JP2012229481A - Method for separating and recovering valuable material from used lithium ion battery - Google Patents

Method for separating and recovering valuable material from used lithium ion battery Download PDF

Info

Publication number
JP2012229481A
JP2012229481A JP2011099719A JP2011099719A JP2012229481A JP 2012229481 A JP2012229481 A JP 2012229481A JP 2011099719 A JP2011099719 A JP 2011099719A JP 2011099719 A JP2011099719 A JP 2011099719A JP 2012229481 A JP2012229481 A JP 2012229481A
Authority
JP
Japan
Prior art keywords
lithium
water
product
roasted
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011099719A
Other languages
Japanese (ja)
Inventor
Koichi Yoshioka
孝一 吉岡
Koji Okawa
浩司 大川
Akira Yoshitake
明 吉竹
Takashi Yuya
敬志 油谷
Mitsuhiro Tsuri
光廣 釣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP2011099719A priority Critical patent/JP2012229481A/en
Publication of JP2012229481A publication Critical patent/JP2012229481A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering valuable materials from used lithium ion batteries by individually separating the valuable material included in the used lithium ion batteries.SOLUTION: The used lithium ion batteries are disassembled into powder materials comprising active materials and massive materials comprising iron, copper, and aluminum after organic materials, such as an electrolyte, are removed. The powder material is subjected to oxidizing roasting and reducing roasting, and graphite is removed. Then a crystal of a lithium complex oxide is decomposed, and a lithium component included therein is once converted into lithium hydroxide, and ultimately, the lithium component is recovered as lithium carbonate. Furthermore, cobalt and nickel are recovered as magnetic products by magnetic separation while oxides and hydroxides of manganese, iron, and the like are recovered as non-magnetic products.

Description

本発明は、正極活物質が種々のリチウム複合酸化物である使用済みリチウムイオン電池類から、電池のケース材や集電体に使用されているアルミニウムや銅、並びに正極活物質を構成するコバルト、ニッケル、リチウムなどの有価物を、各々分別して回収する方法に関する。
また、本発明は、使用済みリチウムイオン電池類が複数種混在した状態からでも、有価物の分別回収が可能である分別回収方法に関する。
The present invention relates to used lithium ion batteries in which the positive electrode active material is various lithium composite oxides, aluminum and copper used in battery case materials and current collectors, and cobalt constituting the positive electrode active material, The present invention relates to a method of separately collecting valuable materials such as nickel and lithium.
The present invention also relates to a separation and recovery method capable of separating and recovering valuable materials even from a state where a plurality of types of used lithium ion batteries are mixed.

使用済みのリチウムイオン電池から有価物を回収する方法が従来より提案されているが、それらは正極活物質がコバルト酸リチウムである場合が殆んどであって、コバルト系以外のニッケル系やマンガン系あるいはリン酸鉄系の正極活物質の場合については、その回収方法は殆んど提案されておらず、ましてや、それらが混在した状態の電池類からの有価物の回収については、全く提案がなされていないのが現状である。
例えば、特許文献1には、コバルト酸リチウムからのリチウムとコバルトの回収方法が提案されているが、ここに記載されているのは、対象が純粋なコバルト酸リチウムのみの場合であって、廃電池からの回収ではない。すなわち、特許文献1では、実際の廃電池で電解質に使用される六フッ化リン酸リチウム(LiPF6)の加水分解、バインダーに使用されるポリフッ化ビニリデン(PVDF)の熱分解で発生するフッ化水素によって生成するフッ化リチウムなどの影響については、全く考慮されていない。
又、特許文献2には、使用済みリチウムーマンガン電池から銅及び鉄を有価物として回収する方法が提案されているが、対象がリチウムーマンガン電池単独の場合であって、しかも、回収する有価物が銅及び鉄であり、これらより更に有価と考えられるリチウムやマンガンの回収については全く触れられていない。
Methods for recovering valuable materials from used lithium ion batteries have been proposed in the past, but in most cases, the positive electrode active material is lithium cobaltate, and nickel-based or manganese other than cobalt-based materials are used. In the case of a cathode active material based on iron or iron phosphate, there are almost no proposals for the recovery method, and there is no proposal for the recovery of valuable materials from batteries in which they are mixed. The current situation is that nothing has been done.
For example, Patent Document 1 proposes a method for recovering lithium and cobalt from lithium cobaltate. However, the method described here is a case where only pure lithium cobaltate is used. It is not recovery from the battery. That is, in Patent Document 1, fluoride generated by hydrolysis of lithium hexafluorophosphate (LiPF 6 ) used as an electrolyte in an actual waste battery and thermal decomposition of polyvinylidene fluoride (PVDF) used as a binder. The influence of lithium fluoride produced by hydrogen is not considered at all.
Patent Document 2 proposes a method for recovering copper and iron as valuable materials from a used lithium-manganese battery. However, the object is a case where the target is a lithium-manganese battery alone, and the recoverable value is recovered. There is no mention of recovery of lithium and manganese, which are copper and iron, which are considered to be more valuable than these.

今後は、リチウムイオン電池がHV車やEV車のバッテリーに使用され、その利用が増えてくると、高価なコバルトの使用割合が少ない、又は全く使用しない正極活物質のリチウムイオン電池も増えてくることから、いろいろな種類のリチウムイオン電池類が混在して使用されるようになると予想される。
この様な状況において、使用済みのリチウムイオン電池類からの有価物回収については、種々の正極活物質あるいはそれらが混在する場合を想定したものでなければならない。
特に資源の少ない日本においては、その様な場合に備えて、いろいろな種類の使用済みリチウムイオン電池類から有価物を安全かつ簡便に回収し、それを再利用することがますます必要になってくると考えられる。
In the future, lithium-ion batteries will be used in HV and EV batteries, and as their use increases, the percentage of expensive cobalt used will be low, or lithium-ion batteries that will not be used at all will increase. Therefore, it is expected that various types of lithium ion batteries will be used together.
In such a situation, the recovery of valuable materials from used lithium ion batteries must assume various positive electrode active materials or a mixture of them.
Especially in Japan, where resources are scarce, it is becoming increasingly necessary to collect valuable materials from various types of used lithium-ion batteries safely and simply and reuse them in preparation for such cases. It is thought to come.

特開2004−11010号公報JP 2004-11010 A 特開2000−313926号公報JP 2000-313926 A

本発明は、その様な状況に鑑み、いろいろな種類の正極活物質のリチウムイオン電池類が混在した状態のものから、銅やアルミニウム、及びコバルト、ニッケル、マンガン、リチウムなどの有価物を、各々安全かつ簡便に分別して回収する方法を提供するものである。   In view of such a situation, the present invention is a mixture of lithium ion batteries of various types of positive electrode active materials, valuable materials such as copper, aluminum, cobalt, nickel, manganese, lithium, The present invention provides a method for safe and simple separation and collection.

本発明は、
使用済みリチウムイオン電池類から、有価物の分別回収を行う方法において、
使用済みリチウムイオン電池類を、アルカリ土類金属の水酸化物を溶解あるいは懸濁した水に浸漬した後、400℃以下の温度で予備焙焼し、該電池類を解体して、その成品を篩にて銅、アルミニウム、及び鉄から選ばれる少なくとも一種を含む塊状品と、正負極の活物質を含む粉状品に分別する第1工程、
上記第1工程で得られた粉状品を、400℃以上の温度で酸化焙焼した後、さらに、還元ガス気流中、400〜750℃の温度で還元焙焼する第2工程、
上記第2工程で得られた還元焙焼品を、水、又はアルカリ土類金属の水酸化物を 懸濁した水溶液に浸漬させた後、ろ過して得られるろ液からリチウム分を回収する第3工程、
上記第3工程におけるろ過の残渣分を水に懸濁及び分散させた後、その懸濁液を磁力選別にて、金属コバルト及び/又は金属ニッケルを磁着させて回収し、一方で、マンガン及び鉄の酸化物及び水酸化物、並びに、その他の非磁性物から選ばれる少なくとも一種を非磁着物として回収する第4工程、
からなることを特徴とする、使用済みリチウムイオン電池類の有価物の分別回収方法
に関する。
The present invention
In a method of separating and collecting valuable materials from used lithium ion batteries,
After immersing used lithium ion batteries in water in which alkaline earth metal hydroxide is dissolved or suspended, the batteries are pre-roasted at a temperature of 400 ° C. or lower, the batteries are disassembled, and the product is A first step of separating with a sieve a bulk product containing at least one selected from copper, aluminum, and iron, and a powdered product containing positive and negative active materials;
After the powdery product obtained in the first step is oxidized and roasted at a temperature of 400 ° C. or higher, the second step is further reduced and roasted at a temperature of 400 to 750 ° C. in a reducing gas stream.
The reduced roasted product obtained in the second step is immersed in water or an aqueous solution in which an alkaline earth metal hydroxide is suspended, and then the lithium content is recovered from the filtrate obtained by filtration. 3 steps,
After the residue of filtration in the third step is suspended and dispersed in water, the suspension is recovered by magnetically separating metal cobalt and / or metal nickel by magnetic separation, while manganese and A fourth step of recovering at least one selected from iron oxides and hydroxides and other non-magnetic materials as non-magnetic deposits;
The present invention relates to a method for separating and recovering valuable materials of used lithium ion batteries.

本発明の分別回収方法によれば、いろいろな種類の正極活物質のリチウムイオン電池類が混在した状態のものから、銅やアルミニウム、及びコバルト、ニッケル、マンガン、リチウムなどの有価物を、各々安全かつ簡便に分別して回収することができる。
又、本発明の方法によれば、高価な薬品類を全く使用しないので、その分別回収コストも安価なものとなり、加えて、分別回収設備も単純で、容易に大型化することが出来る。
According to the separation and recovery method of the present invention, valuable materials such as copper, aluminum, cobalt, nickel, manganese, and lithium can be safely separated from those in which lithium ion batteries of various types of positive electrode active materials are mixed. And it can be easily separated and collected.
Further, according to the method of the present invention, since no expensive chemicals are used, the separation and collection cost is low, and in addition, the separation and collection equipment is simple and can be easily enlarged.

図1は、本発明のリチウムイオン電池類の有価物の分別回収方法の具体的手順の一例を示すフローチャートである。FIG. 1 is a flowchart showing an example of a specific procedure of a method for separating and recovering valuable materials of lithium ion batteries of the present invention.

以下、本発明を詳細に説明する。
本発明においては、先ず、正極活物質がコバルト系、ニッケル系、マンガン系、リン酸鉄系等であるリチウムイオン電池類が混在した状態のものを、予備焙焼することによって電池類を構成している有機物質を分解燃焼せしめ、それらを系外へ除去する。該予備焙焼品は、電池類の解体後、篩などにより、正極及び負極の活物質から成る粉状品と、電池の蓋や集電体などから成る塊状品に分け、その塊状品より銅やアルミニウム、鉄などを回収する。(第1工程)
上記得られた粉状品は、好ましくはアルカリ土類金属の水酸化物を混合した後、水分を含む酸化ガスの気流中で焙焼(以下、「酸化焙焼」と称する)して、負極材のグラファイト並びに予備焙焼の際に残留した未燃分を燃焼させた後、さらに、還元ガスの雰囲気下で焙焼 (以下、「還元焙焼」と称する) する。(第2工程)
かくして得られた還元焙焼品は、水、又はアルカリ土類金属の水酸化物を懸濁した水溶液に浸漬して、その中に含まれるリチウム分を水酸化リチウムにして水溶液中に溶解させた後、それをろ過して、そのろ液からリチウム分を、好ましくは炭酸リチウムとして回収する。(第3工程)
一方のろ過残渣は、磁力選別によって、金属コバルトと金属ニッケルを磁着物として回収し、マンガンや鉄などの酸化物や水酸化物は非磁着物として回収する。(第4工程)
本発明は、リチウムイオン電池類を構成している種々の材料が持つ物理化学的な特性に着目し、その相違点を最大限に利用して、有価物の分別回収を図ったものである。
Hereinafter, the present invention will be described in detail.
In the present invention, first, the batteries are configured by pre-roasting lithium ion batteries in which the positive electrode active material is a cobalt-based, nickel-based, manganese-based, iron phosphate-based, or the like. The organic substances are decomposed and burned, and removed from the system. The pre-roasted product is divided into a powdered product composed of the active material of the positive electrode and the negative electrode and a bulk product composed of a battery lid, a current collector, and the like by a sieve after disassembling the batteries. Collect aluminum, iron, etc. (First step)
The obtained powdery product is preferably mixed with an alkaline earth metal hydroxide and then roasted in a stream of moisture-containing oxidizing gas (hereinafter referred to as “oxidative roasting”) to form a negative electrode After burning the graphite of the material and the unburned portion remaining in the preliminary roasting, it is further roasted in an atmosphere of a reducing gas (hereinafter referred to as “reducing roasting”). (Second step)
The reduced roasted product thus obtained was immersed in an aqueous solution in which water or an alkaline earth metal hydroxide was suspended, and the lithium contained therein was converted into lithium hydroxide and dissolved in the aqueous solution. Thereafter, it is filtered and the lithium content is recovered from the filtrate, preferably as lithium carbonate. (Third step)
One filtration residue collects metallic cobalt and metallic nickel as magnetic deposits by magnetic separation, and collects oxides and hydroxides such as manganese and iron as non-magnetic deposits. (4th process)
The present invention focuses on the physicochemical characteristics of various materials constituting the lithium ion batteries, and makes the best use of the differences to separate and collect valuable materials.

