JP2021113147A - Method for purifying lithium carbonate - Google Patents

Method for purifying lithium carbonate Download PDF

Info

Publication number
JP2021113147A
JP2021113147A JP2020007303A JP2020007303A JP2021113147A JP 2021113147 A JP2021113147 A JP 2021113147A JP 2020007303 A JP2020007303 A JP 2020007303A JP 2020007303 A JP2020007303 A JP 2020007303A JP 2021113147 A JP2021113147 A JP 2021113147A
Authority
JP
Japan
Prior art keywords
lithium
lithium carbonate
carbonate
crude
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020007303A
Other languages
Japanese (ja)
Other versions
JP6861446B1 (en
Inventor
幸雄 佐久間
Yukio Sakuma
幸雄 佐久間
順 中澤
Jun Nakazawa
順 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAKA RIKEN KK
Asaka Riken Co Ltd
Original Assignee
ASAKA RIKEN KK
Asaka Riken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAKA RIKEN KK, Asaka Riken Co Ltd filed Critical ASAKA RIKEN KK
Priority to JP2020007303A priority Critical patent/JP6861446B1/en
Priority to JP2021000826A priority patent/JP7442829B2/en
Application granted granted Critical
Publication of JP6861446B1 publication Critical patent/JP6861446B1/en
Publication of JP2021113147A publication Critical patent/JP2021113147A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a method for purifying lithium carbonate by which purified lithium carbonate can be recovered efficiently from crude lithium carbonate.SOLUTION: A method for purifying lithium carbonate, comprises: a step of adding a metal chloride solution and an alkali metal hydroxide solution, which can produce insoluble carbonates, to crude lithium carbonate to obtain a lithium hydroxide solution; and a step of supplying carbon dioxide gas to the lithium hydroxide solution and collecting the precipitated lithium carbonate.SELECTED DRAWING: None

Description

本発明は、炭酸リチウムの精製方法に関する。 The present invention relates to a method for purifying lithium carbonate.

近年、リチウムイオン電池の普及に伴い、主として廃リチウムイオン電池からリチウム等の有価金属を回収する方法が種々提案されている。 In recent years, with the widespread use of lithium-ion batteries, various methods for recovering valuable metals such as lithium from waste lithium-ion batteries have been proposed.

例えば、従来、リチウムイオン電池からリチウムを回収する方法として、廃リチウムイオン電池を焙焼して、該廃リチウムイオン電池に正極活物質として含まれるリチウム化合物を還元して炭酸リチウムの形態とした後、該廃リチウムイオン電池を粉砕し、得られた粉末を水又は酸性溶液に溶解し、得られた溶液に炭酸イオンを供給してリチウムを炭酸水素リチウムとして溶解させた後、加熱して脱炭酸することにより析出する炭酸リチウムを回収する方法が知られている。 For example, conventionally, as a method of recovering lithium from a lithium ion battery, a waste lithium ion battery is roasted and a lithium compound contained as a positive electrode active material in the waste lithium ion battery is reduced to form lithium carbonate. , The waste lithium ion battery is crushed, the obtained powder is dissolved in water or an acidic solution, carbonate ions are supplied to the obtained solution to dissolve lithium as lithium hydrogen carbonate, and then heated to decarbonate. A method of recovering the precipitated lithium carbonate is known.

尚、前記廃リチウムイオン電池としては、電池製品としての寿命の消尽した使用済みのリチウムイオン電池、製造不良等の原因により廃棄されたリチウムイオン電池等が用いられる。 As the waste lithium ion battery, a used lithium ion battery whose life as a battery product has expired, a lithium ion battery discarded due to a manufacturing defect, or the like is used.

ところで、一般に、リチウムイオン電池は、正極と、負極と、両極間に配置されたセパレータと、電解液とが金属製の筐体に収容されており、該セパレータ及び電解液は有機化合物により構成されている。そこで、前記焙焼の際に廃リチウムイオン電池を急激に高温に加熱すると、前記筐体中で前記セパレータ及び電解液が気化し、該廃リチウムイオン電池が爆発(破裂)する虞があるという問題がある。 By the way, in general, in a lithium ion battery, a positive electrode, a negative electrode, a separator arranged between both electrodes, and an electrolytic solution are housed in a metal housing, and the separator and the electrolytic solution are composed of an organic compound. ing. Therefore, if the waste lithium ion battery is rapidly heated to a high temperature during roasting, the separator and the electrolytic solution may vaporize in the housing, and the waste lithium ion battery may explode (burst). There is.

そこで、従来、前記廃リチウム電池を焙焼する際に、まず、100〜250℃の温度に加熱して第1の焙焼を行い、その後さらに300〜650℃の温度に加熱して第2の焙焼を行うことにより該廃リチウムイオン電池に含まれるリチウムを炭酸リチウムの形態とすることが知られている(例えば、特許文献1参照)。このようにするときには、前記第1の焙焼でセパレータ及び電解液を構成する有機化合物が分解されるので、前記第2の焙焼において該廃リチウムイオン電池の爆発(破裂)を避けることができる。 Therefore, conventionally, when roasting the waste lithium battery, first the first roasting is performed by heating to a temperature of 100 to 250 ° C., and then the second is further heated to a temperature of 300 to 650 ° C. It is known that the lithium contained in the waste lithium ion battery is converted into the form of lithium carbonate by roasting (see, for example, Patent Document 1). In this case, since the organic compounds constituting the separator and the electrolytic solution are decomposed in the first roasting, the waste lithium ion battery can be avoided from exploding (exploding) in the second roasting. ..

しかし、前記特許文献1に記載の方法では、焙焼を2段階で行うため、処理が繁雑になるという問題がある。 However, the method described in Patent Document 1 has a problem that the processing becomes complicated because roasting is performed in two stages.

本出願人は、前記問題を解決するために、正極と、負極と、両極間に配置されたセパレータと、電解液とが金属製の筐体に収容されたリチウムイオン電池からリチウムを回収する方法において、該筐体に塩水中で開口部を形成する工程と、開口部が形成された該筐体を、不活性雰囲気下、650〜720℃の範囲の温度に所定時間維持して焙焼する工程と、前記範囲の温度で焙焼されたリチウムイオン電池を破砕し、篩分けすることにより粗炭酸リチウムを得る工程と、該粗炭酸リチウムに、難溶性炭酸塩を生成し得る金属水酸化物溶液を添加し、水酸化リチウム溶液を得る工程と、該水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収する工程とを備えるリチウムイオン電池からのリチウムの回収方法を提案している(特願2019−124215号参照)。 In order to solve the above problem, the applicant applies a method for recovering lithium from a lithium ion battery in which a positive electrode, a negative electrode, a separator arranged between both electrodes, and an electrolytic solution are housed in a metal housing. In the step of forming an opening in the housing in salt water, and the housing in which the opening is formed is roasted in an inert atmosphere at a temperature in the range of 650 to 720 ° C. for a predetermined time. A step of obtaining crude lithium carbonate by crushing and sieving a lithium ion battery roasted at a temperature in the above range, and a metal hydroxide capable of producing a sparingly soluble carbonate in the crude lithium carbonate. We propose a method for recovering lithium from a lithium ion battery, which comprises a step of adding a solution to obtain a lithium hydroxide solution and a step of supplying carbon dioxide gas to the lithium hydroxide solution and recovering the precipitated lithium carbonate. (See Japanese Patent Application No. 2019-124215).

しかしながら、前記リチウムイオン電池からのリチウムの回収方法は、粗炭酸リチウムから、精製された炭酸リチウムを効率よく回収するために、さらなる改良が望まれる。 However, the method for recovering lithium from the lithium ion battery is desired to be further improved in order to efficiently recover purified lithium carbonate from crude lithium carbonate.

特開2012−229481号公報Japanese Unexamined Patent Publication No. 2012-229481

本発明は、かかる事情に鑑み、粗炭酸リチウムから、精製された炭酸リチウムを効率よく回収することができる炭酸リチウムの精製方法を提供することを目的とする。 In view of such circumstances, an object of the present invention is to provide a method for purifying lithium carbonate, which can efficiently recover purified lithium carbonate from crude lithium carbonate.

かかる目的を達成するために、本発明の炭酸リチウムの精製方法の第1の形態は、炭酸リチウムの精製方法であって、粗炭酸リチウムに、難溶性炭酸塩を生成し得る金属塩化物溶液及びアルカリ金属水酸化物溶液を添加し、水酸化リチウム溶液を得る工程と、該水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収する工程とを備えることを特徴とする。 In order to achieve such an object, the first embodiment of the method for purifying lithium carbonate of the present invention is a method for purifying lithium carbonate, which comprises a metal chloride solution capable of producing a sparingly soluble carbonate in crude lithium carbonate and a metal chloride solution. It is characterized by comprising a step of adding an alkali metal hydroxide solution to obtain a lithium hydroxide solution, and a step of supplying carbon dioxide gas to the lithium hydroxide solution and recovering the precipitated lithium carbonate.

