JP2021139020A - Valuable metal recovery method from waste battery - Google Patents

Valuable metal recovery method from waste battery Download PDF

Info

Publication number
JP2021139020A
JP2021139020A JP2020039182A JP2020039182A JP2021139020A JP 2021139020 A JP2021139020 A JP 2021139020A JP 2020039182 A JP2020039182 A JP 2020039182A JP 2020039182 A JP2020039182 A JP 2020039182A JP 2021139020 A JP2021139020 A JP 2021139020A
Authority
JP
Japan
Prior art keywords
magnetic separation
roasting
sieving
crushed
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020039182A
Other languages
Japanese (ja)
Other versions
JP7413847B2 (en
Inventor
隆士 井関
Takashi Izeki
隆士 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020039182A priority Critical patent/JP7413847B2/en
Publication of JP2021139020A publication Critical patent/JP2021139020A/en
Application granted granted Critical
Publication of JP7413847B2 publication Critical patent/JP7413847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

To provide a method capable of efficiently and stably recovering a valuable metal contained in waste batteries, while efficiently removing the impurity.SOLUTION: The method of recovering the valuable metal from the waste battery according to the present invention may comprise a roasting step S11 for roasting waste batteries, a crushing step S12 for crushing the roasted material, a magnetic separation process S13 for separating the crushed material into a magnetized material and a nonmagnetic material by applying a magnetic selection treatment to the crushed material, and a sieve separation step S14 for separating the non-magnetized material into an oversize and an undersize. Furthermore, the valuable metal recovery method from the waste batteries according to the present invention comprises a roasting step S21 for roasting the waste batteries, a crushing step S22 for crushing the roasted material, a sieve separation step S23 for sieve separating the crushed material into an oversize and an undersize, and a magnetic selection step S24 for separating a magnetized material and a non-magnetized material by applying a magnetic selection treatment to the undersize. Herein, in the magnetic selection step S13, S24, a suspension type magnetic selection machine is preferably used to treat.SELECTED DRAWING: Figure 1

Description

本発明は、廃電池に含まれる有価金属の回収方法に関する。 The present invention relates to a method for recovering valuable metals contained in a waste battery.

近年、軽量で大出力が得られる二次電池としてリチウムイオン電池が普及している。リチウムイオン電池の基本構造として、アルミニウムや鉄等の金属製の外装缶の内側に、銅箔で作られた負極集電体とアルミニウム箔で作られた正極集電体とがある。 In recent years, lithium-ion batteries have become widespread as secondary batteries that are lightweight and can obtain high output. As a basic structure of a lithium ion battery, there are a negative electrode current collector made of copper foil and a positive electrode current collector made of aluminum foil inside an outer can made of metal such as aluminum or iron.

負極集電体の表面には黒鉛等の負極活物質が固着され、負極材を構成する。また、正極集電体の表面にはニッケル酸リチウムやコバルト酸リチウム等の正極活物質が固着され、正極材を構成する。負極材と正極材は、ポリプロピレンの多孔質樹脂フィルム等からなるセパレータを介して上述した外装缶の中に装入され、その隙間には六フッ化リン酸リチウム(LiPF)等の電解質を含む電解液等が封入される。 A negative electrode active material such as graphite is fixed to the surface of the negative electrode current collector to form a negative electrode material. Further, a positive electrode active material such as lithium nickel oxide or lithium cobalt oxide is fixed to the surface of the positive electrode current collector to form a positive electrode material. The negative electrode material and the positive electrode material are charged into the above-mentioned outer can through a separator made of a polypropylene porous resin film or the like, and an electrolyte such as lithium hexafluorophosphate (LiPF 6) is contained in the gap between the negative electrode material and the positive electrode material. An electrolytic solution or the like is sealed.

リチウムイオン電池は、現在ではハイブリッド自動車や電気自動車等の車載用電池としての利用が進んでいる。しかしながら、自動車に搭載されたリチウムイオン電池は、使用を重ねるにつれて次第に劣化し、最後は寿命が来て廃棄される。 Lithium-ion batteries are currently being used as in-vehicle batteries for hybrid vehicles, electric vehicles, and the like. However, the lithium-ion battery mounted on an automobile gradually deteriorates as it is used repeatedly, and finally reaches the end of its life and is discarded.

自動車の動力がガソリンから電気へと変化する中で、自動車用途に用いられる電池が増加することは、同時に廃棄される電池も増加していくことになる。 As the power of automobiles changes from gasoline to electricity, the number of batteries used for automobiles will increase, and at the same time, the number of batteries that will be discarded will also increase.

このような廃棄されたリチウムイオン電池や、リチウムイオン電池の製造中に生じた不良品等(以下、まとめて「廃電池」と称する)を資源として再利用する試みと具体的提案は、従来から多く行われている。そして、その多くは、廃リチウムイオン電池を高温の炉に投入して全量を熔解する乾式製錬プロセスが主流のものとなっている。 Attempts and specific proposals for reusing such discarded lithium-ion batteries and defective products (hereinafter collectively referred to as "waste batteries") generated during the manufacture of lithium-ion batteries as resources have been conventionally made. Many are done. Most of them are pyrometallurgical processes in which waste lithium-ion batteries are put into a high-temperature furnace to melt the entire amount.

ここで、廃電池には、ニッケル、コバルト、銅等の商業的に再利用の価値のある元素(以下、これらを「有価金属」と称する)のほかに、炭素、アルミニウム、フッ素、リン等の商業的に回収対象とならない元素(以下、まとめて「不純物」と称する)が含まれている。廃電池から有価金属を回収する場合、上述する不純物を有価金属と効率よく分離する必要がある。 Here, in addition to commercially valuable elements such as nickel, cobalt, and copper (hereinafter, these are referred to as "valuable metals"), waste batteries include carbon, aluminum, fluorine, phosphorus, and the like. Contains elements that are not commercially recoverable (hereinafter collectively referred to as "impurities"). When recovering valuable metals from waste batteries, it is necessary to efficiently separate the above-mentioned impurities from the valuable metals.