本発明における「使用済みリチウムイオン電池類」は、その正極活物質が、LiCoO2、LiNiO2、Li(Co・Ni)O2、Li(Co・Ni・Mn)O2、Li(Ni・Mn)O2などの岩塩型結晶構造であるもの、LiMn24、Li(Mn・Ni) 24などのスピネル型結晶構造であるもの、及びLiFePO4などのオリビン型結晶構造であるものの1種、又は2種以上が混在した状態のものである。本発明における「使用済みリチウムイオン電池類」においては、負極活物質の材質の種類には特に制限はないが、その他に、上記リチウムイオン電池類を製造する工程で発生する不具合品も含まれる。リチウムイオン電池類の製造工程で発生する不具合品については、その発生する段階に応じて、本発明における回収フローの途中に組み込んで回収を行うことも可能である。 In the “used lithium ion batteries” in the present invention, the positive electrode active materials are LiCoO 2 , LiNiO 2 , Li (Co · Ni) O 2 , Li (Co · Ni · Mn) O 2 , Li (Ni · Mn). ) 1 of a rock salt type crystal structure such as O 2, a spinel type crystal structure such as LiMn 2 O 4 , Li (Mn · Ni) 2 O 4 , and an olivine type crystal structure such as LiFePO 4 It is a state where two or more species are mixed. In the “used lithium ion batteries” in the present invention, the kind of material of the negative electrode active material is not particularly limited, but also includes defective products generated in the process of manufacturing the lithium ion batteries. About the defective article which generate | occur | produces in the manufacturing process of lithium ion batteries, it is also possible to collect | recover by incorporating in the middle of the collection | recovery flow in this invention according to the stage which generate | occur | produces.

[第1工程]
本発明の分別回収方法における第1工程は、使用済みリチウムイオン電池類を、アルカリ土類金属の水酸化物を溶解あるいは懸濁した水に浸漬した後、400℃以下の温度で予備焙焼し、該電池類を解体して、その成品を篩にて銅、アルミニウム、及び鉄から選ばれる少なくとも一種を含む塊状品と、正負極の活物質を含む粉状品に分別する工程である。
[First step]
In the first step of the separation and recovery method of the present invention, used lithium ion batteries are pre-roasted at a temperature of 400 ° C. or lower after being immersed in water in which an alkaline earth metal hydroxide is dissolved or suspended. The battery is disassembled and the product is separated with a sieve into a bulk product containing at least one selected from copper, aluminum, and iron and a powder product containing positive and negative electrode active materials.

(水浸漬)
本発明の方法では、先ず、使用済みの電池類をアルカリ土類金属の水酸化物を溶解あるいは懸濁した水に浸漬して電池類に残留している電気の放電を行うことにより、本発明の方法による有価物の回収操作の安全性と安定性を確保する。
特に、本発明の方法では、上記浸漬水として、適量のCa(OH)2やMg(OH) 2などのアルカリ土類金属の水酸化物を予め水に溶解あるいは懸濁させたものを用いる。その理由は、浸漬水の電気伝導度を高めることによる放電時間の短縮、及び電池類に含まれるフッ素やリンなどの有害物質を、系外に取り除く必要があるためである。
(Water immersion)
In the method of the present invention, first, the used batteries are immersed in water in which an alkaline earth metal hydroxide is dissolved or suspended to discharge electricity remaining in the batteries. The safety and stability of the recovery operation of valuable materials by this method is ensured.
In particular, in the method of the present invention, as the immersion water, an appropriate amount of alkaline earth metal hydroxide such as Ca (OH) 2 or Mg (OH) 2 previously dissolved or suspended in water is used. The reason is that it is necessary to shorten discharge time by increasing the electric conductivity of the immersion water and to remove harmful substances such as fluorine and phosphorus contained in the batteries.

即ち、該電池類を構成する電解質のLiPF6が水と接触すると、水に易溶性のHFとLiH2PO4を生成し、それらがさらにCa(OH)2又はMg(OH)2などと反応して、水に殆んど溶解しないCaF2又はMgF2 及びCa3(PO4)2又はMg3(PO4)2などになって、フッ素及びリンの固体化合物になるからである。
かくすれば、このフッ素及びリンの固体化合物は浸漬水中に懸濁するので、水浸漬した後でその水を除去すれば、低温で分解するLiPF6を事前に電池類から安全に、しかも簡単に除去することが出来るのである。
尚、本工程では、電池類は水に浸漬した際にその内部に水が浸透し易いように、例えば、使用済みの電池類の電池ケースなどを予め穿孔しておくことが望ましい。
That is, when LiPF 6 of the electrolyte constituting the batteries comes into contact with water, HF and LiH 2 PO 4 that are readily soluble in water are generated, and these further react with Ca (OH) 2 or Mg (OH) 2. This is because CaF 2 or MgF 2 and Ca 3 (PO 4 ) 2 or Mg 3 (PO 4 ) 2 , which hardly dissolve in water, become a solid compound of fluorine and phosphorus.
In this way, since the solid compound of fluorine and phosphorus is suspended in the immersion water, if the water is removed after immersion in water, LiPF 6 that decomposes at low temperatures can be safely and easily removed from the batteries in advance. It can be removed.
In this step, for example, it is desirable to perforate a battery case of a used battery or the like in advance so that when the battery is immersed in water, the water easily penetrates into the battery.

(予備焙焼)
続いて、水に浸漬した電池類を、400℃以下の温度で予備焙焼して、該電池類中のポリエチレンやN−メチルピロリドンなど、比較的低温度で熱分解する有機物質をガス化燃焼し、系外へ除去する。
この予備焙焼では、多量の有機物質を分解燃焼させるので、焙焼中の該電池類を取り巻く環境雰囲気は、局部的にH2やCO並びにCがリッチの状態になり、焙焼温度が400℃を越えると、正極活物質のLiCoO2やLiNiO2などを構成するコバルトやニッケルの還元が始まって岩塩型結晶の分解が起こる可能性が高くなる。その場合、一方のリチウムはLiOH又はLi2Oになり、それが有機物質中に残留するフッ素やリンと結合してLiFやLi3PO4を生成して、後工程におけるリチウムの回収率が低下する結果になり好ましくない。
したがって、本発明の方法では、予備焙焼の温度はコバルトやニッケルの還元が殆んど起こらない400℃を上限とする範囲に限定するものであり、好ましくは、300〜350℃である。
(Preliminary roasting)
Subsequently, batteries immersed in water are pre-roasted at a temperature of 400 ° C. or lower, and organic substances such as polyethylene and N-methylpyrrolidone in the batteries that are thermally decomposed at a relatively low temperature are gasified and combusted. And remove it outside the system.
In this preliminary roasting, a large amount of organic substances are decomposed and burned, so that the environmental atmosphere surrounding the batteries being roasted is locally rich in H 2 , CO and C, and the roasting temperature is 400. If the temperature exceeds ℃, the reduction of cobalt salt and nickel constituting the positive electrode active materials such as LiCoO 2 and LiNiO 2 will start and the possibility of decomposition of the rock salt type crystals increases. In that case, one lithium becomes LiOH or Li 2 O, which is combined with fluorine or phosphorus remaining in the organic substance to produce LiF or Li 3 PO 4, and the recovery rate of lithium in the subsequent process is lowered. This is not preferable.
Therefore, in the method of the present invention, the preliminary roasting temperature is limited to a range where the upper limit is 400 ° C. at which cobalt or nickel is hardly reduced, and is preferably 300 to 350 ° C.

かくすれば、400℃を越える高温度で分解し、且つ有害物質を含む有機物質、例えば、電池類の正極並びに負極にそのバインダーとして使用されているポリフッ化ビニリデンなどが該電池類中に残留することになるが、リチウムを殆んどロスさせることなく、大部分の有機物質を系外に除去することが出来る。
尚、本発明の方法では、この予備焙焼温度で分解しない上記ポリフッ化ビニリデンなどの有機物質については、後工程でその処理を行うことができる。
又、この予備焙焼を行う際の雰囲気については、酸化性が好ましいが本発明では特に限定されない。
In this way, organic substances that decompose at a high temperature exceeding 400 ° C. and contain harmful substances, such as polyvinylidene fluoride used as a binder for positive and negative electrodes of batteries, remain in the batteries. However, most of the organic substances can be removed out of the system with almost no loss of lithium.
In the method of the present invention, an organic substance such as polyvinylidene fluoride that does not decompose at the preliminary roasting temperature can be treated in a subsequent step.
Further, the atmosphere at the time of this preliminary roasting is preferably oxidizing but is not particularly limited in the present invention.

(電池類の解体)
予備焙焼後の使用済みリチウムイオン電池類の解体は、破砕機を含む破砕設備を用いて行うことができ、その解体後の粒度が過度に細かくなることなく、しかも50mm程度以下となるように、電池類のケースとその内部を分離しうるように行うことが好ましい。上記のような破砕設備であれば、破砕機の種類については特に制限はなく、いかなるものも使用できる。
(Disassembly of batteries)
Disassembly of used lithium ion batteries after pre-roasting can be performed using a crushing facility including a crusher so that the particle size after disassembly does not become excessively fine and is about 50 mm or less. The battery case and the inside thereof are preferably separated. If it is the above crushing facilities, there will be no restriction | limiting in particular about the kind of crusher, What kind of thing can be used.

(篩分)
このようにして得られた予備焙焼後の解体品は、振動篩や回転篩などの篩を用いて、銅、アルミニウム、鉄を含む塊状品と、正負極の活物質を含む粉状品に分別される。すなわち、電池ケースや集電体を構成している銅箔、アルミニウム箔、鉄片などの塊状品を篩上品として篩目の上に、又、正極及び負極を構成している活物質を篩下品として篩目の下に、それぞれ分別する。
この場合における篩の目開きは、その後の取り扱いの点から、2.0mm程度以下が望ましいが、本発明では、特に限定するものではない。
尚、ここで取り出した篩上品は、比重選別や磁力選別などの公知の分別操作により、銅、アルミニウム、鉄などとして、材質毎に分けて回収することが出来る。
(Sieving)
The dismantled product after preliminary roasting obtained in this way is made into a lump product containing copper, aluminum, iron and a powdery product containing positive and negative active materials using a sieve such as a vibrating sieve or a rotary sieve. Sorted. That is, lump products such as copper foil, aluminum foil, and iron pieces constituting the battery case and current collector are used as sieve products on the sieve mesh, and active materials constituting the positive and negative electrodes are used as sieve products. Separate each under the sieve mesh.
In this case, the mesh opening of the sieve is preferably about 2.0 mm or less from the viewpoint of subsequent handling, but is not particularly limited in the present invention.
The sieved product taken out here can be collected separately for each material as copper, aluminum, iron, etc. by a known sorting operation such as specific gravity sorting or magnetic force sorting.

[第2工程]
本発明における第2工程は、上記第1工程で得られた粉状品を、400℃以上の温度で酸化焙焼した後、さらに、還元ガス気流中、400〜750℃の温度で還元焙焼する工程である。
すなわち、前記篩分による篩下品である粉状品は、主として、正極活物質であるコバルト、ニッケル、マンガン、リン酸鉄などのリチウム複合酸化物と負極活物質であるグラファイトなどから構成されるが、その他に、前記第1工程の予備焙焼で分解しなかった有機物質や燃えがらも含まれており、これらの有機物質や燃えがら、及び、グラファイトなどのカーボン系物質の容積は、リチウム複合酸化物の容積よりはるかに大きいので、以後の工程でリチウム複合酸化物中の有価物を回収する際には、これらの存在が極めて不都合になる。
[Second step]
In the second step of the present invention, the powdery product obtained in the first step is oxidized and roasted at a temperature of 400 ° C. or higher, and further reduced and roasted at a temperature of 400 to 750 ° C. in a reducing gas stream. It is a process to do.
That is, the powdery product that is an unsieved product by sieving is mainly composed of a lithium composite oxide such as cobalt, nickel, manganese, and iron phosphate as a positive electrode active material and graphite as a negative electrode active material. In addition, organic substances and burners that were not decomposed by the preliminary roasting in the first step are also included, and the volume of these organic substances, burners, and carbon-based substances such as graphite is lithium composite oxide. Therefore, the presence of these substances becomes extremely inconvenient when recovering valuable materials in the lithium composite oxide in the subsequent steps.