本発明の炭酸リチウムの精製方法の第1の形態によれば、粗炭酸リチウムに、難溶性炭酸塩を生成し得る金属塩化物溶液及びアルカリ金属水酸化物溶液を添加することにより、液性がアルカリ性である条件下で、前記金属塩化物溶液を構成する金属と、炭酸との化合物としての難溶性炭酸塩の沈殿を生成させることができる。このとき、液性がアルカリ性であることにより、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物が前記難溶性炭酸塩に取り込まれる形で、同時に沈殿するので、結果としてリン、フッ素等の不純物の含有量が低減された水酸化リチウム溶液を得ることができる。 According to the first aspect of the method for purifying lithium carbonate of the present invention, by adding a metal chloride solution and an alkali metal hydroxide solution capable of producing a sparingly soluble carbonate to crude lithium carbonate, the liquid property is changed. Under alkaline conditions, a precipitate of a sparingly soluble carbonate as a compound of the metal constituting the metal chloride solution and carbonate can be formed. At this time, since the liquid is alkaline, impurities such as phosphorus and fluorine contained in the crude lithium carbonate are incorporated into the sparingly soluble carbonate and precipitated at the same time. As a result, phosphorus, fluorine and the like are added. A lithium hydroxide solution having a reduced impurity content can be obtained.

そして、本発明の炭酸リチウムの精製方法の第1の形態によれば、前記水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が低減され精製された高純度の炭酸リチウムを効率よく回収することができる。 Then, according to the first aspect of the method for purifying lithium carbonate of the present invention, the content of impurities such as phosphorus and fluorine is contained by supplying carbon dioxide gas to the lithium hydroxide solution and recovering the precipitated lithium carbonate. High-purity lithium carbonate can be efficiently recovered.

また、本発明の炭酸リチウムの精製方法の第1の形態は、前記粗炭酸リチウムに難溶性炭酸塩を生成し得る金属塩化物溶液及びアルカリ金属水酸化物溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、鉱酸を添加して粗リチウム塩溶液を得る工程を備えることが好ましい。このようにするときには、前記鉱酸の塩としての粗リチウム塩の溶液を得ることができ、前記粗炭酸リチウムからのリチウムの溶出量を増加させることができる。 Further, in the first embodiment of the method for purifying lithium carbonate of the present invention, the crude carbonate is prepared before adding a metal chloride solution and an alkali metal hydroxide solution capable of producing a sparingly soluble carbonate to the crude lithium carbonate. It is preferable to include a step of suspending lithium in water and adding a mineral acid to obtain a crude lithium salt solution. In this case, a solution of a crude lithium salt as a salt of the mineral acid can be obtained, and the amount of lithium eluted from the crude lithium carbonate can be increased.

そこで、前記粗炭酸リチウムに代えて、前記粗リチウム塩溶液を用いることにより、リン、フッ素等の不純物の含有量が低減されて精製された高純度の炭酸リチウムの収量を増加させることができる。 Therefore, by using the crude lithium salt solution instead of the crude lithium carbonate, the content of impurities such as phosphorus and fluorine can be reduced and the yield of purified high-purity lithium carbonate can be increased.

また、本発明の炭酸リチウムの精製方法の第2の形態は、炭酸リチウムの精製方法であって、粗炭酸リチウムに、アルミニウム塩溶液を添加した後、液性をpH4〜9の範囲に調整し、析出した水酸化アルミニウムを濾別してリチウムイオンと該アルミニウム塩の陰イオンとの塩からなる精製リチウム塩溶液を得る工程と、該精製リチウム塩溶液にアルカリ金属水酸化物溶液を添加し、水酸化リチウム溶液を得る工程と、該水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収する工程とを備えることを特徴とする。 The second form of the method for purifying lithium carbonate of the present invention is a method for purifying lithium carbonate, in which the liquid property is adjusted to the pH range of 4 to 9 after adding an aluminum salt solution to crude lithium carbonate. A step of obtaining a purified lithium salt solution composed of a salt of lithium ions and an anion of the aluminum salt by filtering the precipitated aluminum hydroxide, and adding an alkali metal hydroxide solution to the purified lithium salt solution to hydroxylate the solution. It is characterized by comprising a step of obtaining a lithium solution and a step of supplying carbon dioxide gas to the lithium hydroxide solution and recovering the precipitated lithium carbonate.

本発明の炭酸リチウムの精製方法の第2の形態によれば、まず、前記粗炭酸リチウムに、アルミニウム塩溶液を添加した後、液性をpH4〜9の範囲に調整する。このようにすると、アルミニウムは両性金属であるので、前記pHの範囲では難溶性の水酸化アルミニウムが析出する。このとき、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物が前記水酸化アルミニウムに取り込まれる形で、同時に析出する。 According to the second aspect of the method for purifying lithium carbonate of the present invention, first, an aluminum salt solution is added to the crude lithium carbonate, and then the liquid property is adjusted to the pH range of 4 to 9. In this way, since aluminum is an amphoteric metal, sparingly soluble aluminum hydroxide is precipitated in the above pH range. At this time, impurities such as phosphorus and fluorine contained in the crude lithium carbonate are simultaneously precipitated in the form of being incorporated into the aluminum hydroxide.

そこで、析出した水酸化アルミニウムを濾別すると、主としてリチウムイオンと前記アルミニウム塩の陰イオンとの塩からなるリチウム塩溶液が得られるが、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物は前記水酸化アルミニウムに取り込まれているので、結果としてリン、フッ素等の不純物の含有量が低減された精製リチウム塩溶液を得ることができる。 Therefore, when the precipitated aluminum hydroxide is filtered off, a lithium salt solution mainly composed of a salt of lithium ions and an anion of the aluminum salt is obtained, but impurities such as phosphorus and fluorine contained in the crude lithium carbonate are contained. Since it is incorporated into the aluminum hydroxide, a purified lithium salt solution having a reduced content of impurities such as phosphorus and fluorine can be obtained as a result.

そして、本発明の炭酸リチウムの精製方法の第2の形態によれば、前記精製リチウム塩溶液に、アルカリ金属水酸化物溶液を添加することにより、液性がアルカリ性になるので、リン、フッ素等の不純物の含有量が低減された水酸化リチウム溶液を得ることができる。 Then, according to the second aspect of the method for purifying lithium carbonate of the present invention, by adding an alkali metal hydroxide solution to the purified lithium salt solution, the liquid becomes alkaline, so that phosphorus, fluorine, etc. A lithium hydroxide solution having a reduced content of impurities can be obtained.

そこで、前記水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が著しく低減されて精製された高純度の炭酸リチウムを効率よく回収することができる。 Therefore, by supplying carbon dioxide gas to the lithium hydroxide solution and recovering the precipitated lithium carbonate, the content of impurities such as phosphorus and fluorine is remarkably reduced, and the purified high-purity lithium carbonate is efficiently recovered. can do.

また、本発明の炭酸リチウムの精製方法の第2の形態は、前記粗炭酸リチウムにアルミニウム塩溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、鉱酸を添加して粗リチウム塩溶液を得る工程を備えることが好ましい。このようにするときには、本発明の炭酸リチウムの精製方法の第1の形態と同様に、前記鉱酸の塩としての粗リチウム塩の溶液を得ることができ、前記粗炭酸リチウムからのリチウムの溶出量を増加させることができるので、前記粗炭酸リチウムに代えて、前記粗リチウム塩溶液を用いることにより、リン、フッ素等の不純物の含有量が低減されて精製された高純度の炭酸リチウムの収量を増加させることができる。 Further, in the second embodiment of the method for purifying lithium carbonate of the present invention, before adding the aluminum salt solution to the crude lithium carbonate, the crude lithium carbonate is suspended in water, and mineral acid is added to the crude lithium carbonate. It is preferable to include a step of obtaining a salt solution. In this case, similarly to the first embodiment of the method for purifying lithium carbonate of the present invention, a solution of a crude lithium salt as a salt of the mineral acid can be obtained, and elution of lithium from the crude lithium carbonate can be obtained. Since the amount can be increased, by using the crude lithium salt solution instead of the crude lithium carbonate, the content of impurities such as phosphorus and fluorine is reduced, and the yield of purified high-purity lithium carbonate is reduced. Can be increased.

また、本発明の炭酸リチウムの精製方法の第3の形態は、炭酸リチウムの精製方法であって、粗炭酸リチウムに、アルミニウム塩溶液を添加した後、液性をpH4〜9の範囲に調整し、析出した水酸化アルミニウムを濾別して精製リチウム塩溶液を得る工程と、該精製リチウム塩溶液に炭酸塩を添加し、析出した炭酸リチウムを回収する工程とを備えることを特徴とする。 The third form of the method for purifying lithium carbonate of the present invention is a method for purifying lithium carbonate, in which the liquid property is adjusted to the pH range of 4 to 9 after adding an aluminum salt solution to crude lithium carbonate. It is characterized by comprising a step of obtaining a purified lithium salt solution by filtering the precipitated aluminum hydroxide and a step of adding a carbonate to the purified lithium salt solution and recovering the precipitated lithium carbonate.

