JP7442829B2 - How to purify lithium carbonate - Google Patents

How to purify lithium carbonate Download PDF

Info

Publication number
JP7442829B2
JP7442829B2 JP2021000826A JP2021000826A JP7442829B2 JP 7442829 B2 JP7442829 B2 JP 7442829B2 JP 2021000826 A JP2021000826 A JP 2021000826A JP 2021000826 A JP2021000826 A JP 2021000826A JP 7442829 B2 JP7442829 B2 JP 7442829B2
Authority
JP
Japan
Prior art keywords
lithium
lithium carbonate
carbonate
crude
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021000826A
Other languages
Japanese (ja)
Other versions
JP2021116475A (en
Inventor
幸雄 佐久間
順 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asaka Riken Co Ltd
Original Assignee
Asaka Riken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asaka Riken Co Ltd filed Critical Asaka Riken Co Ltd
Priority to JP2021000826A priority Critical patent/JP7442829B2/en
Publication of JP2021116475A publication Critical patent/JP2021116475A/en
Application granted granted Critical
Publication of JP7442829B2 publication Critical patent/JP7442829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Secondary Cells (AREA)

Description

本発明は、炭酸リチウムの精製方法に関する。 The present invention relates to a method for purifying lithium carbonate.

近年、リチウムイオン電池の普及に伴い、主として廃リチウムイオン電池からリチウム等の有価金属を回収する方法が種々提案されている。 In recent years, with the spread of lithium ion batteries, various methods have been proposed for recovering valuable metals such as lithium mainly from waste lithium ion batteries.

例えば、従来、リチウムイオン電池からリチウムを回収する方法として、廃リチウムイオン電池を焙焼して、該廃リチウムイオン電池に正極活物質として含まれるリチウム化合物を還元して炭酸リチウムの形態とした後、該廃リチウムイオン電池を粉砕し、得られた粉末を水又は酸性溶液に溶解し、得られた溶液に炭酸イオンを供給してリチウムを炭酸水素リチウムとして溶解させた後、加熱して脱炭酸することにより析出する炭酸リチウムを回収する方法が知られている。 For example, conventionally, as a method for recovering lithium from lithium ion batteries, waste lithium ion batteries are roasted and the lithium compound contained in the waste lithium ion batteries as a positive electrode active material is reduced to form lithium carbonate. , crush the waste lithium ion battery, dissolve the resulting powder in water or an acidic solution, supply carbonate ions to the resulting solution to dissolve lithium as lithium hydrogen carbonate, and then heat to decarboxylate. A method of recovering precipitated lithium carbonate by doing so is known.

尚、前記廃リチウムイオン電池としては、電池製品としての寿命の消尽した使用済みのリチウムイオン電池、製造不良等の原因により廃棄されたリチウムイオン電池等が用いられる。 As the waste lithium ion battery, used lithium ion batteries that have reached the end of their useful life as battery products, lithium ion batteries that have been discarded due to manufacturing defects, etc. are used.

ところで、一般に、リチウムイオン電池は、正極と、負極と、両極間に配置されたセパレータと、電解液とが金属製の筐体に収容されており、該セパレータ及び電解液は有機化合物により構成されている。この結果、前記焙焼の際に廃リチウムイオン電池を急激に高温に加熱すると、前記筐体中で前記セパレータ及び電解液が気化し、該廃リチウムイオン電池が爆発(破裂)する虞があるという問題がある。 By the way, in general, a lithium ion battery has a positive electrode, a negative electrode, a separator disposed between the two electrodes, and an electrolytic solution housed in a metal case, and the separator and the electrolytic solution are made of an organic compound. ing. As a result, if the waste lithium ion battery is rapidly heated to a high temperature during the roasting process, the separator and electrolyte may vaporize in the casing, causing the waste lithium ion battery to explode (rupture). There's a problem.

そこで、従来、前記廃リチウム電池を焙焼する際に、まず、100~250℃の温度に加熱して第1の焙焼を行い、その後さらに300~650℃の温度に加熱して第2の焙焼を行うことにより該廃リチウムイオン電池に含まれるリチウムを炭酸リチウムの形態とすることが知られている(例えば、特許文献1参照)。このようにするときには、前記第1の焙焼でセパレータ及び電解液を構成する有機化合物が分解されるので、前記第2の焙焼において該廃リチウムイオン電池の爆発(破裂)を避けることができる。 Conventionally, when roasting the waste lithium battery, it is first heated to a temperature of 100 to 250°C to perform a first roasting process, and then further heated to a temperature of 300 to 650°C to perform a second roasting process. It is known to convert the lithium contained in the waste lithium ion battery into lithium carbonate by roasting it (for example, see Patent Document 1). In this case, since organic compounds constituting the separator and electrolyte are decomposed in the first roasting, explosion (rupture) of the waste lithium ion battery can be avoided in the second roasting. .

しかし、前記特許文献1に記載の方法では、焙焼を2段階で行うため、処理が繁雑になるという問題がある。 However, the method described in Patent Document 1 has a problem in that the roasting is performed in two stages, which makes the process complicated.