(酸化焙焼)
そこで、本発明においては、前記粉状品を、400℃以上の温度で酸化焙焼する。この場合、酸化焙焼は、上記粉状品に、適量のCa(OH)2、Mg(OH)2などのアルカリ土類金属の水酸化物を添加混合して、適度の水分を含む空気等の酸化ガスの気流中、400℃以上の温度で行うことが好ましい。
ここで、アルカリ土類金属の水酸化物、及び水分を含む酸化ガスを使用する理由は、酸化焙焼で生成するフッ素やリンを固体の化合物にして、作業環境の保全や公害の防止を行うためである。また、水分を含む酸化ガスの気流の流量については、上記の効果を奏する範囲において特に制限はない。
(Oxidation roasting)
Therefore, in the present invention, the powdery product is oxidized and roasted at a temperature of 400 ° C. or higher. In this case, the oxidation roasting is performed by adding and mixing an appropriate amount of an alkaline earth metal hydroxide such as Ca (OH) 2 and Mg (OH) 2 to the above powdered product, etc. It is preferable to carry out at a temperature of 400 ° C. or higher in an oxidizing gas stream.
Here, the reason for using the alkaline earth metal hydroxide and the oxidizing gas containing moisture is to preserve the working environment and prevent pollution by making fluorine and phosphorus produced by oxidation roasting into solid compounds. Because. Moreover, there is no restriction | limiting in particular in the range with the said effect about the flow volume of the airflow of the oxidizing gas containing a water | moisture content.

酸化焙焼においては、400℃以上の温度で、前の予備焙焼で生成した燃えがらの燃焼と、予備焙焼で分解しなかった有機物質の分解及び燃焼が起きる。その際に、ポリフッ化ビニリデンなどに含まれているフッ素の有害な物質が発生する。本発明の方法では、それらを水分及びアルカリ土類金属の水酸化物と反応させ、水に難溶性のCaF2やMgF2などにして固体化し、大気中への放出を防止することができる。 In oxidation roasting, combustion of the debris generated in the previous pre-roasting and decomposition and combustion of organic substances not decomposed by pre-roasting occur at a temperature of 400 ° C. or higher. At that time, harmful fluorine substances contained in polyvinylidene fluoride and the like are generated. In the method of the present invention, they can be reacted with moisture and hydroxides of alkaline earth metals to form CaF 2 or MgF 2 that is hardly soluble in water and solidified to prevent release into the atmosphere.

本発明の方法では、400℃以上の温度で酸化焙焼を行うことにより、更にグラファイトの燃焼を行い、それと併行して、リン酸鉄系のリチウム複合酸化物の結晶も分解することができる。特に、500℃以上の温度とすることにより、グラファイトの燃焼が容易に起こり、リン酸鉄系のリチウム複合酸化物の結晶も容易に分解することができ、好ましい。更に、その際に、有害なリンの化合物が生成するが、これも上記のフッ素の場合と同様に、水分及びアルカリ土類金属の水酸化物と反応して、Ca3(PO4)2及びCaHPO4、又は、Mg3(PO4)2及びMgHPO4などの水に難溶性の固体化合物になって、有害物質の大気中への放出が防止されるという効果を奏するのである。 In the method of the present invention, by performing oxidation roasting at a temperature of 400 ° C. or higher, graphite is further combusted, and at the same time, the crystals of the iron phosphate-based lithium composite oxide can be decomposed. In particular, by setting the temperature to 500 ° C. or higher, it is preferable that graphite burns easily, and crystals of the iron phosphate-based lithium composite oxide can be easily decomposed. Further, at that time, harmful phosphorus compounds are formed, which, like the above-mentioned fluorine, react with moisture and hydroxides of alkaline earth metals to form Ca 3 (PO 4 ) 2 and It becomes a solid compound hardly soluble in water such as CaHPO 4 or Mg 3 (PO 4 ) 2 and MgHPO 4, and has the effect of preventing the release of harmful substances into the atmosphere.

以上の種々化学反応は、反応速度の点で、高温で行われる程好ましいが、この場合の酸化焙焼の上限温度は、その設備仕様や経済性のことなどを考慮して任意に決めることが出来るので、本発明の方法では特に限定されない。
尚、本発明の方法における粉状品に添加混合するアルカリ土類金属の水酸化物の添加量は、該粉状品に含まれるフッ素やリンが、アルカリ土類金属と反応する際の化学的当量を満足する量以上であれば良く、それが過剰であっても、後工程で問題になることはない。
又、酸化焙焼の雰囲気ガスに使用する酸化ガスに添加する水の量は、該粉状品に含まれるフッ素やリンが、フッ化水素やリン酸になる化学的当量以上の量であれば良く、その添加の方法も、酸化焙焼炉内に通風する酸化ガスと別に、水を噴霧する方式でも良い。
The above various chemical reactions are preferably carried out at a high temperature in terms of reaction rate, but the upper limit temperature of oxidation roasting in this case can be arbitrarily determined in consideration of the equipment specifications and economics. Since it can do, it is not specifically limited in the method of this invention.
The amount of the alkaline earth metal hydroxide added to and mixed with the powdery product in the method of the present invention is the chemical amount when fluorine or phosphorus contained in the powdery product reacts with the alkaline earth metal. It is sufficient that the amount is equal to or more than the amount that satisfies the equivalent, and even if it is excessive, there is no problem in the subsequent process.
In addition, the amount of water added to the oxidizing gas used for the oxidizing roasting atmosphere gas is such that the fluorine or phosphorus contained in the powdery product is more than the chemical equivalent amount to hydrogen fluoride or phosphoric acid. The addition method may be a method of spraying water separately from the oxidizing gas ventilated in the oxidation roasting furnace.

(還元焙焼)
続いて、上記酸化焙焼品は還元ガスの雰囲気下、400℃〜750℃の温度で還元焙焼される。
この還元焙焼の目的は、前記粉状品に含まれるコバルト及びニッケルを金属に、又、マンガンや鉄を2価ないし3価の酸化物 (MnO,Mn34,FeO )まで還元し、それによって、岩塩型及びスピネル型のリチウム複合酸化物の結晶構造を分解して、リチウムをLi2OやLiOH又はLi2CO3に反応させることにある。
(Reduction roasting)
Subsequently, the oxidized roasted product is subjected to reduction roasting at a temperature of 400 ° C. to 750 ° C. in a reducing gas atmosphere.
The purpose of this reduction roasting is to reduce cobalt and nickel contained in the powdered product to metal, and manganese and iron to divalent to trivalent oxides (MnO, Mn 3 O 4 , FeO 2), Accordingly, the crystal structure of the rock salt type and spinel type lithium composite oxide is decomposed to react lithium with Li 2 O, LiOH, or Li 2 CO 3 .

還元焙焼に用いられる還元ガスの種類としては、水素、一酸化炭素、炭化水素及びアンモニアのうち1種、又は2種以上の混合ガスであれば何れも使用可能であるが、特に水素及び/又はアンモニアが好ましい。その理由は、水素やアンモニアの場合には他の炭素系のガスよりも還元力が強いために、還元焙焼の温度を低くすることが出来、又、還元に要する時間も短くすることが出来るからである。また、一酸化炭素や炭化水素のガスの場合には、還元焙焼で生成する金属コバルトや金属ニッケルがカーボンソリューション反応を誘発する触媒となって、微細なカーボン粒子が析出してしまう場合があるが、本発明の方法では、その生成カーボンは後の工程で不都合なく処理することが出来るので、本発明においては、上記炭素系のガスの使用も可能である。   As the type of reducing gas used for the reduction roasting, any one of hydrogen, carbon monoxide, hydrocarbon and ammonia can be used as long as it is a mixed gas of two or more. Particularly, hydrogen and / or Or ammonia is preferred. The reason is that in the case of hydrogen or ammonia, the reducing power is stronger than other carbon-based gases, so the temperature of reduction roasting can be lowered, and the time required for reduction can also be shortened. Because. In the case of carbon monoxide and hydrocarbon gases, metallic cobalt and metallic nickel produced by reductive roasting may act as a catalyst for inducing the carbon solution reaction, and fine carbon particles may be deposited. However, in the method of the present invention, the generated carbon can be treated without any problem in the subsequent steps, and therefore, in the present invention, the above carbon-based gas can also be used.

本発明において還元焙焼温度を400℃〜750℃の範囲に規定する理由は、本発明の方法で使用する還元ガスの種類に依存してリチウム複合酸化物の還元の開始温度、及び、生成するリチウムの化合物の種類が異なることによるものである。
即ち、還元ガスが水素の場合には、その還元が約400℃程度から開始し、生成物はLi2O及びLiOHであるが、一酸化炭素の場合には約600℃程度から始まり、その生成物はLi2CO3であって、これら生成物のLi2OやLiOH及びLi2CO3の融点が、それぞれ1700℃、450℃及び750℃であり、還元を行う温度をその融点以上の高温にすると、該焙焼品が部分的に液状化して、その還元反応の進行を妨げることになる。
The reason why the reduction roasting temperature is defined in the range of 400 ° C. to 750 ° C. in the present invention depends on the type of reducing gas used in the method of the present invention, and the reduction start temperature of lithium composite oxide and the generation This is because the types of lithium compounds are different.
That is, when the reducing gas is hydrogen, the reduction starts from about 400 ° C., and the products are Li 2 O and LiOH, but when carbon monoxide is used, the reduction starts from about 600 ° C. The product is Li 2 CO 3 , and the melting points of Li 2 O, LiOH, and Li 2 CO 3 of these products are 1700 ° C., 450 ° C., and 750 ° C., respectively, and the temperature at which the reduction is performed is higher than the melting point. Then, the roasted product is partially liquefied and hinders the progress of the reduction reaction.

又、この還元反応で生成する一方の金属コバルトや金属ニッケルは、極めて微細な粉末状であり、それ故、非常に活性度が高いものである。このような活性度の高い金属粉は、常温下でも酸素が存在すると容易に酸化してしまい、還元焙焼で得られる金属コバルトや金属ニッケルも、生成後容易に酸化物になってしまう可能性が高く、この場合、金属のコバルトやニッケルの持つ強磁性の特性が無くなって、後工程における磁力選別が出来なくなってしまうことがある。
そこで、本発明の方法の実施にあたっては、還元焙焼が終了した時点で、得られた焙焼品を、例えば、窒素やアルゴンのような不活性ガス環境下で冷却保持することが好ましい。
Also, one of the metallic cobalt and metallic nickel produced by this reduction reaction is in the form of a very fine powder and therefore has a very high activity. Such highly active metal powder easily oxidizes in the presence of oxygen even at room temperature, and metal cobalt and metal nickel obtained by reductive roasting may easily become oxides after generation. In this case, the ferromagnetic properties of the metal cobalt and nickel may be lost, and magnetic force selection in the subsequent process may not be possible.
Therefore, in carrying out the method of the present invention, it is preferable that the obtained roasted product is cooled and held in an inert gas environment such as nitrogen or argon when the reduction roasting is completed.

[第3工程]
本発明の方法における第3工程は、上記第2工程で得られた還元焙焼品を、水、又はアルカリ土類金属の水酸化物を懸濁した水溶液に浸漬させた後、ろ過して得られるろ液からリチウム分を回収する工程である。
(水酸化反応)
前記第2工程で得られた還元焙焼品は、水、又は、適量のCa(OH)2やMg(OH)2などのアルカリ土類金属の水酸化物を懸濁させた水溶液に浸漬して、該還元焙焼品や水又はアルカリ土類金属の水酸化物を懸濁した水溶液に含まれるLi2CO3を、水に対する溶解度がより高いLiOHとした後、それを上記水又は水溶液中に溶解する。
この場合、該還元焙焼品中のリチウム分が全量LiOHであれば水単味でも十分であるが、リチウム分の一部又は多くがLi2CO3の場合には、アルカリ土類金属の水酸化物を懸濁させた水溶液を使用する。
[Third step]
The third step in the method of the present invention is obtained by immersing the reduced roasted product obtained in the second step in an aqueous solution in which water or an alkaline earth metal hydroxide is suspended, followed by filtration. In this step, the lithium content is recovered from the filtrate.
(Hydroxylation reaction)
The reduced roasted product obtained in the second step is immersed in water or an aqueous solution in which an appropriate amount of a hydroxide of an alkaline earth metal such as Ca (OH) 2 or Mg (OH) 2 is suspended. Then, Li 2 CO 3 contained in the reduced roasted product or an aqueous solution in which water or an alkaline earth metal hydroxide is suspended is changed to LiOH having higher solubility in water, and then it is added to the above water or aqueous solution. Dissolve in
In this case, if the lithium content in the reduced roasted product is LiOH in its entirety, a simple water is sufficient, but if a part or much of the lithium content is Li 2 CO 3 , the alkaline earth metal water An aqueous solution in which the oxide is suspended is used.

