JP2021091940A - Valuable metal recovery method from waste battery - Google Patents

Valuable metal recovery method from waste battery Download PDF

Info

Publication number
JP2021091940A
JP2021091940A JP2019223743A JP2019223743A JP2021091940A JP 2021091940 A JP2021091940 A JP 2021091940A JP 2019223743 A JP2019223743 A JP 2019223743A JP 2019223743 A JP2019223743 A JP 2019223743A JP 2021091940 A JP2021091940 A JP 2021091940A
Authority
JP
Japan
Prior art keywords
waste battery
reducing agent
product
furnace
carbonaceous reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019223743A
Other languages
Japanese (ja)
Other versions
JP7322687B2 (en
Inventor
井関 隆士
Takashi Izeki
隆士 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019223743A priority Critical patent/JP7322687B2/en
Publication of JP2021091940A publication Critical patent/JP2021091940A/en
Application granted granted Critical
Publication of JP7322687B2 publication Critical patent/JP7322687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

To provide a method for efficiently and inexpensively recovering valuable metal contained in a waste battery.SOLUTION: Treatment includes a roasting step S1 of roasting a waste battery to obtain a roasted mater; a crushing step S2 of crushing the roasted matter to obtain a crushed matter; a sieving step S4 of sieving the crushed matter into a sieved matter and a matter on the sieve; and a reduction melting step S6 of reduction melting the sieved matter to obtain a reduction matter and a slag. A furnace used in the reduction melting step S6 is an induction furnace IF, and adds a massive carbonaceous reducer to the induction furnace IF. The carbonaceous reducer is charged into the furnace, and thereby the carbonaceous reducer is heated by induction heating and in-furnace temperature is raised, and the waste battery can be melted while reducing it. Thus, metal containing valuable metal can be efficiently obtained.SELECTED DRAWING: Figure 1

Description

本発明は、廃電池からの有価金属回収方法に関する。さらに詳しくは、リチウムイオン電池などの廃電池から有価金属を回収する回収方法に関する。 The present invention relates to a method for recovering valuable metals from waste batteries. More specifically, the present invention relates to a recovery method for recovering valuable metals from a waste battery such as a lithium ion battery.

近年、軽量で大出力の二次電池としてリチウムイオン電池が普及している。リチウムイオン電池としては、アルミニウムや鉄等の金属製の外装缶内に、銅箔からなる負極集電体に黒鉛等の負極活物質を固着した負極材、アルミニウム箔からなる正極集電体にニッケル酸リチウムやコバルト酸リチウム等の正極活物質を固着した正極材、ポリプロピレン等の多孔質樹脂フィルムからなるセパレータ、六フッ化リン酸リチウム(LiPF)等の電解質を含む電解液等を封入したものが知られている。 In recent years, lithium-ion batteries have become widespread as lightweight, high-output secondary batteries. As a lithium ion battery, a negative electrode material in which a negative electrode active material such as graphite is fixed to a negative electrode current collector made of copper foil in an outer can made of metal such as aluminum or iron, and nickel in a positive electrode current collector made of aluminum foil. A positive electrode material to which a positive electrode active material such as lithium acid or lithium cobaltate is fixed, a separator made of a porous resin film such as polypropylene, and an electrolytic solution containing an electrolyte such as lithium hexafluorophosphate (LiPF 6) are sealed. It has been known.

リチウムイオン電池の主要な用途の一つに、ハイブリッド自動車や電気自動車があるが、自動車のライフサイクルとともに、将来において搭載されたリチウムイオン電池が大量に廃棄される見込みとなっている。このような使用済みの電池や製造中に生じた不良品を資源として再利用する提案が多くなされている。その一つとして廃電池を高温の炉で全量熔解する乾式処理がある。 One of the main uses of lithium-ion batteries is hybrid vehicles and electric vehicles, but it is expected that a large amount of lithium-ion batteries installed in the future will be discarded along with the life cycle of the vehicle. Many proposals have been made to reuse such used batteries and defective products generated during manufacturing as resources. One of them is a dry process in which the entire amount of waste batteries is melted in a high-temperature furnace.

廃電池には、ニッケル、コバルト、銅などの有価金属の他に、炭素、アルミニウム、フッ素、リンなどの不純物が含まれる。廃電池から有価金属を回収するにはこれらの不純物を除去する必要がある。特にフッ素やリンは難分解性の有機物として含有されており、不用意にガスや排水などとして大気中や河川などの環境中に放出することは避けなければならない。 Waste batteries contain impurities such as carbon, aluminum, fluorine, and phosphorus in addition to valuable metals such as nickel, cobalt, and copper. It is necessary to remove these impurities in order to recover valuable metals from waste batteries. In particular, fluorine and phosphorus are contained as persistent organic substances, and it is necessary to avoid inadvertently releasing them into the atmosphere or the environment such as rivers as gas or wastewater.

さらに各種電池のうち、リチウムイオン電池は高容量で電圧も高い特徴があるので処理をするには廃リチウムイオン電池に残留する電荷を放電させるなどして消滅させ安全に解体する無害化処理が欠かせない。
具体的な処理方法として例えば、廃電池を焙焼して無害化したのち、破砕あるいは粉砕処理を行い、その後、篩や磁選等の処理に付して分別し、その分別物から有価金属を回収する方法がある。
この方法で回収した有価金属は、公知の乾式処理や湿式処理に付して不純物をさらに分離し高純度に精製された有価金属を得ることができる。そして有価金属は例えば再度リチウムイオン電池の原料として供することができる。
Furthermore, among various batteries, lithium-ion batteries are characterized by high capacity and high voltage, so in order to dispose of them, detoxification treatment that discharges the charge remaining in the waste lithium-ion batteries to eliminate them and disassemble them safely is essential. I can't.
As a specific treatment method, for example, a waste battery is roasted to make it harmless, then crushed or crushed, and then separated by processing such as sieving or magnetic separation, and valuable metals are recovered from the separated material. There is a way to do it.
The valuable metal recovered by this method can be subjected to a known dry treatment or wet treatment to further separate impurities to obtain a highly purified valuable metal. Then, the valuable metal can be used again as a raw material for a lithium ion battery, for example.

乾式処理を用いて廃電池からのコバルトを回収方法として、特許文献1では、廃電池を熔融炉へ投入して酸素により酸化する処理が提案されている。
また、特許文献2では、廃電池を熔融してスラグを分離して有価物を回収した後、脱リン工程で石灰系のフラックスを添加して熔融することでリンを除去する処理が提案されている。
As a method for recovering cobalt from a waste battery by using a dry treatment, Patent Document 1 proposes a treatment in which the waste battery is put into a melting furnace and oxidized by oxygen.
Further, Patent Document 2 proposes a process of removing phosphorus by melting a waste battery, separating slag and recovering valuable resources, and then adding a lime-based flux in the dephosphorization step to melt the battery. There is.