本出願人は、前記問題を解決するために、正極と、負極と、両極間に配置されたセパレータと、電解液とが金属製の筐体に収容されたリチウムイオン電池からリチウムを回収する方法において、該筐体に塩水中で開口部を形成する工程と、開口部が形成された該筐体を、不活性雰囲気下、650~720℃の範囲の温度に所定時間維持して焙焼する工程と、前記範囲の温度で焙焼されたリチウムイオン電池を破砕し、篩分けすることにより粗炭酸リチウムを得る工程と、該粗炭酸リチウムに、難溶性炭酸塩を生成し得る金属水酸化物溶液を添加し、水酸化リチウム溶液を得る工程と、該水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収する工程とを備えるリチウムイオン電池からのリチウムの回収方法を提案している(特願2019-124215号参照)。 In order to solve the above problem, the present applicant has proposed a method for recovering lithium from a lithium ion battery in which a positive electrode, a negative electrode, a separator placed between the two electrodes, and an electrolyte are housed in a metal case. forming an opening in the casing in salt water, and roasting the casing with the opening formed therein by maintaining it at a temperature in the range of 650 to 720°C for a predetermined period of time in an inert atmosphere. a step of crushing the lithium ion battery roasted at a temperature in the above range and sieving it to obtain crude lithium carbonate; and adding a metal hydroxide capable of producing a hardly soluble carbonate to the crude lithium carbonate. A method for recovering lithium from a lithium ion battery is proposed, which includes a step of adding a solution to obtain a lithium hydroxide solution, and a step of supplying carbon dioxide gas to the lithium hydroxide solution and recovering precipitated lithium carbonate. (See patent application No. 2019-124215).

しかしながら、前記リチウムイオン電池からのリチウムの回収方法は、粗炭酸リチウムから、精製された炭酸リチウムを効率よく回収するために、さらなる改良が望まれる。 However, further improvements are desired in the method for recovering lithium from lithium ion batteries in order to efficiently recover purified lithium carbonate from crude lithium carbonate.

特開2012-229481号公報JP2012-229481A

本発明は、かかる事情に鑑み、粗炭酸リチウムから、精製された炭酸リチウムを効率よく回収することができる炭酸リチウムの精製方法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a method for purifying lithium carbonate that can efficiently recover purified lithium carbonate from crude lithium carbonate.

かかる目的を達成するために、本発明の炭酸リチウムの精製方法の第1の形態は、炭酸リチウムの精製方法であって、粗炭酸リチウムに、アルミニウム塩溶液を添加した後、液性をpH4~9の範囲に調整し、析出した水酸化アルミニウムを濾別してリチウムイオンと該アルミニウム塩の陰イオンとの塩からなる精製リチウム塩溶液を得る工程と、該精製リチウム塩溶液にアルカリ金属水酸化物溶液を添加し、水酸化リチウム溶液を得る工程と、該水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収する工程とを備えることを特徴とする。 In order to achieve such an object, the first form of the lithium carbonate purification method of the present invention is a lithium carbonate purification method, in which an aluminum salt solution is added to crude lithium carbonate, and then the liquid is adjusted to a pH of 4 to 4. 9 and filtering out the precipitated aluminum hydroxide to obtain a purified lithium salt solution consisting of a salt of lithium ions and anions of the aluminum salt, and adding an alkali metal hydroxide solution to the purified lithium salt solution. The method is characterized by comprising a step of adding lithium hydroxide to obtain a lithium hydroxide solution, and a step of supplying carbon dioxide gas to the lithium hydroxide solution and recovering the precipitated lithium carbonate.

本発明の炭酸リチウムの精製方法の第1の形態によれば、まず、前記粗炭酸リチウムに、アルミニウム塩溶液を添加した後、液性をpH4~9の範囲に調整する。このようにすると、アルミニウムは両性金属であるので、前記pHの範囲では難溶性の水酸化アルミニウムが析出する。このとき、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物が前記水酸化アルミニウムに取り込まれる形で、同時に析出する。 According to the first embodiment of the method for purifying lithium carbonate of the present invention, first, an aluminum salt solution is added to the crude lithium carbonate, and then the liquid property is adjusted to a pH range of 4 to 9. In this case, since aluminum is an amphoteric metal, hardly soluble aluminum hydroxide is precipitated in the above pH range. At this time, impurities such as phosphorus and fluorine contained in the crude lithium carbonate are incorporated into the aluminum hydroxide and simultaneously precipitate.

そこで、析出した水酸化アルミニウムを濾別すると、主としてリチウムイオンと前記アルミニウム塩の陰イオンとの塩からなるリチウム塩溶液が得られるが、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物は前記水酸化アルミニウムに取り込まれているので、結果としてリン、フッ素等の不純物の含有量が低減された精製リチウム塩溶液を得ることができる。 Therefore, when the precipitated aluminum hydroxide is separated by filtration, a lithium salt solution consisting mainly of lithium ions and the anion of the aluminum salt is obtained, but impurities such as phosphorus and fluorine contained in the crude lithium carbonate are removed. Since it is incorporated into the aluminum hydroxide, it is possible to obtain a purified lithium salt solution with a reduced content of impurities such as phosphorus and fluorine.

