최종 수산화리튬 일수화물을 제조하였다.Finally, (f) lithium hydroxide monohydrate is prepared through the evaporation crystallization process (S60). In an embodiment of the present invention, the lithium hydroxide solution obtained in the sodium sulfate separation process was subjected to a silver crystallization process, a re-dissolution process, and a recrystallization process to prepare a final lithium hydroxide monohydrate.

실시예 1Example 1

(S10) 양극재 세척수 준비(S10) Preparation of cathode material washing water

리튬이온 2차전지의 폐양극재를 세척하는 공정에서 발생한 세척수를 준비한다. 실제 양극재 제조회사에서 발생하는 양극재 세척수의 화학 분석값을 [표 1](양극재 세척수 ICP 분석값)에 나타내었다.Prepare the washing water generated in the process of washing the waste cathode material of the lithium ion secondary battery. The chemical analysis values of the positive electrode material washing water generated by the actual positive electrode material manufacturer are shown in [Table 1] (ICP analysis values of the positive electrode material washing water).

Figure pat00001
Figure pat00001

(S20) 침전을 통한 리튬 회수(S20) Lithium recovery through precipitation

상기 양극재 세척수 200mL에 Al/Li 몰비율 3으로 NaAlO2 7.87g, Al(OH)3 7.48g을 첨가하여 10시간 이상 반응을 실시하였다. NaAlO2를 첨가한 경우, 반응 후 용액 내 리튬은 14.4mg/L가 잔류하였고, Al(OH)3를 첨가한 경우에는 1.51 mg/L의 리튬이 잔류하여 리튬 회수율은 각각 98.79%, 99.87%를 나타내어 대부분의 리튬이 리튬 알루미늄 화합물의 형태로 침전 회수 되었음을 확인하였다. 회수된 리튬-알루미늄 화합물의 분석결과는 도 2 및 도 3에 나타내었다.To 200 mL of the positive electrode material washing water , 7.87 g of NaAlO 2 and 7.48 g of Al (OH) 3 were added at an Al/Li molar ratio of 3, and the reaction was performed for 10 hours or more. When NaAlO 2 was added, 14.4 mg/L of lithium remained in the solution after the reaction, and 1.51 mg/L of lithium remained when Al(OH) 3 was added, resulting in a lithium recovery rate of 98.79% and 99.87%, respectively. As a result, it was confirmed that most of the lithium was precipitated and recovered in the form of a lithium aluminum compound. The analysis results of the recovered lithium-aluminum compound are shown in FIGS. 2 and 3.

도 2는 본 발명의 실시예의 (b)단계를 통해 얻어진 Li-Al 화합물의 SEM사진이고, 도 3은 Li-Al 화합물의 XRD 분석결과이다.FIG. 2 is an SEM photograph of a Li-Al compound obtained through step (b) of an example of the present invention, and FIG. 3 is an XRD analysis result of the Li-Al compound.

(S30) 불용성 리튬화합물의 황산리튬 전환 공정 및 수침출(S30) Lithium sulfate conversion process and water leaching of insoluble lithium compounds

상기 침전된 리튬-알루미늄 화합물 20g과 황산알루미늄 10g을 물 2g에 골고루 섞은 물질과 리튬-알루미늄 화합물 3g에 5M 황산 15ml, 물 5ml를 혼합하여 650~750℃까지 변수를 달리하여 로스팅을 진행하여 수침출을 실시하였다. 실험결과, 수득한 황산리튬 용액내 리튬 농도는 30.8g/L이며, 최종 리튬 회수율은 89.9%임을 확인하였다. The precipitated lithium-aluminum compound 20g and aluminum sulfate 10g evenly mixed with 2g of water 2g and lithium-aluminum compound 3g, 5M sulfuric acid 15ml, water 5ml mixed with different parameters to 650 ~ 750 ℃ roasting to proceed with water leaching Was carried out. As a result of the experiment, it was confirmed that the lithium concentration in the obtained lithium sulfate solution was 30.8 g/L, and the final lithium recovery rate was 89.9%.

(S40) 황산리튬-수산화리튬 전환 공정(S40) Lithium sulfate-lithium hydroxide conversion process

상기 수득한 황산리튬 용액을 18.75g/L 4.5L에 수산화나트륨 50%용액을 1kg을 첨가하여 교반을 실시하였다. pH는 11 내지 12의 범위로 조절하였고, 수산화리튬과 황산나트륨의 혼합용액을 수득하였다. The obtained lithium sulfate solution was stirred by adding 1 kg of a 50% sodium hydroxide solution to 4.5 L of 18.75 g/L. The pH was adjusted in the range of 11 to 12, and a mixed solution of lithium hydroxide and sodium sulfate was obtained.