このため、例えば、廃電池を焙焼してフッ素やリン等を除去する無害化処理を行ったのち、破砕や粉砕を行い、その後篩機や磁選機を用いて分別して、その分別物から上述の乾式製錬プロセス(以下、単に「乾式処理」とも称する)や、酸や有機溶媒等の液体を用いて分離する湿式製錬プロセス(以下、単に「湿式処理」とも称する)を用いて、有価金属を回収する方法が行われている。 For this reason, for example, a waste battery is roasted to perform a detoxification treatment for removing fluorine, phosphorus, etc., then crushed or crushed, and then separated using a sieve or a magnetic separator, and the separated product is described above. It is valuable to use the dry smelting process (hereinafter, also simply referred to as “dry treatment”) and the wet smelting process (hereinafter, also simply referred to as “wet treatment”) in which separation is performed using a liquid such as an acid or an organic solvent. A method of recovering metal has been carried out.

乾式処理による廃電池からの有価金属であるコバルトの回収方法として、例えば特許文献1では、廃リチウムイオン電池を熔融炉へ投入し、酸素を吹き込んで酸化するプロセスが提案されている。 As a method for recovering cobalt, which is a valuable metal from a waste battery by a dry treatment, for example, Patent Document 1 proposes a process in which a waste lithium ion battery is put into a melting furnace and oxygen is blown into it to oxidize it.

また、特許文献2では、廃リチウムイオン電池を熔融し、スラグを分離して有価物を回収した後、石灰系の溶剤(フラックス)を添加してリンを除去するプロセスが提案されている。 Further, Patent Document 2 proposes a process in which a waste lithium ion battery is melted, slag is separated to recover valuable resources, and then a lime-based solvent (flux) is added to remove phosphorus.

さらに、特許文献3では、複数の単電池を直列接続してなる組電池と、組電池を制御する制御部とを含み、樹脂製部品を有する電池パックをリサイクルする方法として、充電状態の組電池を収容した電池パックをそのまま焙焼する工程と、電池パックの焙焼時に発生した未燃焼分の熱分解ガスを完全燃焼させる完全燃焼工程と、を有し、焙焼する工程における焙焼温度を、樹脂製部品を形成する樹脂の炭化温度以上で且つ電池パックの金属部品の融点以下とし、非酸化性雰囲気下又は還元雰囲気下で電池パック内の組電池を焙焼するリサイクル方法が開示されている。 Further, in Patent Document 3, as a method of recycling a battery pack having a resin component including an assembled battery formed by connecting a plurality of cells in series and a control unit for controlling the assembled battery, a charged assembled battery It has a step of roasting the battery pack containing the battery pack as it is and a complete burning step of completely burning the unburned thermal decomposition gas generated at the time of roasting the battery pack. Disclosed is a recycling method in which the assembled battery in the battery pack is roasted in a non-oxidizing atmosphere or a reducing atmosphere at a temperature equal to or higher than the carbonization temperature of the resin forming the resin part and lower than the melting point of the metal part of the battery pack. There is.

しかしながら、これらの方法は、脱水や乾燥の処理、装置本体やメンテナンスにも、多大なコストを要するという問題がある。 However, these methods have a problem that they require a great deal of cost for dehydration and drying treatments, as well as for the main body of the apparatus and maintenance.

また、廃電池には、鉄等の不純物の多く含まれているため、不純物を可能な限り排除することが効率よく有価金属を回収するためには欠かせない。ところが、不純物と有価金属とは、様々な形態で入り混じっていることも多く、経済的に効率性高く、確実にかつ安定して有価金属を分離して回収することは容易ではなかった。 In addition, since waste batteries contain a large amount of impurities such as iron, it is indispensable to eliminate impurities as much as possible in order to efficiently recover valuable metals. However, impurities and valuable metals are often mixed in various forms, and it is economically efficient, and it has not been easy to separate and recover valuable metals reliably and stably.

特開2013−091826号公報Japanese Unexamined Patent Publication No. 2013-091826 特表2013−506048号公報Japanese Patent Application Laid-Open No. 2013-506048 特開2010−3512号公報Japanese Unexamined Patent Publication No. 2010-3512

本発明は、このような実情に鑑みて提案されたものであり、廃電池に含まれる有価金属を、不純物を効果的に除去しながら、効率的にかつ安定的に回収することができる方法を提供することを目的とする。 The present invention has been proposed in view of such circumstances, and provides a method capable of efficiently and stably recovering valuable metals contained in a waste battery while effectively removing impurities. The purpose is to provide.

本発明者は、上述した課題を解決するために鋭意検討を重ねた。その結果、廃電池を焙焼して得られる焙焼物を所定の大きさに破砕したのち、その破砕物に対して磁選処理を施し、磁選された非着磁物を対象として篩別けして篩下物を回収することで、効率的にかつ安定的に有価金属を回収できることを見出した。あるいは、破砕物の篩別けのよる篩下物に対して磁選処理を施し、磁選された非着磁物を回収することでも同様の効果が得られることを見出した。すなわち、本発明は以下のものを提供する。 The present inventor has made extensive studies to solve the above-mentioned problems. As a result, the roasted product obtained by roasting the waste battery is crushed to a predetermined size, and then the crushed product is subjected to a magnetic separation treatment, and the magnetically separated non-magnetized material is sieved and sieved. It was found that valuable metals can be recovered efficiently and stably by recovering vulgarities. Alternatively, it has been found that the same effect can be obtained by subjecting the sieving material obtained by sieving the crushed material to a magnetic separation treatment and recovering the magnetically separated non-magnetized material. That is, the present invention provides the following.