そして、本発明の炭酸リチウムの精製方法の第1の形態によれば、前記精製リチウム塩溶液に、アルカリ金属水酸化物溶液を添加することにより、液性がアルカリ性になるので、リン、フッ素等の不純物の含有量が低減された水酸化リチウム溶液を得ることができる。 According to the first embodiment of the method for purifying lithium carbonate of the present invention, by adding an alkali metal hydroxide solution to the purified lithium salt solution, the liquid becomes alkaline, so that phosphorus, fluorine, etc. A lithium hydroxide solution with a reduced content of impurities can be obtained.

そこで、前記水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が著しく低減されて精製された高純度の炭酸リチウムを効率よく回収することができる。 Therefore, by supplying carbon dioxide gas to the lithium hydroxide solution and recovering the precipitated lithium carbonate, highly purified lithium carbonate with significantly reduced content of impurities such as phosphorus and fluorine can be efficiently recovered. can do.

また、本発明の炭酸リチウムの精製方法の第1の形態は、前記粗炭酸リチウムにアルミニウム塩溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、鉱酸を添加して粗リチウム塩溶液を得る工程を備えることが好ましい。このようにするときには、前記鉱酸の塩としての粗リチウム塩の溶液を得ることができ、前記粗炭酸リチウムからのリチウムの溶出量を増加させることができるので、前記粗炭酸リチウムに代えて、前記粗リチウム塩溶液を用いることにより、リン、フッ素等の不純物の含有量が低減されて精製された高純度の炭酸リチウムの収量を増加させることができる。 Further, in a first embodiment of the method for purifying lithium carbonate of the present invention, before adding an aluminum salt solution to the crude lithium carbonate, the crude lithium carbonate is suspended in water, and a mineral acid is added to produce the crude lithium carbonate. Preferably, the method includes a step of obtaining a salt solution. When doing this, it is possible to obtain a solution of a crude lithium salt as a salt of the mineral acid, and the amount of lithium eluted from the crude lithium carbonate can be increased, so instead of the crude lithium carbonate, By using the crude lithium salt solution, the content of impurities such as phosphorus and fluorine can be reduced, and the yield of purified high-purity lithium carbonate can be increased.

また、本発明の炭酸リチウムの精製方法の第2の形態は、炭酸リチウムの精製方法であって、粗炭酸リチウムに、アルミニウム塩溶液を添加した後、液性をpH4~9の範囲に調整し、析出した水酸化アルミニウムを濾別して精製リチウム塩溶液を得る工程と、該精製リチウム塩溶液に炭酸塩を添加し、析出した炭酸リチウムを回収する工程とを備えることを特徴とする。 Further, a second form of the method for purifying lithium carbonate of the present invention is a method for refining lithium carbonate, which involves adding an aluminum salt solution to crude lithium carbonate, and then adjusting the liquid property to a pH range of 4 to 9. The method is characterized by comprising a step of filtering out precipitated aluminum hydroxide to obtain a purified lithium salt solution, and a step of adding a carbonate to the purified lithium salt solution and recovering the precipitated lithium carbonate.

本発明の炭酸リチウムの精製方法の第2の形態によれば、本発明の炭酸リチウムの精製方法の第1の形態と同一にして精製リチウム塩溶液を得た後、該精製リチウム塩溶液に炭酸塩を添加し、析出した炭酸リチウムを回収する。前記精製リチウム塩溶液は前述のように、リン、フッ素等の不純物の含有量が低減されているので、該精製リチウム塩溶液に炭酸塩を添加し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が著しく低減されて精製された高純度の炭酸リチウムを効率よく回収することができる。 According to the second embodiment of the method for purifying lithium carbonate of the present invention, after obtaining a purified lithium salt solution in the same manner as in the first embodiment of the method for purifying lithium carbonate of the present invention, the purified lithium salt solution is added to carbonate. Add salt and collect the precipitated lithium carbonate. As mentioned above, the purified lithium salt solution has a reduced content of impurities such as phosphorus and fluorine, so by adding carbonate to the purified lithium salt solution and recovering the precipitated lithium carbonate, phosphorus can be removed. , highly purified lithium carbonate with significantly reduced content of impurities such as fluorine can be efficiently recovered.

本発明の炭酸リチウムの精製方法の第2の形態は、本発明の炭酸リチウムの精製方法の第1の形態と同様に、前記粗炭酸リチウムにアルミニウム塩溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、鉱酸を添加して粗リチウム塩溶液を得る工程を備えることが好ましく、このようにすることにより、リン、フッ素等の不純物の含有量が低減されて精製された高純度の炭酸リチウムの収量を増加させることができる。 In the second embodiment of the method for purifying lithium carbonate of the present invention, as in the first embodiment of the method for purifying lithium carbonate of the present invention, before adding an aluminum salt solution to the crude lithium carbonate, It is preferable to include a step of suspending the lithium salt in water and adding a mineral acid to obtain a crude lithium salt solution.By doing this, the content of impurities such as phosphorus and fluorine is reduced and the refined lithium salt solution is obtained. The yield of purity lithium carbonate can be increased.