上記のような乾式処理を用いて廃電池を熔融還元する際には炉が必要となる。
炉にはプラズマ炉、アーク炉、および誘導炉などがある。しかしながらプラズマ炉やアーク炉は装置費用が高額であり、還元度を微妙に調整する操作が難しいという問題がある。
一方、誘導炉は還元度の調整は比較的行い易い特長があるが、誘導電流で加熱するためには電気を流し易い金属や黒鉛(カーボン)が介在することが必要となる。このため廃電池にわざわざ加熱させるための金属を入れるために余計なコストを要したり、黒鉛坩堝を用いて坩堝から加熱することが必要となる。しかもとくに後者の黒鉛坩堝を用いた場合、黒鉛自身は還元剤にもなり得るため、熔融する廃電池の還元が過剰に進行したり、黒鉛坩堝の酸化が進行して破損しやすくなり坩堝コストや交換の手間が増加し生産効率や安定性を損ねるなどの課題がある。
A furnace is required to melt and reduce the waste battery by using the dry treatment as described above.
Reactors include plasma furnaces, arc furnaces, and induction furnaces. However, plasma furnaces and arc furnaces have a problem that the equipment cost is high and it is difficult to finely adjust the reduction degree.
On the other hand, the induction furnace has a feature that the degree of reduction can be adjusted relatively easily, but in order to heat with an induced current, it is necessary to interpose a metal or graphite (carbon) that easily conducts electricity. For this reason, it is necessary to add extra cost to put the metal for heating in the waste battery, or to heat from the crucible using a graphite crucible. Moreover, especially when the latter graphite crucible is used, graphite itself can also be a reducing agent, so that the reduction of the waste battery to be melted progresses excessively, and the graphite crucible is easily oxidized and damaged, resulting in the cost of the crucible. There are problems such as increased labor for replacement and impairing production efficiency and stability.

上述のように、廃リチウムイオン電池を還元熔融しようとする場合、コストや効率の点で多くの課題が残されていた。 As described above, when reducing and melting a waste lithium ion battery, many problems remain in terms of cost and efficiency.

特開2013−91826号公報Japanese Unexamined Patent Publication No. 2013-91826 特表2013−506048号公報Japanese Patent Application Laid-Open No. 2013-506048

本発明は、上記実情に鑑み、廃電池に含有される有価金属を効率的かつ安価に回収する方法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a method for efficiently and inexpensively recovering valuable metals contained in a waste battery.

第1発明の廃電池からの有価金属回収方法は、廃電池を焙焼して焙焼物を得る焙焼工程と、前記焙焼物を破砕して破砕物を得る破砕工程と、前記破砕物を篩って篩下物と篩上物に分ける篩工程と、前記篩下物を還元熔融して還元物とスラグとを得る還元熔融工程を有する処理に付すことで廃電池から有価金属を回収する方法において、前記還元熔融工程で用いる炉が誘導炉であり、該誘導炉に塊状の炭素質還元剤を添加することを特徴とする。
第2発明の廃電池からの有価金属回収方法は、第1発明において、添加する塊状の炭素質還元剤の量が、前記誘導炉から排出される還元物とスラグの物量の合計を100質量%として0.1質量%以上18質量%以下の範囲となるように制御することを特徴とする。
第3発明の廃電池からの有価金属回収方法は、第1または第2発明において、添加する塊状の炭素質還元剤が1cm〜1000cmの大きさであることを特徴とする。
第4発明の廃電池からの有価金属回収方法は、第1,第2または第3発明において、添加する塊状の炭素質還元剤の組成が炭素品位65質量%以上であることを特徴とする。
第5発明の廃電池からの有価金属回収方法は、第1発明において、磁着物である鉄を除去する磁選工程を前記篩工程の前または後で行うことを特徴とする。
第6発明の廃電池からの有価金属回収方法は、第1または第5発明において、篩下物を酸化焙焼する酸化焙焼工程を前記還元熔融工程の前で行うことを特徴とする。
第7発明の廃電池からの有価金属回収方法は、第1,第2,第3,第4,第5または第6発明において、回収される有価金属が少なくともコバルト、ニッケル、および銅から選ばれる1種以上であることを特徴とする。
The valuable metal recovery method from the waste battery of the first invention includes a roasting step of roasting the waste battery to obtain a roasted product, a crushing step of crushing the roasted product to obtain a crushed product, and a sieve of the crushed product. A method of recovering valuable metal from a waste battery by subjecting it to a process having a sieving step of separating the sieving product and a sieving product and a reduction melting step of reducing and melting the sieving product to obtain a reduced product and slag. In the above, the furnace used in the reduction melting step is an induction furnace, and is characterized in that a massive carbonaceous reducing agent is added to the induction furnace.
In the method for recovering valuable metals from waste batteries of the second invention, in the first invention, the amount of the bulky carbonaceous reducing agent to be added is 100% by mass, which is the total amount of the reducing agent and the slag discharged from the induction furnace. It is characterized in that it is controlled so as to be in the range of 0.1% by mass or more and 18% by mass or less.
Valuable metal recovery process from the waste battery of the third aspect of the present invention, in the first or second invention, wherein the carbonaceous reducing agent massive added is the size of 1cm 3 ~1000cm 3.
The method for recovering valuable metals from a waste battery according to the fourth invention is characterized in that, in the first, second or third invention, the composition of the lumpy carbonaceous reducing agent to be added is 65% by mass or more of carbon grade.
The method for recovering valuable metal from a waste battery of the fifth invention is characterized in that, in the first invention, a magnetic separation step of removing iron as a magnetic deposit is performed before or after the sieving step.
The method for recovering valuable metals from a waste battery according to the sixth aspect of the present invention is characterized in that, in the first or fifth invention, the oxidative roasting step of oxidatively roasting the sieve material is performed before the reduction melting step.
In the method for recovering valuable metals from waste batteries of the seventh invention, in the first, second, third, fourth, fifth or sixth invention, the valuable metals to be recovered are selected from at least cobalt, nickel, and copper. It is characterized by having one or more kinds.