この水酸化反応で、Li2CO3をLiOHに変えるアルカリ物質をCa(OH)2やMg(OH)2などのアルカリ土類金属の水酸化物に限定した理由は、副生するCaCO3やMgCO3が水に殆んど溶解しないので、水溶液に溶解したLiOHとの分離がろ過操作で簡単に可能となるが、これがアルカリ金属の水酸化物であるNaOHやKOHなどの場合は、水溶性のNa2CO3やK2CO3が副成してろ過による分離が出来なくなるからである。
また、この水酸化反応では、第2工程の還元焙焼で生成する2価又は3価のマンガンや鉄の酸化物も、その一部がCa(OH)2やMg(OH)2などと反応して、Mn(OH)2やFe(OH)2になるが、これら生成物も、殆んど水に溶けないので、後工程のろ過操作において問題になることはない。
The reason for limiting the alkaline substance that changes Li 2 CO 3 to LiOH by this hydroxylation reaction to hydroxides of alkaline earth metals such as Ca (OH) 2 and Mg (OH) 2 is that by-product CaCO 3 and Since MgCO 3 hardly dissolves in water, it can be easily separated from LiOH dissolved in an aqueous solution by filtration. In the case of NaOH or KOH, which is an alkali metal hydroxide, it is soluble in water. This is because Na 2 CO 3 and K 2 CO 3 of this form are formed as a by-product and cannot be separated by filtration.
In this hydroxylation reaction, some of the oxides of divalent or trivalent manganese and iron produced by the reduction roasting in the second step react with Ca (OH) 2 or Mg (OH) 2. Thus, Mn (OH) 2 and Fe (OH) 2 are obtained, but these products are hardly soluble in water, so that there is no problem in the subsequent filtration operation.

正極活物質がリン酸鉄系の場合には、その中に含まれているリン分が、Ca(OH)2やMg(OH)2などの懸濁水溶液と反応して、水に難溶性の、Ca3(PO4)2又はCaHPO4や、Mg3(PO4)2又はMgHPO4になるので、これもろ過の際に残渣側に移行させることが出来、後工程で問題になることはない。
更に、還元焙焼品にフッ素分が含まれている場合も同様に、水に殆んど溶解しないCaF2やMgF2に変化するので、ろ過の際には残渣側に移行させることが出来る。
したがって、水酸化反応に用いられるアルカリ土類金属の水酸化物の量は、上記種々化学反応にかかわる化学的当量を満足する量であればよい。
かくして、上記水溶液をろ過すれば、純度の高いLiOHをそのろ液側に移行させることが出来、又、ろ液からリチウム分を回収する際、リチウムをLiOHとして回収する場合は、そのろ液の水分をそのまま単純に蒸発させれば良く、次工程の炭酸化反応も省略することが出来る。
When the positive electrode active material is an iron phosphate-based material, the phosphorus content contained therein reacts with a suspended aqueous solution such as Ca (OH) 2 or Mg (OH) 2 and is hardly soluble in water. , Ca 3 (PO 4 ) 2 or CaHPO 4 , Mg 3 (PO 4 ) 2 or MgHPO 4 , this can also be transferred to the residue side during filtration, which can be a problem in the subsequent process Absent.
Furthermore, when the reduced roasted product contains a fluorine component, it similarly changes to CaF 2 or MgF 2 which hardly dissolves in water, so that it can be moved to the residue side during filtration.
Therefore, the amount of the alkaline earth metal hydroxide used in the hydroxylation reaction may be an amount satisfying the chemical equivalents related to the various chemical reactions.
Thus, if the aqueous solution is filtered, high purity LiOH can be transferred to the filtrate side, and when recovering lithium from the filtrate, when recovering lithium as LiOH, The water may be simply evaporated as it is, and the carbonation reaction in the next step can be omitted.

(炭酸化反応)
本発明の分別回収方法においては、上記水酸化反応で得られたろ液に炭酸ガスを吹き込み、上記水酸化反応で得たLiOHを、水に対する溶解度がLiOHより小さいLi2CO3として、それを晶析させた後、再度ろ過をすれば、その残渣として高純度なLi2CO3を回収することが出来る。
なお、このろ液には最大で1.3質量%程度のLi2CO3が溶解残留するので、このろ液の水分を蒸発せしめて該ろ液中のLi2CO3を回収したり、該ろ液を前工程の水酸化反応における水の一部としてリサイクル使用すれば、リチウムの回収率は極めて高いものになる。
また、この炭酸化反応は、炭酸ガス以外に炭酸ナトリウムなどの炭酸塩を用いても可能であるが、この場合には、回収するLi2CO3中にNa分などが不純物として残ることがあるので、本発明の方法では、炭酸ガスの使用が好ましい。
(Carbonation reaction)
In the fractional collection method of the present invention, carbon dioxide gas is blown into the filtrate obtained by the hydroxylation reaction, and LiOH obtained by the hydroxylation reaction is converted to Li 2 CO 3 having a solubility in water smaller than that of LiOH. If it is filtered again after analysis, high purity Li 2 CO 3 can be recovered as the residue.
In this filtrate, a maximum of about 1.3% by mass of Li 2 CO 3 is dissolved and remains. Therefore, the water in the filtrate is evaporated to recover Li 2 CO 3 in the filtrate, If the filtrate is recycled and used as part of the water in the hydroxylation reaction in the previous step, the lithium recovery rate will be extremely high.
Further, this carbonation reaction can be performed by using carbonate such as sodium carbonate in addition to carbon dioxide gas. In this case, Na content or the like may remain as impurities in the Li 2 CO 3 to be recovered. Therefore, it is preferable to use carbon dioxide gas in the method of the present invention.

[第4工程]
本発明の方法における第4工程は、上記第3工程におけるろ過の残渣分を水に懸濁及び分散させた後、その懸濁液を磁力選別にて、金属コバルト及び/又は金属ニッケルを磁着させて回収し、一方で、マンガン及び鉄の酸化物及び水酸化物、並びに、その他の非磁性物から選ばれる少なくとも一種を非磁着物として回収する工程である。
[Fourth process]
In the fourth step of the method of the present invention, after the residue of the filtration in the third step is suspended and dispersed in water, the suspension is magnetically separated to magnetically deposit metallic cobalt and / or metallic nickel. On the other hand, at least one selected from oxides and hydroxides of manganese and iron, and other non-magnetic materials is recovered as a non-magnetized material.

(懸濁化処理)
前記水酸化反応後のろ過操作で得られたろ過残渣に水を加え、懸濁及び分散して適当な濃度の懸濁液に調整する。
この場合の懸濁液の調整は次工程の磁力選別の際、金属コバルト及び/又は金属ニッケルからなる粒子に、極力不純物を巻き込ませないように適当な解砕機、並びに分散剤を使用するのが望ましい。
(Suspension treatment)
Water is added to the filtration residue obtained by the filtration operation after the hydroxylation reaction, and suspended and dispersed to prepare a suspension having an appropriate concentration.
In this case, the suspension is prepared by using an appropriate pulverizer and a dispersing agent so that impurities made of metal cobalt and / or metal nickel are not involved in the magnetic separation in the next step. desirable.

(磁力選別)
上記懸濁液を磁選機にかけて、強磁性の金属コバルト及び金属ニッケルから選ばれる磁性物を磁着させ、マンガン及び鉄の酸化物や水酸化物、並びに、アルカリ土類金属の化合物や不純物などのその他の非磁着物として分離回収する。
本発明の方法における磁力選別は、一般的なフェライト磁石やアルニコ磁石などの永久磁石や電気磁石を利用することで容易に行うことが出来る。
(Magnetic sorting)
The suspension is subjected to a magnetic separator, and a magnetic material selected from ferromagnetic metallic cobalt and metallic nickel is magnetically deposited, such as manganese and iron oxides and hydroxides, and alkaline earth metal compounds and impurities. Separated and recovered as other non-magnetic products.
Magnetic selection in the method of the present invention can be easily performed by using a permanent magnet such as a general ferrite magnet or alnico magnet, or an electric magnet.

かくして、得られた高純度な金属コバルトと金属ニッケルの混合物は、既知の酸溶解法や溶媒抽出法などの方法により、コバルトとニッケルを分離し、しかも、その純度を更に高めることが出来る。
又、マンガンや鉄の酸化物や水酸化物などの非磁性物も、他の分野で有効な原材料になる可能性が高い。
Thus, the obtained mixture of high-purity metallic cobalt and metallic nickel can separate cobalt and nickel by methods such as known acid dissolution methods and solvent extraction methods, and can further increase the purity.
In addition, nonmagnetic materials such as manganese and iron oxides and hydroxides are likely to be effective raw materials in other fields.

以下、本発明を参考例及び実施例により具体的に説明するが、本発明は以下の例に限定されるものではない。   EXAMPLES Hereinafter, although a reference example and an Example demonstrate this invention concretely, this invention is not limited to the following examples.

[参考例1] <LiCoO2試薬からリチウムとコバルトの回収>
試薬のLiCoO2を用いて、本発明の分別回収方法における「還元焙焼」以降の工程を実施して、リチウムとコバルトの分離回収を行った。
ここで使用したLiCoO2試薬の化学成分組成を表1に示す。
[Reference Example 1] <Recovery of lithium and cobalt from LiCoO 2 reagent>
Using the reagent LiCoO 2 , the steps after “reduction roasting” in the fractional recovery method of the present invention were carried out to separate and recover lithium and cobalt.
Table 1 shows the chemical composition of the LiCoO 2 reagent used here.

Figure 2012229481
Figure 2012229481

先ず、上記LiCoO2試薬100.0gをステンレス製の皿に入れ、十分な均熱領域がある外熱式の管状炉内(ステンレス製の炉芯管)に静置して、水素2リットル/min気流中500℃で90分間還元焙焼し、その後、窒素雰囲気で常温まで冷却して、軽く焼結した状態の成品81.2gを得た。
X線回析でその組成を調べた結果、コバルトは完全に還元されて金属Coになり、リチウムはLiOHとLi2Oに変化したことが確認出来た。
First, 100.0 g of the above LiCoO 2 reagent is placed in a stainless steel dish and left in an externally heated tubular furnace (stainless steel furnace core tube) having a sufficient soaking area, and hydrogen is 2 liters / min. It was reduced and roasted at 500 ° C. for 90 minutes in an air stream, and then cooled to room temperature in a nitrogen atmosphere to obtain 81.2 g of a lightly sintered product.
As a result of examining the composition by X-ray diffraction, it was confirmed that cobalt was completely reduced to metal Co, and lithium was changed to LiOH and Li 2 O.

続いて、該成品の全量を水400ml中に浸漬して十分に撹拌し、それをろ過して得られたろ液に炭酸ガスを1リットル/minの流量で20分間吹き込んだ後、それを加熱乾燥して純度99.6%のLi2CO3を26.9g回収した。尚、この場合のリチウムの回収率は、72%であった。
又、一方の上記還元焙焼後のろ過残渣分には、水を500ml加え、超音波解砕機で撹拌して懸濁液とした後、それをフェライト磁石で磁選を行って、懸濁液中の固形物を磁着 させ、その乾燥品59.4gを得た。
該磁着品を、X線解析でそれが金属コバルトであることを確認し、又、その純度は98.5%であって、この場合のコバルトの回収率は98%であった。
更に、この乾燥した磁着品50.0gに水を500ml加えて懸濁化した後、再度ろ過をして、その残渣分を乾燥して、コバルトの純度を測定した結果、品位は99.85%であった。
Subsequently, the entire amount of the product was immersed in 400 ml of water and sufficiently stirred. Carbon dioxide was blown into the filtrate obtained by filtering it at a flow rate of 1 liter / min for 20 minutes, followed by drying by heating. As a result, 26.9 g of Li 2 CO 3 having a purity of 99.6% was recovered. In this case, the recovery rate of lithium was 72%.
In addition, 500 ml of water is added to one of the filtration residues after the reduction roasting, and the suspension is stirred by an ultrasonic crusher, and then magnetically separated by a ferrite magnet. Was solidified and 59.4 g of a dried product was obtained.
The magnetized product was confirmed to be metallic cobalt by X-ray analysis, and its purity was 98.5%. In this case, the recovery rate of cobalt was 98%.
Furthermore, 500 ml of water was added to 50.0 g of this dried magnetically adsorbed product to suspend it, and then filtered again. The residue was dried and the purity of cobalt was measured. As a result, the quality was 99.85. %Met.