本発明の炭酸リチウムの精製方法の第3の形態によれば、本発明の炭酸リチウムの精製方法の第2の形態と同一にして精製リチウム塩溶液を得た後、該精製リチウム塩溶液に炭酸塩を添加し、析出した炭酸リチウムを回収する。前記精製リチウム塩溶液は前述のように、リン、フッ素等の不純物の含有量が低減されているので、該精製リチウム塩溶液に炭酸塩を添加し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が著しく低減されて精製された高純度の炭酸リチウムを効率よく回収することができる。 According to the third embodiment of the method for purifying lithium carbonate of the present invention, a purified lithium salt solution is obtained in the same manner as in the second embodiment of the method for purifying lithium carbonate of the present invention, and then the purified lithium salt solution is carbonated. Salt is added and the precipitated lithium carbonate is recovered. As described above, the purified lithium salt solution has a reduced content of impurities such as phosphorus and fluorine. Therefore, phosphorus is added to the purified lithium salt solution and the precipitated lithium carbonate is recovered. , The content of impurities such as fluorine is remarkably reduced, and purified high-purity lithium carbonate can be efficiently recovered.

本発明の炭酸リチウムの精製方法の第3の形態は、本発明の炭酸リチウムの精製方法の第2の形態と同様に、前記粗炭酸リチウムにアルミニウム塩溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、鉱酸を添加して粗リチウム塩溶液を得る工程を備えることが好ましく、このようにすることにより、リン、フッ素等の不純物の含有量が低減されて精製された高純度の炭酸リチウムの収量を増加させることができる。 The third embodiment of the method for purifying lithium carbonate of the present invention is the same as the second embodiment of the method for purifying lithium carbonate of the present invention, and the crude lithium carbonate is prepared before adding the aluminum salt solution to the crude lithium carbonate. It is preferable to provide a step of suspending the mixture in water and adding a mineral acid to obtain a crude lithium salt solution. By doing so, the content of impurities such as phosphorus and fluorine is reduced and the purified high is obtained. The yield of pure lithium carbonate can be increased.

本発明の炭酸リチウムの精製方法の第1〜第3の各形態において、前記粗炭酸リチウムとしては、例えば、正極と、負極と、両極間に配置されたセパレータと、電解液とが金属製の筐体に収容されたリチウムイオン電池の該筐体に塩水中で開口部を形成した後、開口部が形成された該筐体を、不活性雰囲気下、650〜720℃の範囲の温度に所定時間維持して焙焼されたリチウムイオン電池を破砕し、篩分けすることにより得られたものを用いることができる。 In each of the first to third embodiments of the method for purifying lithium carbonate of the present invention, the crude lithium carbonate includes, for example, a positive electrode, a negative electrode, a separator arranged between both electrodes, and an electrolytic solution made of metal. After forming an opening in the housing of the lithium ion battery housed in the housing in salt water, the housing in which the opening is formed is set to a temperature in the range of 650 to 720 ° C. in an inert atmosphere. A lithium ion battery obtained by crushing and sieving a lithium-ion battery that has been roasted for a long time can be used.

前記リチウムイオン電池の電解液は、例えば、六フッ化リン酸リチウム(LiPF)等の化合物を含有するので、前述のようにして得られた前記粗炭酸リチウムは、前記電解液由来のリン、フッ素等の不純物を含有しており、本発明の炭酸リチウムの精製方法の第1〜第3の各の形態による精製に適している。 Since the electrolytic solution of the lithium ion battery contains, for example, a compound such as lithium hexafluorophosphate (LiPF 6 ), the crude lithium carbonate obtained as described above is a phosphorus derived from the electrolytic solution. It contains impurities such as fluorine and is suitable for purification by each of the first to third forms of the method for purifying lithium carbonate of the present invention.

次に、本発明の実施の形態についてさらに詳しく説明する。 Next, embodiments of the present invention will be described in more detail.

本実施形態の炭酸リチウムの精製方法に用いる粗炭酸リチウムは、例えば、リチウムイオン電池の筐体に開口部を形成し、開口部が形成された該筐体を、不活性雰囲気下、650〜720℃の範囲の温度に所定時間維持して焙焼した後、焙焼されたリチウムイオン電池を破砕し、篩分けすることにより得ることができる。 The crude lithium carbonate used in the method for purifying lithium carbonate of the present embodiment has, for example, formed an opening in the housing of a lithium ion battery, and the housing in which the opening is formed is placed in an inert atmosphere from 650 to 720. It can be obtained by roasting while maintaining a temperature in the range of ° C. for a predetermined time, and then crushing and sieving the roasted lithium ion battery.

前記リチウムイオン電池は、電池製品としての寿命の消尽した使用済みのリチウムイオン電池、製造不良等の原因により廃棄されたリチウムイオン電池等であってもよく、未使用のリチウムイオン電池であってもよい。 The lithium-ion battery may be a used lithium-ion battery whose life as a battery product has expired, a lithium-ion battery discarded due to a manufacturing defect, or the like, or an unused lithium-ion battery. good.

前記リチウムイオン電池は、一般に、正極と負極とがセパレータを介して重ね合わされた状態で、電解液と共に鉄やアルミニウム等からなる金属製筐体に収容されている。前記正極はアルミニウム箔等からなる正極電極板に正極活物質が塗布されており、前記負極は銅箔等の負極電極板に負極活物質が塗布されている。 Generally, the lithium ion battery is housed in a metal housing made of iron, aluminum, or the like together with an electrolytic solution in a state where a positive electrode and a negative electrode are superposed with each other via a separator. The positive electrode is coated with a positive electrode active material on a positive electrode plate made of aluminum foil or the like, and the negative electrode is coated with a negative electrode active material on a negative electrode plate such as copper foil.

前記正極活物質は、例えば、前記リチウム化合物として、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、アルミン酸リチウム等のリチウムと他の金属との複合酸化物を含んでおり、前記負極活物質は、例えば、炭素を含んでいる。また、前記電解液は、例えば、六フッ化リン酸リチウム等の電解質が有機溶媒に溶解されている。 The positive electrode active material contains, for example, a composite oxide of lithium such as lithium cobaltate, lithium nickelate, lithium manganate, lithium aluminate and other metals as the lithium compound, and the negative electrode active material is , For example, contains carbon. Further, in the electrolytic solution, for example, an electrolyte such as lithium hexafluorophosphate is dissolved in an organic solvent.

前記リチウムイオン電池の筐体に開口部を形成する操作は、該筐体に機械的に破孔を形成することにより行ってもよく、該筐体の少なくとも一部を分解することにより行ってもよい。前記筐体に機械的に破孔を形成する操作は、例えば、所定の間隔を存して平行に配置される一方、互いに反対方向に回転する二軸のギヤを備えるギアクラッシャー等の装置を用いて行うことができる。 The operation of forming an opening in the housing of the lithium ion battery may be performed by mechanically forming a hole in the housing, or by disassembling at least a part of the housing. good. The operation of mechanically forming a hole in the housing uses, for example, a device such as a gear crusher provided with biaxial gears that are arranged in parallel with a predetermined interval and rotate in opposite directions. Can be done.

また、前記筐体に前記開口部が形成された前記リチウムイオン電池は、例えば塩水中に所定時間浸漬することにより、放電することが好ましい。前記リチウムイオン電池を放電しておくことにより、後工程における爆発(破裂)を回避することができる。 Further, it is preferable that the lithium ion battery having the opening formed in the housing is discharged by, for example, immersing it in salt water for a predetermined time. By discharging the lithium ion battery, it is possible to avoid an explosion (burst) in a subsequent process.

尚、本実施形態では、前記筐体に機械的に破孔を形成する操作を塩水中で行うことにより、開口部(破孔)の形成と放電とを同時に行うことができるので好ましい。 In this embodiment, it is preferable to perform the operation of mechanically forming a hole in the housing in salt water because the opening (hole) can be formed and the electric discharge can be performed at the same time.

前記開口部が形成された筐体の焙焼は、該筐体を不活性雰囲気下、600℃以上、好ましくは650〜720℃の範囲の温度に加熱することにより行うことができる。このようにすると、前記筐体に収容されているセパレータ及び電解液を構成する有機化合物が分解されて気化するが、本実施形態では、該筐体に開口部が形成されているので、気化した有機化合物は該開口部から該筐体外に放出され、爆発(破裂)することがない。また、前記焙焼を不活性雰囲気下で行うことにより、前記正極活物質に含まれるリチウム化合物が還元されて炭酸リチウムが生成する。 Roasting of the housing in which the opening is formed can be performed by heating the housing to a temperature in the range of 600 ° C. or higher, preferably 650 to 720 ° C. in an inert atmosphere. In this way, the organic compounds constituting the separator and the electrolytic solution contained in the housing are decomposed and vaporized, but in the present embodiment, since the opening is formed in the housing, the organic compounds are vaporized. The organic compound is released from the opening to the outside of the housing and does not explode (burst). Further, by performing the roasting in an inert atmosphere, the lithium compound contained in the cathode active material is reduced to generate lithium carbonate.

次に、焙焼されたリチウムイオン電池を粉砕し、篩分けすることにより、前記炭酸リチウムと、前記筐体、正極電極板、負極電極板、セパレータ等とが分離され、篩下に前記炭酸リチウムを粗炭酸リチウムとして得ることができる。前記リチウムイオン電池の粉砕は、例えば、二軸式破砕機等を用いて行うことができる。また、前記篩い分けは、例えば目開き0.5〜2mmの範囲の振動篩機を用いて行うことができる。 Next, the roasted lithium ion battery is crushed and sieved to separate the lithium carbonate from the housing, the positive electrode plate, the negative electrode plate, the separator, etc., and the lithium carbonate is under the sieve. Can be obtained as crude lithium carbonate. The lithium ion battery can be crushed by using, for example, a twin-screw crusher or the like. Further, the sieving can be performed using, for example, a vibrating sieving machine having a mesh size of 0.5 to 2 mm.