(S50) 황산 나트륨 분리 공정(S50) sodium sulfate separation process

상기 수득한 혼합용액을 0℃ 이하로 냉각시켜 2시간 이상 반응을 하고, 황산나트륨을 냉각 결정화하여 고액분리를 실시한 이후, 수산화리튬 용액 3.6L와 황산나트륨 10수화물 2.1kg을 수득하였다. 이때 수산화리튬 용액으로 회수되는 리튬은 95%임을 확인하였다.The obtained mixed solution was cooled to 0° C. or lower to react for 2 hours or more, and sodium sulfate was cooled and crystallized to perform solid-liquid separation, and then 3.6 L of lithium hydroxide solution and 2.1 kg of sodium sulfate decahydrate were obtained. At this time, it was confirmed that the lithium recovered as the lithium hydroxide solution was 95%.

(S60) 결정화 및 세척, 재용해를 통한 수산화리튬 제조(S60) Manufacture of lithium hydroxide through crystallization, washing, and re-dissolution

상기 수득한 수산화리튬 용액을 1차 결정화 및 세척, 재용해 및 재결정화를 통하여 수산화리튬 105.6g을 수득하였다. 수득한 수산화리튬 일수화물의 화학분석 값은 아래 [표 2]에 정리하였다.The lithium hydroxide solution thus obtained was first crystallized, washed, re-dissolved, and recrystallized to obtain 105.6 g of lithium hydroxide. Chemical analysis values of the obtained lithium hydroxide monohydrate are summarized in [Table 2] below.

Figure pat00002
Figure pat00002

도 4는 본 발명의 실시예에 따라 제조된 수산화리튬 일수화물의 XRD 분석결과이며, 최종적으로 99.5%의 고순도 수산화리튬 일수화물이 제조되었음을 확인할 수 있다. 4 is an XRD analysis result of lithium hydroxide monohydrate prepared according to an embodiment of the present invention, and it can be confirmed that a high purity lithium hydroxide monohydrate of 99.5% was finally prepared.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.Although the present invention has been shown and described with a preferred embodiment as described above, it is not limited to the above-described embodiment, and within the scope not departing from the spirit of the present invention, to those of ordinary skill in the art. Various changes and modifications will be possible.

Claims (8)