本発明の炭酸リチウムの精製方法の各形態において、前記粗炭酸リチウムとしては、例えば、正極と、負極と、両極間に配置されたセパレータと、電解液とが金属製の筐体に収容されたリチウムイオン電池の該筐体に塩水中で開口部を形成した後、開口部が形成された該筐体を、不活性雰囲気下、650~720℃の範囲の温度に所定時間維持して焙焼されたリチウムイオン電池を破砕し、篩分けすることにより得られたものを用いることができる。 In each embodiment of the method for purifying lithium carbonate of the present invention, the crude lithium carbonate may include, for example, a positive electrode, a negative electrode, a separator disposed between the two electrodes, and an electrolytic solution housed in a metal housing. After forming an opening in the casing of the lithium ion battery in salt water, the casing with the opening formed therein is roasted by maintaining it at a temperature in the range of 650 to 720°C for a predetermined period of time in an inert atmosphere. A product obtained by crushing the lithium ion battery and sieving it can be used.

前記リチウムイオン電池の電解液は、例えば、六フッ化リン酸リチウム(LiPF)等の化合物を含有するので、前述のようにして得られた前記粗炭酸リチウムは、前記電解液由来のリン、フッ素等の不純物を含有しており、本発明の炭酸リチウムの精製方法の各形態による精製に適している。 Since the electrolyte of the lithium ion battery contains a compound such as lithium hexafluorophosphate (LiPF 6 ), the crude lithium carbonate obtained as described above contains phosphorus derived from the electrolyte, It contains impurities such as fluorine, and is suitable for purification by each form of the lithium carbonate purification method of the present invention.

次に、本発明の実施の形態についてさらに詳しく説明する。 Next, embodiments of the present invention will be described in more detail.

本実施形態の炭酸リチウムの精製方法に用いる粗炭酸リチウムは、例えば、リチウムイオン電池の筐体に開口部を形成し、開口部が形成された該筐体を、不活性雰囲気下、650~720℃の範囲の温度に所定時間維持して焙焼した後、焙焼されたリチウムイオン電池を破砕し、篩分けすることにより得ることができる。 The crude lithium carbonate used in the lithium carbonate purification method of the present embodiment is produced by, for example, forming an opening in a casing of a lithium ion battery, and storing the casing with the opening at a temperature of 650 to 720 ml under an inert atmosphere. It can be obtained by roasting the battery by maintaining it at a temperature in the range of °C for a predetermined period of time, then crushing the roasted lithium ion battery and sieving it.

前記リチウムイオン電池は、電池製品としての寿命の消尽した使用済みのリチウムイオン電池、製造不良等の原因により廃棄されたリチウムイオン電池等であってもよく、未使用のリチウムイオン電池であってもよい。 The lithium ion battery may be a used lithium ion battery whose life as a battery product has been exhausted, a lithium ion battery discarded due to manufacturing defects, etc., or an unused lithium ion battery. good.

前記リチウムイオン電池は、一般に、正極と負極とがセパレータを介して重ね合わされた状態で、電解液と共に鉄やアルミニウム等からなる金属製筐体に収容されている。前記正極はアルミニウム箔等からなる正極電極板に正極活物質が塗布されており、前記負極は銅箔等の負極電極板に負極活物質が塗布されている。 The lithium ion battery is generally housed in a metal housing made of iron, aluminum, or the like, with a positive electrode and a negative electrode stacked on top of each other with a separator interposed therebetween, together with an electrolyte. The positive electrode has a positive electrode plate made of aluminum foil or the like coated with a positive electrode active material, and the negative electrode has a negative electrode plate made of copper foil or the like coated with a negative electrode active material.

前記正極活物質は、例えば、前記リチウム化合物として、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、アルミン酸リチウム等のリチウムと他の金属との複合酸化物を含んでおり、前記負極活物質は、例えば、炭素を含んでいる。また、前記電解液は、例えば、六フッ化リン酸リチウム等の電解質が有機溶媒に溶解されている。 The positive electrode active material contains, for example, a composite oxide of lithium and another metal, such as lithium cobalt oxide, lithium nickel oxide, lithium manganate, or lithium aluminate, as the lithium compound, and the negative electrode active material includes , for example, contains carbon. Further, the electrolytic solution includes, for example, an electrolyte such as lithium hexafluorophosphate dissolved in an organic solvent.