前記粗炭酸リチウムは、前記電解液由来のフッ素やリン酸の化合物の他、前記複合酸化物に由来するニッケル、コバルト等の金属を含んでいる。 The crude lithium carbonate contains a metal such as nickel and cobalt derived from the composite oxide in addition to the compound of fluorine and phosphoric acid derived from the electrolytic solution.

次に、本実施形態の炭酸リチウムの精製方法の第1の態様について説明する。 Next, the first aspect of the method for purifying lithium carbonate of this embodiment will be described.

本実施形態の炭酸リチウムの精製方法の第1の態様では、まず、前記のようにして得られた粗炭酸リチウムに、難溶性炭酸塩を生成し得る金属塩化物水溶液及びアルカリ金属水酸化物水溶液を添加する。前記難溶性炭酸塩を生成し得る金属塩化物としては、例えば、塩化カルシウム、塩化マグネシウム、塩化バリウム等を挙げることができる。また、前記アルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム等を挙げることができる。 In the first aspect of the method for purifying lithium carbonate of the present embodiment, first, a metal chloride aqueous solution and an alkali metal hydroxide aqueous solution capable of producing a sparingly soluble carbonate in the crude lithium carbonate obtained as described above are obtained. Is added. Examples of the metal chloride capable of producing the poorly soluble carbonate include calcium chloride, magnesium chloride, barium chloride and the like. Moreover, as said alkali metal hydroxide, sodium hydroxide, potassium hydroxide and the like can be mentioned.

前記粗炭酸リチウムに、難溶性炭酸塩を生成し得る金属塩化物溶液及びアルカリ金属水酸化物溶液を添加すると、前記金属塩化物溶液を構成する金属と、炭酸との化合物としての難溶性炭酸塩、例えば、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム等の沈殿を生成させることができる一方、水溶液中に水酸化リチウムが生成する。このとき、前記水溶液は、前記アルカリ金属水酸化物により、液性がアルカリ性となっているので、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物が前記難溶性炭酸塩に取り込まれる形で、同時に沈殿する。 When a metal chloride solution and an alkali metal hydroxide solution capable of producing a sparingly soluble carbonate are added to the crude lithium carbonate, the sparingly soluble carbonate as a compound of the metal constituting the metal chloride solution and carbonic acid. For example, while precipitation of calcium carbonate, magnesium carbonate, barium carbonate and the like can be formed, lithium hydroxide is formed in the aqueous solution. At this time, since the aqueous solution is alkaline due to the alkali metal hydroxide, impurities such as phosphorus and fluorine contained in the crude lithium carbonate are incorporated into the poorly soluble carbonate. , Precipitate at the same time.

そこで、前記難溶性炭酸塩の沈殿を濾別することにより、リン、フッ素等の不純物の含有量が低減された水酸化リチウム水溶液を得ることができる。 Therefore, by filtering the precipitate of the poorly soluble carbonate, it is possible to obtain an aqueous solution of lithium hydroxide having a reduced content of impurities such as phosphorus and fluorine.

本実施形態の炭酸リチウムの精製方法の第1の態様では、次に、前記水酸化リチウム水溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が低減され精製された高純度の炭酸リチウムを効率よく回収することができる。 In the first aspect of the method for purifying lithium carbonate of the present embodiment, the content of impurities such as phosphorus and fluorine is then contained by supplying carbon dioxide gas to the lithium hydroxide aqueous solution and recovering the precipitated lithium carbonate. High-purity lithium carbonate can be efficiently recovered.

また、本実施形態の炭酸リチウムの精製方法の第1の態様では、前記粗炭酸リチウムに難溶性炭酸塩を生成し得る金属塩化物溶液及びアルカリ金属水酸化物溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、塩酸等の鉱酸を添加してもよい。前記鉱酸として塩酸を用いる場合には、前記鉱酸の塩としての粗塩化リチウム水溶液を得ることができ、前記粗炭酸リチウムからのリチウムの溶出量を増加させることができる。 Further, in the first aspect of the method for purifying lithium carbonate of the present embodiment, the crude lithium carbonate solution is prepared before the metal chloride solution and the alkali metal hydroxide solution capable of producing a sparingly soluble carbonate are added to the crude lithium carbonate. Lithium carbonate may be suspended in water and a mineral acid such as hydrochloric acid may be added. When hydrochloric acid is used as the mineral acid, a crude lithium chloride aqueous solution as a salt of the mineral acid can be obtained, and the amount of lithium eluted from the crude lithium carbonate can be increased.

本実施形態の炭酸リチウムの精製方法の第1の態様では、前記粗炭酸リチウムに代えて、前記粗塩化リチウム水溶液を用いることにより、リン、フッ素等の不純物の含有量が低減されて精製された高純度の炭酸リチウムの収量を増加させることができる。 In the first aspect of the method for purifying lithium carbonate of the present embodiment, the content of impurities such as phosphorus and fluorine was reduced and purified by using the crude lithium chloride aqueous solution instead of the crude lithium carbonate. The yield of high-purity lithium carbonate can be increased.

次に、本実施形態の炭酸リチウムの精製方法の第2の態様について説明する。 Next, a second aspect of the method for purifying lithium carbonate of the present embodiment will be described.

本実施形態の炭酸リチウムの精製方法の第2の態様では、まず、前記のようにして得られた粗炭酸リチウムに、アルミニウム塩水溶液を添加した後、液性をpH4〜9の範囲に調整する。前記アルミニウム塩としては、塩化アルミニウム、硫酸アルミニウム、アルミン酸のアルカリ金属塩等を挙げることができる。 In the second aspect of the method for purifying lithium carbonate of the present embodiment, first, an aqueous aluminum salt solution is added to the crude lithium carbonate obtained as described above, and then the liquid property is adjusted to the pH range of 4 to 9. .. Examples of the aluminum salt include aluminum chloride, aluminum sulfate, alkali metal salts of aluminate, and the like.

前記pHの調整は、酸又はアルカリを添加することにより行うことができる。前記酸としては、例えば、塩酸、硫酸、硝酸等を挙げることができ、前記アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム等を挙げることができる。 The pH adjustment can be performed by adding an acid or an alkali. Examples of the acid include hydrochloric acid, sulfuric acid, nitric acid and the like, and examples of the alkali include sodium hydroxide, potassium hydroxide and the like.

このようにすると、アルミニウムは両性金属であるので、前記pHの範囲では難溶性の水酸化アルミニウムが析出する。このとき、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物が前記水酸化アルミニウムに取り込まれる形で、同時に析出する。 In this way, since aluminum is an amphoteric metal, sparingly soluble aluminum hydroxide is precipitated in the above pH range. At this time, impurities such as phosphorus and fluorine contained in the crude lithium carbonate are simultaneously precipitated in the form of being incorporated into the aluminum hydroxide.

そこで、析出した水酸化アルミニウムを濾別すると、主としてリチウムイオンと前記アルミニウム塩の陰イオンとの塩からなるリチウム塩水溶液が得られるが、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物は前記水酸化アルミニウムに取り込まれているので、結果としてリン、フッ素等の不純物の含有量が低減された精製リチウム塩溶液を得ることができる。前記リチウム塩は、例えば、前記アルミニウム塩が塩化アルミニウムである場合には、塩化リチウムが生成する。 Therefore, when the precipitated aluminum hydroxide is filtered off, an aqueous lithium salt solution mainly composed of a salt of lithium ions and an anion of the aluminum salt is obtained, but impurities such as phosphorus and fluorine contained in the crude lithium carbonate are contained. Since it is incorporated into the aluminum hydroxide, a purified lithium salt solution having a reduced content of impurities such as phosphorus and fluorine can be obtained as a result. The lithium salt is produced, for example, when the aluminum salt is aluminum chloride.

本実施形態の炭酸リチウムの精製方法の第2の態様では、次に、前記精製リチウム塩溶液に、アルカリ金属水酸化物溶液を添加することにより、液性がアルカリ性になるので、水溶液中に水酸化リチウムが生成する。前記アルカリ金属水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム等を挙げることができ、リン、フッ素等の不純物の含有量が低減された水酸化リチウム水溶液を得ることができる。 In the second aspect of the method for purifying lithium carbonate of the present embodiment, next, by adding an alkali metal hydroxide solution to the purified lithium salt solution, the liquid becomes alkaline, so that water is added to the aqueous solution. Lithium oxide is produced. Examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide and the like, and an aqueous solution of lithium hydroxide having a reduced content of impurities such as phosphorus and fluorine can be obtained.

本実施形態の炭酸リチウムの精製方法の第2の態様では、次に、前記水酸化リチウム水溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が著しく低減されて精製された高純度の炭酸リチウムを効率よく回収することができる。 In the second aspect of the method for purifying lithium carbonate of the present embodiment, the content of impurities such as phosphorus and fluorine is then contained by supplying carbon dioxide gas to the lithium hydroxide aqueous solution and recovering the precipitated lithium carbonate. High-purity lithium carbonate can be efficiently recovered with a significant reduction in the amount of lithium carbonate.