(1)本発明の第1の発明は、廃電池を焙焼する焙焼工程と、焙焼物を破砕する破砕工程と、破砕物に対して磁選処理を施して着磁物と非着磁物とに区分する磁選工程と、前記非着磁物を篩別けして篩上物と篩下物とに分離する篩別工程と、を有する、廃電池からの有価金属回収方法である。 (1) The first invention of the present invention includes a roasting step of roasting a waste battery, a crushing step of crushing a roasted product, and a magnetized and non-magnetized material obtained by subjecting the crushed material to a magnetic separation process. This is a method for recovering valuable metals from a waste battery, which comprises a magnetic separation step of dividing into

(2)本発明の第2の発明は、第1の発明において、前記磁選工程では、前記破砕物に対して吊下げ式磁選機を用いて磁選処理を施す、廃電池からの有価金属回収方法である。 (2) A second invention of the present invention is a method for recovering valuable metals from a waste battery, wherein in the magnetic separation step, the crushed material is subjected to a magnetic separation treatment using a suspension type magnetic separator in the first invention. Is.

(3)本発明の第3の発明は、第2の発明において、前記磁選工程では、前記破砕物のサイズが所定以下となるように調整し、サイズ調整した破砕物に対して前記磁選処理を施す、廃電池からの有価金属回収方法である。 (3) In the third invention of the present invention, in the second invention, in the magnetic separation step, the size of the crushed material is adjusted to be less than or equal to a predetermined value, and the crushed material adjusted in size is subjected to the magnetic separation treatment. This is a method of recovering valuable metals from waste batteries.

(4)本発明の第4の発明は、第3の発明において、前記磁選工程では、前記破砕工程を経てベルトコンベアに載置されて搬送される前記破砕物のうち、該ベルトコンベアの上部空間に設置された邪魔板によって高さ方向で一定のサイズ以下に調整した破砕物に対して前記磁選処理を施す、廃電池からの有価金属回収方法である。 (4) In the third invention, the fourth invention of the present invention is the upper space of the belt conveyor among the crushed materials which are placed on the belt conveyor and conveyed through the crushing step in the magnetic separation step. This is a method for recovering valuable metals from a waste battery by subjecting the crushed material adjusted to a certain size or less in the height direction by the baffle plate installed in the above.

(5)本発明の第5の発明は、第3又は第4の発明において、前記磁選工程では、前記破砕物を、高さ方向のサイズで20mm以上120mm以下の範囲に調整し、サイズ調整した破砕物に対して前記磁選処理を施す、廃電池からの有価金属回収方法である。 (5) In the fifth invention of the present invention, in the third or fourth invention, in the magnetic separation step, the crushed material was adjusted in height to a range of 20 mm or more and 120 mm or less, and the size was adjusted. This is a method for recovering valuable metals from a waste battery by subjecting the crushed material to the magnetic separation treatment.

(6)本発明の第6の発明は、第1乃至第5のいずれかの発明において、前記篩下物を酸化焙焼する酸化焙焼工程と、酸化焙焼物を還元熔融して、スラグと、有価金属を含有する合金とを得る還元熔融工程と、をさらに有する、廃電池からの有価金属回収方法である。 (6) In the sixth invention of the present invention, in any one of the first to fifth inventions, an oxidative roasting step of oxidatively roasting the sieved product and a reduction melting of the oxidative roasted product to form a slag. This is a method for recovering valuable metals from waste batteries, further comprising a reduction melting step of obtaining an alloy containing valuable metals.

(7)本発明の第7の発明は、第1乃至第6のいずれかの発明において、前記有価金属は、少なくとも、コバルト、ニッケル、及び銅からなる群から選ばれる1種以上を含む、廃電池からの有価金属回収方法である。 (7) In the seventh invention of the present invention, in any one of the first to sixth inventions, the valuable metal contains at least one selected from the group consisting of cobalt, nickel, and copper. This is a method for recovering valuable metals from batteries.

(8)本発明の第8の発明は、廃電池を焙焼する焙焼工程と、焙焼物を破砕する破砕工程と、破砕物を篩別けして篩上物と篩下物とに分離する篩別工程と、前記篩下物に対して磁選処理を施して着磁物と非着磁物とに区分する磁選工程と、を有する、廃電池からの有価金属回収方法である。 (8) The eighth invention of the present invention is a roasting step of roasting a waste battery, a crushing step of crushing a roasted product, and sieving the crushed product to separate a sieving product and a sieving product. This is a method for recovering valuable metals from a waste battery, which comprises a sieving step and a magnetic separation step of subjecting the sieved material to a magnetized material and a non-magnetized material.

(9)本発明の第9の発明は、第8の発明において、前記非着磁物を酸化焙焼する酸化焙焼工程と、酸化焙焼物を還元熔融して、スラグと、有価金属を含有する合金とを得る還元熔融工程と、をさらに有する、廃電池からの有価金属回収方法である。 (9) In the eighth invention, the ninth invention of the present invention contains an oxidative roasting step of oxidatively roasting the non-magnetized material and a slag and a valuable metal by reducing and melting the oxidative roasted material. This is a method for recovering valuable metals from a waste battery, further comprising a reduction melting step of obtaining an alloy to be produced.

本発明によれば、廃電池に含まれる有価金属を、効率的にかつ安定的に回収することができる。 According to the present invention, valuable metals contained in waste batteries can be efficiently and stably recovered.