前記リチウムイオン電池の筐体に開口部を形成する操作は、該筐体に機械的に破孔を形成することにより行ってもよく、該筐体の少なくとも一部を分解することにより行ってもよい。前記筐体に機械的に破孔を形成する操作は、例えば、所定の間隔を存して平行に配置される一方、互いに反対方向に回転する二軸のギヤを備えるギアクラッシャー等の装置を用いて行うことができる。 The operation of forming an opening in the casing of the lithium ion battery may be performed by mechanically forming a hole in the casing, or by disassembling at least a portion of the casing. good. The operation of mechanically forming a hole in the casing is performed using, for example, a device such as a gear crusher equipped with two shaft gears that are arranged in parallel with a predetermined interval and rotate in opposite directions. It can be done by

また、前記筐体に前記開口部が形成された前記リチウムイオン電池は、例えば塩水中に所定時間浸漬することにより、放電することが好ましい。前記リチウムイオン電池を放電しておくことにより、後工程における爆発(破裂)を回避することができる。 Further, it is preferable that the lithium ion battery in which the opening is formed in the housing is discharged, for example, by being immersed in salt water for a predetermined period of time. By discharging the lithium ion battery, explosion (rupture) in subsequent steps can be avoided.

尚、本実施形態では、前記筐体に機械的に破孔を形成する操作を塩水中で行うことにより、開口部(破孔)の形成と放電とを同時に行うことができるので好ましい。 In this embodiment, it is preferable to perform the operation of mechanically forming a hole in the casing in salt water, since the formation of the opening (hole) and the discharge can be performed at the same time.

前記開口部が形成された筐体の焙焼は、該筐体を不活性雰囲気下、600℃以上、好ましくは650~720℃の範囲の温度に加熱することにより行うことができる。このようにすると、前記筐体に収容されているセパレータ及び電解液を構成する有機化合物が分解されて気化するが、本実施形態では、該筐体に開口部が形成されているので、気化した有機化合物は該開口部から該筐体外に放出され、爆発(破裂)することがない。また、前記焙焼を不活性雰囲気下で行うことにより、前記正極活物質に含まれるリチウム化合物が還元されて炭酸リチウムが生成する。 The casing in which the opening is formed can be roasted by heating the casing under an inert atmosphere to a temperature of 600°C or higher, preferably in the range of 650 to 720°C. In this way, the separator and the organic compound constituting the electrolyte contained in the housing are decomposed and vaporized, but in this embodiment, since an opening is formed in the housing, The organic compound is released from the opening to the outside of the casing and does not explode (burst). Furthermore, by performing the roasting in an inert atmosphere, the lithium compound contained in the positive electrode active material is reduced and lithium carbonate is generated.

次に、焙焼されたリチウムイオン電池を粉砕し、篩分けすることにより、前記炭酸リチウムと、前記筐体、正極電極板、負極電極板、セパレータ等とが分離され、篩下に前記炭酸リチウムを粗炭酸リチウムとして得ることができる。前記リチウムイオン電池の粉砕は、例えば、二軸式破砕機等を用いて行うことができる。また、前記篩い分けは、例えば目開き0.5~2mmの範囲の振動篩機を用いて行うことができる。 Next, the roasted lithium ion battery is crushed and sieved to separate the lithium carbonate from the casing, positive electrode plate, negative electrode plate, separator, etc. can be obtained as crude lithium carbonate. The lithium ion battery can be crushed using, for example, a twin-screw crusher or the like. Further, the sieving can be performed using, for example, a vibrating sieve with an opening in the range of 0.5 to 2 mm.

前記粗炭酸リチウムは、前記電解液由来のフッ素やリン酸の化合物の他、前記複合酸化物に由来するニッケル、コバルト等の金属を含んでいる。 The crude lithium carbonate contains fluorine and phosphoric acid compounds derived from the electrolyte, as well as metals such as nickel and cobalt derived from the composite oxide.

次に、本実施形態の炭酸リチウムの精製方法の第1の態様について説明する。 Next, a first aspect of the method for purifying lithium carbonate according to the present embodiment will be described.

本実施形態の炭酸リチウムの精製方法の第1の態様では、まず、前記のようにして得られた粗炭酸リチウムに、アルミニウム塩水溶液を添加した後、液性をpH4~9の範囲に調整する。前記アルミニウム塩としては、塩化アルミニウム、硫酸アルミニウム、アルミン酸のアルカリ金属塩等を挙げることができる。 In the first aspect of the lithium carbonate purification method of the present embodiment, first, an aqueous aluminum salt solution is added to the crude lithium carbonate obtained as described above, and then the liquid property is adjusted to a pH range of 4 to 9. . Examples of the aluminum salt include aluminum chloride, aluminum sulfate, and alkali metal salts of aluminate.

前記pHの調整は、酸又はアルカリを添加することにより行うことができる。前記酸としては、例えば、塩酸、硫酸、硝酸等を挙げることができ、前記アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム等を挙げることができる。 The pH can be adjusted by adding an acid or an alkali. Examples of the acid include hydrochloric acid, sulfuric acid, nitric acid, etc., and examples of the alkali include sodium hydroxide, potassium hydroxide, etc.

このようにすると、アルミニウムは両性金属であるので、前記pHの範囲では難溶性の水酸化アルミニウムが析出する。このとき、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物が前記水酸化アルミニウムに取り込まれる形で、同時に析出する。 In this case, since aluminum is an amphoteric metal, hardly soluble aluminum hydroxide is precipitated in the above pH range. At this time, impurities such as phosphorus and fluorine contained in the crude lithium carbonate are incorporated into the aluminum hydroxide and simultaneously precipitate.