第1発明によれば、焙焼工程で焙焼することにより廃電池を粉砕しやすくしておき、破砕過程で廃電池の全量を細かく破砕して破砕物を得ると、篩工程で篩下物と篩上物に分離することで、篩下物を還元熔融工程に付す準備ができる。
そして、還元熔融工程においては、塊状炭素質還元剤を炉内に入れて誘導加熱によって塊状炭素質還元剤を発熱させ炉内温度を上昇させる。誘導加熱によって塊状炭素質還元剤が発熱すると炉内の篩下物の還元反応が進行しメタルが生成する。同時に生成したメタルが誘導炉の誘導加熱を受けて発熱し、炉内温度が上昇するので、この発熱によって誘導加熱できないスラグをも熔融することもできる。このようにして、メタルの生成と炉内温度の上昇を両立させて廃電池を還元しながら熔融すると、有価金属を含有するメタルが効率的かつ安価に得られる。
第2発明によれば、塊状の炭素質還元剤の量は、誘導炉から排出される還元物とスラグの物量の合計を100質量%として0.1質量%以上、18質量%以下の範囲となるように制御することで、熔融された廃電池と炭素質還元剤の接触の頻度が増し、還元反応が効率よく進行する。
第3発明によれば、添加する塊状の炭素質還元剤は、個々の体積が1cm〜1000cmであると、小さすぎたり大きすぎるサイズにならないので接触の機会が増し発熱が充分に行われて、炭素質還元剤からの表面積当たりの発熱量も多くなる。
第4発明によれば、塊状の炭素質還元剤の炭素品位が65質量%以上にしているので、還元効率が高くなり不純物の混入も少なくなる。
第5発明によれば、磁選を行った場合は、鉄分の除去ができているのでスラグの融点や粘性等の設計が簡単に行え、後工程の湿式工程での処理費用も低減できる。
第6発明によれば、酸化焙焼することによって廃電池中の還元剤になり得る成分を酸化して廃電池の品質を均一化できるので、還元度を制御しやすくできる。
第7発明によれば、コバルトやニッケル、銅を各種産業で再利用できるほか、再度リチウムイオン電池の原料に供することができる。
According to the first invention, the waste battery is made easy to be crushed by roasting in the roasting step, and when the whole amount of the waste battery is finely crushed in the crushing process to obtain a crushed product, a sieved product is obtained in the sieving process. By separating the sieving product into the sieving product, the sieving product is ready to be subjected to the reduction melting step.
Then, in the reduction melting step, the massive carbonaceous reducing agent is put into the furnace and the massive carbonaceous reducing agent is heated by induction heating to raise the temperature inside the furnace. When the massive carbonaceous reducing agent generates heat due to induction heating, the reduction reaction of the sieve material in the furnace proceeds and metal is produced. The metal generated at the same time receives the induction heating of the induction furnace and generates heat, and the temperature inside the furnace rises. Therefore, the slag that cannot be induced and heated can be melted by this heat generation. In this way, when the metal is produced and the temperature inside the furnace is raised at the same time and the waste battery is melted while being reduced, a metal containing a valuable metal can be obtained efficiently and inexpensively.
According to the second invention, the amount of the bulky carbonaceous reducing agent is in the range of 0.1% by mass or more and 18% by mass or less, assuming that the total amount of the reducing agent and the slag discharged from the induction furnace is 100% by mass. By controlling the concentration so as to be, the frequency of contact between the molten waste battery and the carbonaceous reducing agent is increased, and the reduction reaction proceeds efficiently.
According to the third invention, the carbonaceous reductant massive to be added is an individual volume When it is 1 cm 3 ~1000Cm 3, does not become too large or too small size increases the opportunities for contact heating is performed sufficiently Therefore, the amount of heat generated per surface area from the carbonaceous reducing agent also increases.
According to the fourth invention, since the carbon grade of the massive carbonaceous reducing agent is 65% by mass or more, the reduction efficiency is high and the contamination of impurities is reduced.
According to the fifth invention, when the magnetic separation is performed, the iron content can be removed, so that the melting point and viscosity of the slag can be easily designed, and the processing cost in the wet process of the subsequent process can be reduced.
According to the sixth invention, since the quality of the waste battery can be made uniform by oxidizing the component that can be a reducing agent in the waste battery by oxidative roasting, the degree of reduction can be easily controlled.
According to the seventh invention, cobalt, nickel, and copper can be reused in various industries and can be reused as a raw material for a lithium ion battery.

本発明に係る有価金属回収方法の一例を示す工程図である。It is a process drawing which shows an example of the valuable metal recovery method which concerns on this invention. 還元熔融工程S6の詳細説明図である。It is a detailed explanatory drawing of the reduction melting step S6.

つぎに、本発明の実施形態を図面に基づき説明する。
本発明の有価金属回収方法を適用できる廃電池には、リチウムイオン電池に限られず、非水溶系二次電池としてのLi・AL‐リチウム含有二酸化マンガン二次電池、リチウムポリマー電解質二次電池など、また水溶液系二次電池としてのニッケル‐カドミニウム電池やニッケル‐水素電池、ニッケル‐亜鉛電池、ニッケル‐鉄電池など、各種の電池が含まれる。
廃電池から有価金属を回収するにあたっては、乾式製錬プロセスに加え、湿式製錬プロセスを行う場合もあるが、本発明に係る有価金属の回収方法は、乾式製錬プロセスに係るものである。
なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において種々の変更が可能である。
Next, an embodiment of the present invention will be described with reference to the drawings.
The waste batteries to which the valuable metal recovery method of the present invention can be applied are not limited to lithium ion batteries, but include Li / AL-lithium-containing manganese dioxide secondary batteries as water-insoluble secondary batteries, lithium polymer electrolyte secondary batteries, and the like. Further, various batteries such as a nickel-cadmium battery, a nickel-hydrogen battery, a nickel-zinc battery, and a nickel-iron battery as an aqueous secondary battery are included.
In recovering valuable metals from waste batteries, a wet smelting process may be performed in addition to the dry smelting process, but the method for recovering valuable metals according to the present invention relates to the dry smelting process.
The present invention is not limited to the following embodiments, and various modifications can be made without changing the gist of the present invention.

≪本発明に係る有価金属回収方法の概要≫
本発明に係る有価金属回収方法は、図1に示すように、廃電池を焙焼して焙焼物を得る焙焼工程S1と、焙焼物を破砕して破砕物を得る破砕工程S2と、破砕物を篩って篩下物と篩上物に分ける篩工程S4と、篩下物を還元熔融して還元物とスラグとを得る還元熔融工程S6を必須の工程とし、前記還元熔融工程S6において誘導炉を用い、この誘導炉に塊状の炭素質還元剤を添加することを特徴とする
なお、本発明の有価金属回収方法において、磁着物である鉄を除去する磁選工程S3と篩下物を酸化焙焼する酸化焙焼工程S5を実施することがあるが、これら両工程は任意である。
<< Outline of the Valuable Metal Recovery Method According to the Present Invention >>
As shown in FIG. 1, the valuable metal recovery method according to the present invention includes a roasting step S1 for roasting a waste battery to obtain a roasted product, a crushing step S2 for crushing the roasted product to obtain a crushed product, and crushing. In the reduction melting step S6, a sieving step S4 for sieving a product and separating it into a sieving product and a sieving product and a reduction melting step S6 for reducing and melting the sieving product to obtain a reduced product and a slag are essential steps. A induction furnace is used, and a massive carbonaceous reducing agent is added to the induction furnace. In the valuable metal recovery method of the present invention, the magnetic selection step S3 for removing iron as a magnetic deposit and the sieve are subjected to. The oxidative roasting step S5 for oxidative roasting may be carried out, but both of these steps are optional.

本発明において、廃電池とは、リチウムイオン電池や上記各種電池の使用済み電池そのものの外、二次電池を構成する正極材等の製造工程で生じた不良品、製造工程内部の残留物、リチウムイオン電池の製造工程内における発生屑等の廃材も含む概念である。これらの廃電池には、例えば、銅、ニッケル、コバルト等の有価金属が含まれている。 In the present invention, the waste battery is not only the used battery itself of the lithium ion battery and the above-mentioned various batteries, but also a defective product generated in the manufacturing process such as a positive electrode material constituting a secondary battery, a residue inside the manufacturing process, and lithium. This is a concept that includes waste materials such as waste generated in the manufacturing process of an ion battery. These waste batteries contain valuable metals such as copper, nickel and cobalt, for example.

本発明では、廃電池を還元熔融する際に誘導炉を用い、塊状の炭素質還元剤を炉内に入れることにより、誘導加熱によって炭素質還元剤を発熱させ炉内温度を上昇させることを技術原理としている。
本発明の技術原理によれば、誘導加熱によって炉内に入れられた塊状の炭素質還元剤が発熱すると炉内の廃電池の還元反応が進行しメタルが生成する。同時に生成したメタルが誘導炉の誘導加熱を受けて発熱し、炉内温度が上昇する。この発熱によって誘導加熱できないスラグをも熔融することもできる。
これら一連の作用によってメタルの生成と炉内温度の上昇を両立させて、廃電池を還元しながら熔融できる。このようにして有価金属を含有するメタルが効率的かつ安価に得られる。
In the present invention, a technique is used in which an induction furnace is used when reducing and melting a waste battery, and a massive carbonaceous reducing agent is put into the furnace to generate heat of the carbonaceous reducing agent by induction heating and raise the temperature inside the furnace. It is the principle.
According to the technical principle of the present invention, when the massive carbonaceous reducing agent put into the furnace by induction heating generates heat, the reduction reaction of the waste battery in the furnace proceeds and metal is generated. The metal generated at the same time receives the induction heating of the induction furnace and generates heat, and the temperature inside the furnace rises. It is also possible to melt slag that cannot be induced and heated by this heat generation.
Through these series of actions, it is possible to both generate metal and raise the temperature inside the furnace, and melt the waste battery while reducing it. In this way, a metal containing a valuable metal can be obtained efficiently and inexpensively.