有価金属回収方法の流れの一例を示す工程図である。It is a process drawing which shows an example of the flow of a valuable metal recovery method. ベルトコンベアの搬送経路の所定の箇所の上部に設けた吊下げ式磁選機について説明するための図である。It is a figure for demonstrating the suspension type magnetic separator provided in the upper part of the predetermined part of the transport path of a belt conveyor. ベルトコンベアの搬送経路の所定の箇所(吊下げ式磁選機よりも上流側)の上部空間に邪魔板を設置し、搬送される破砕物のうち高さ方向で一定のサイズ以下のものを通過させて磁選機に供給する流れを模式的に示した図である。An obstruction plate is installed in the upper space of a predetermined location (upstream from the hanging magnetic separator) on the conveyor belt, and the crushed material to be transported that is smaller than a certain size in the height direction is passed through. It is the figure which showed typically the flow which feeds to a magnetic separator. 有価金属回収方法の流れの他の一例を示す工程図である。It is a process drawing which shows another example of the flow of a valuable metal recovery method.

以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において種々の変更が可能である。 Hereinafter, a specific embodiment of the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made without changing the gist of the present invention.

≪1.有価金属回収方法の概要≫
本実施の形態に係る有価金属の回収方法は、廃電池から有価金属を回収する方法である。一般的に、廃電池から有価金属を回収するにあたっては、乾式処理に加えて湿式処理を行う場合があるが、本実施の形態に係る有価金属回収方法は、主として乾式処理に関わる。
≪1. Overview of valuable metal recovery method ≫
The method for recovering valuable metal according to the present embodiment is a method for recovering valuable metal from a waste battery. Generally, when recovering a valuable metal from a waste battery, a wet treatment may be performed in addition to the dry treatment, but the valuable metal recovery method according to the present embodiment is mainly related to the dry treatment.

具体的に、この有価金属回収方法は、無害化のために廃電池を焙焼して得られる焙焼物を所定の大きさに破砕したのち、その破砕物に対して磁選処理を施して着磁物と非着磁物とに区分し、次いで、非着磁物を所定の目開きの篩で篩別けして篩上物と篩下物とに分離する。なお、その後、分離した篩下物を対象として酸化焙焼し、酸化焙焼物を還元熔融してスラグと有価金属を含有する合金とを得る。 Specifically, in this valuable metal recovery method, a roasted product obtained by roasting a waste battery for detoxification is crushed to a predetermined size, and then the crushed product is subjected to a magnetic separation process to magnetize the crushed product. It is divided into a non-magnetized material and a non-magnetized material, and then the non-magnetized material is sieved by a sieve having a predetermined opening to separate a superficial material and a non-magnetized material. After that, the separated sieve products are oxidatively roasted, and the oxidative roasted products are reduced and melted to obtain an alloy containing slag and a valuable metal.

また、有価金属回収方法の他の実施態様として、無害化のために廃電池を焙焼して得られる焙焼物を所定の大きさに破砕したのち、その破砕物を所定の目開きの篩で篩別けして篩上物と篩下物とに分離し、次いで、分離した篩下物に対して磁選処理を施して着磁物と非着磁物とに区分する。なお、その後は、区分した非着磁物を対象として酸化焙焼し、酸化焙焼物を還元熔融してスラグと有価金属を含有する合金とを得る。 Further, as another embodiment of the valuable metal recovery method, a roasted product obtained by roasting a waste battery for detoxification is crushed to a predetermined size, and then the crushed product is sieved with a predetermined opening. It is separated by sieving and separated into a sieving product and a sieving product, and then the separated sieving product is subjected to a magnetic separation treatment to separate a magnetized product and a non-magnetized product. After that, the classified non-magnetized material is oxidatively roasted, and the oxidatively roasted material is reduced and melted to obtain an alloy containing slag and a valuable metal.

これらのような方法によれば、破砕物に対して磁選処理を施し、あるいは破砕物を篩別けした篩下物に対して磁選処理を施すようにすることで、廃電池に含まれている、鉄を主とする不純物の金属成分を効果的に除去することができる。このように、主として鉄を効果的に除去できることから、後工程にて還元熔融する際にスラグの融点や粘性等の設計が容易となり効率的に有価金属を回収できる。また、後工程にて鉄等の不純物を除去するための処理が不要となり、処理費用を低減できる。 According to these methods, the crushed material is contained in the waste battery by subjecting the crushed material to a magnetic separation treatment, or by performing a magnetic separation treatment on the sieved product obtained by sieving the crushed material. The metal component of impurities, mainly iron, can be effectively removed. As described above, since iron can be effectively removed, the melting point and viscosity of the slag can be easily designed when the slag is reduced and melted in the subsequent process, and the valuable metal can be efficiently recovered. Further, the treatment for removing impurities such as iron is not required in the post-process, and the treatment cost can be reduced.

ここで、廃電池とは、上述したように、使用済みのリチウムイオン電池等の二次電池や、二次電池を構成する正極材等の製造工程で生じた不良品、製造工程内部の残留物、発生屑等のリチウムイオン電池の製造工程内における廃材を含む概念である。このような廃電池には、上述のように、ニッケル、コバルト、銅等の、回収して再利用する経済的価値のある有価金属が含まれている。 Here, as described above, the waste battery is a defective product generated in the manufacturing process of a secondary battery such as a used lithium ion battery, a positive electrode material constituting the secondary battery, and a residue inside the manufacturing process. , A concept that includes waste materials in the manufacturing process of lithium-ion batteries such as generated waste. As described above, such waste batteries contain valuable metals such as nickel, cobalt, and copper that have economic value to be recovered and reused.