また、本実施形態の炭酸リチウムの精製方法の第2の態様では、前記粗炭酸リチウムに前記アルミニウム塩水溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、塩酸等の鉱酸を添加してもよい。このようにすることにより、前記鉱酸として塩酸を用いる場合には、前記鉱酸の塩としての粗塩化リチウム水溶液を得ることができ、前記粗炭酸リチウムからのリチウムの溶出量を増加させることができる。 Further, in the second aspect of the method for purifying lithium carbonate of the present embodiment, before adding the aqueous aluminum salt solution to the crude lithium carbonate, the crude lithium carbonate is suspended in water and a mineral acid such as hydrochloric acid is added. It may be added. By doing so, when hydrochloric acid is used as the mineral acid, a crude lithium chloride aqueous solution as a salt of the mineral acid can be obtained, and the amount of lithium eluted from the crude lithium carbonate can be increased. can.

本実施形態の炭酸リチウムの精製方法の第2の態様では、前記粗炭酸リチウムに代えて、前記粗塩化リチウム水溶液を用いることにより、リン、フッ素等の不純物の含有量が低減されて精製された高純度の炭酸リチウムの収量を増加させることができる。 In the second aspect of the method for purifying lithium carbonate of the present embodiment, the content of impurities such as phosphorus and fluorine was reduced and purified by using the crude lithium chloride aqueous solution instead of the crude lithium carbonate. The yield of high-purity lithium carbonate can be increased.

次に、本実施形態の炭酸リチウムの精製方法の第3の態様について説明する。 Next, a third aspect of the method for purifying lithium carbonate of the present embodiment will be described.

本実施形態の炭酸リチウムの精製方法の第3の態様では、本実施形態の炭酸リチウムの精製方法の第2の形態と同一にして精製リチウム塩溶液を得た後、該精製リチウム塩溶液に炭酸塩を添加し、析出した炭酸リチウムを回収する。前記炭酸塩としては、例えば、炭酸ナトリウム等のアルカリ金属炭酸塩を挙げることができる。 In the third aspect of the method for purifying lithium carbonate of the present embodiment, a purified lithium salt solution is obtained in the same manner as in the second embodiment of the method for purifying lithium carbonate of the present embodiment, and then the purified lithium salt solution is carbonated. Salt is added and the precipitated lithium carbonate is recovered. Examples of the carbonate include alkali metal carbonates such as sodium carbonate.

前記精製リチウム塩溶液は前述のように、リン、フッ素等の不純物の含有量が低減されているので、該精製リチウム塩溶液に前記炭酸塩を添加し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が著しく低減されて精製された高純度の炭酸リチウムを効率よく回収することができる。 As described above, the purified lithium salt solution has a reduced content of impurities such as phosphorus and fluorine. Therefore, by adding the carbonate to the purified lithium salt solution and recovering the precipitated lithium carbonate, The content of impurities such as phosphorus and fluorine is remarkably reduced, and purified high-purity lithium carbonate can be efficiently recovered.

本発明は、炭酸リチウムの精製方法に関する。 The present invention relates to a method for purifying lithium carbonate.

近年、リチウムイオン電池の普及に伴い、主として廃リチウムイオン電池からリチウム等の有価金属を回収する方法が種々提案されている。 In recent years, with the widespread use of lithium-ion batteries, various methods for recovering valuable metals such as lithium from waste lithium-ion batteries have been proposed.

例えば、従来、リチウムイオン電池からリチウムを回収する方法として、廃リチウムイオン電池を焙焼して、該廃リチウムイオン電池に正極活物質として含まれるリチウム化合物を還元して炭酸リチウムの形態とした後、該廃リチウムイオン電池を粉砕し、得られた粉末を水又は酸性溶液に溶解し、得られた溶液に炭酸イオンを供給してリチウムを炭酸水素リチウムとして溶解させた後、加熱して脱炭酸することにより析出する炭酸リチウムを回収する方法が知られている。 For example, conventionally, as a method of recovering lithium from a lithium ion battery, a waste lithium ion battery is roasted and a lithium compound contained as a positive electrode active material in the waste lithium ion battery is reduced to form lithium carbonate. , The waste lithium ion battery is crushed, the obtained powder is dissolved in water or an acidic solution, carbonate ions are supplied to the obtained solution to dissolve lithium as lithium hydrogen carbonate, and then heated to decarbonate. A method of recovering the precipitated lithium carbonate is known.

尚、前記廃リチウムイオン電池としては、電池製品としての寿命の消尽した使用済みのリチウムイオン電池、製造不良等の原因により廃棄されたリチウムイオン電池等が用いられる。 As the waste lithium ion battery, a used lithium ion battery whose life as a battery product has expired, a lithium ion battery discarded due to a manufacturing defect, or the like is used.

ところで、一般に、リチウムイオン電池は、正極と、負極と、両極間に配置されたセパレータと、電解液とが金属製の筐体に収容されており、該セパレータ及び電解液は有機化合物により構成されている。そこで、前記焙焼の際に廃リチウムイオン電池を急激に高温に加熱すると、前記筐体中で前記セパレータ及び電解液が気化し、該廃リチウムイオン電池が爆発(破裂)する虞があるという問題がある。 By the way, in general, in a lithium ion battery, a positive electrode, a negative electrode, a separator arranged between both electrodes, and an electrolytic solution are housed in a metal housing, and the separator and the electrolytic solution are composed of an organic compound. ing. Therefore, if the waste lithium ion battery is rapidly heated to a high temperature during roasting, the separator and the electrolytic solution may vaporize in the housing, and the waste lithium ion battery may explode (burst). There is.

そこで、従来、前記廃リチウム電池を焙焼する際に、まず、100〜250℃の温度に加熱して第の焙焼を行い、その後さらに300〜650℃の温度に加熱して第の焙焼を行うことにより該廃リチウムイオン電池に含まれるリチウムを炭酸リチウムの形態とすることが知られている(例えば、特許文献1参照)。このようにするときには、前記第1の焙焼でセパレータ及び電解液を構成する有機化合物が分解されるので、前記第2の焙焼において該廃リチウムイオン電池の爆発(破裂)を避けることができる。 Therefore, conventionally, when roasting the waste lithium battery, first performs a first roasting is heated to a temperature of 100 to 250 ° C., the second by heating to a temperature of then further 300 to 650 ° C. It is known that the lithium contained in the waste lithium ion battery is converted into the form of lithium carbonate by roasting (see, for example, Patent Document 1). In this case, since the organic compounds constituting the separator and the electrolytic solution are decomposed in the first roasting, the waste lithium ion battery can be avoided from exploding (exploding) in the second roasting. ..

しかし、前記特許文献1に記載の方法では、焙焼を2段階で行うため、処理が繁雑になるという問題がある。 However, the method described in Patent Document 1 has a problem that the processing becomes complicated because roasting is performed in two stages.

本出願人は、前記問題を解決するために、正極と、負極と、両極間に配置されたセパレータと、電解液とが金属製の筐体に収容されたリチウムイオン電池からリチウムを回収する方法において、該筐体に塩水中で開口部を形成する工程と、開口部が形成された該筐体を、不活性雰囲気下、650〜720℃の範囲の温度に所定時間維持して焙焼する工程と、前記範囲の温度で焙焼されたリチウムイオン電池を破砕し、篩分けすることにより粗炭酸リチウムを得る工程と、該粗炭酸リチウムに、難溶性炭酸塩を生成し得る金属水酸化物溶液を添加し、水酸化リチウム溶液を得る工程と、該水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収する工程とを備えるリチウムイオン電池からのリチウムの回収方法を提案している(特願2019−124215号参照)。 In order to solve the above problem, the applicant applies a method for recovering lithium from a lithium ion battery in which a positive electrode, a negative electrode, a separator arranged between both electrodes, and an electrolytic solution are housed in a metal housing. In the step of forming an opening in the housing in salt water, and the housing in which the opening is formed is roasted in an inert atmosphere at a temperature in the range of 650 to 720 ° C. for a predetermined time. A step of obtaining crude lithium carbonate by crushing and sieving a lithium ion battery roasted at a temperature in the above range, and a metal hydroxide capable of producing a sparingly soluble carbonate in the crude lithium carbonate. We propose a method for recovering lithium from a lithium ion battery, which comprises a step of adding a solution to obtain a lithium hydroxide solution and a step of supplying carbon dioxide gas to the lithium hydroxide solution and recovering the precipitated lithium carbonate. (See Japanese Patent Application No. 2019-124215).

しかしながら、前記リチウムイオン電池からのリチウムの回収方法は、粗炭酸リチウムから、精製された炭酸リチウムを効率よく回収するために、さらなる改良が望まれる。 However, the method for recovering lithium from the lithium ion battery is desired to be further improved in order to efficiently recover purified lithium carbonate from crude lithium carbonate.

特開2012−229481号公報Japanese Unexamined Patent Publication No. 2012-229481

本発明は、かかる事情に鑑み、粗炭酸リチウムから、精製された炭酸リチウムを効率よく回収することができる炭酸リチウムの精製方法を提供することを目的とする。 In view of such circumstances, an object of the present invention is to provide a method for purifying lithium carbonate, which can efficiently recover purified lithium carbonate from crude lithium carbonate.