そこで、析出した水酸化アルミニウムを濾別すると、主としてリチウムイオンと前記アルミニウム塩の陰イオンとの塩からなるリチウム塩水溶液が得られるが、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物は前記水酸化アルミニウムに取り込まれているので、結果としてリン、フッ素等の不純物の含有量が低減された精製リチウム塩溶液を得ることができる。前記リチウム塩は、例えば、前記アルミニウム塩が塩化アルミニウムである場合には、塩化リチウムが生成する。 Therefore, when the precipitated aluminum hydroxide is separated by filtration, a lithium salt aqueous solution consisting mainly of salts of lithium ions and anions of the aluminum salt is obtained, but impurities such as phosphorus and fluorine contained in the crude lithium carbonate are Since it is incorporated into the aluminum hydroxide, it is possible to obtain a purified lithium salt solution with a reduced content of impurities such as phosphorus and fluorine. For example, when the aluminum salt is aluminum chloride, lithium chloride is produced as the lithium salt.

本実施形態の炭酸リチウムの精製方法の第1の態様では、次に、前記精製リチウム塩溶液に、アルカリ金属水酸化物溶液を添加することにより、液性がアルカリ性になるので、水溶液中に水酸化リチウムが生成する。前記アルカリ金属水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム等を挙げることができ、リン、フッ素等の不純物の含有量が低減された水酸化リチウム水溶液を得ることができる。 In the first aspect of the lithium carbonate purification method of the present embodiment, next, by adding an alkali metal hydroxide solution to the purified lithium salt solution, the liquid becomes alkaline, so that water in the aqueous solution becomes alkaline. Lithium oxide is formed. Examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide, and it is possible to obtain an aqueous lithium hydroxide solution with a reduced content of impurities such as phosphorus and fluorine.

本実施形態の炭酸リチウムの精製方法の第1の態様では、次に、前記水酸化リチウム水溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が著しく低減されて精製された高純度の炭酸リチウムを効率よく回収することができる。 In the first aspect of the lithium carbonate purification method of the present embodiment, carbon dioxide gas is then supplied to the lithium hydroxide aqueous solution and the precipitated lithium carbonate is recovered, thereby reducing the content of impurities such as phosphorus and fluorine. Highly purified lithium carbonate with significantly reduced lithium carbonate can be efficiently recovered.

また、本実施形態の炭酸リチウムの精製方法の第1の態様では、前記粗炭酸リチウムに前記アルミニウム塩水溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、塩酸等の鉱酸を添加してもよい。このようにすることにより、前記鉱酸として塩酸を用いる場合には、前記鉱酸の塩としての粗塩化リチウム水溶液を得ることができ、前記粗炭酸リチウムからのリチウムの溶出量を増加させることができる。 Furthermore, in the first aspect of the lithium carbonate purification method of the present embodiment, before adding the aluminum salt aqueous solution to the crude lithium carbonate, the crude lithium carbonate is suspended in water, and a mineral acid such as hydrochloric acid is added to the crude lithium carbonate. May be added. By doing so, when hydrochloric acid is used as the mineral acid, it is possible to obtain a crude lithium chloride aqueous solution as a salt of the mineral acid, and it is possible to increase the amount of lithium eluted from the crude lithium carbonate. can.

本実施形態の炭酸リチウムの精製方法の第1の態様では、前記粗炭酸リチウムに代えて、前記粗塩化リチウム水溶液を用いることにより、リン、フッ素等の不純物の含有量が低減されて精製された高純度の炭酸リチウムの収量を増加させることができる。 In the first aspect of the method for purifying lithium carbonate of the present embodiment, the content of impurities such as phosphorus and fluorine is reduced by using the crude lithium chloride aqueous solution instead of the crude lithium carbonate. The yield of high purity lithium carbonate can be increased.

次に、本実施形態の炭酸リチウムの精製方法の第2の態様について説明する。 Next, a second aspect of the method for purifying lithium carbonate according to the present embodiment will be described.

本実施形態の炭酸リチウムの精製方法の第2の態様では、本実施形態の炭酸リチウムの精製方法の第1の形態と同一にして精製リチウム塩溶液を得た後、該精製リチウム塩溶液に炭酸塩を添加し、析出した炭酸リチウムを回収する。前記炭酸塩としては、例えば、炭酸ナトリウム等のアルカリ金属炭酸塩を挙げることができる。 In the second aspect of the lithium carbonate purification method of this embodiment, after obtaining a purified lithium salt solution in the same manner as the first aspect of the lithium carbonate purification method of this embodiment, the purified lithium salt solution is added to carbonate. Add salt and collect the precipitated lithium carbonate. Examples of the carbonate include alkali metal carbonates such as sodium carbonate.