≪2.有価金属回収方法の各工程について≫
<2−1.第1の実施形態>
図1は、本実施の形態に係る有価金属回収方法の流れの一例を示す工程図である。この有価金属回収方法は、廃電池を焙焼する焙焼工程S11と、焙焼物を破砕する破砕工程S12と、破砕物に対して磁選処理を施して着磁物と非着磁物とに区分する磁選工程S13と、磁選された非着磁物に対して篩別処理を施して篩上物となる塊状物と篩下物となる粉末とに分離する篩別工程S14と、を有する。ここで、ニッケルやコバルト等の有価金属は、正極活物質に含まれる金属であり、これらの工程を経て鉄等の不純物と分離された状態で粉末状で回収されることになる。したがって、有価金属は篩下物に多く分配される。
≪2. About each process of valuable metal recovery method ≫
<2-1. First Embodiment>
FIG. 1 is a process diagram showing an example of the flow of the valuable metal recovery method according to the present embodiment. This valuable metal recovery method is divided into a roasting step S11 for roasting a waste battery, a crushing step S12 for crushing a roasted product, and a magnetized material and a non-magnetized material by subjecting the crushed material to a magnetic separation treatment. It has a magnetic separation step S13, and a sieving step S14 in which the magnetically selected non-magnetized material is subjected to a sieving treatment to separate a lumpy product to be a sieving product and a powder to be a sieving product. Here, valuable metals such as nickel and cobalt are metals contained in the positive electrode active material, and are recovered in powder form in a state of being separated from impurities such as iron through these steps. Therefore, a large amount of valuable metal is distributed in the sieve.

また、得られた篩下物を酸化焙焼する酸化焙焼工程S15と、酸化焙焼物を還元熔融することにより、スラグと、有価金属を含有する合金(メタル)とを得る還元熔融工程S16と、をさらに有する。 Further, an oxidative roasting step S15 in which the obtained sieve product is oxidatively roasted, and a reduction melting step S16 in which the slag and an alloy (metal) containing a valuable metal are obtained by reducing and melting the oxidative roasted product. Further has.

なお、このような一連の乾式処理を経て得られる有価金属の合金を、中和処理や溶媒抽出処理、電解採取等の湿式処理に付すことによって、その合金中に残留する不純物成分を除去して有価金属をさらに精製し、高付加価値なメタルとして回収できる。 The valuable metal alloy obtained through such a series of dry treatments is subjected to wet treatments such as neutralization treatment, solvent extraction treatment, and electrowinning to remove impurity components remaining in the alloy. Valuable metals can be further refined and recovered as high value-added metals.

[焙焼工程]
焙焼工程S11は、廃電池に含有される電解液成分であるフッ素成分等を取り除いて無害化し、また、次工程での破砕を容易とすることを主な目的とする。
[Roasting process]
The main purpose of the roasting step S11 is to remove the fluorine component, which is an electrolytic solution component contained in the waste battery, to make it harmless, and to facilitate crushing in the next step.

焙焼処理における条件は、特に限定されないが、確実に無害化するとともに、廃電池を脆くして次工程での破砕を容易にする観点から、焙焼温度としては700℃以上に加熱して行うことが好ましい。なお、焙焼温度の上限としては、特に限定されないが、1200℃以下とすることが好ましい。焙焼温度が高すぎると、主に廃電池の外部シェルに用いられている鉄等の一部がキルン等の焙焼炉本体の内壁等に付着してしまい、円滑な操業の妨げになったり、あるいはキルン自体の劣化につながる場合があり好ましくない。 The conditions for the roasting treatment are not particularly limited, but the roasting temperature is heated to 700 ° C. or higher from the viewpoint of ensuring detoxification and making the waste battery brittle and facilitating crushing in the next step. Is preferable. The upper limit of the roasting temperature is not particularly limited, but is preferably 1200 ° C. or lower. If the roasting temperature is too high, a part of iron, etc., which is mainly used for the outer shell of the waste battery, adheres to the inner wall of the roasting furnace body such as a kiln, which hinders smooth operation. Or, it may lead to deterioration of the kiln itself, which is not preferable.

また、焙焼処理に供する廃電池を炉内に積み重ねすぎると、内部まで十分に焙焼できず焼きムラができてしまう。そのため、均一に焙焼できるようにする観点から、処理量や焙焼炉の加熱能力等を選定することが好ましい。例えば、予め予備試験を行って、最適温度や焙焼時間を決定することが好ましい。 Further, if the waste batteries used for the roasting process are stacked too much in the furnace, the inside cannot be sufficiently roasted and uneven roasting occurs. Therefore, from the viewpoint of enabling uniform roasting, it is preferable to select the processing amount, the heating capacity of the roasting furnace, and the like. For example, it is preferable to perform a preliminary test in advance to determine the optimum temperature and roasting time.

焙焼時の加熱方式は、特に限定されず、電気式であってよく、石油やガス等の燃料を使用するバーナー式であってよい。特に、バーナー式の加熱は低コストであり好ましい。 The heating method at the time of roasting is not particularly limited, and may be an electric type or a burner type using a fuel such as oil or gas. In particular, burner-type heating is preferable because of its low cost.

[破砕工程]
破砕工程S12では、焙焼工程S11にて廃電池を焙焼して得られた焙焼物を、破砕し、細かく分離する。
[Crushing process]
In the crushing step S12, the roasted product obtained by roasting the waste battery in the roasting step S11 is crushed and finely separated.

破砕処理において使用する破砕装置は、特に限定されず、例えばロッドミル、ジョークラッシャー、二軸混錬機、チェーンミル等を用いることができる。 The crushing device used in the crushing treatment is not particularly limited, and for example, a rod mill, a jaw crusher, a twin-screw kneader, a chain mill, or the like can be used.

[磁選工程]
磁選工程S13では、破砕工程S12にて焙焼物を破砕して得られた破砕物に対して磁選処理を施すことによって着磁物と非着磁物とに区分する。磁選工程S13での処理は、廃電池に含まれる不純物である、鉄を主とする金属を着磁物として分離除去することである。
[Magnetic separation process]
In the magnetic separation step S13, the crushed material obtained by crushing the roasted material in the crushing step S12 is subjected to a magnetic separation treatment to classify the crushed material into a magnetized material and a non-magnetized material. The treatment in the magnetic selection step S13 is to separate and remove an impurity contained in the waste battery, a metal mainly composed of iron, as a magnetized substance.