上記のような乾式製錬プロセスを経て得られたメタルに対して、後工程で湿式製錬プロセスを実行してもよく、それによって不純物成分を除去し、銅、ニッケル、コバルト等の有価金属を分離精製して、それぞれを回収することができる。湿式製錬プロセスにおける処理としては、中和処理や溶媒抽出処理等の公知の方法により行うことができる。 A hydrometallurgical process may be carried out in a subsequent step on the metal obtained through the above-mentioned pyrometallurgical process, thereby removing impurity components and removing valuable metals such as copper, nickel and cobalt. Each can be separated and purified and recovered. The treatment in the hydrometallurgy process can be carried out by a known method such as a neutralization treatment or a solvent extraction treatment.

≪本発明に係る有価金属回収方法の詳細≫
図1は、本発明に係る有価金属回収方法の一例を示しており、同図に基づき各工程S1〜S6を順に説明する。
<< Details of the Valuable Metal Recovery Method According to the Present Invention >>
FIG. 1 shows an example of a valuable metal recovery method according to the present invention, and steps S1 to S6 will be described in order based on the figure.

(焙焼工程:S1)
焙焼工程S1は、廃電池を無害化することや次工程で破砕し易くすることを主な目的としている。焙焼条件はとくに限定されないが、確実に無害化するとともに脆くして破砕し易くするためには700℃以上に加熱することが好ましい。また、廃電池を積み重ねすぎると内部まで十分に焙焼できず焼きムラができてしまうので、均一に焙焼できるように処理量や炉の加熱能力に注意が必要である。焙焼時の加熱方式はとくに限定されず、電気式であってよく、バーナー式であってよい。バーナー式加熱は低コストである点で好ましい。
(Roasting process: S1)
The main purpose of the roasting step S1 is to make the waste battery harmless and to make it easier to crush in the next step. The roasting conditions are not particularly limited, but it is preferable to heat the roasting conditions to 700 ° C. or higher in order to ensure detoxification and to make the roasting brittle and easy to crush. In addition, if the waste batteries are stacked too much, the inside cannot be sufficiently roasted and uneven roasting occurs. Therefore, it is necessary to pay attention to the processing amount and the heating capacity of the furnace so that the waste batteries can be roasted uniformly. The heating method at the time of roasting is not particularly limited, and may be an electric type or a burner type. Burner heating is preferable in terms of low cost.

(破砕工程:S2)
破砕工程S2では、焙焼工程S1で焙焼された焙焼物を細かく破砕して廃電池内の各部材を分離する。本発明において破砕機はとくに限定されない。たとえばロッドミルや振動ミルなど公知の破砕機を用いてよい。チェーンミルも廃電池を効率よく破砕できるため好ましい。様々な種類や形状の廃電池が存在するため、目的に合わせて適切な破砕機を選定すればよい。
(Crushing process: S2)
In the crushing step S2, the roasted product roasted in the roasting step S1 is finely crushed to separate each member in the waste battery. The crusher is not particularly limited in the present invention. For example, a known crusher such as a rod mill or a vibration mill may be used. A chain mill is also preferable because it can efficiently crush waste batteries. Since there are various types and shapes of waste batteries, an appropriate crusher may be selected according to the purpose.

(磁選工程:S3)
磁選工程S3の実施は任意である。そして、磁選工程S3を実施する場合は、前記破砕工程S2の後に行ってもよく、また後述する篩工程S4の後に行ってもよい。
磁選の目的は磁着物である鉄を主とする金属を除去することにある。有価金属に鉄が含まれてしまうと乾式製錬の際にスラグの融点や粘性等の設計が複雑になり、また鉄を充分に除去できない場合は後工程の湿式工程で処理費用がかかってしまうためである。磁選を行った場合は、スラグの融点や粘性等の設計が簡単に行え、鉄を充分に除去した場合は、後工程の湿式工程での処理費用が低減できる。
磁選機はとくに限定されないが、公知の吊下げ磁選機を用いることができる。
(Magnetic separation process: S3)
Implementation of the magnetic separation step S3 is optional. When the magnetic separation step S3 is carried out, it may be carried out after the crushing step S2 or after the sieving step S4 described later.
The purpose of magnetic separation is to remove metals such as iron, which is a magnetic substance. If iron is contained in the valuable metal, the design of the melting point and viscosity of the slag becomes complicated during pyrometallurgy, and if iron cannot be sufficiently removed, processing costs will be incurred in the wet process of the subsequent process. Because. When magnetic separation is performed, the melting point and viscosity of the slag can be easily designed, and when iron is sufficiently removed, the processing cost in the wet process of the subsequent process can be reduced.
The magnetic separator is not particularly limited, but a known hanging magnetic separator can be used.

(篩工程:S4)
篩工程S4は、破砕工程S2の後で行ってよく、また磁選工程S3の後で行ってもよい。篩工程S4では破砕物を篩機によって篩上物と篩下物に分ける。篩の目開きは破砕する廃電池の種類や形状に合わせて決めればよい。目開きが大きすぎると篩下に有価金属とともに非有価金属が多く回収されてしまうため好ましくない。また目開きが小さすぎると篩上に多く有価金属が含まれてしまい好ましくない。一般的には、篩の見開きは、0.5mm以上で、5mm以下であると有価金属を効率的に回収できて好ましい。
なお、ニッケルやコバルト等の有価金属は主に正極活物質に含まれるため、粉末状で回収されるので篩下物に含まれる。
(Sieve step: S4)
The sieving step S4 may be performed after the crushing step S2, or may be performed after the magnetic separation step S3. In the sieving step S4, the crushed product is separated into a sieving product and a sieving product by a sieving machine. The opening of the sieve may be determined according to the type and shape of the waste battery to be crushed. If the opening is too large, a large amount of non-valuable metal as well as valuable metal will be recovered under the sieve, which is not preferable. Further, if the opening is too small, a large amount of valuable metal is contained on the sieve, which is not preferable. Generally, it is preferable that the spread of the sieve is 0.5 mm or more and 5 mm or less because valuable metals can be efficiently recovered.
Since valuable metals such as nickel and cobalt are mainly contained in the positive electrode active material, they are recovered in powder form and are therefore contained in the sieve.

(酸化焙焼工程:S5)
酸化焙焼工程S5の実施は任意である。酸化焙焼工程S5を実施する場合は、篩工程S4で回収された篩下物(粉末)を酸化焙焼工程S5において酸化焙焼する。酸化焙焼することによって廃電池中の還元剤になり得る成分を酸化することができ、それにより廃電池の品質を均一化できる。酸化焙焼すると残留還元剤率を安定して低く抑えることができ、これによって次工程の還元熔融工程において還元度を制御し易くできる。
(Oxidation roasting process: S5)
Implementation of the oxidative roasting step S5 is optional. When the oxidative roasting step S5 is carried out, the sieved product (powder) recovered in the sieving step S4 is oxidatively roasted in the oxidative roasting step S5. By oxidative roasting, components that can be reducing agents in the waste battery can be oxidized, whereby the quality of the waste battery can be made uniform. When oxidative roasting is performed, the residual reducing agent ratio can be stably suppressed to a low level, which makes it easier to control the degree of reduction in the reduction melting step of the next step.