前記精製リチウム塩溶液は前述のように、リン、フッ素等の不純物の含有量が低減されているので、該精製リチウム塩溶液に前記炭酸塩を添加し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が著しく低減されて精製された高純度の炭酸リチウムを効率よく回収することができる。 As described above, the purified lithium salt solution has a reduced content of impurities such as phosphorus and fluorine, so by adding the carbonate to the purified lithium salt solution and recovering the precipitated lithium carbonate, Highly purified lithium carbonate with significantly reduced content of impurities such as phosphorus and fluorine can be efficiently recovered.

Claims (5)

炭酸リチウムの精製方法であって、
粗炭酸リチウムに、アルミニウム塩溶液を添加した後、液性をpH4~9の範囲に調整し、析出した水酸化アルミニウムを濾別してリチウムイオンと該アルミニウム塩の陰イオンとの塩からなる精製リチウム塩溶液を得る工程と、
該精製リチウム塩溶液にアルカリ金属水酸化物溶液を添加し、水酸化リチウム溶液を得る工程と、
該水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収する工程とを備えることを特徴とする炭酸リチウムの精製方法。
A method for purifying lithium carbonate, the method comprising:
After adding an aluminum salt solution to crude lithium carbonate, the pH of the solution is adjusted to a range of 4 to 9, and the precipitated aluminum hydroxide is filtered off to obtain a purified lithium salt consisting of a salt of lithium ions and anions of the aluminum salt. obtaining a solution;
adding an alkali metal hydroxide solution to the purified lithium salt solution to obtain a lithium hydroxide solution;
A method for purifying lithium carbonate, comprising the steps of supplying carbon dioxide gas to the lithium hydroxide solution and recovering precipitated lithium carbonate.
請求項1記載の炭酸リチウムの精製方法において、前記粗炭酸リチウムにアルミニウム塩溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、鉱酸を添加して粗リチウム塩溶液を得る工程を備えることを特徴とする炭酸リチウムの精製方法。 In the method for purifying lithium carbonate according to claim 1, before adding the aluminum salt solution to the crude lithium carbonate, the step of suspending the crude lithium carbonate in water and adding a mineral acid to obtain a crude lithium salt solution. A method for purifying lithium carbonate, comprising: 炭酸リチウムの精製方法であって、
粗炭酸リチウムに、アルミニウム塩溶液を添加した後、液性をpH4~9の範囲に調整し、析出した水酸化アルミニウムを濾別して精製リチウム塩溶液を得る工程と、
該精製リチウム塩溶液に炭酸塩を添加し、析出した炭酸リチウムを回収する工程とを備えることを特徴とする炭酸リチウムの精製方法。
A method for purifying lithium carbonate, the method comprising:
Adding an aluminum salt solution to crude lithium carbonate, adjusting the pH to a range of 4 to 9, and filtering out precipitated aluminum hydroxide to obtain a purified lithium salt solution;
A method for purifying lithium carbonate, comprising the steps of adding carbonate to the purified lithium salt solution and recovering precipitated lithium carbonate.
請求項3記載の炭酸リチウムの精製方法において、前記粗炭酸リチウムにアルミニウム塩溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、鉱酸を添加して粗リチウム塩溶液を得る工程を備えることを特徴とする炭酸リチウムの精製方法。 In the method for purifying lithium carbonate according to claim 3, before adding the aluminum salt solution to the crude lithium carbonate, the crude lithium carbonate is suspended in water, and a mineral acid is added to obtain a crude lithium salt solution. A method for purifying lithium carbonate, comprising: 請求項1~請求項4のいずれか1項記載の炭酸リチウムの精製方法において、前記粗炭酸リチウムは、正極と、負極と、両極間に配置されたセパレータと、電解液とが金属製の筐体に収容されたリチウムイオン電池の該筐体に塩水中で開口部を形成した後、開口部が形成された該筐体を、不活性雰囲気下、650~720℃の範囲の温度に所定時間維持して焙焼されたリチウムイオン電池を破砕し、篩分けすることにより得られたものであることを特徴とする炭酸リチウムの精製方法。 In the method for refining lithium carbonate according to any one of claims 1 to 4, the crude lithium carbonate is produced in a metal casing in which a positive electrode, a negative electrode, a separator disposed between the two electrodes, and an electrolyte are made of metal. After forming an opening in the casing of the lithium-ion battery housed in the body in salt water, the casing with the opening formed therein is heated to a temperature in the range of 650 to 720° C. for a predetermined period of time under an inert atmosphere. A method for purifying lithium carbonate, characterized in that the lithium carbonate is obtained by crushing and sieving a lithium ion battery that has been maintained and roasted.
JP2021000826A 2020-01-21 2021-01-06 How to purify lithium carbonate Active JP7442829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021000826A JP7442829B2 (en) 2020-01-21 2021-01-06 How to purify lithium carbonate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020007303A JP6861446B1 (en) 2020-01-21 2020-01-21 Lithium carbonate purification method
JP2021000826A JP7442829B2 (en) 2020-01-21 2021-01-06 How to purify lithium carbonate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020007303A Division JP6861446B1 (en) 2020-01-21 2020-01-21 Lithium carbonate purification method

Publications (2)

Publication Number Publication Date
JP2021116475A JP2021116475A (en) 2021-08-10
JP7442829B2 true JP7442829B2 (en) 2024-03-05