ここで、回収した有価金属中に不純物の鉄が含まれると、後工程の還元熔融工程S16での乾式製錬の際においてスラグの融点や粘性等の設計が複雑になる。さらに、回収した有価金属において鉄を十分に除去できないと、後工程で別途、鉄を除去するための処理が必要となり、また処理費用が増すことになる。 Here, if the recovered valuable metal contains an impurity iron, the design of the melting point, viscosity, etc. of the slag becomes complicated during the pyrometallurgy in the reduction melting step S16 in the subsequent step. Further, if iron cannot be sufficiently removed from the recovered valuable metal, a separate treatment for removing iron is required in a subsequent process, and the treatment cost increases.

この点、本実施の形態に係る有価金属回収方法によれば、磁選工程S13を設け、破砕物に対して磁選処理を施し、区分された非着磁物を次工程に供給して有価金属を回収するようしている。このことから、着磁物として区分される鉄等の不純物金属成分を効果的に除去できる。また、回収する有価金属中への鉄の含有を防ぐことができるため、後工程の還元熔融処理の設計が容易となり、また、鉄を除去するための処理が不要となり、処理コストの増加も抑えることができる。 In this regard, according to the valuable metal recovery method according to the present embodiment, the magnetic separation step S13 is provided, the crushed material is subjected to the magnetic separation treatment, and the classified non-magnetized material is supplied to the next step to supply the valuable metal. I am trying to collect it. From this, the impurity metal component such as iron classified as a magnetized substance can be effectively removed. In addition, since iron can be prevented from being contained in the valuable metal to be recovered, the design of the reduction melting treatment in the subsequent process becomes easy, the treatment for removing iron becomes unnecessary, and the increase in the treatment cost is suppressed. be able to.

磁選処理の方法としては、特に限定されないが、例えば吊下げ式磁選機を用いた方法により行うことができる。図2は、ベルトコンベアの搬送経路の所定の箇所の上部に設けた吊下げ式磁選機について説明するための図である。 The method of magnetic separation processing is not particularly limited, but can be performed by, for example, a method using a hanging magnetic separator. FIG. 2 is a diagram for explaining a suspension type magnetic separator provided above a predetermined portion of a conveyor belt transport path.

図2に示すように、吊下げ式磁選機12は、ベルトコンベア11の搬送経路の上部に磁石20が吊下げられて構成されるものであり、磁石の周囲には着磁物排出用の別のベルトコンベア13が磁石20に巻き付くように取り付けられている。なお、ベルトコンベア11において、その搬送方向は紙面手前から紙面奥に向かう方向であり、その搬送方向の経路の途中の上部に吊下げ式磁選機12が設置されている。 As shown in FIG. 2, the suspension type magnetic separator 12 is configured such that a magnet 20 is suspended above the transport path of the belt conveyor 11, and a magnet 20 is suspended around the magnet for discharging a magnetized material. The belt conveyor 13 of the above is attached so as to wrap around the magnet 20. In the belt conveyor 11, the transport direction is from the front side of the paper surface to the back side of the paper surface, and the suspension type magnetic separator 12 is installed at the upper part in the middle of the path in the transport direction.

図2に示すように、破砕工程S2を経て得られた破砕物1は、ベルトコンベア11によって次工程における処理へと搬送されていくが、その搬送経路の所定の箇所の上部に設けられた吊下げ式磁選機12により、破砕物1のうちの鉄等の不純物が磁石20に着磁して着磁物1Aとなり、有価金属を含む破砕物は磁石20に着磁せずに非着磁物1Bとして、それぞれ区分される。 As shown in FIG. 2, the crushed material 1 obtained through the crushing step S2 is transported by the belt conveyor 11 to the processing in the next process, and is suspended above a predetermined portion of the transport path. By the lowering type magnetic separator 12, impurities such as iron in the crushed material 1 are magnetized on the magnet 20 to become the magnetized material 1A, and the crushed material containing valuable metal is not magnetized on the magnet 20 and is a non-magnetized material. Each is classified as 1B.

このように吊下げ式磁選機12を用いて磁選処理を施すことで、磁石20に吸い付けられた鉄等の着磁物1Aは、着磁物排出用ベルトコンベア13によって磁石20の周辺から遠ざけられ除去されるようになるため、より確実にかつ効率的に有価金属と鉄等の不純物金属成分とを区分できる。 By performing the magnetic separation process using the hanging magnetic separator 12 in this way, the magnetized material 1A such as iron attracted to the magnet 20 is kept away from the periphery of the magnet 20 by the magnetized material discharge belt conveyor 13. Therefore, it is possible to more reliably and efficiently separate valuable metals from impurity metal components such as iron.

ここで、吊下げ式磁選機を用いた磁選処理においては、磁石の磁力のほか、磁石と破砕物との高さ方向の距離が、鉄等の不純物の除去率や有価金属と不純物との分離率に大きな影響を与える。例えば、多量の廃電池を処理する場合には、不可避的に焙焼や破砕が十分でないものが発生し、大きな塊が磁選機にかけられることになる。このとき、従来からの一般的な磁選処理では、粗大な破砕物から有価金属と鉄等の不純物とを十分に効果的に分離できず、また安定的な処理を行うことができない。そのため、鉄等で形成された缶体と共に有価金属が着磁物に分配されることも多くなる。 Here, in the magnetic separation process using a hanging magnetic separator, in addition to the magnetic force of the magnet, the distance between the magnet and the crushed material in the height direction determines the removal rate of impurities such as iron and the separation of valuable metals and impurities. It has a great influence on the rate. For example, when processing a large amount of waste batteries, some of them are inevitably insufficiently roasted or crushed, and large lumps are subjected to a magnetic separator. At this time, in the conventional general magnetic separation treatment, valuable metals and impurities such as iron cannot be sufficiently and effectively separated from the coarse crushed material, and stable treatment cannot be performed. Therefore, valuable metals are often distributed to the magnetized material together with the can body made of iron or the like.