(還元熔融工程:S6)
還元熔融工程S6では、廃電池の粉砕物である篩下物を、または酸化焙焼された篩下物を還元熔融する。この還元熔融によって有価金属を含有するメタルとスラグが生成させる。本発明の還元熔融工程S6では誘導炉が用いられるが、誘導炉を用いると効率的に廃電池を熔融でき、また目的に合わせた還元度を実現でき、よって効率的に有価金属を回収できる。
(Reduction melting step: S6)
In the reduction melting step S6, the sieve product which is a crushed product of the waste battery or the sieve product which has been oxidized and roasted is reduced and melted. This reduction melting produces metals and slags containing valuable metals. An induction furnace is used in the reduction melting step S6 of the present invention. If the induction furnace is used, the waste battery can be efficiently melted, the degree of reduction can be realized according to the purpose, and therefore the valuable metal can be efficiently recovered.

図2は廃電池の熔融に用いる誘導炉IFを示している。本発明では誘導炉IFに、廃電池とともに塊状の炭素質還元剤を誘導炉に投入して還元熔融することを特徴とする。誘導炉IF自体は公知のものでよい。図示の誘導炉IFは、るつぼ形にライニング材1を貼った炉1と、炉1の外周に配置したコイル2と、コイル2の外側に配置した継鉄(ヨーク)3を有し、炉底にプラグ4を設け炉上面には炉蓋5を置けるようにしたものであり、このような誘導炉IFを利用できる。
上記誘導炉IFにおける炉1内に塊状の炭素質還元剤と廃電池を投入することで、炭素質還元剤が誘導電流によって加熱され、加熱された炭素質還元剤によって廃電池の還元反応が促進される。
FIG. 2 shows an induction furnace IF used for melting a waste battery. The present invention is characterized in that a massive carbonaceous reducing agent is put into the induction furnace together with a waste battery and reduced and melted in the induction furnace IF. The induction furnace IF itself may be a known one. The illustrated induction furnace IF has a furnace 1 in which a lining material 1 is attached in a crucible shape, a coil 2 arranged on the outer periphery of the furnace 1, and a joint iron (yoke) 3 arranged on the outside of the coil 2. A plug 4 is provided in the furnace so that a furnace lid 5 can be placed on the upper surface of the furnace, and such an induction furnace IF can be used.
By putting a massive carbonaceous reducing agent and a waste battery into the furnace 1 in the induction furnace IF, the carbonaceous reducing agent is heated by an induced current, and the reduced carbonaceous reducing agent promotes the reduction reaction of the waste battery. Will be done.

さらに、還元反応の進行に伴って有価金属を含有するメタルとスラグが生成するが、メタルは誘導電流によって加熱されるので、温度が効率的に上昇する。また本来電流が流れないスラグでは発熱が発生しないが、炭素質還元剤を塊として添加することで、スラグと塊状の炭素質還元剤の接触部のスラグ部分でも発熱を生じさせられる。 Further, as the reduction reaction progresses, a metal containing a valuable metal and slag are generated, but since the metal is heated by the induced current, the temperature rises efficiently. In addition, heat is not generated in the slag where no current originally flows, but by adding the carbonaceous reducing agent as a lump, heat is also generated in the slag portion of the contact portion between the slag and the lumpy carbonaceous reducing agent.

このように本発明では、炉1内に発熱源である炭素質還元剤を多数分散させて発熱と還元を同時並行で進めるものであり、この「炭素質還元剤の誘導電流による加熱→炭素質還元剤による廃電池の還元→メタルの生成→誘導電流によるメタルの加熱」なるサイクルが繰り返されることにより炉内は効率的に温度上昇し還元熔融が進行する。
本発明のように塊状の炭素質還元剤を用いることで、熔融された廃電池と還元物の接触の頻度が増し、還元反応が効率よく進行する効果が得られる。
As described above, in the present invention, a large number of carbonaceous reducing agents, which are heat generating sources, are dispersed in the furnace 1 to promote heat generation and reduction in parallel. By repeating the cycle of reducing the waste battery with a reducing agent → generating metal → heating the metal with an induced current, the temperature inside the furnace rises efficiently and reduction melting proceeds.
By using the massive carbonaceous reducing agent as in the present invention, the frequency of contact between the molten waste battery and the reduced product is increased, and the effect that the reduction reaction proceeds efficiently can be obtained.

本発明では、還元剤のうちとくに炭素質還元剤が用いられる。還元剤には、HSなどの水素化合物やCOなどの酸化物を含め種々のものがあるが、本発明では、カーボンや石炭、コークスに代表される炭素質還元剤を選択している。その理由は、優れた還元反応の制御性にある。つまり、廃電池に含まれるカーボンは、還元剤として寄与して還元反応が促進する。そして添加する還元剤も同質の炭素質であれば、同じ還元反応が起きるので還元反応を制御しやすく、よって温度制御や雰囲気制御がしやすくなる。なお、わざわざCOガスを使う手法も考えられるが設備費がかかったり安全上の問題がある。水素化合物も同様の問題がある。
炭素質還元剤としては、石炭やカーボン、コークスなどを例示できる。
In the present invention, among the reducing agents, a carbonaceous reducing agent is particularly used. The reducing agent, there are various including oxides such as hydrogen compounds and CO, such as H 2 S, in the present invention, it is selected carbonaceous reducing agent typified carbon, coal, coke. The reason is excellent controllability of the reduction reaction. That is, the carbon contained in the waste battery contributes as a reducing agent and promotes the reduction reaction. If the reducing agent to be added is also a homogeneous carbonaceous substance, the same reduction reaction will occur, so that the reduction reaction can be easily controlled, and thus temperature control and atmosphere control can be easily performed. It should be noted that a method of using CO gas is conceivable, but there is a problem of equipment cost and safety. Hydrogen compounds have similar problems.
Examples of the carbonaceous reducing agent include coal, carbon, and coke.

本発明で用いる塊状の炭素質還元剤は、小さなサイズである方が処理物との接触の機会が増し、均一に処理が進むため好ましい。
しかし個々の塊のサイズが、例えば1cm未満となるなど、極度に小さなサイズでは誘導電流による発熱が充分に行われず、加熱の効果が不充分なまま消耗されるので効果が減じる。一方で、誘導電流は炭素質還元剤の表面で生じて発熱するものであり、過度に粗大な炭素質還元剤を用いても発熱を有効に活用することができない。
このため、添加する塊状の炭素質還元剤は、個々の体積が1cm〜1000cm、好ましくは5cm〜500cmであることが好ましい。この場合、発熱が充分に行われるし、還元剤からの表面積当たりの発熱量も多くなる。
It is preferable that the bulk carbonaceous reducing agent used in the present invention has a small size because the chance of contact with the processed product increases and the treatment proceeds uniformly.
However, if the size of each mass is extremely small, for example, less than 1 cm 3, the heat generated by the induced current is not sufficiently generated, and the heating effect is consumed while being insufficient, so that the effect is reduced. On the other hand, the induced current is generated on the surface of the carbonaceous reducing agent and generates heat, and the heat generation cannot be effectively utilized even if an excessively coarse carbonaceous reducing agent is used.
Therefore, carbonaceous reducing agent massive to be added is an individual volume of 1cm 3 ~1000cm 3, it is preferred that preferably 5cm 3 ~500cm 3. In this case, heat is sufficiently generated, and the amount of heat generated per surface area from the reducing agent is also large.