Family

ID=75521016

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020007303A Active JP6861446B1 (en) 2020-01-21 2020-01-21 Lithium carbonate purification method
JP2021000826A Active JP7442829B2 (en) 2020-01-21 2021-01-06 How to purify lithium carbonate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020007303A Active JP6861446B1 (en) 2020-01-21 2020-01-21 Lithium carbonate purification method

Country Status (1)

Country Link
JP (2) JP6861446B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140084A1 (en) * 2022-01-21 2023-07-27 株式会社アサカ理研 Method for recovering lithium from lithium-salt-containing aqueous solution
KR102552102B1 (en) * 2022-06-09 2023-07-06 한국선별기 주식회사 Method For Producing High Purity Lithium Carbonate From Waste Saggar Using Anion Exchange

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185241A (en) 1999-12-28 2001-07-06 Asaka Riken Kogyo Kk Method for opening used sealed type battery
JP2012106874A (en) 2010-11-15 2012-06-07 Sumitomo Metal Mining Co Ltd Method for purifying lithium hydroxide
JP2012229481A (en) 2011-04-27 2012-11-22 Japan Metals & Chem Co Ltd Method for separating and recovering valuable material from used lithium ion battery
JP2015203131A (en) 2014-04-11 2015-11-16 Jx日鉱日石金属株式会社 Treatment method of lithium ion battery waste
JP2019178395A (en) 2018-03-30 2019-10-17 Jx金属株式会社 Collection method of lithium from lithium ion battery scrap

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775505B (en) * 2010-02-08 2011-08-31 中南大学 Method and device for extracting lithium from lapidolite by chloridizing roasting method
JP6651115B1 (en) * 2019-05-07 2020-02-19 株式会社アサカ理研 Method for recovering lithium from lithium ion battery
JP6647667B1 (en) * 2019-07-03 2020-02-14 株式会社アサカ理研 Method for recovering lithium from lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185241A (en) 1999-12-28 2001-07-06 Asaka Riken Kogyo Kk Method for opening used sealed type battery
JP2012106874A (en) 2010-11-15 2012-06-07 Sumitomo Metal Mining Co Ltd Method for purifying lithium hydroxide
JP2012229481A (en) 2011-04-27 2012-11-22 Japan Metals & Chem Co Ltd Method for separating and recovering valuable material from used lithium ion battery
JP2015203131A (en) 2014-04-11 2015-11-16 Jx日鉱日石金属株式会社 Treatment method of lithium ion battery waste
JP2019178395A (en) 2018-03-30 2019-10-17 Jx金属株式会社 Collection method of lithium from lithium ion battery scrap

Also Published As

Publication number Publication date
JP2021113147A (en) 2021-08-05
JP6861446B1 (en) 2021-04-21
JP2021116475A (en) 2021-08-10

Similar Documents

Publication Publication Date Title
JP6651115B1 (en) Method for recovering lithium from lithium ion battery
US6514311B1 (en) Clean process of recovering metals from waste lithium ion batteries
CN111392750B (en) Method for removing impurities and recovering lithium from waste lithium ion batteries
JP4144820B2 (en) Method for regenerating positive electrode active material from lithium ion secondary battery
JP6647667B1 (en) Method for recovering lithium from lithium ion battery
JP7442829B2 (en) How to purify lithium carbonate
CN110085939B (en) Separation and recovery method of waste lithium iron phosphate battery positive plate
JP6766014B2 (en) Lithium Ion Rechargeable Battery How to recover lithium from scrap
KR101823952B1 (en) A Method For Preparing Lithium Carbonate By Recycling Lithium From Used Anode Of Lithium Ion Seondary Battery
US20130206607A1 (en) Lithium Extraction Method, and Metal Recovery Method
CN113737018A (en) Method for recovering anode raw material of waste battery
JPH116020A (en) Method for recovering high-purity cobalt compound from scrap lithium ion battery
CN110148801B (en) Vacuum separation method for positive plate of waste lithium iron phosphate battery
WO2021201055A1 (en) Heat treatment method for battery-waste and lithium recovery method
CN101831548A (en) Method for recovering valuable metals from waste lithium manganese oxide battery
JP7232119B2 (en) Method for processing lithium-ion battery waste and method for producing sulfate
TW202104601A (en) Process for the preparation of precursor compounds for lithium battery cathodes
CN112310500B (en) Method for separating aluminum element from waste lithium iron phosphate material
JP2010040458A (en) Lithium recovery method and metal-recovering method
CN113131030B (en) Method for safely recycling waste pole pieces of lithium ion battery and application thereof
KR20200139692A (en) Lithium and transition metal recovery method using heat
KR101178768B1 (en) Method of recovery of lithium from cathodic active material of lithium battery
KR20200032663A (en) Method for recovering metal from secondary battery
KR20170052012A (en) Recycling method for waste electrode of lithium secondary battery
WO2008022415A1 (en) Process for the extraction of lithium compounds found in secondary lithium-ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240214

R150 Certificate of patent or registration of utility model

Ref document number: 7442829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150