かかる目的を達成するために、本発明の炭酸リチウムの精製方法は、炭酸リチウムの精製方法であって、粗炭酸リチウムに、難溶性炭酸塩を生成し得る金属塩化物溶液及びアルカリ金属水酸化物溶液を添加し、水酸化リチウム溶液を得る工程と、該水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収する工程とを備えることを特徴とする。 To achieve the above object, purification how lithium carbonate of the invention is a method of purifying lithium carbonate, the crude lithium carbonate, metal chloride solution to produce a sparingly soluble carbonates and alkali metal hydroxide It is characterized by including a step of adding a product solution to obtain a lithium hydroxide solution, and a step of supplying carbon dioxide gas to the lithium hydroxide solution and recovering the precipitated lithium carbonate.

本発明の炭酸リチウムの精製方法によれば、粗炭酸リチウムに、難溶性炭酸塩を生成し得る金属塩化物溶液及びアルカリ金属水酸化物溶液を添加することにより、液性がアルカリ性である条件下で、前記金属塩化物溶液を構成する金属と、炭酸との化合物としての難溶性炭酸塩の沈殿を生成させることができる。このとき、液性がアルカリ性であることにより、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物が前記難溶性炭酸塩に取り込まれる形で、同時に沈殿するので、結果としてリン、フッ素等の不純物の含有量が低減された水酸化リチウム溶液を得ることができる。 According to purification how lithium carbonate of the present invention, the crude lithium carbonate, by adding a metal chloride solution and alkali metal hydroxide solution to produce sparingly soluble carbonates, liquid is alkaline conditions Below, a precipitate of a sparingly soluble carbonate as a compound of the metal constituting the metal chloride solution and carbonate can be formed. At this time, since the liquid is alkaline, impurities such as phosphorus and fluorine contained in the crude lithium carbonate are incorporated into the sparingly soluble carbonate and precipitated at the same time. As a result, phosphorus, fluorine and the like are added. A lithium hydroxide solution having a reduced impurity content can be obtained.

そして、本発明の炭酸リチウムの精製方法によれば、前記水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が低減され精製された高純度の炭酸リチウムを効率よく回収することができる。 Then, according to the purification how lithium carbonate of the present invention, the carbon dioxide gas is supplied to the lithium hydroxide solution, by recovering the precipitated lithium carbonate, phosphorus, the content of impurities such as fluorine are reduced purified High-purity lithium carbonate can be efficiently recovered.

また、本発明の炭酸リチウムの精製方法は、前記粗炭酸リチウムに難溶性炭酸塩を生成し得る金属塩化物溶液及びアルカリ金属水酸化物溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、鉱酸を添加して粗リチウム塩溶液を得る工程を備えることが好ましい。このようにするときには、前記鉱酸の塩としての粗リチウム塩の溶液を得ることができ、前記粗炭酸リチウムからのリチウムの溶出量を増加させることができる。 Further, purification how lithium carbonate of the present invention, the prior coarse lithium carbonate is added sparingly soluble metal chloride solution carbonates may generate and alkali metal hydroxide solution, the crude lithium carbonate in water It is preferable to include a step of suspending and adding a mineral acid to obtain a crude lithium salt solution. In this case, a solution of a crude lithium salt as a salt of the mineral acid can be obtained, and the amount of lithium eluted from the crude lithium carbonate can be increased.

そこで、前記粗炭酸リチウムに代えて、前記粗リチウム塩溶液を用いることにより、リン、フッ素等の不純物の含有量が低減されて精製された高純度の炭酸リチウムの収量を増加させることができる Therefore, by using the crude lithium salt solution instead of the crude lithium carbonate, the content of impurities such as phosphorus and fluorine can be reduced and the yield of purified high-purity lithium carbonate can be increased .

発明の炭酸リチウムの精製方法において、前記粗炭酸リチウムとしては、例えば、正極と、負極と、両極間に配置されたセパレータと、電解液とが金属製の筐体に収容されたリチウムイオン電池の該筐体に塩水中で開口部を形成した後、開口部が形成された該筐体を、不活性雰囲気下、650〜720℃の範囲の温度に所定時間維持して焙焼されたリチウムイオン電池を破砕し、篩分けすることにより得られたものを用いることができる。 Oite purification how lithium carbonate of the present invention, examples of the crude lithium carbonate, for example, a positive electrode, a negative electrode, a separator disposed between the electrodes, and electrolytic solution are housed in a metal housing After forming an opening in the housing of the lithium ion battery in salt water, the housing in which the opening is formed is roasted in an inert atmosphere at a temperature in the range of 650 to 720 ° C. for a predetermined time. The lithium ion battery obtained by crushing and sieving the obtained lithium ion battery can be used.

前記リチウムイオン電池の電解液は、例えば、六フッ化リン酸リチウム(LiPF)等の化合物を含有するので、前述のようにして得られた前記粗炭酸リチウムは、前記電解液由来のリン、フッ素等の不純物を含有しており、本発明の炭酸リチウムの精製方法による精製に適している。 Since the electrolytic solution of the lithium ion battery contains, for example, a compound such as lithium hexafluorophosphate (LiPF 6 ), the crude lithium carbonate obtained as described above is a phosphorus derived from the electrolytic solution. It contains impurities such as fluorine and is suitable for purification by the method for purifying lithium carbonate of the present invention.

次に、本発明の実施の形態についてさらに詳しく説明する。 Next, embodiments of the present invention will be described in more detail.

本実施形態の炭酸リチウムの精製方法に用いる粗炭酸リチウムは、例えば、リチウムイオン電池の筐体に開口部を形成し、開口部が形成された該筐体を、不活性雰囲気下、650〜720℃の範囲の温度に所定時間維持して焙焼した後、焙焼されたリチウムイオン電池を破砕し、篩分けすることにより得ることができる。 The crude lithium carbonate used in the method for purifying lithium carbonate of the present embodiment has, for example, formed an opening in the housing of a lithium ion battery, and the housing in which the opening is formed is placed in an inert atmosphere from 650 to 720. It can be obtained by roasting while maintaining a temperature in the range of ° C. for a predetermined time, and then crushing and sieving the roasted lithium ion battery.

前記リチウムイオン電池は、電池製品としての寿命の消尽した使用済みのリチウムイオン電池、製造不良等の原因により廃棄されたリチウムイオン電池等であってもよく、未使用のリチウムイオン電池であってもよい。 The lithium-ion battery may be a used lithium-ion battery whose life as a battery product has expired, a lithium-ion battery discarded due to a manufacturing defect, or the like, or an unused lithium-ion battery. good.

前記リチウムイオン電池は、一般に、正極と負極とがセパレータを介して重ね合わされた状態で、電解液と共に鉄やアルミニウム等からなる金属製筐体に収容されている。前記正極はアルミニウム箔等からなる正極電極板に正極活物質が塗布されており、前記負極は銅箔等の負極電極板に負極活物質が塗布されている。 Generally, the lithium ion battery is housed in a metal housing made of iron, aluminum, or the like together with an electrolytic solution in a state where a positive electrode and a negative electrode are superposed with each other via a separator. The positive electrode is coated with a positive electrode active material on a positive electrode plate made of aluminum foil or the like, and the negative electrode is coated with a negative electrode active material on a negative electrode plate such as copper foil.

前記正極活物質は、例えば、前記リチウム化合物として、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、アルミン酸リチウム等のリチウムと他の金属との複合酸化物を含んでおり、前記負極活物質は、例えば、炭素を含んでいる。また、前記電解液は、例えば、六フッ化リン酸リチウム等の電解質が有機溶媒に溶解されている。 The positive electrode active material contains, for example, a composite oxide of lithium such as lithium cobaltate, lithium nickelate, lithium manganate, lithium aluminate and other metals as the lithium compound, and the negative electrode active material is , For example, contains carbon. Further, in the electrolytic solution, for example, an electrolyte such as lithium hexafluorophosphate is dissolved in an organic solvent.

前記リチウムイオン電池の筐体に開口部を形成する操作は、該筐体に機械的に破孔を形成することにより行ってもよく、該筐体の少なくとも一部を分解することにより行ってもよい。前記筐体に機械的に破孔を形成する操作は、例えば、所定の間隔を存して平行に配置される一方、互いに反対方向に回転する二軸のギヤを備えるギアクラッシャー等の装置を用いて行うことができる。 The operation of forming an opening in the housing of the lithium ion battery may be performed by mechanically forming a hole in the housing, or by disassembling at least a part of the housing. good. The operation of mechanically forming a hole in the housing uses, for example, a device such as a gear crusher provided with biaxial gears that are arranged in parallel with a predetermined interval and rotate in opposite directions. Can be done.

また、前記筐体に前記開口部が形成された前記リチウムイオン電池は、例えば塩水中に所定時間浸漬することにより、放電することが好ましい。前記リチウムイオン電池を放電しておくことにより、後工程における爆発(破裂)を回避することができる。 Further, it is preferable that the lithium ion battery having the opening formed in the housing is discharged by, for example, immersing it in salt water for a predetermined time. By discharging the lithium ion battery, it is possible to avoid an explosion (burst) in a subsequent process.