また、添加する塊状の炭素質還元剤の量は、誘導炉から排出される還元物とスラグの物量の合計を100質量%として0.1質量%以上、18質量%以下の範囲となるように制御することが好ましい。0.1質量%未満であると、添加量が少なく添加した効果が十分現れず、18質量%を越えると廃電池に還元剤が全く無かったとしても還元が進み過ぎて鉄やマンガンなどの不要な金属が多く生成して有価金属に混入してしまうので、いずれも好ましくない。上記範囲であると、熔融された廃電池と還元物の接触の頻度が増し、還元反応が効率よく進行するので好ましい。 Further, the amount of the bulky carbonaceous reducing agent to be added should be in the range of 0.1% by mass or more and 18% by mass or less, assuming that the total amount of the reducing agent and the slag discharged from the induction furnace is 100% by mass. It is preferable to control. If it is less than 0.1% by mass, the amount of addition is small and the effect of addition does not appear sufficiently, and if it exceeds 18% by mass, reduction proceeds too much even if there is no reducing agent in the waste battery, and iron, manganese, etc. are unnecessary. A large amount of metal is generated and mixed with the valuable metal, which is not preferable. Within the above range, the frequency of contact between the molten waste battery and the reduced product increases, and the reduction reaction proceeds efficiently, which is preferable.

さらに、塊状の炭素質還元剤は炭素品位が65質量%以上、好ましくは95質量%以上であることが好ましい。65質量%未満であると還元効率が低くなるとともに不純物が多く混入する可能性があるため好ましくないが、上記範囲であると還元効率が高くなり、不純物の混入も少ないので好ましい。 Further, the massive carbonaceous reducing agent preferably has a carbon grade of 65% by mass or more, preferably 95% by mass or more. If it is less than 65% by mass, the reduction efficiency is low and a large amount of impurities may be mixed in, which is not preferable. However, if it is in the above range, the reduction efficiency is high and impurities are less mixed, which is preferable.

電磁誘導による発熱では塊状の炭素質還元剤の表面が影響を受けるので、必要な炭素質還元剤が少量の場合、発熱量を確保するためには表面に炭素質が集中して中心部が中空となる構造の炭素質還元剤を用いてもよい。 Since the surface of the massive carbonaceous reducing agent is affected by the heat generated by electromagnetic induction, if the required amount of carbonaceous reducing agent is small, the carbonaceous material is concentrated on the surface and the central part is hollow in order to secure the calorific value. A carbonaceous reducing agent having a structure of the above may be used.

なお、工業的な操業では誘導炉に廃電池と炭素質還元剤を連続して供給し排出する操業方法が一般的であるが、このような場合、運転を開始する時の炭素質還元剤の添加量は炉内装入物から理論的に計算される還元物とスラグの物量に応じて添加し、運転とともに添加量を調整することができる。 In industrial operations, a general operation method is to continuously supply and discharge waste batteries and a carbonaceous reducing agent to an induction furnace. In such a case, the carbonaceous reducing agent at the time of starting operation is used. The amount of addition can be adjusted according to the amount of reducing agent and slag theoretically calculated from the contents inside the furnace, and the amount of addition can be adjusted during operation.

(本発明に係る回収方法の後工程)
本発明の回収方法で得たメタルは、後工程で例えば酸に溶解して中和や溶媒抽出や電解採取などの方法により不純物を分離する湿式処理を行うことで純度の高い有価金属を分離して回収することができる。
(Post-process of recovery method according to the present invention)
The metal obtained by the recovery method of the present invention is separated into highly pure valuable metals by performing a wet treatment in a subsequent step, for example, by dissolving it in an acid and separating impurities by a method such as neutralization, solvent extraction or electrowinning. Can be collected.

以下、実施例1〜18および比較例1を用いて、本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples 1 to 18 and Comparative Example 1.

(焙焼工程)
廃電池としてのリチウムイオン電池には、自動車車載用の一般に角形電池と称せられるものの使用済み品を用いた。この廃電池を900℃の温度で5時間、大気中で焙焼して焙焼物を得た。
(Roasting process)
As the lithium-ion battery as a waste battery, a used product of what is generally called a square battery for automobiles was used. This waste battery was roasted in the air at a temperature of 900 ° C. for 5 hours to obtain a roasted product.

(破砕工程)
次に破砕工程で、上記の焙焼物をチェーンミルを用いて12kg/バッチづつ35秒間の破砕処理を行った。
破砕処理で得た破砕物を回収し、下記の磁選工程で磁選を行った。
(Crushing process)
Next, in the crushing step, the roasted product was crushed at a rate of 12 kg / batch for 35 seconds using a chain mill.
The crushed material obtained by the crushing treatment was recovered and subjected to magnetic separation in the following magnetic separation step.

(磁選工程)
磁選機には市販の吊下げ磁選機を用た。各試料は4.5kg/分の供給速度で破砕物を3000Gの磁力を有する磁選機に供給し磁選して鉄などの磁着物と非磁着物とに分けた。
(Magnetic separation process)
A commercially available hanging magnetic separator was used as the magnetic separator. For each sample, the crushed material was supplied to a magnetic separator having a magnetic force of 3000 G at a supply rate of 4.5 kg / min and magnetically separated to separate a magnetic material such as iron and a non-magnetic material.

(篩工程)
上記の非磁着物を連続式の振動篩を用いて篩別した。
篩の目開きは3.0mmとし、供給速度は2.5kg/分とした。
篩下物を次工程の酸化焙焼工程で酸化焙焼に付した。
(Sieve process)
The above non-magnetic material was sieved using a continuous vibrating sieve.
The mesh size of the sieve was 3.0 mm, and the supply rate was 2.5 kg / min.
The sieved product was subjected to oxidative roasting in the next oxidative roasting step.

(酸化焙焼工程)
酸化焙焼には炉内直径20cmで炉の有効長さ100cmのキルンを用いた。試料の供給速度は2.0kg/分とし炉内温度が750℃に維持しながら3時間大気を流しながら焙焼した。得た酸化焙焼物(篩下物)を次工程の還元熔融工程に付した。
(Oxidation roasting process)
For oxidative roasting, a kiln having a diameter of 20 cm in the furnace and an effective length of 100 cm in the furnace was used. The sample supply rate was 2.0 kg / min, and the sample was roasted in the air for 3 hours while maintaining the temperature inside the furnace at 750 ° C. The obtained oxidized roasted product (sieving product) was subjected to a reduction melting step of the next step.

(還元熔融工程)
酸化焙焼物(篩下物)の還元熔融には炉内容量が60リットルの誘導炉を用いた。誘導炉での1回の処理量は10.0kgとした。
表1において、実施例1〜10では塊状炭素質還元剤を0.80kg投入した。比較例1では塊状炭素質還元剤は投入しなかった。
投入した塊状炭素質還元剤の大きさ(体積)は、表1に示すとおり実施例1から実施例8に向かって順に大きくした。塊状炭素質還元剤の炭素品位はいずれも90質量%である。
実施例9,10では塊状炭素質還元剤の大きさ(体積)は、いずれも110cmであるが、塊状炭素質還元剤の炭素品位は実施例6が65質量%、実施例7を99質量%とした。
(Reduction melting process)
An induction furnace having a capacity of 60 liters was used for the reduction melting of the oxidative roasted product (sieving product). The amount processed at one time in the induction furnace was 10.0 kg.
In Table 1, 0.80 kg of a massive carbonaceous reducing agent was added in Examples 1 to 10. In Comparative Example 1, no bulk carbonaceous reducing agent was added.
The size (volume) of the charged bulk carbonaceous reducing agent was increased in order from Example 1 to Example 8 as shown in Table 1. The carbon grade of each of the massive carbonaceous reducing agents is 90% by mass.
In Examples 9 and 10, the size (volume) of the massive carbonaceous reducing agent is 110 cm 3 , but the carbon grade of the massive carbonaceous reducing agent is 65% by mass in Example 6 and 99% by mass in Example 7. %.