(a) 리튬이 함유되어 있는 양극재 세척수에 알루미늄 공급원을 첨가하여 리튬-알루미늄 화합물의 형태로 침전시키는 단계;
(b) 침전된 리튬-알루미늄 화합물에 황(S) 공급원을 첨가하고 로스팅하여 황산리튬과 산화알루미늄으로 분리하는 단계;
(c) 상기 (b)단계에서 분리한 황산리튬-산화알루미늄 수득물을 수침출하여 황산리튬 용액의 형태로 회수하는 단계;
(d) 상기 (c)단계에서 얻어진 황산리튬 용액에 수산화물을 첨가하여 수산화리튬과 황산염의 혼합 용액으로 전환하는 단계;
(e) 상기 수산화리튬과 황산염의 혼합 용액으로부터 상기 황산염을 분리하는 단계; 및
(f) 증발 결정화 공정을 통하여 수산화리튬 일수화물을 제조하는 단계;를 포함하는 수산화리튬 일수화물의 제조방법.
(a) adding an aluminum source to the positive electrode material washing water containing lithium to precipitate it in the form of a lithium-aluminum compound;
(b) separating the precipitated lithium-aluminum compound into lithium sulfate and aluminum oxide by adding a sulfur (S) source and roasting;
(c) leaching the lithium sulfate-aluminum oxide product separated in step (b) with water and recovering it in the form of a lithium sulfate solution;
(d) adding a hydroxide to the lithium sulfate solution obtained in step (c) to convert it into a mixed solution of lithium hydroxide and sulfate;
(e) separating the sulfate from the mixed solution of lithium hydroxide and sulfate; And
(f) preparing lithium hydroxide monohydrate through an evaporation crystallization process.
제 1 항에 있어서,
상기 (a)단계에서, 상기 알루미늄 공급원은 알루미늄(Al), 알루민산나트륨(NaAlO2), 수산화알루미늄(Al(OH)3), 알루미나수화물(AlOH), 산화알루미늄물(Al2O3), 알루민산나트륨 수화물(NaAl(OH)4), 알루민산칼륨(KAlO2), 알루민산칼륨 수화물(KAl(OH)4), 황산알루미늄나트륨(NaAl(SO4)2), 황산알루미늄칼륨(KAl(SO4)2), 황산알루미늄 (Al2(SO4)3), 황산알루미늄암모늄 ((NH4)Al(SO4)2), 염화알루미늄(AlCl3), 질산알루미늄(Al(NO3)3), 과염소산알루미늄(Al(ClO4)3), 알루미늄클로로하이드레이트(Al2(OH)5Cl) 및 이들의 조합으로 이루어진 군 중에서 선택된 1종을 포함하는 것을 특징으로 하는 수산화리튬 일수화물의 제조방법.
The method of claim 1,
In the step (a), the aluminum source is aluminum (Al), sodium aluminate (NaAlO 2 ), aluminum hydroxide (Al (OH) 3 ), alumina hydrate (AlOH), aluminum oxide (Al 2 O 3 ), Sodium aluminate hydrate (NaAl(OH) 4 ), potassium aluminate (KAlO 2 ), potassium aluminate hydrate (KAl(OH) 4 ), sodium aluminum sulfate (NaAl(SO 4 ) 2 ), potassium aluminum sulfate (KAl( SO 4 ) 2 ), aluminum sulfate (Al 2 (SO 4 ) 3 ), ammonium aluminum sulfate ((NH 4 )Al(SO 4 ) 2 ), aluminum chloride (AlCl 3 ), aluminum nitrate (Al(NO 3 ) 3 ), aluminum perchlorate (Al(ClO 4 ) 3 ), aluminum chlorohydrate (Al 2 (OH) 5 Cl), and a method for producing lithium hydroxide monohydrate, characterized in that it comprises one selected from the group consisting of a combination thereof .
제 2 항에 있어서,
상기 (a)단계는 알루미늄과 리튬의 몰비율이 1:1 내지 5:1이 되도록 알루미늄을 첨가하는 것을 특징으로 하는 수산화리튬 일수화물의 제조방법.
The method of claim 2,
In the step (a), aluminum is added so that the molar ratio of aluminum and lithium is 1:1 to 5:1.
제 1 항에 있어서,
상기 (b)단계에서, 상기 황(S) 공급원은 황산(H2SO4) 또는 황산알루미늄(Al2(SO4)3)인 것을 특징으로 하는 수산화리튬 일수화물의 제조방법.
The method of claim 1,
In step (b), the sulfur (S) source is sulfuric acid (H 2 SO 4 ) or aluminum sulfate (Al 2 ( SO 4 ) 3 ).
제 4 항에 있어서,
상기 (b)단계는 황과 리튬의 몰비율이 0.2:1 내지 2:1이 되도록 황을 첨가하고, 로스팅 온도는 100 내지 1,000℃이며, 로스팅 시간은 0.5 내지 10 시간인 것을 특징으로 하는 수산화리튬 일수화물의 제조방법.
The method of claim 4,
In the step (b), sulfur is added so that the molar ratio of sulfur and lithium is 0.2:1 to 2:1, the roasting temperature is 100 to 1,000°C, and the roasting time is 0.5 to 10 hours. Method for producing monohydrate.
제 1 항에 있어서,
상기 (d)단계에서 상기 수산화물은 수산화나트륨(NaOH)이며, 상기 황산염은 황산나트륨인 것을 특징으로 하는 수산화리튬 일수화물의 제조방법.
The method of claim 1,
In the step (d), the hydroxide is sodium hydroxide (NaOH), and the sulfate is sodium sulfate.
제 6 항에 있어서,
상기 (d)단계는 상기 수산화나트륨(NaOH)을 첨가하여 8 내지 14의 pH 범위에서 0.5시간 내지 10시간 동안 반응하여 수산화리튬과 황산나트륨의 혼합용액으로 전환하는 것을 특징으로 하는 수산화리튬 일수화물의 제조방법.
The method of claim 6,
In the step (d), the sodium hydroxide (NaOH) is added and reacted for 0.5 to 10 hours in a pH range of 8 to 14 to convert to a mixed solution of lithium hydroxide and sodium sulfate. Way.
제 7 항에 있어서,
상기 (e)단계는 황산나트륨의 온도에 의한 용해도 차이를 이용한 냉각분리를 통해 수행되는데, 상기 수산화리튬과 황산나트륨의 혼합용액을 -10 내지 10℃의 온도범위에서 0.5 내지 10 시간동안 반응시켜 수산화리튬 용액과 황산나트륨으로 분리하는 것을 특징으로 하는 수산화리튬 일수화물의 제조방법.
The method of claim 7,
The step (e) is carried out through cooling separation using a difference in solubility depending on the temperature of sodium sulfate, and a lithium hydroxide solution by reacting the mixed solution of lithium hydroxide and sodium sulfate at a temperature range of -10 to 10°C for 0.5 to 10 hours. Method for producing lithium hydroxide monohydrate, characterized in that separating with sodium persulfate.
KR1020190141285A 2019-11-06 2019-11-06 Method for producing lithium hydroxide monohydrate KR20210054946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190141285A KR20210054946A (en) 2019-11-06 2019-11-06 Method for producing lithium hydroxide monohydrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190141285A KR20210054946A (en) 2019-11-06 2019-11-06 Method for producing lithium hydroxide monohydrate