[参考例2] <Li(Co・Ni・Mn)O2試薬からリチウムとコバルト、ニッケル、マンガンの回収>
試薬のLi(Co・Ni・Mn)O2を用いて、前記参考例1と同様に、「還元焙焼」以降の工程を実施して、リチウムとコバルト、ニッケル及びマンガンの分離回収を行った。
ここで使用したLi(Co・Ni・Mn)O2試薬の化学成分組成を表2に示す。
[Reference Example 2] <Recovery of Lithium, Cobalt, Nickel and Manganese from Li (Co / Ni / Mn) O 2 Reagent>
Using the reagent Li (Co · Ni · Mn) O 2 , the steps after “reduction roasting” were carried out in the same manner as in Reference Example 1 to separate and recover lithium and cobalt, nickel and manganese. .
Table 2 shows the chemical composition of the Li (Co • Ni • Mn) O 2 reagent used here.

Figure 2012229481
Figure 2012229481

先ず、上記Li(Co・Ni・Mn)O2試薬100.0gを前記管状炉にて、一酸化炭素2リットル/min気流中680℃で150分間還元焙焼した後、窒素雰囲気で常温まで冷却した。
その結果、成品の上層部が黒色の粉末で覆われ、しかも成品そのものは全く焼結していない状態で107.8g得られた。
X線回析でそれぞれの形態を調べた結果、リチウムはLi2CO3に、コバルトはCoに、ニッケルはNiに、マンガンはMn23に変化しており、岩塩型の結晶構造は完全に分解した。又、黒色の粉末は、カーボンソリューション反応によって析出したグラファイトであった。
First, 100.0 g of the Li (Co / Ni / Mn) O 2 reagent was reduced and roasted at 680 ° C. for 150 minutes in a 2 liter / min flow of carbon monoxide in the tubular furnace, and then cooled to room temperature in a nitrogen atmosphere. did.
As a result, 107.8 g was obtained in a state where the upper layer portion of the product was covered with black powder and the product itself was not sintered at all.
As a result of examining each form by X-ray diffraction, lithium changed to Li 2 CO 3 , cobalt changed to Co, nickel changed to Ni, manganese changed to Mn 2 O 3 , and the rock salt type crystal structure was completely Disassembled. The black powder was graphite precipitated by the carbon solution reaction.

続いて、消石灰の試薬70gを水1リットルに懸濁させた溶液に、該焙焼品の全量を浸漬し、30分間撹拌して水酸化反応を行った。
その反応後の懸濁液をろ過し、そのろ液に炭酸ガスを1リットル/minの流量で20分間吹き込んで炭酸化反応をした後、ろ液を加熱乾燥して、純度99.1%のLi2CO3 26.1gを回収した。
この場合のリチウムの回収率は69%であった。
一方、上記還元焙焼後のろ過残渣分に水1リットルを加えて回転式の解砕機で懸濁液とした後、アルニコ磁石を用いて磁選を行い磁着物の乾燥品40.8gを回収した。
その磁着物の化学成分組成を表3に示す。
Subsequently, the entire amount of the roasted product was immersed in a solution in which 70 g of slaked lime reagent was suspended in 1 liter of water, and a hydroxylation reaction was performed by stirring for 30 minutes.
The suspension after the reaction was filtered, and carbonation gas was blown into the filtrate at a flow rate of 1 liter / min for 20 minutes to perform a carbonation reaction, and then the filtrate was heated and dried to have a purity of 99.1%. 26.1 g of Li 2 CO 3 was recovered.
In this case, the recovery rate of lithium was 69%.
On the other hand, after adding 1 liter of water to the filtration residue after the reduction roasting and making it into a suspension with a rotary crusher, magnetic selection was carried out using an alnico magnet to recover 40.8 g of a dried product of magnetized material. .
Table 3 shows the chemical composition of the magnetic deposit.

Figure 2012229481
Figure 2012229481

この場合のコバルトとニッケルの回収率は、共に99%であった。
又、その磁選で磁着しなかった懸濁液をろ過して、その残渣分を回収し、乾燥品として117.0gを得た。
その残渣分の化学成分組成を表4に示す。
In this case, the recovery rates of cobalt and nickel were both 99%.
Moreover, the suspension which was not magnetized by the magnetic separation was filtered, the residue was recovered, and 117.0 g was obtained as a dried product.
Table 4 shows the chemical composition of the residue.

Figure 2012229481
この場合のマンガンの回収率は、98%であった。
Figure 2012229481
In this case, the recovery rate of manganese was 98%.

[参考例3] <LiMn24試薬からリチウムとマンガンの回収>
試薬のLiMn24を用いて、前記参考例1と同様に、「還元焙焼」以降の工程を実施して、リチウムとマンガンの分離回収を行った。
ここで使用したLiMn24試薬の化学成分組成を表5に示す。
[Reference Example 3] <Recovery of lithium and manganese from LiMn 2 O 4 reagent>
Using the reagent LiMn 2 O 4 , the steps after “reduction roasting” were carried out in the same manner as in Reference Example 1 to separate and recover lithium and manganese.
Table 5 shows the chemical composition of the LiMn 2 O 4 reagent used here.

Figure 2012229481
Figure 2012229481

先ず、上記LiMn24試薬100.0gを前記管状炉にて、水素1リットル/min気流中650℃で120分間還元焙焼した後、窒素雰囲気で常温まで冷却した。
その結果、やや強固に焼結した状態の焙焼品87.5gを得た。
X線回析の結果、マンガンはMn23及びMnOに変化しており、スピネル型の結晶構造は完全に分解した。
この焙焼品に水500mlを加えて30分間撹拌し、LiOHを完全に溶解させた後、それをろ過した。
First, 100.0 g of the LiMn 2 O 4 reagent was reduced and roasted at 650 ° C. for 120 minutes in a 1 liter / min hydrogen stream in the tubular furnace, and then cooled to room temperature in a nitrogen atmosphere.
As a result, 87.5 g of a roasted product in a slightly sintered state was obtained.
As a result of X-ray diffraction, manganese was changed to Mn 2 O 3 and MnO, and the spinel crystal structure was completely decomposed.
To this baked product, 500 ml of water was added and stirred for 30 minutes to completely dissolve LiOH, followed by filtration.

続いて、そのろ液を加熱して水分を蒸発させ、純度99.6%のLiOHを7.1g回収した。この場合におけるリチウムの回収率は54%であった。又、一方のろ過残渣はそのまま乾燥し、84.5gを得た。
その乾燥品の化学成分組成を表6に示す。
Subsequently, the filtrate was heated to evaporate water, and 7.1 g of LiOH having a purity of 99.6% was recovered. In this case, the recovery rate of lithium was 54%. One filtration residue was dried as it was to obtain 84.5 g.
Table 6 shows the chemical composition of the dried product.

Figure 2012229481
Figure 2012229481

この場合のマンガンの回収率は、98%であった。
[参考例4] <LiFePO4試薬からリチウムと鉄の回収>
試薬のLiFePO4を用いて、本発明の方法における「酸化焙焼」以降の工程を実施して、リチウムと鉄の分離回収を行った。
ここで使用したLiFePO4試薬の化学成分組成を表7に示す。
In this case, the recovery rate of manganese was 98%.
[Reference Example 4] <Recovery of lithium and iron from LiFePO 4 reagent>
Using the reagent LiFePO 4 , the steps after “oxidation roasting” in the method of the present invention were carried out to separate and recover lithium and iron.
Table 7 shows the chemical composition of the LiFePO 4 reagent used here.

Figure 2012229481
Figure 2012229481

先ず、上記LiFePO4試薬100.0gにCa(OH)2 70.0gを混合し、前記管状炉にて熱水相をくぐらせた空気2リットル/min気流中で700℃90分間酸化焙焼し、成品175.1gを得た。
この酸化焙焼品は、X線回析により、CaHPO4とFe23であることが確認され、オリビン型の結晶構造は完全に分解していることが判明した。
このことから、この酸化焙焼では空気及び水、並びに、Ca(OH)2と以下の化学反応が起こったものと推察出来た。
12LiFePO4+3O2→4Li3Fe2(PO4)3+2Fe23
Li3Fe2(PO4)3+6H2O→3LiOH+Fe23+3H3PO4
3PO4+Ca(OH)2→CaHPO4+2H2
First, 100.0 g of the above LiFePO 4 reagent was mixed with 70.0 g of Ca (OH) 2 and oxidized and roasted at 700 ° C. for 90 minutes in an air stream of 2 liters / min in which the hot water phase was passed through the tubular furnace. 175.1 g of the product was obtained.
This oxidized roasted product was confirmed to be CaHPO 4 and Fe 2 O 3 by X-ray diffraction, and it was found that the olivine type crystal structure was completely decomposed.
From this, it can be inferred that this oxidation roasting caused the following chemical reaction with air, water, and Ca (OH) 2 .
12LiFePO 4 + 3O 2 → 4Li 3 Fe 2 (PO 4 ) 3 + 2Fe 2 O 3
Li 3 Fe 2 (PO 4 ) 3 + 6H 2 O → 3LiOH + Fe 2 O 3 + 3H 3 PO 4
H 3 PO 4 + Ca (OH) 2 → CaHPO 4 + 2H 2 O

続いて、その全量を水素1リットル/min気流中で650℃60分間還元焙焼し、その成品169.1gを得た。
そのX線回析では、CaHPO4に変化は認められず、Fe23のみがFeOに変化していた。
Subsequently, the whole amount was reduced and roasted at 650 ° C. for 60 minutes in an air stream of 1 liter / min of hydrogen to obtain 169.1 g of the product.
In the X-ray diffraction, no change was observed in CaHPO 4 and only Fe 2 O 3 was changed to FeO.

次に、Ca(OH)2の試薬20.0gを水1リットルに懸濁させた液に、該還元焙焼品を浸漬し、30分間撹拌して水酸化反応を行い、その反応後の懸濁液をろ過した。
そのろ液に炭酸ガスを1リットル/minの流量で20分間吹き込んで炭酸化反応をした後、それを加熱乾燥して純度98.3%のLi2CO3 13.8gを得た。
この時のリチウム回収率は60%であった。
一方、上記水酸化反応後のろ過残渣に、水1リットルを加えて十分に撹拌し懸濁液とした後、アルニコ磁石を用いて磁選を行って磁着物がないことを確認し、その懸濁液を再度ろ過してその固形分を回収し、乾燥品180.9gを得た。
その乾燥品の化学成分組成を表8に示す。
Next, the reduced roasted product is immersed in a solution obtained by suspending 20.0 g of a Ca (OH) 2 reagent in 1 liter of water, and stirred for 30 minutes to carry out a hydroxylation reaction. The turbid solution was filtered.
Carbonate gas was blown into the filtrate at a flow rate of 1 liter / min for 20 minutes to carry out a carbonation reaction, followed by heating and drying to obtain 13.8 g of Li 2 CO 3 having a purity of 98.3%.
The lithium recovery rate at this time was 60%.
On the other hand, after adding 1 liter of water to the filtration residue after the above hydroxylation reaction and sufficiently stirring to make a suspension, magnetic separation is performed using an alnico magnet to confirm that there is no magnetic deposit, and the suspension The liquid was filtered again and the solid content was recovered to obtain 180.9 g of a dried product.
Table 8 shows the chemical composition of the dried product.

Figure 2012229481
この場合の鉄の回収率は97%であった。
Figure 2012229481
In this case, the iron recovery rate was 97%.

[実施例1] <使用済み電池から有価物の回収>
[第1工程]
[水浸漬]
主に携帯電話やパソコンに使用された使用済みのリチウムイオン電池100.0kgを、若干のCa(OH)2を懸濁した水に約2日間浸漬し、電池に残留する電気を放電させた後、十分に水を切って本実験の供試料とした。
[予備焙焼]
水浸漬後の使用済み電池を、開放タイプの回転式電気加熱炉にて、300〜350℃で5Hr加熱して、予備焙焼を行った。
その予備焙焼後の電池の重量は69.6kg(減量率:30.4%)であった。
[Example 1] <Recovery of valuable materials from used batteries>
[First step]
[Water immersion]
After 100.0 kg of used lithium-ion battery mainly used in mobile phones and personal computers is immersed in water in which some Ca (OH) 2 is suspended for about 2 days, the electricity remaining in the battery is discharged. The sample was thoroughly drained and used as a sample for this experiment.
[Preliminary roasting]
The used battery after water immersion was heated for 5 hours at 300 to 350 ° C. in an open type rotary electric heating furnace, and pre-baked.
The weight of the battery after the preliminary roasting was 69.6 kg (weight loss rate: 30.4%).