そこで、この有価金属回収方法では、磁選工程S13での処理において、破砕物のサイズを小さく所定以下となるように調整し、サイズ調整した破砕物に対して磁選機を用いた磁選処理を施すことが好ましい。また、磁選機に供給する破砕物の量についても一定に揃えることが好ましい。 Therefore, in this valuable metal recovery method, in the processing in the magnetic separation step S13, the size of the crushed material is adjusted to be small and equal to or less than a predetermined value, and the crushed material whose size has been adjusted is subjected to magnetic separation processing using a magnetic separator. Is preferable. It is also preferable that the amount of crushed material supplied to the magnetic separator is constant.

破砕物のサイズ調整の方法としては、例えば図3の模式図に示すように、ベルトコンベア11により搬送される破砕物1が吊下げ式磁選機12の磁石20の部分に入る手前の位置の上部空間において、ベルトコンベア11からの高さを調整した邪魔板30を設置しておき、高さ方向で一定のサイズ以下のものを通過させて吊下げ式磁選機12に供給する。このような方法によれば、邪魔板30を通過した破砕物1は、邪魔板30の設置高さ(下端部30aの高さ)以下のサイズに調整された破砕物1Dとなり、サイズ調整された破砕物1Dのみが吊下げ式磁選機12に供給されて(吊下げ式磁選機12の下方に搬送されて)、磁選処理が施されることになる。 As a method of adjusting the size of the crushed material, for example, as shown in the schematic diagram of FIG. 3, the upper part of the position before the crushed material 1 conveyed by the belt conveyor 11 enters the magnet 20 portion of the suspension type magnetic separator 12. In the space, a baffle plate 30 whose height is adjusted from the belt conveyor 11 is installed, and an obstacle plate 30 having a certain size or less in the height direction is passed through and supplied to the hanging magnetic separator 12. According to such a method, the crushed material 1 that has passed through the baffle plate 30 becomes a crushed material 1D adjusted to a size equal to or less than the installation height of the baffle plate 30 (height of the lower end portion 30a), and the size is adjusted. Only the crushed material 1D is supplied to the suspension type magnetic separator 12 (conveyed below the suspension type magnetic separator 12), and the magnetic separation process is performed.

一方で、高さ方向で一定のサイズを超える粗大な破砕物1Eは、ベルトコンベア11に設けられた邪魔板30により搬送が邪魔されて回収され、吊下げ式磁選機12には供給されないこととなる。なお、このような邪魔板30で除去された粗大な破砕物1Eは、再度破砕して磁選処理することで、鉄等の不純物を効率よく除去しながら、有価金属の回収ロスを低減できる。 On the other hand, the coarse crushed material 1E exceeding a certain size in the height direction is collected by the obstruction plate 30 provided on the belt conveyor 11 because the transportation is obstructed, and is not supplied to the suspension type magnetic separator 12. Become. The coarse crushed material 1E removed by the baffle plate 30 can be crushed again and subjected to magnetic separation treatment to efficiently remove impurities such as iron and reduce the recovery loss of valuable metals.

具体的に、調整する破砕物のサイズ(高さ方向のサイズ)としては、特に限定されないが、20mm以上120mm以下程度の範囲とすることが好ましい。このようなサイズに調整した破砕物に対して磁選処理を施すことで、鉄等の不純物金属成分をより確実に着磁物として磁選機の磁石に着磁させて除去でき、より効果的に有価金属と分離できる。 Specifically, the size of the crushed material to be adjusted (size in the height direction) is not particularly limited, but is preferably in the range of about 20 mm or more and 120 mm or less. By performing magnetic separation treatment on the crushed material adjusted to such a size, it is possible to more reliably magnetize and remove the impurity metal component such as iron as a magnetized material on the magnet of the magnetic separator, which is more effective and valuable. Can be separated from metal.

なお、破砕物の高さ方向のサイズとは、破砕物の単一粒子のサイズのみならず、ベルトコンベアに積載される破砕物の積載高さのサイズも含む概念である。 The size in the height direction of the crushed material is a concept that includes not only the size of a single particle of the crushed material but also the size of the loading height of the crushed material loaded on the belt conveyor.

[篩別工程]
篩別工程S14では、磁選工程S13にて磁選され区分された非着磁物を、所定の目開きの篩(篩機)を用いて篩上物と篩下物とに篩別けして分離する。特に廃電池の場合、有価金属を多く含む正極活物質は破砕によって粉状化し、篩下に分配される。そのため、篩別けにより篩下物と篩上物とに分離することで、有価金属を効率的に回収できる。
[Sieve separation process]
In the sieving step S14, the non-magnetized material that has been magnetically separated and classified in the magnetic separation step S13 is separated into a sieving product and a sieving product using a sieve (sieving machine) having a predetermined opening. .. Especially in the case of a waste battery, the positive electrode active material containing a large amount of valuable metal is crushed into powder and distributed under a sieve. Therefore, the valuable metal can be efficiently recovered by separating the sieving product and the sieving product by sieving.

そして、本実施の形態に係る有価金属回収方法では、前工程の磁選工程S13にて磁選処理を施し、鉄等の不純物金属成分を除去した非着磁物を篩別けの処理対象としているため、回収される篩下物においては、不純物の含有を抑えられた有価金属が含まれる。 In the valuable metal recovery method according to the present embodiment, the non-magnetized material from which the impurity metal component such as iron has been removed by the magnetic separation process in the magnetic separation step S13 of the previous step is targeted for the sieving process. The recovered sieve product contains a valuable metal in which the content of impurities is suppressed.