Publications (1)

Publication Number Publication Date
KR20210054946A true KR20210054946A (en) 2021-05-14

Family

ID=75915486

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190141285A KR20210054946A (en) 2019-11-06 2019-11-06 Method for producing lithium hydroxide monohydrate

Country Status (1)

Country Link
KR (1) KR20210054946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117401917A (en) * 2023-09-15 2024-01-16 青岛理工大学 Preparation method of lithium salt modified sulphoaluminate cement and product thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190119329A (en) 2018-04-12 2019-10-22 주식회사 에코프로이노베이션 Manufacturing method of lithium hydroxide monohydrate using waste cathode material of lithium ion secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190119329A (en) 2018-04-12 2019-10-22 주식회사 에코프로이노베이션 Manufacturing method of lithium hydroxide monohydrate using waste cathode material of lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117401917A (en) * 2023-09-15 2024-01-16 青岛理工大学 Preparation method of lithium salt modified sulphoaluminate cement and product thereof
CN117401917B (en) * 2023-09-15 2024-04-05 青岛理工大学 Preparation method of lithium salt modified sulphoaluminate cement and product thereof

Similar Documents

Publication Publication Date Title
KR102164661B1 (en) Preparation method of lithium hydroxide from lithium concentration by calcination with sodium sulfate
AU2018373507B2 (en) Processes for preparing hydroxides and oxides of various metals and derivatives thereof
US11316208B2 (en) Process for recycling cobalt and nickel from lithium ion batteries
KR102043711B1 (en) Manufacturing method of lithium hydroxide monohydrate using waste cathode material of lithium ion secondary battery
US11401167B2 (en) Nitrate process for manufacturing transition metal hydroxide precursors
US20220242746A1 (en) Processes for preparing hydroxides and oxides of various metals and derivatives thereof
KR102275866B1 (en) Method for manufacturing high efficiency lithium concentrate and method for manufacturing lithium compound using lithium concentrate manufactured therefrom
US20140127125A1 (en) Method for Preparing Lithium Manganese Oxide by Solid-Phase Reaction
GB2623240A (en) Method for removing fluorine in positive electrode leachate of lithium batteries
KR101589738B1 (en) Method of preparing positive active material precursor
KR20230044147A (en) Lithium recovery method
AU2021332926A1 (en) A method for producing lithium hydroxide from lithium-containing raw material
KR20210054946A (en) Method for producing lithium hydroxide monohydrate
WO2018167224A1 (en) Nitrate process for manufacturing transition metal hydroxide precursors
CN115321505B (en) Method for preparing lithium iron phosphate by comprehensively recycling lithium-containing wastewater and application
KR102350008B1 (en) Method for recovering lithium and valuable metals from waste electrode materials
CN115799696A (en) Method for pretreating waste electrolyte after disassembling lithium ion battery and method for fully recovering lithium, fluorine and phosphorus in waste electrolyte
KR102054344B1 (en) Method for concentrating lithium and recovering aluminum oxide by adding aluminum and sulfate source from lithum solution
KR102500359B1 (en) Method for producing lithium hydroxide using lithium sulfate and barium hydroxide
AU2023222912B2 (en) Method for producing manganese(ⅱ) sulfate monohydrate from byproduct of zinc refining process
CN116031524B (en) Method for separating and recycling electrolyte of waste batteries
KR102672767B1 (en) Method for recovering lithium from leachate of waste lithium primary batteries and method for manufacturing lithium chloride from the lithium
US20230246259A1 (en) Process for separating a mixure of oxalates of two or more of ni, co, and mn
KR20220048184A (en) Method for producing lithium hydroxide using lithium carbonate and barium hydroxide
AU2022380507A1 (en) Method for preparing lithium hydroxide by using lithium carbonate and barium compound

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application