尚、本実施形態では、前記筐体に機械的に破孔を形成する操作を塩水中で行うことにより、開口部(破孔)の形成と放電とを同時に行うことができるので好ましい。 In this embodiment, it is preferable that the operation of mechanically forming a hole in the housing is performed in salt water, so that the opening (hole) can be formed and the electric discharge can be performed at the same time.

前記開口部が形成された筐体の焙焼は、該筐体を不活性雰囲気下、600℃以上、好ましくは650〜720℃の範囲の温度に加熱することにより行うことができる。このようにすると、前記筐体に収容されているセパレータ及び電解液を構成する有機化合物が分解されて気化するが、本実施形態では、該筐体に開口部が形成されているので、気化した有機化合物は該開口部から該筐体外に放出され、爆発(破裂)することがない。また、前記焙焼を不活性雰囲気下で行うことにより、前記正極活物質に含まれるリチウム化合物が還元されて炭酸リチウムが生成する。 Roasting of the housing in which the opening is formed can be performed by heating the housing to a temperature in the range of 600 ° C. or higher, preferably 650 to 720 ° C. in an inert atmosphere. In this way, the organic compounds constituting the separator and the electrolytic solution contained in the housing are decomposed and vaporized, but in the present embodiment, since the opening is formed in the housing, the organic compounds are vaporized. The organic compound is released from the opening to the outside of the housing and does not explode (burst). Further, by performing the roasting in an inert atmosphere, the lithium compound contained in the cathode active material is reduced to generate lithium carbonate.

次に、焙焼されたリチウムイオン電池を粉砕し、篩分けすることにより、前記炭酸リチウムと、前記筐体、正極電極板、負極電極板、セパレータ等とが分離され、篩下に前記炭酸リチウムを粗炭酸リチウムとして得ることができる。前記リチウムイオン電池の粉砕は、例えば、二軸式破砕機等を用いて行うことができる。また、前記篩い分けは、例えば目開き0.5〜2mmの範囲の振動篩機を用いて行うことができる。 Next, the roasted lithium ion battery is crushed and sieved to separate the lithium carbonate from the housing, the positive electrode plate, the negative electrode plate, the separator, etc., and the lithium carbonate is under the sieve. Can be obtained as crude lithium carbonate. The lithium ion battery can be crushed by using, for example, a twin-screw crusher or the like. Further, the sieving can be performed using, for example, a vibrating sieving machine having a mesh size of 0.5 to 2 mm.

前記粗炭酸リチウムは、前記電解液由来のフッ素やリン酸の化合物の他、前記複合酸化物に由来するニッケル、コバルト等の金属を含んでいる。 The crude lithium carbonate contains a metal such as nickel and cobalt derived from the composite oxide in addition to the compound of fluorine and phosphoric acid derived from the electrolytic solution.

次に、本実施形態の炭酸リチウムの精製方法について説明する。 Next, a description will be given of the purification how lithium carbonate of the present embodiment.

本実施形態の炭酸リチウムの精製方法では、まず、前記のようにして得られた粗炭酸リチウムに、難溶性炭酸塩を生成し得る金属塩化物水溶液及びアルカリ金属水酸化物水溶液を添加する。前記難溶性炭酸塩を生成し得る金属塩化物としては、例えば、塩化カルシウム、塩化マグネシウム、塩化バリウム等を挙げることができる。また、前記アルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム等を挙げることができる。 Purification how lithium carbonate of the present embodiment, first, the crude lithium carbonate obtained as described above, adding a metal chloride solution and alkali metal hydroxide solution to produce a sparingly soluble carbonate .. Examples of the metal chloride capable of producing the poorly soluble carbonate include calcium chloride, magnesium chloride, barium chloride and the like. Moreover, as said alkali metal hydroxide, sodium hydroxide, potassium hydroxide and the like can be mentioned.

前記粗炭酸リチウムに、難溶性炭酸塩を生成し得る金属塩化物溶液及びアルカリ金属水酸化物溶液を添加すると、前記金属塩化物溶液を構成する金属と、炭酸との化合物としての難溶性炭酸塩、例えば、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム等の沈殿を生成させることができる一方、水溶液中に水酸化リチウムが生成する。このとき、前記水溶液は、前記アルカリ金属水酸化物により、液性がアルカリ性となっているので、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物が前記難溶性炭酸塩に取り込まれる形で、同時に沈殿する。 Wherein the crude lithium carbonate, the addition of metal chloride solution and alkali metal hydroxide solution to produce sparingly soluble carbonates, and metal constituting the metal chloride aqueous solution, sparingly soluble carbonate as compound with carbonate Precipitations of salts such as calcium carbonate, magnesium carbonate, barium carbonate and the like can be formed, while lithium hydroxide is formed in the aqueous solution. At this time, since the aqueous solution is alkaline due to the alkali metal hydroxide, impurities such as phosphorus and fluorine contained in the crude lithium carbonate are incorporated into the poorly soluble carbonate. , Precipitate at the same time.

そこで、前記難溶性炭酸塩の沈殿を濾別することにより、リン、フッ素等の不純物の含有量が低減された水酸化リチウム水溶液を得ることができる。 Therefore, by filtering the precipitate of the poorly soluble carbonate, it is possible to obtain an aqueous solution of lithium hydroxide having a reduced content of impurities such as phosphorus and fluorine.

本実施形態の炭酸リチウムの精製方法では、次に、前記水酸化リチウム水溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が低減され精製された高純度の炭酸リチウムを効率よく回収することができる。 The purification how lithium carbonate of the present embodiment, then, the carbon dioxide gas is supplied to the lithium hydroxide aqueous solution, by recovering the precipitated lithium carbonate, phosphorus, the content of impurities such as fluorine are reduced Purified high-purity lithium carbonate can be efficiently recovered.

また、本実施形態の炭酸リチウムの精製方法では、前記粗炭酸リチウムに難溶性炭酸塩を生成し得る金属塩化物溶液及びアルカリ金属水酸化物溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、塩酸等の鉱酸を添加してもよい。前記鉱酸として塩酸を用いる場合には、前記鉱酸の塩としての粗塩化リチウム水溶液を得ることができ、前記粗炭酸リチウムからのリチウムの溶出量を増加させることができる。 Further, in the purification how lithium carbonate of the present embodiment, prior to adding the to the crude lithium carbonate to produce a sparingly soluble carbonate metal chloride solution and alkali metal hydroxide solution, the crude lithium carbonate It may be suspended in water and a mineral acid such as hydrochloric acid may be added. When hydrochloric acid is used as the mineral acid, a crude lithium chloride aqueous solution as a salt of the mineral acid can be obtained, and the amount of lithium eluted from the crude lithium carbonate can be increased.

本実施形態の炭酸リチウムの精製方法では、前記粗炭酸リチウムに代えて、前記粗塩化リチウム水溶液を用いることにより、リン、フッ素等の不純物の含有量が低減されて精製された高純度の炭酸リチウムの収量を増加させることができる The purification how lithium carbonate of the present embodiment, the place of the crude lithium carbonate by using the crude salt of an aqueous solution of lithium, phosphorus, high purity where the content of impurities such as fluorine are purified reduced The yield of lithium carbonate can be increased .

Claims (7)