[電池の解体]
予備焙焼した電池の全量を、バッチ式のシュレッダー設備で解体した。
[解体品の篩分]
表9に、上記解体品を振動篩(目開き:1mm)にて篩い分けした結果を示すが、このうち+1mm品は、鉄、銅、アルミニウムなどの金属の混合物として系外に取り出し、-1mm品は以降の第2工程に移した。
[Battery dismantling]
The entire amount of the pre-roasted battery was disassembled with a batch-type shredder facility.
[Sieving of dismantled products]
Table 9 shows the result of sieving the dismantled product with a vibrating sieve (mesh opening: 1 mm). Of these, the +1 mm product is taken out of the system as a mixture of metals such as iron, copper, and aluminum, and is -1 mm. The product was transferred to the subsequent second step.

Figure 2012229481
Figure 2012229481

尚、該 −1mm品の化学成分組成を表10に示すが、この内、Fe、Al、Cuは電池の解体の際に混入した金属粉であり、PやFは有機質材料中のPやFが水浸漬の工程で水側に移行せず電池内に残留した分である。   The chemical composition of the -1 mm product is shown in Table 10, among which Fe, Al, and Cu are metal powders mixed during battery disassembly, and P and F are P and F in organic materials. Is the amount remaining in the battery without moving to the water side in the water immersion step.

Figure 2012229481
Figure 2012229481

[第2工程]
[酸化焙焼]
−1mmの篩下品30.0kgにCa(OH)2 3.0kgを混合し、それを開放タイプの回転式焙焼炉にて転動させながら、適度の水分を含ませた空気を送風して550〜600℃の温度域で6Hr焙焼し、酸化焙焼品20.8kgを得た。
該酸化焙焼品の化学成分組成を表11に示すが、この結果から、Cは殆んどが燃焼除去されていることが分かる。
[Second step]
[Oxidation roasting]
-1 mm under sieve product 30.0 kg mixed with 3.0 kg of Ca (OH) 2 and rolled with air containing moderate moisture while rolling in an open type rotary roasting furnace. 6Hr roasting was performed at a temperature range of 550 to 600 ° C. to obtain 20.8 kg of oxidized roasted product.
The chemical composition of the oxidized roasted product is shown in Table 11. From this result, it can be seen that most of C is burned and removed.

Figure 2012229481
Figure 2012229481

[還元焙焼]
続いて、上記酸化焙焼品20.0kgを、密閉タイプの棚段式電気加熱炉にて、H2気流中500℃で6Hr焙焼し、その後N2気流中で常温まで冷却して、還元焙焼品16.3kgを得た。
該還元焙焼品の化学成分組成を表12に示す。
[Reduction roasting]
Subsequently, 20.0 kg of the oxidized roasted product is roasted at 500 ° C. in a H 2 stream for 6 hours in a closed type electric heating furnace, then cooled to room temperature in a N 2 stream and reduced. 16.3 kg of roasted product was obtained.
Table 12 shows the chemical composition of the reduced roasted product.

Figure 2012229481
Figure 2012229481

[第3工程]
[水酸化反応]
上記還元焙焼品10.0kgに水を80リットル加えて撹拌した後、ろ過をして
ろ液(第1回目のろ液)と残渣(第1回目の残渣)に分けた。
さらに、該残渣に40リットルの水を加えて撹拌した後、再度、ろ過をしてろ液(第2回目のろ液)と残渣(第2回目の残渣)に分けた。
ここで、第1回目のろ液と第2回目のろ液を混合し、本水酸化反応工程におけるろ液とした。
[Third step]
[Hydroxylation reaction]
80 liters of water was added to 10.0 kg of the reduced roasted product and stirred, followed by filtration to separate a filtrate (first filtrate) and a residue (first residue).
Further, 40 liters of water was added to the residue and stirred, and then filtered again to divide it into a filtrate (second filtrate) and a residue (second residue).
Here, the 1st filtrate and the 2nd filtrate were mixed, and it was set as the filtrate in this hydroxylation reaction process.

[炭酸化反応]
上記水酸化反応で得たろ液に炭酸ガスを10リットル/minで120分間吹き込んだ後、該ろ液を加熱して水分を蒸発し、純度98.9%のLi2CO3を2.67kg回収した。
この場合のリチウムの回収率は、還元焙焼品基準で87%であった。
[Carbonation reaction]
Carbon dioxide gas was blown into the filtrate obtained by the above hydroxylation reaction at 10 liter / min for 120 minutes, and then the filtrate was heated to evaporate water and recover 2.67 kg of Li 2 CO 3 having a purity of 98.9%. did.
In this case, the recovery rate of lithium was 87% on the basis of the reduced roasted product.

[第4工程]
[懸濁化処理]
前記水酸化反応後の第2回目のろ過残渣に水60リットルを加え、バッチタイプの湿式ボールミルで残渣分を解砕して懸濁液を作成した。
[Fourth process]
[Suspension treatment]
60 liters of water was added to the second filtration residue after the hydroxylation reaction, and the residue was crushed with a batch type wet ball mill to prepare a suspension.

[磁力選別]
該懸濁液を、磁束密度2000ガウスの磁選機にて、更に散水しながら磁選を行い、該磁着物の乾燥品4.75kgを得た。
その化学成分組成を表13に示す。
[Magnetic sorting]
The suspension was subjected to magnetic separation with a magnetic separator having a magnetic flux density of 2000 Gauss while further watering to obtain 4.75 kg of a dried product of the magnetic deposit.
The chemical composition is shown in Table 13.

Figure 2012229481
尚、この場合のコバルト及びニッケルの回収率は、還元焙焼品基準でそれぞれ93%と95%であった。
Figure 2012229481
In this case, the recoveries of cobalt and nickel were 93% and 95%, respectively, on a reduced roasted product basis.

[非磁着物のろ過]
上記磁選における非磁着物の懸濁液を再度ろ過して、その残渣を回収し、それを乾燥して、非磁着物の乾燥品3.80kgを得た。
その化学成分組成を表14に示す。
[Non-magnetic deposit filtration]
The suspension of non-magnetized material in the magnetic separation was filtered again, and the residue was recovered and dried to obtain 3.80 kg of dried non-magnetized material.
The chemical composition is shown in Table 14.

Figure 2012229481
Figure 2012229481

この結果から明らかなように、有害なリンやフッ素はカルシウムとの化合物になって、非磁着物中に留まっていることがわかる。   As is clear from this result, harmful phosphorus and fluorine become a compound with calcium and remain in the non-magnetized material.

Claims (4)

使用済みリチウムイオン電池類から、有価物の分別回収を行う方法において、
使用済みリチウムイオン電池類を、アルカリ土類金属の水酸化物を溶解あるいは懸濁した水に浸漬した後、400℃以下の温度で予備焙焼し、該電池類を解体して、その成品を篩にて銅、アルミニウム、及び鉄から選ばれる少なくとも一種を含む塊状品と、正負極の活物質を含む粉状品に分別する第1工程、
上記第1工程で得られた粉状品を、400℃以上の温度で酸化焙焼した後、さらに、還元ガス気流中、400〜750℃の温度で還元焙焼する第2工程、
上記第2工程で得られた還元焙焼品を、水、又はアルカリ土類金属の水酸化物を懸濁した水溶液に浸漬させた後、ろ過して得られるろ液からリチウム分を回収する第3工程、
上記第3工程におけるろ過の残渣分を水に懸濁及び分散させた後、その懸濁液を磁力選別にて、金属コバルト及び/又は金属ニッケルを磁着させて回収し、一方で、マンガン及び鉄の酸化物及び水酸化物、並びに、その他の非磁性物から選ばれる少なくとも一種を非磁着物として回収する第4工程、
からなることを特徴とする、使用済みリチウムイオン電池類の有価物の分別回収方法。
In a method of separating and collecting valuable materials from used lithium ion batteries,
After immersing used lithium ion batteries in water in which alkaline earth metal hydroxide is dissolved or suspended, the batteries are pre-roasted at a temperature of 400 ° C. or lower, the batteries are disassembled, and the product is A first step of separating with a sieve a bulk product containing at least one selected from copper, aluminum, and iron, and a powdered product containing positive and negative active materials;
After the powdery product obtained in the first step is oxidized and roasted at a temperature of 400 ° C. or higher, the second step is further reduced and roasted at a temperature of 400 to 750 ° C. in a reducing gas stream.
The reduced roasted product obtained in the second step is immersed in an aqueous solution in which water or a hydroxide of an alkaline earth metal is suspended, and then the lithium content is recovered from the filtrate obtained by filtration. 3 steps,
After the residue of filtration in the third step is suspended and dispersed in water, the suspension is recovered by magnetically separating metal cobalt and / or metal nickel by magnetic separation, while manganese and A fourth step of recovering at least one selected from iron oxides and hydroxides and other non-magnetic materials as non-magnetic deposits;
A method for separating and recovering valuable materials of used lithium ion batteries, comprising:
前記第3工程において、ろ過後のろ液に炭酸ガスを反応させてリチウム分を炭酸リチウムとして回収する、請求項1記載の分別回収方法。   The fraction collection method according to claim 1, wherein in the third step, carbon dioxide gas is reacted with the filtrate after filtration to recover a lithium content as lithium carbonate. 第2工程の酸化焙焼を、粉状品にアルカリ土類金属の水酸化物を添加混合し、水分を含む酸化ガスの気流中、400℃以上の温度で行う、請求項1又は2に記載の分別回収方法。   3. The oxidation roasting in the second step is performed by adding an alkaline earth metal hydroxide to a powdered product and mixing at a temperature of 400 ° C. or higher in a stream of oxidizing gas containing moisture. 4. Separation collection method. 第2工程の還元焙焼における還元ガスが水素、一酸化炭素、炭化水素及びアンモニアから選ばれる少なくとも一種である、請求項1〜3のいずれかに記載の分別回収方法。   The fractionated recovery method according to any one of claims 1 to 3, wherein the reducing gas in the reduction roasting in the second step is at least one selected from hydrogen, carbon monoxide, hydrocarbons and ammonia.
JP2011099719A 2011-04-27 2011-04-27 Method for separating and recovering valuable material from used lithium ion battery Withdrawn JP2012229481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011099719A JP2012229481A (en) 2011-04-27 2011-04-27 Method for separating and recovering valuable material from used lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011099719A JP2012229481A (en) 2011-04-27 2011-04-27 Method for separating and recovering valuable material from used lithium ion battery

Publications (1)

Publication Number Publication Date
JP2012229481A true JP2012229481A (en) 2012-11-22

Family

ID=47431252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011099719A Withdrawn JP2012229481A (en) 2011-04-27 2011-04-27 Method for separating and recovering valuable material from used lithium ion battery

Country Status (1)

Country Link
JP (1) JP2012229481A (en)