(評価)
評価基準としては、各試料が熔融できたか否か、熔融時間が短いか長いか、および生成したメタルを回収できたか否か、を目安とした。結果を表1に示した。
実施例1〜10では、試料が塊状炭素質還元剤で加熱され還元されて熔融し、メタルが生成して回収することができた。これに対し、塊状炭素質還元剤を投入していない比較例1では、廃電池が熔融しなかった。
(Evaluation)
As evaluation criteria, whether or not each sample could be melted, whether or not the melting time was short or long, and whether or not the produced metal could be recovered were used as guidelines. The results are shown in Table 1.
In Examples 1 to 10, the sample was heated with a massive carbonaceous reducing agent, reduced and melted, and metal was produced and recovered. On the other hand, in Comparative Example 1 in which the bulk carbonaceous reducing agent was not added, the waste battery did not melt.

実施例1〜8に示すように、塊状炭素質還元剤の炭素品位(質量%)が同じ場合では、塊状炭素質還元剤の大きさが大きいほど短時間で廃電池が熔融した。すなわち実施例1から実施例8で示すように、投入した塊状炭素質還元剤が大きい実施例ほど、熔融時間が早かった。
また、実施例9,10で対比するように塊状炭素質還元剤の大きさ(体積)が同じ場合では、塊状炭素質還元剤の炭素品位(質量%)が高いほど短時間で廃電池が熔融した。
As shown in Examples 1 to 8, when the carbon grade (mass%) of the massive carbonaceous reducing agent is the same, the larger the size of the massive carbonaceous reducing agent, the shorter the time the waste battery melts. That is, as shown in Examples 1 to 8, the larger the amount of the bulk carbonaceous reducing agent charged, the faster the melting time.
Further, when the size (volume) of the massive carbonaceous reducing agent is the same as compared with Examples 9 and 10, the higher the carbon grade (mass%) of the massive carbonaceous reducing agent, the shorter the time the waste battery melts. did.

Figure 2021091940
Figure 2021091940

表2に示すように、実施例11〜15では、塊状炭素質還元剤の大きさ(体積)を80cmとし、かつ塊状炭素質還元剤の炭素品位を85質量%に統一し、炭素質還元剤の量を誘導炉から排出される還元物とスラグの物量の合計を100質量%として、0.1質量%、2質量%、7質量%、15質量%、18質量%とした。
実施例11〜15は、いずれも熔融された廃電池と還元物の接触の頻度が増し、還元反応が効率よく進行した。このことは比較例1と比べて熔融時間が短いことからも分かる。
しかしながら、表3に示す実施例11〜15の不純物であるメタル中の鉄、マンガンの含有量の発生傾向をみると、塊状炭素質還元剤の使用量が、0.1質量%未満である実施例11では還元反応が効力良く進まないと推測される。また、塊状炭素質還元剤の使用量が18質量%を越える実施例15では還元が進み過ぎて鉄やマンガンなどの不要な金属が多く生成すると推測される。
As shown in Table 2, in Examples 11 to 15, the size (volume) of the bulk carbonaceous reducing agent was set to 80 cm 3 , and the carbon grade of the bulk carbonaceous reducing agent was unified to 85% by mass, and carbonaceous reduction was performed. The amount of the agent was 0.1% by mass, 2% by mass, 7% by mass, 15% by mass, and 18% by mass, assuming that the total amount of the reducing agent and the slag discharged from the induction furnace was 100% by mass.
In Examples 11 to 15, the frequency of contact between the molten waste battery and the reduced product increased, and the reduction reaction proceeded efficiently. This can be seen from the fact that the melting time is shorter than that of Comparative Example 1.
However, looking at the tendency of the contents of iron and manganese in the metal, which are impurities of Examples 11 to 15 shown in Table 3, to be generated, the amount of the massive carbonaceous reducing agent used is less than 0.1% by mass. In Example 11, it is presumed that the reduction reaction does not proceed effectively. Further, in Example 15 in which the amount of the massive carbonaceous reducing agent used exceeds 18% by mass, it is presumed that the reduction proceeds too much and a large amount of unnecessary metals such as iron and manganese are produced.

表2に示すように、実施例16〜18では、炭素質還元剤の大きさ(体積)を60cmに統一し、かつ炭素質還元剤の量を8.0%に統一した。そのうえで、炭素質還元剤の炭素品位を、それぞれ、65質量%、80質量%、95質量%とした。
実施例16〜18は、いずれも還元効率が高くなり、比較的、不純物の混入も少なかった。しかしながら、実施例16〜18の熔融時間の傾向をみると、実施例16で示す炭素品位が65質量%を下回ると、溶解時間が長くなる傾向が推測される。
As shown in Table 2, in Examples 16 to 18, the size (volume) of the carbonaceous reducing agent was unified to 60 cm 3 , and the amount of the carbonaceous reducing agent was unified to 8.0%. Then, the carbon grades of the carbonaceous reducing agent were set to 65% by mass, 80% by mass, and 95% by mass, respectively.
In Examples 16 to 18, the reduction efficiency was high, and the amount of impurities mixed was relatively small. However, looking at the tendency of the melting time of Examples 16 to 18, it is presumed that when the carbon grade shown in Example 16 is less than 65% by mass, the melting time tends to be long.

Figure 2021091940
Figure 2021091940

Figure 2021091940
Figure 2021091940

以上の各実施例から分かるように、本発明の回収方法を用いることで、廃電池を効率よく熔融しメタルを回収することができた。また、後工程の湿式製錬プロセスに付すことで、得られたメタルからコバルト、ニッケル、銅などの有価金属を回収できた。 As can be seen from each of the above examples, by using the recovery method of the present invention, it was possible to efficiently melt the waste battery and recover the metal. In addition, valuable metals such as cobalt, nickel, and copper could be recovered from the obtained metal by subjecting it to the hydrometallurgy process in the subsequent process.

本発明によれば、コバルトやニッケル、銅を各種産業で再利用できるほか、再度リチウムイオン電池の原料として供することができる。 According to the present invention, cobalt, nickel, and copper can be reused in various industries and can be reused as a raw material for a lithium ion battery.