炭酸リチウムの精製方法であって、
粗炭酸リチウムに、難溶性炭酸塩を生成し得る金属塩化物溶液及びアルカリ金属水酸化物溶液を添加し、水酸化リチウム溶液を得る工程と、
該水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収する工程とを備えることを特徴とする炭酸リチウムの精製方法。
It is a method for purifying lithium carbonate.
A step of adding a metal chloride solution and an alkali metal hydroxide solution capable of producing a sparingly soluble carbonate to crude lithium carbonate to obtain a lithium hydroxide solution.
A method for purifying lithium carbonate, which comprises a step of supplying carbon dioxide gas to the lithium hydroxide solution and recovering the precipitated lithium carbonate.
請求項1記載の炭酸リチウムの精製方法において、前記粗炭酸リチウムに難溶性炭酸塩を生成し得る金属塩化物溶液及びアルカリ金属水酸化物溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、鉱酸を添加して粗リチウム塩溶液を得る工程を備えることを特徴とする炭酸リチウムの精製方法。 In the method for purifying lithium carbonate according to claim 1, the crude lithium carbonate is suspended in water before adding a metal chloride solution and an alkali metal hydroxide solution capable of producing a sparingly soluble carbonate to the crude lithium carbonate. A method for purifying lithium carbonate, which comprises a step of turbidizing and adding a mineral acid to obtain a crude lithium salt solution. 炭酸リチウムの精製方法であって、
粗炭酸リチウムに、アルミニウム塩溶液を添加した後、液性をpH4〜9の範囲に調整し、析出した水酸化アルミニウムを濾別してリチウムイオンと該アルミニウム塩の陰イオンとの塩からなる精製リチウム塩溶液を得る工程と、
該精製リチウム塩溶液にアルカリ金属水酸化物溶液を添加し、水酸化リチウム溶液を得る工程と、
該水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収する工程とを備えることを特徴とする炭酸リチウムの精製方法。
It is a method for purifying lithium carbonate.
After adding an aluminum salt solution to crude lithium carbonate, the liquid property is adjusted to a pH range of 4 to 9, and the precipitated aluminum hydroxide is filtered off to form a purified lithium salt consisting of a salt of lithium ions and an anions of the aluminum salt. The process of obtaining the solution and
A step of adding an alkali metal hydroxide solution to the purified lithium salt solution to obtain a lithium hydroxide solution, and
A method for purifying lithium carbonate, which comprises a step of supplying carbon dioxide gas to the lithium hydroxide solution and recovering the precipitated lithium carbonate.
請求項3記載の炭酸リチウムの精製方法において、前記粗炭酸リチウムにアルミニウム塩溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、鉱酸を添加して粗リチウム塩溶液を得る工程を備えることを特徴とする炭酸リチウムの精製方法。 In the method for purifying lithium carbonate according to claim 3, a step of suspending the crude lithium carbonate in water and adding a mineral acid to obtain a crude lithium salt solution before adding the aluminum salt solution to the crude lithium carbonate. A method for purifying lithium carbonate, which comprises. 炭酸リチウムの精製方法であって、
粗炭酸リチウムに、アルミニウム塩溶液を添加した後、液性をpH4〜9の範囲に調整し、析出した水酸化アルミニウムを濾別して精製リチウム塩溶液を得る工程と、
該精製リチウム塩溶液に炭酸塩を添加し、析出した炭酸リチウムを回収する工程とを備えることを特徴とする炭酸リチウムの精製方法。
It is a method for purifying lithium carbonate.
A step of adding an aluminum salt solution to crude lithium carbonate, adjusting the liquid property to a pH range of 4 to 9, and filtering the precipitated aluminum hydroxide to obtain a purified lithium salt solution.
A method for purifying lithium carbonate, which comprises a step of adding a carbonate to the purified lithium salt solution and recovering the precipitated lithium carbonate.
請求項5記載の炭酸リチウムの精製方法において、前記粗炭酸リチウムにアルミニウム塩溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、鉱酸を添加して粗リチウム塩溶液を得る工程を備えることを特徴とする炭酸リチウムの精製方法。 In the method for purifying lithium carbonate according to claim 5, a step of suspending the crude lithium carbonate in water and adding a mineral acid to obtain a crude lithium salt solution before adding the aluminum salt solution to the crude lithium carbonate. A method for purifying lithium carbonate, which comprises. 請求項1〜請求項6のいずれか1項記載の炭酸リチウムの精製方法において、前記粗炭酸リチウムは、正極と、負極と、両極間に配置されたセパレータと、電解液とが金属製の筐体に収容されたリチウムイオン電池の該筐体に塩水中で開口部を形成した後、開口部が形成された該筐体を、不活性雰囲気下、650〜720℃の範囲の温度に所定時間維持して焙焼されたリチウムイオン電池を破砕し、篩分けすることにより得られたものであることを特徴とする炭酸リチウムの精製方法。 In the method for purifying lithium carbonate according to any one of claims 1 to 6, the crude lithium carbonate has a positive electrode, a negative electrode, a separator arranged between both electrodes, and an electrolytic solution made of metal. After forming an opening in the housing of the lithium ion battery housed in the body in salt water, the housing in which the opening is formed is kept at a temperature in the range of 650 to 720 ° C. for a predetermined time in an inert atmosphere. A method for purifying lithium carbonate, which is obtained by crushing and sieving a lithium ion battery that has been maintained and roasted.
JP2020007303A 2020-01-21 2020-01-21 Lithium carbonate purification method Active JP6861446B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020007303A JP6861446B1 (en) 2020-01-21 2020-01-21 Lithium carbonate purification method
JP2021000826A JP7442829B2 (en) 2020-01-21 2021-01-06 How to purify lithium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020007303A JP6861446B1 (en) 2020-01-21 2020-01-21 Lithium carbonate purification method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021000826A Division JP7442829B2 (en) 2020-01-21 2021-01-06 How to purify lithium carbonate

Publications (2)

Publication Number Publication Date
JP6861446B1 JP6861446B1 (en) 2021-04-21
JP2021113147A true JP2021113147A (en) 2021-08-05

Family

ID=75521016

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020007303A Active JP6861446B1 (en) 2020-01-21 2020-01-21 Lithium carbonate purification method
JP2021000826A Active JP7442829B2 (en) 2020-01-21 2021-01-06 How to purify lithium carbonate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021000826A Active JP7442829B2 (en) 2020-01-21 2021-01-06 How to purify lithium carbonate

Country Status (1)

Country Link
JP (2) JP6861446B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102552102B1 (en) * 2022-06-09 2023-07-06 한국선별기 주식회사 Method For Producing High Purity Lithium Carbonate From Waste Saggar Using Anion Exchange
WO2023140084A1 (en) * 2022-01-21 2023-07-27 株式会社アサカ理研 Method for recovering lithium from lithium-salt-containing aqueous solution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775505A (en) * 2010-02-08 2010-07-14 中南大学 Method and device for extracting lithium from lapidolite by chloridizing roasting method
JP2012229481A (en) * 2011-04-27 2012-11-22 Japan Metals & Chem Co Ltd Method for separating and recovering valuable material from used lithium ion battery
JP6647667B1 (en) * 2019-07-03 2020-02-14 株式会社アサカ理研 Method for recovering lithium from lithium ion battery
JP6651115B1 (en) * 2019-05-07 2020-02-19 株式会社アサカ理研 Method for recovering lithium from lithium ion battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4358954B2 (en) 1999-12-28 2009-11-04 株式会社アサカ理研 How to open a used sealed battery
JP2012106874A (en) 2010-11-15 2012-06-07 Sumitomo Metal Mining Co Ltd Method for purifying lithium hydroxide
JP6352669B2 (en) 2014-04-11 2018-07-04 Jx金属株式会社 Lithium-ion battery waste treatment method
JP2019178395A (en) 2018-03-30 2019-10-17 Jx金属株式会社 Collection method of lithium from lithium ion battery scrap

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775505A (en) * 2010-02-08 2010-07-14 中南大学 Method and device for extracting lithium from lapidolite by chloridizing roasting method
JP2012229481A (en) * 2011-04-27 2012-11-22 Japan Metals & Chem Co Ltd Method for separating and recovering valuable material from used lithium ion battery
JP6651115B1 (en) * 2019-05-07 2020-02-19 株式会社アサカ理研 Method for recovering lithium from lithium ion battery
JP6647667B1 (en) * 2019-07-03 2020-02-14 株式会社アサカ理研 Method for recovering lithium from lithium ion battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140084A1 (en) * 2022-01-21 2023-07-27 株式会社アサカ理研 Method for recovering lithium from lithium-salt-containing aqueous solution
JP7385976B1 (en) 2022-01-21 2023-11-24 株式会社アサカ理研 Method for recovering lithium from aqueous liquids containing lithium salts
KR102552102B1 (en) * 2022-06-09 2023-07-06 한국선별기 주식회사 Method For Producing High Purity Lithium Carbonate From Waste Saggar Using Anion Exchange

Also Published As

Publication number Publication date
JP7442829B2 (en) 2024-03-05
JP6861446B1 (en) 2021-04-21
JP2021116475A (en) 2021-08-10

Similar Documents

Publication Publication Date Title
JP6651115B1 (en) Method for recovering lithium from lithium ion battery
US6514311B1 (en) Clean process of recovering metals from waste lithium ion batteries
CN110112481B (en) Method for preparing lithium iron phosphate positive material by recycling waste lithium iron phosphate batteries
CN106910889B (en) A method of regenerating positive active material from waste lithium iron phosphate battery
JP6647667B1 (en) Method for recovering lithium from lithium ion battery
CN108075202B (en) Comprehensive recovery method of lithium iron phosphate anode material
CN111392750B (en) Method for removing impurities and recovering lithium from waste lithium ion batteries
JP4144820B2 (en) Method for regenerating positive electrode active material from lithium ion secondary battery
EP2597164B1 (en) Method for separating nikel and cobalt from active materials contained in spent nickel-hydrogen battery
KR101497041B1 (en) Method for recovering valuable metals from cathodic active material of used lithium battery
KR101823952B1 (en) A Method For Preparing Lithium Carbonate By Recycling Lithium From Used Anode Of Lithium Ion Seondary Battery
KR102154599B1 (en) Method for Separation and Recovery of Valuable Metals from Cathode Active Material
JPH116020A (en) Method for recovering high-purity cobalt compound from scrap lithium ion battery
CN112310500B (en) Method for separating aluminum element from waste lithium iron phosphate material
JP7442829B2 (en) How to purify lithium carbonate
JP7232119B2 (en) Method for processing lithium-ion battery waste and method for producing sulfate
JP2010040458A (en) Lithium recovery method and metal-recovering method
KR20170052012A (en) Recycling method for waste electrode of lithium secondary battery
JP7084669B1 (en) How to recover lithium from waste lithium-ion batteries
Zhu et al. Recycling of waste carbon residue from spent lithium-ion batteries via constant-pressure acid leaching
JP7286085B2 (en) Method for recovering lithium from lithium-ion batteries
WO2024066184A1 (en) Method for recycling lithium iron phosphate battery
EP3006580B1 (en) Method for producing nickel-containing acidic solution
JP7060899B1 (en) Lithium recovery system from waste lithium-ion batteries
CN117897508A (en) Method for recovering lithium from waste lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201002

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201002

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210323

R150 Certificate of patent or registration of utility model

Ref document number: 6861446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150