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001990A (en) * 2011-06-21 2013-01-07 Kashima Senko Kk Method for recycling waste battery
WO2014042136A1 (en) * 2012-09-11 2014-03-20 株式会社日立製作所 Method for recycling lithium-ion batteries and device therefor
JP2015203131A (en) * 2014-04-11 2015-11-16 Jx日鉱日石金属株式会社 Treatment method of lithium ion battery waste
KR101828168B1 (en) * 2016-08-23 2018-02-09 부경대학교 산학협력단 Recovery method of lithium carbonate and recovery system of lithium carbonate
CN107994288A (en) * 2017-12-14 2018-05-04 眉山顺应动力电池材料有限公司 Valuable metal recovery method in waste and old nickle cobalt lithium manganate ternary cell positive material
CN108011150A (en) * 2017-12-28 2018-05-08 许昌学院 A kind of method that lithium carbonate is produced from waste and old ternary lithium ion cell electrode powder
KR101897134B1 (en) * 2018-04-09 2018-09-10 에스케이이노베이션 주식회사 Method of regenerating lithium precursor from used lithium secondary battery
CN108539309A (en) * 2018-04-02 2018-09-14 方嘉城 A kind of recovery method of waste and old nickel-cobalt lithium manganate cathode material
KR101911633B1 (en) * 2017-05-12 2018-10-24 부경대학교 산학협력단 Recovery method of lithium carbonate from lithium-nickel manganese cobalt oxide
CN108975533A (en) * 2018-07-20 2018-12-11 江苏吉星新材料有限公司 A kind of Sapphire Substrate intellectualization of factories sewage water treatment method
CN109244588A (en) * 2018-11-22 2019-01-18 谭春波 A kind of method of the useless production of ternary lithium battery ternary precursor and pure Lithium Carbonate
CN109574048A (en) * 2019-01-30 2019-04-05 鲍君杰 A kind of processing method of discarded lithium iron phosphate positive material
CN110144461A (en) * 2019-05-08 2019-08-20 株洲冶炼集团股份有限公司 A kind of comprehensive recovering process of waste lithium cell positive plate
KR102020238B1 (en) * 2018-04-09 2019-09-10 에스케이이노베이션 주식회사 Method of recycling active metal of lithium secondary battery
CN110317954A (en) * 2019-07-05 2019-10-11 湖南凯地众能科技有限公司 A kind of technique of waste lithium cell recycling valuable metal
WO2019198972A1 (en) * 2018-04-12 2019-10-17 주식회사 에코프로이노베이션 Method for producing lithium hydroxide monohydrate by using waste cathode material of lithium ion secondary battery
WO2020011765A1 (en) 2018-07-10 2020-01-16 Basf Se Process for the recycling of spent lithium ion cells
CN110835117A (en) * 2019-11-15 2020-02-25 赣州有色冶金研究所 Method for selectively extracting lithium from waste ternary cathode material
CN110964927A (en) * 2019-12-26 2020-04-07 甘肃睿思科新材料有限公司 Neutralization treatment method for liquid after nickel and cobalt precipitation
CN110994062A (en) * 2019-11-27 2020-04-10 湖南邦普循环科技有限公司 Recovery method for removing fluorine at front section of waste lithium ion battery
JP2020073732A (en) * 2020-01-22 2020-05-14 Jx金属株式会社 Processing method of lithium ion batteries
CN111463475A (en) * 2020-03-11 2020-07-28 长沙有色冶金设计研究院有限公司 Method for selectively recycling waste power lithium battery positive electrode material
WO2020179692A1 (en) * 2019-03-04 2020-09-10 川崎重工業株式会社 Treatment system and treatment method for waste lithium ion batteries
JP2020142228A (en) * 2019-03-04 2020-09-10 川崎重工業株式会社 Processing system and processing method of waste lithium-ion battery
CN111748699A (en) * 2020-07-07 2020-10-09 金驰能源材料有限公司 Method for separating lithium from lithium ion battery anode powder
JP2020183559A (en) * 2019-05-07 2020-11-12 株式会社アサカ理研 Recovery method of lithium from lithium-ion battery
CN111924816A (en) * 2020-07-02 2020-11-13 曲靖市华祥科技有限公司 Method for recovering electrolyte of waste lithium ion battery
JP2021008662A (en) * 2019-07-03 2021-01-28 株式会社アサカ理研 Method of recovering lithium from lithium ion battery
WO2021018788A1 (en) 2019-07-26 2021-02-04 Basf Se Process for the recovery of lithium and other metals from waste lithium ion batteries
WO2021018778A1 (en) 2019-07-26 2021-02-04 Basf Se Process for the recovery of lithium from waste lithium ion batteries
WO2021018796A1 (en) 2019-07-26 2021-02-04 Basf Se Process for the recovery of lithium and other metals from waste lithium ion batteries
CN112758963A (en) * 2020-12-30 2021-05-07 重庆大学 Method for preparing cathode active material by recovering waste lithium battery through step-by-step roasting
CN112768798A (en) * 2021-01-14 2021-05-07 上海第二工业大学 Method for preventing impurity metal from being separated out in process of recycling waste lithium battery cathode
JP6869444B1 (en) * 2019-11-08 2021-05-12 Dowaエコシステム株式会社 Lithium separation method
WO2021090571A1 (en) * 2019-11-08 2021-05-14 Dowaエコシステム株式会社 Method for separating lithium
CN112808752A (en) * 2021-02-07 2021-05-18 西安建筑科技大学 Method for preparing modified dense medium powder for coal dressing by gold concentrate powder roasting-cyanidation tailings step
WO2021099333A1 (en) 2019-11-19 2021-05-27 Basf Se Process for the purification of lithium salts
KR20210066418A (en) 2019-11-28 2021-06-07 두산중공업 주식회사 Recovery system of lithium compound and recovery method of lithium compound
EP3836289A1 (en) * 2019-12-11 2021-06-16 Accurec Recycling GmbH Method for decomposition of electrochemical energy storage devices and thermal treatment device
JP2021091940A (en) * 2019-12-11 2021-06-17 住友金属鉱山株式会社 Valuable metal recovery method from waste battery
WO2021125735A1 (en) * 2019-12-16 2021-06-24 주식회사 엘지화학 Method for separating transition metal from waste cathode material
KR20210083579A (en) * 2019-12-27 2021-07-07 재단법인 포항금속소재산업진흥원 Method for Collecting Valuable Metal from Cathode Materials of Waste Lithium Ion Battery
CN113106257A (en) * 2021-04-12 2021-07-13 广东佳纳能源科技有限公司 Recycling method of lithium battery waste and application thereof
JP2021113147A (en) * 2020-01-21 2021-08-05 株式会社アサカ理研 Method for purifying lithium carbonate
WO2021162277A1 (en) * 2020-02-10 2021-08-19 에스케이이노베이션 주식회사 Method for recovering active metal of lithium secondary battery
WO2021167345A1 (en) * 2020-02-18 2021-08-26 에스케이이노베이션 주식회사 Fluidized bed reactor and method for recovering active metal of lithium secondary battery using same
CN113381089A (en) * 2021-06-30 2021-09-10 湖北融通高科先进材料有限公司 Method for preparing nano lithium iron phosphate material by recycling ferrous phosphate
CN113415814A (en) * 2021-06-21 2021-09-21 南昌航空大学 Method for selectively recovering lithium from waste lithium ion batteries by using ultralow-temperature roasting
CN113430322A (en) * 2021-06-07 2021-09-24 中国恩菲工程技术有限公司 Method for recovering phosphorus and iron in waste lithium iron phosphate battery
AU2017204580B2 (en) * 2016-07-04 2021-11-04 Australian Minerals Research Pty Ltd A method of recovering a substance
CN113735109A (en) * 2021-09-07 2021-12-03 贵州轻工职业技术学院 Method for recovering graphite from lithium ion battery and application thereof
JP2022506626A (en) * 2018-11-07 2022-01-17 エスケー イノベーション カンパニー リミテッド Lithium precursor regeneration method and lithium precursor regeneration system
CN114156460A (en) * 2021-12-09 2022-03-08 泉州师范学院 Method for preparing lithium battery transition metal oxide negative electrode material from industrial production waste
CN114256526A (en) * 2021-11-22 2022-03-29 上海交通大学 Method for recovering battery-grade lithium carbonate from lithium ion battery positive electrode material
CN114300776A (en) * 2021-12-30 2022-04-08 中南大学 Method for recycling and screening lithium ion battery material
CN114335781A (en) * 2021-12-27 2022-04-12 上海电力大学 Method for extracting precious metal from waste lithium battery
CN114368766A (en) * 2021-12-22 2022-04-19 威立雅新能源科技(江门)有限公司 Method for extracting lithium from waste lithium ion battery and application thereof
WO2022139310A1 (en) * 2020-12-22 2022-06-30 에스케이이노베이션 주식회사 Method for recovering active metal of lithium secondary battery
CN114717419A (en) * 2022-03-14 2022-07-08 中国矿业大学 Method for separating and recovering nickel, cobalt, manganese and lithium from waste ternary lithium battery
CN115011798A (en) * 2022-06-17 2022-09-06 攀枝花九星钒钛有限公司 Method for recovering lithium from lithium-containing aluminum electrolyte
WO2022230861A1 (en) * 2021-04-26 2022-11-03 株式会社アサカ理研 Method for processing waste lithium ion battery
WO2023007869A1 (en) 2021-07-27 2023-02-02 川崎重工業株式会社 System and method for treating waste lithium ion battery
WO2023007868A1 (en) 2021-07-27 2023-02-02 川崎重工業株式会社 Treatment method and treatment system for waste lithium ion battery
CN115692910A (en) * 2022-12-28 2023-02-03 湖南金阳烯碳新材料股份有限公司 Method for recovering waste negative electrode material of lithium ion battery
CN115849415A (en) * 2023-03-02 2023-03-28 矿冶科技集团有限公司 Method for preparing battery-grade lithium carbonate
WO2023077788A1 (en) * 2021-11-02 2023-05-11 赣州有色冶金研究所有限公司 Method for recovering lithium in positive electrode material for lithium-ion battery
WO2023093162A1 (en) * 2021-11-24 2023-06-01 广东邦普循环科技有限公司 Method for preparing copper-based negative electrode material by using waste battery
JP7306277B2 (en) 2020-01-20 2023-07-11 住友金属鉱山株式会社 Valuable metal recovery method from waste batteries
WO2024048247A1 (en) * 2022-09-01 2024-03-07 住友金属鉱山株式会社 Method for recovering valuable metals
WO2024048248A1 (en) * 2022-09-01 2024-03-07 住友金属鉱山株式会社 Method for recovering valuable metals