1 ライニング材
2 コイル
3 継鉄(ヨーク)
4 プラグ
IF 誘導炉
1 Lining material 2 Coil 3 Joint iron (yoke)
4-plug IF induction furnace

Claims (7)

廃電池を焙焼して焙焼物を得る焙焼工程と、
前記焙焼物を破砕して破砕物を得る破砕工程と、
前記破砕物を篩って篩下物と篩上物に分ける篩工程と、
前記篩下物を還元熔融して還元物とスラグとを得る還元熔融工程を有する処理に付すことで廃電池から有価金属を回収する方法において、
前記還元熔融工程で用いる炉が誘導炉であり、
該誘導炉に塊状の炭素質還元剤を添加する
ことを特徴とする廃電池からの有価金属回収方法。
The roasting process of roasting waste batteries to obtain roasted products,
A crushing step of crushing the roasted product to obtain a crushed product,
A sieving step of sieving the crushed material and separating it into a sieve product and a sieve product.
In a method for recovering valuable metals from a waste battery by subjecting the sieve to a process having a reduction melting step of reducing and melting the reduced product and slag.
The furnace used in the reduction melting step is an induction furnace.
A method for recovering valuable metals from a waste battery, which comprises adding a massive carbonaceous reducing agent to the induction furnace.
添加する塊状の炭素質還元剤の量が、前記誘導炉から排出される還元物とスラグの物量の合計を100質量%として0.1質量%以上18質量%以下の範囲となるように制御する
ことを特徴とする請求項1記載の廃電池からの有価金属回収方法。
The amount of the bulky carbonaceous reducing agent to be added is controlled so as to be in the range of 0.1% by mass or more and 18% by mass or less, assuming that the total amount of the reducing substance and the slag discharged from the induction furnace is 100% by mass. The method for recovering valuable metals from a waste battery according to claim 1, wherein the method is characterized by the above.
添加する塊状の炭素質還元剤が1cm〜1000cmの大きさである
ことを特徴とする請求項1または2記載の廃電池からの有価金属回収方法。
Valuable metal recovery process from the waste battery according to claim 1 or 2, wherein the carbonaceous reducing agent massive added is the size of 1cm 3 ~1000cm 3.
添加する塊状の炭素質還元剤の組成が炭素品位65質量%以上である
ことを特徴とする請求項1,2または3記載の廃電池からの有価金属回収方法。
The method for recovering valuable metals from a waste battery according to claim 1, 2, or 3, wherein the composition of the lumpy carbonaceous reducing agent to be added is 65% by mass or more of carbon grade.
磁着物である鉄を除去する磁選工程を前記篩工程の前または後で行う
ことを特徴とする請求項1記載の廃電池からの有価金属回収方法。
The method for recovering valuable metals from a waste battery according to claim 1, wherein the magnetic separation step for removing iron as a magnetic deposit is performed before or after the sieving step.
篩下物を酸化焙焼する酸化焙焼工程を前記還元熔融工程の前で行う
ことを特徴とする請求項1または5記載の廃電池からの有価金属回収方法。
The method for recovering valuable metals from a waste battery according to claim 1 or 5, wherein the oxidative roasting step of oxidatively roasting the sieved product is performed before the reduction melting step.
回収される有価金属が少なくともコバルト、ニッケル、および銅から選ばれる1種以上である
ことを特徴とする請求項1,2,3,4,5または6記載の廃電池からの有価金属回収方法。
The method for recovering a valuable metal from a waste battery according to claim 1, 2, 3, 4, 5 or 6, wherein the valuable metal to be recovered is at least one selected from cobalt, nickel, and copper.
JP2019223743A 2019-12-11 2019-12-11 Valuable metal recovery method from waste batteries Active JP7322687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019223743A JP7322687B2 (en) 2019-12-11 2019-12-11 Valuable metal recovery method from waste batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019223743A JP7322687B2 (en) 2019-12-11 2019-12-11 Valuable metal recovery method from waste batteries

Publications (2)

Publication Number Publication Date
JP2021091940A true JP2021091940A (en) 2021-06-17
JP7322687B2 JP7322687B2 (en) 2023-08-08

Family

ID=76311890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019223743A Active JP7322687B2 (en) 2019-12-11 2019-12-11 Valuable metal recovery method from waste batteries

Country Status (1)

Country Link
JP (1) JP7322687B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162840A (en) * 2021-12-30 2022-03-11 江西赣锋循环科技有限公司 Method for preferentially extracting lithium from retired ternary lithium battery material
CN116462194A (en) * 2023-05-11 2023-07-21 昆明理工大学 Method for recycling high-purity graphite from waste lithium ion batteries

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005042189A (en) 2003-07-25 2005-02-17 Ise Chemicals Corp Recovery method of cobalt
JP5277652B2 (en) 2008-02-08 2013-08-28 新日鐵住金株式会社 Method for recovering metals from scrap copper
JP5535716B2 (en) 2009-09-30 2014-07-02 Dowaエコシステム株式会社 Lithium recovery method
JP2012229481A (en) 2011-04-27 2012-11-22 Japan Metals & Chem Co Ltd Method for separating and recovering valuable material from used lithium ion battery
JP5853585B2 (en) 2011-10-25 2016-02-09 住友金属鉱山株式会社 Valuable metal recovery method
JP5657730B2 (en) 2013-03-29 2015-01-21 Jx日鉱日石金属株式会社 Method for recovering valuable materials from lithium-ion batteries
JP2016037661A (en) 2014-08-11 2016-03-22 日本重化学工業株式会社 Method for recovering valuable metal
JP6268130B2 (en) 2015-06-11 2018-01-24 日本リサイクルセンター株式会社 Method for recovering valuable materials from lithium-ion batteries
JP7077498B2 (en) 2018-02-01 2022-05-31 株式会社神戸製鋼所 Metal recovery method
JP2019135321A (en) 2018-02-05 2019-08-15 住友金属鉱山株式会社 Method for recovering valuable metal from waste lithium-ion battery
JP6998241B2 (en) 2018-03-07 2022-01-18 Jx金属株式会社 Lithium recovery method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162840A (en) * 2021-12-30 2022-03-11 江西赣锋循环科技有限公司 Method for preferentially extracting lithium from retired ternary lithium battery material
CN114162840B (en) * 2021-12-30 2023-04-14 江西赣锋循环科技有限公司 Method for preferentially extracting lithium from retired ternary lithium battery material
CN116462194A (en) * 2023-05-11 2023-07-21 昆明理工大学 Method for recycling high-purity graphite from waste lithium ion batteries

Also Published As

Publication number Publication date
JP7322687B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
KR102575339B1 (en) Method for recovering valuable metals from waste lithium ion batteries
JP2019135321A (en) Method for recovering valuable metal from waste lithium-ion battery
KR102470940B1 (en) Method for disposing of waste lithium ion batteries
JP2018197385A (en) Phosphorus removing method, and valuable metal recovering method
JP2021161454A (en) Method for recovering valuable metal from waste lithium-ion battery
JP2021031760A (en) Process for recovering valuable metal
JP7354903B2 (en) Method for recovering valuable metals from waste lithium-ion batteries
JP7409165B2 (en) Method for recovering valuable metals from waste batteries
JP2021095628A (en) Method for collecting valuable element
JP7322687B2 (en) Valuable metal recovery method from waste batteries
JP7363207B2 (en) How to recover valuable metals
JP7400333B2 (en) How to recover valuable metals
JP7103293B2 (en) How to recover valuable metals
JP7306277B2 (en) Valuable metal recovery method from waste batteries
JP7447643B2 (en) Valuable metal recovery method
JP7363206B2 (en) How to recover valuable metals
KR20220139978A (en) How to recover valuable metals
JP2021139020A (en) Valuable metal recovery method from waste battery
JP7416153B1 (en) How to recover valuable metals
JP7389344B2 (en) Method for recovering valuable metals from waste batteries
WO2024048247A1 (en) Method for recovering valuable metals
WO2024048248A1 (en) Method for recovering valuable metals
JP7389354B2 (en) Valuable metal recovery method
JP7215517B2 (en) Valuable metal manufacturing method
CA3230561A1 (en) Method for producing valuable metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7322687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150