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001990A (en) * 2011-06-21 2013-01-07 Kashima Senko Kk Method for recycling waste battery
WO2014042136A1 (en) * 2012-09-11 2014-03-20 株式会社日立製作所 Method for recycling lithium-ion batteries and device therefor
JP2014055312A (en) * 2012-09-11 2014-03-27 Hitachi Ltd Method for recycling lithium ion battery, and apparatus therefor
JP2015203131A (en) * 2014-04-11 2015-11-16 Jx日鉱日石金属株式会社 Treatment method of lithium ion battery waste
AU2017204580B2 (en) * 2016-07-04 2021-11-04 Australian Minerals Research Pty Ltd A method of recovering a substance
KR101828168B1 (en) * 2016-08-23 2018-02-09 부경대학교 산학협력단 Recovery method of lithium carbonate and recovery system of lithium carbonate
KR101911633B1 (en) * 2017-05-12 2018-10-24 부경대학교 산학협력단 Recovery method of lithium carbonate from lithium-nickel manganese cobalt oxide
CN107994288A (en) * 2017-12-14 2018-05-04 眉山顺应动力电池材料有限公司 Valuable metal recovery method in waste and old nickle cobalt lithium manganate ternary cell positive material
CN108011150A (en) * 2017-12-28 2018-05-08 许昌学院 A kind of method that lithium carbonate is produced from waste and old ternary lithium ion cell electrode powder
CN108539309A (en) * 2018-04-02 2018-09-14 方嘉城 A kind of recovery method of waste and old nickel-cobalt lithium manganate cathode material
KR102020238B1 (en) * 2018-04-09 2019-09-10 에스케이이노베이션 주식회사 Method of recycling active metal of lithium secondary battery
JP7395496B2 (en) 2018-04-09 2023-12-11 エスケー イノベーション カンパニー リミテッド Method for recovering active metals from lithium secondary batteries
CN111937220A (en) * 2018-04-09 2020-11-13 Sk新技术株式会社 Method for recovering active metal of lithium secondary battery
KR101897134B1 (en) * 2018-04-09 2018-09-10 에스케이이노베이션 주식회사 Method of regenerating lithium precursor from used lithium secondary battery
WO2019199014A1 (en) * 2018-04-09 2019-10-17 에스케이이노베이션 주식회사 Method for recovering active metals from lithium secondary battery
WO2019199015A1 (en) * 2018-04-09 2019-10-17 에스케이이노베이션 주식회사 Method for recovering active metal of lithium secondary battery
WO2019198972A1 (en) * 2018-04-12 2019-10-17 주식회사 에코프로이노베이션 Method for producing lithium hydroxide monohydrate by using waste cathode material of lithium ion secondary battery
JP2021530838A (en) * 2018-07-10 2021-11-11 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Recycling process for used lithium-ion batteries
CN112400029A (en) * 2018-07-10 2021-02-23 巴斯夫欧洲公司 Method for recycling spent lithium ion battery cells
WO2020011765A1 (en) 2018-07-10 2020-01-16 Basf Se Process for the recycling of spent lithium ion cells
CN108975533A (en) * 2018-07-20 2018-12-11 江苏吉星新材料有限公司 A kind of Sapphire Substrate intellectualization of factories sewage water treatment method
JP2022506626A (en) * 2018-11-07 2022-01-17 エスケー イノベーション カンパニー リミテッド Lithium precursor regeneration method and lithium precursor regeneration system
CN109244588A (en) * 2018-11-22 2019-01-18 谭春波 A kind of method of the useless production of ternary lithium battery ternary precursor and pure Lithium Carbonate
CN109574048B (en) * 2019-01-30 2021-12-10 鲍君杰 Treatment method of waste lithium iron phosphate cathode material
CN109574048A (en) * 2019-01-30 2019-04-05 鲍君杰 A kind of processing method of discarded lithium iron phosphate positive material
JP7256693B2 (en) 2019-03-04 2023-04-12 川崎重工業株式会社 Processing system for waste lithium-ion batteries
WO2020179692A1 (en) * 2019-03-04 2020-09-10 川崎重工業株式会社 Treatment system and treatment method for waste lithium ion batteries
JP2020142228A (en) * 2019-03-04 2020-09-10 川崎重工業株式会社 Processing system and processing method of waste lithium-ion battery
JP2020183559A (en) * 2019-05-07 2020-11-12 株式会社アサカ理研 Recovery method of lithium from lithium-ion battery
CN110144461A (en) * 2019-05-08 2019-08-20 株洲冶炼集团股份有限公司 A kind of comprehensive recovering process of waste lithium cell positive plate
JP2021008662A (en) * 2019-07-03 2021-01-28 株式会社アサカ理研 Method of recovering lithium from lithium ion battery
CN110317954A (en) * 2019-07-05 2019-10-11 湖南凯地众能科技有限公司 A kind of technique of waste lithium cell recycling valuable metal
CN114207161A (en) * 2019-07-26 2022-03-18 巴斯夫欧洲公司 Method for recovering lithium and other metals from spent lithium ion batteries
WO2021018778A1 (en) 2019-07-26 2021-02-04 Basf Se Process for the recovery of lithium from waste lithium ion batteries
WO2021018796A1 (en) 2019-07-26 2021-02-04 Basf Se Process for the recovery of lithium and other metals from waste lithium ion batteries
CN114207162A (en) * 2019-07-26 2022-03-18 巴斯夫欧洲公司 Method for recovering lithium and other metals from spent lithium ion batteries
WO2021018788A1 (en) 2019-07-26 2021-02-04 Basf Se Process for the recovery of lithium and other metals from waste lithium ion batteries
CN114174545A (en) * 2019-07-26 2022-03-11 巴斯夫欧洲公司 Method for recovering lithium from waste lithium ion battery pack
JP6869444B1 (en) * 2019-11-08 2021-05-12 Dowaエコシステム株式会社 Lithium separation method
WO2021090571A1 (en) * 2019-11-08 2021-05-14 Dowaエコシステム株式会社 Method for separating lithium
EP4056291A4 (en) * 2019-11-08 2024-03-13 Dowa Eco System Co Ltd Method for separating lithium
CN110835117A (en) * 2019-11-15 2020-02-25 赣州有色冶金研究所 Method for selectively extracting lithium from waste ternary cathode material
CN110835117B (en) * 2019-11-15 2022-05-10 赣州有色冶金研究所有限公司 Method for selectively extracting lithium from waste ternary cathode material
WO2021099333A1 (en) 2019-11-19 2021-05-27 Basf Se Process for the purification of lithium salts
CN110994062A (en) * 2019-11-27 2020-04-10 湖南邦普循环科技有限公司 Recovery method for removing fluorine at front section of waste lithium ion battery
KR20210066418A (en) 2019-11-28 2021-06-07 두산중공업 주식회사 Recovery system of lithium compound and recovery method of lithium compound
EP3836289A1 (en) * 2019-12-11 2021-06-16 Accurec Recycling GmbH Method for decomposition of electrochemical energy storage devices and thermal treatment device
JP7322687B2 (en) 2019-12-11 2023-08-08 住友金属鉱山株式会社 Valuable metal recovery method from waste batteries
JP2021091940A (en) * 2019-12-11 2021-06-17 住友金属鉱山株式会社 Valuable metal recovery method from waste battery
CN113784922A (en) * 2019-12-16 2021-12-10 株式会社Lg化学 Method for separating transition metal from waste positive electrode material
JP7317430B2 (en) 2019-12-16 2023-07-31 エルジー・ケム・リミテッド Method for separating transition metals from waste cathode materials
WO2021125735A1 (en) * 2019-12-16 2021-06-24 주식회사 엘지화학 Method for separating transition metal from waste cathode material
JP2022532575A (en) * 2019-12-16 2022-07-15 エルジー・ケム・リミテッド How to separate transition metals from waste positive electrode material
CN110964927A (en) * 2019-12-26 2020-04-07 甘肃睿思科新材料有限公司 Neutralization treatment method for liquid after nickel and cobalt precipitation
KR102332465B1 (en) * 2019-12-27 2021-11-30 (주)다원화학 Method for Collecting Valuable Metal from Cathode Materials of Waste Lithium Ion Battery
KR20210083579A (en) * 2019-12-27 2021-07-07 재단법인 포항금속소재산업진흥원 Method for Collecting Valuable Metal from Cathode Materials of Waste Lithium Ion Battery
JP7306277B2 (en) 2020-01-20 2023-07-11 住友金属鉱山株式会社 Valuable metal recovery method from waste batteries
JP2021113147A (en) * 2020-01-21 2021-08-05 株式会社アサカ理研 Method for purifying lithium carbonate
JP7442829B2 (en) 2020-01-21 2024-03-05 株式会社アサカ理研 How to purify lithium carbonate
JP7242581B2 (en) 2020-01-22 2023-03-20 Jx金属株式会社 How to dispose of lithium-ion batteries
JP2020073732A (en) * 2020-01-22 2020-05-14 Jx金属株式会社 Processing method of lithium ion batteries
WO2021162277A1 (en) * 2020-02-10 2021-08-19 에스케이이노베이션 주식회사 Method for recovering active metal of lithium secondary battery
EP4089051A4 (en) * 2020-02-10 2024-01-10 Sk Innovation Co Ltd Method for recovering active metal of lithium secondary battery
WO2021167345A1 (en) * 2020-02-18 2021-08-26 에스케이이노베이션 주식회사 Fluidized bed reactor and method for recovering active metal of lithium secondary battery using same
CN111463475B (en) * 2020-03-11 2021-10-26 长沙有色冶金设计研究院有限公司 Method for selectively recycling waste power lithium battery positive electrode material
CN111463475A (en) * 2020-03-11 2020-07-28 长沙有色冶金设计研究院有限公司 Method for selectively recycling waste power lithium battery positive electrode material
CN111924816A (en) * 2020-07-02 2020-11-13 曲靖市华祥科技有限公司 Method for recovering electrolyte of waste lithium ion battery
CN111748699A (en) * 2020-07-07 2020-10-09 金驰能源材料有限公司 Method for separating lithium from lithium ion battery anode powder
WO2022139310A1 (en) * 2020-12-22 2022-06-30 에스케이이노베이션 주식회사 Method for recovering active metal of lithium secondary battery
CN112758963A (en) * 2020-12-30 2021-05-07 重庆大学 Method for preparing cathode active material by recovering waste lithium battery through step-by-step roasting
CN112768798A (en) * 2021-01-14 2021-05-07 上海第二工业大学 Method for preventing impurity metal from being separated out in process of recycling waste lithium battery cathode
CN112808752B (en) * 2021-02-07 2023-06-30 西安建筑科技大学 Method for preparing modified dense medium powder for coal preparation in steps of roasting gold concentrate powder and cyanidation tailings
CN112808752A (en) * 2021-02-07 2021-05-18 西安建筑科技大学 Method for preparing modified dense medium powder for coal dressing by gold concentrate powder roasting-cyanidation tailings step
CN113106257A (en) * 2021-04-12 2021-07-13 广东佳纳能源科技有限公司 Recycling method of lithium battery waste and application thereof
JP7344578B2 (en) 2021-04-26 2023-09-14 株式会社アサカ理研 How to dispose of waste lithium-ion batteries
WO2022230861A1 (en) * 2021-04-26 2022-11-03 株式会社アサカ理研 Method for processing waste lithium ion battery
JP2022168616A (en) * 2021-04-26 2022-11-08 株式会社アサカ理研 Method for treating waste lithium-ion battery
CN113430322A (en) * 2021-06-07 2021-09-24 中国恩菲工程技术有限公司 Method for recovering phosphorus and iron in waste lithium iron phosphate battery
CN113415814A (en) * 2021-06-21 2021-09-21 南昌航空大学 Method for selectively recovering lithium from waste lithium ion batteries by using ultralow-temperature roasting
CN113381089B (en) * 2021-06-30 2022-08-30 湖北融通高科先进材料有限公司 Method for preparing nano lithium iron phosphate material by recycling ferrous phosphate
CN113381089A (en) * 2021-06-30 2021-09-10 湖北融通高科先进材料有限公司 Method for preparing nano lithium iron phosphate material by recycling ferrous phosphate
WO2023007869A1 (en) 2021-07-27 2023-02-02 川崎重工業株式会社 System and method for treating waste lithium ion battery
WO2023007868A1 (en) 2021-07-27 2023-02-02 川崎重工業株式会社 Treatment method and treatment system for waste lithium ion battery
CN113735109B (en) * 2021-09-07 2023-09-05 贵州轻工职业技术学院 Method for recovering graphite from lithium ion battery and application thereof
CN113735109A (en) * 2021-09-07 2021-12-03 贵州轻工职业技术学院 Method for recovering graphite from lithium ion battery and application thereof
WO2023077788A1 (en) * 2021-11-02 2023-05-11 赣州有色冶金研究所有限公司 Method for recovering lithium in positive electrode material for lithium-ion battery
CN114256526A (en) * 2021-11-22 2022-03-29 上海交通大学 Method for recovering battery-grade lithium carbonate from lithium ion battery positive electrode material
WO2023093162A1 (en) * 2021-11-24 2023-06-01 广东邦普循环科技有限公司 Method for preparing copper-based negative electrode material by using waste battery
GB2617011A (en) * 2021-11-24 2023-09-27 Guangdong Brunp Recycling Technology Co Ltd Method for preparing copper-based negative electrode material by using waste battery
CN114156460A (en) * 2021-12-09 2022-03-08 泉州师范学院 Method for preparing lithium battery transition metal oxide negative electrode material from industrial production waste
CN114368766A (en) * 2021-12-22 2022-04-19 威立雅新能源科技(江门)有限公司 Method for extracting lithium from waste lithium ion battery and application thereof
CN114335781A (en) * 2021-12-27 2022-04-12 上海电力大学 Method for extracting precious metal from waste lithium battery
CN114300776B (en) * 2021-12-30 2023-10-17 江西原子锂电有限公司 Method for recycling and screening lithium ion battery material
CN114300776A (en) * 2021-12-30 2022-04-08 中南大学 Method for recycling and screening lithium ion battery material
CN114717419A (en) * 2022-03-14 2022-07-08 中国矿业大学 Method for separating and recovering nickel, cobalt, manganese and lithium from waste ternary lithium battery
CN115011798A (en) * 2022-06-17 2022-09-06 攀枝花九星钒钛有限公司 Method for recovering lithium from lithium-containing aluminum electrolyte
WO2024048247A1 (en) * 2022-09-01 2024-03-07 住友金属鉱山株式会社 Method for recovering valuable metals
WO2024048248A1 (en) * 2022-09-01 2024-03-07 住友金属鉱山株式会社 Method for recovering valuable metals
CN115692910B (en) * 2022-12-28 2023-03-03 湖南金阳烯碳新材料股份有限公司 Method for recovering waste negative electrode material of lithium ion battery
CN115692910A (en) * 2022-12-28 2023-02-03 湖南金阳烯碳新材料股份有限公司 Method for recovering waste negative electrode material of lithium ion battery
CN115849415A (en) * 2023-03-02 2023-03-28 矿冶科技集团有限公司 Method for preparing battery-grade lithium carbonate

Similar Documents

Publication Publication Date Title
JP2012229481A (en) Method for separating and recovering valuable material from used lithium ion battery
Zhao et al. Regeneration and reutilization of cathode materials from spent lithium-ion batteries
Xiao et al. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy
JP6819827B2 (en) How to recover valuable metals from waste lithium-ion batteries
Vieceli et al. Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid
Nayaka et al. Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids
JP2019135321A (en) Method for recovering valuable metal from waste lithium-ion battery
Ji et al. Efficient utilization of scrapped LiFePO4 battery for novel synthesis of Fe2P2O7/C as candidate anode materials
JP6644314B2 (en) Lithium extraction method
JP2023510361A (en) Method for reusing active material using positive electrode scrap
JP2018197385A (en) Phosphorus removing method, and valuable metal recovering method
JP2016037661A (en) Method for recovering valuable metal
Qu et al. Salt-thermal methods for recycling and regenerating spent lithium-ion batteries: a review
JP6516240B2 (en) Lithium extraction method
JP2023518880A (en) Reuse of batteries by reduction and carbonylation
JP2022542637A (en) Relithiation under oxidizing conditions
JP2021161453A (en) Method for recovering valuable metal from waste lithium-ion battery
Bhandari et al. Gaseous reduction of NMC-type cathode materials using hydrogen for metal recovery
JP2023511183A (en) Method for reusing active material using positive electrode scrap
JP7229197B2 (en) Lithium recovery method
JP7286085B2 (en) Method for recovering lithium from lithium-ion batteries
US20230369671A1 (en) Methods and systems for scalable direct recycling of battery waste
CN113302005B (en) Method for recovering valuable metals
JP2021063304A (en) Method for recovering valuables from used lithium-ion battery
JPH108150A (en) Combustion treatment of waste material coated and deposited with metallic foil of secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701