篩別処理については、特に限定されず、市販の篩機を用いて行うことができる。また、篩の目開き(スクリーンの目開き)等は、篩上物と篩下物との篩別けの条件に基づいて適宜設定することができる。なお、篩の目開きが大きすぎると、篩下に有価金属と共に非有価金属が多く回収されてしまうことがあり好ましくない。また、篩の目開きが小さすぎると、篩上に多くの有価金属が含まれてしまうことがあり好ましくない。例えば、篩の目開きとしては5mm以下であると、有価金属を効率的に回収でき好ましい。 The sieving process is not particularly limited and can be performed using a commercially available sieving machine. Further, the mesh opening of the sieve (opening of the screen) and the like can be appropriately set based on the conditions for separating the upper and lower sieve products. If the mesh size of the sieve is too large, a large amount of non-valuable metal as well as valuable metal may be recovered under the sieve, which is not preferable. Further, if the mesh size of the sieve is too small, a large amount of valuable metal may be contained on the sieve, which is not preferable. For example, when the mesh size of the sieve is 5 mm or less, valuable metals can be efficiently recovered, which is preferable.

篩機は、密閉された空間内に載置して、破砕物が周囲に飛散しない構造を構成していることが好ましい。このように密閉状態で破砕物を篩機に供給できるようにすることで、粉状物の飛散や、それに伴う有価金属の回収ロスをより効率的に防ぐことができ、また、安全面並びに作業環境面の観点からも好ましい。 It is preferable that the sieving machine is placed in a closed space so that the crushed material does not scatter around. By making it possible to supply the crushed material to the sieving machine in a sealed state in this way, it is possible to more efficiently prevent the scattering of the powdery material and the accompanying loss of recovery of valuable metals, and also in terms of safety and work. It is also preferable from the environmental point of view.

[酸化焙焼工程]
次に、酸化焙焼工程S15では、篩別工程S14で得られた篩下物を酸化雰囲気下で焙焼する。酸化焙焼工程S15での焙焼処理により、篩下物に含まれる炭素成分(カーボン)を酸化して除去することができる。具体的に、得られる酸化焙焼物中の炭素の含有量をほぼ0質量%とする。
[Oxidation roasting process]
Next, in the oxidative roasting step S15, the sieved product obtained in the sieving step S14 is roasted in an oxidizing atmosphere. By the roasting treatment in the oxidative roasting step S15, the carbon component (carbon) contained in the sieve can be oxidized and removed. Specifically, the carbon content in the obtained oxidized roasted product is set to approximately 0% by mass.

このように、酸化雰囲気下での焙焼により炭素を除去することができ、その結果、次工程の還元熔融工程S16において局所的に発生する還元有価金属の熔融微粒子が、炭素による物理的な障害なく凝集することが可能となり、一体化した合金として回収できる。また、還元熔融工程S16において電池の内容物に含まれるリンが炭素により還元されることを抑制し、有効にリンを酸化除去して、有価金属の合金中に分配されることを抑制できる。 In this way, carbon can be removed by roasting in an oxidizing atmosphere, and as a result, the molten fine particles of the reduced valuable metal locally generated in the reduction melting step S16 of the next step are physically damaged by carbon. It is possible to agglomerate without any, and it can be recovered as an integrated alloy. Further, in the reduction melting step S16, it is possible to suppress the reduction of phosphorus contained in the contents of the battery by carbon, effectively oxidatively remove the phosphorus, and suppress the distribution in the alloy of the valuable metal.

酸化焙焼工程S15では、例えば600℃以上の温度(酸化焙焼温度)で酸化焙焼する。焙焼温度を600℃以上とすることで、電池に含まれる炭素を有効に酸化除去できる。また、好ましくは700℃以上とすることで、処理時間を短縮させることもできる。また、酸化焙焼温度の上限値としては900℃以下とすることが好ましく、これにより熱エネルギーコストを抑制することができ、処理効率を高めることができる。 In the oxidative roasting step S15, oxidative roasting is performed at, for example, a temperature of 600 ° C. or higher (oxidative roasting temperature). By setting the roasting temperature to 600 ° C. or higher, carbon contained in the battery can be effectively oxidized and removed. Further, the processing time can be shortened by preferably setting the temperature to 700 ° C. or higher. Further, the upper limit of the oxidative roasting temperature is preferably 900 ° C. or lower, whereby the thermal energy cost can be suppressed and the processing efficiency can be improved.

酸化焙焼の処理は、公知の焙焼炉を使用して行うことができる。また、次工程の還元熔融工程S16における熔融処理で使用する熔融炉とは異なる炉(予備炉)を設け、その予備炉内において行うことが好ましい。焙焼炉としては、酸素を供給しながら破砕物を加熱することによりその内部で酸化処理(焙焼)を行うことが可能な、あらゆる形式のキルンを用いることができる。一例として、公知のロータリーキルン、トンネルキルン(ハースファーネス)等を好適に用いることができる。 The oxidative roasting process can be performed using a known roasting furnace. Further, it is preferable to provide a furnace (preliminary furnace) different from the melting furnace used in the melting process in the reduction melting step S16 of the next step, and perform the process in the preliminary furnace. As the roasting furnace, any type of kiln capable of performing an oxidation treatment (roasting) inside the crushed material by heating the crushed material while supplying oxygen can be used. As an example, a known rotary kiln, tunnel kiln (Haas furnace) or the like can be preferably used.

[還元熔融工程]
還元熔融工程S16では、酸化焙焼工程S15での焙焼処理により得られた酸化焙焼物を還元熔融することにより、不純物を含むスラグと、有価金属を含有する合金(メタル)とを得る。還元熔融工程S16では、酸化焙焼処理にて酸化させて得られた、不純物元素の酸化物はそのままで、その酸化焙焼処理で酸化してしまった有価金属の酸化物については還元及び熔融させることにより、不純物と分離して還元物を一体化した合金を得ることができる。なお、熔融物として得られる合金を「熔融合金」ともいう。
[Reduction melting process]
In the reduction melting step S16, the oxidative roasted product obtained by the roasting treatment in the oxidation roasting step S15 is reduced and melted to obtain a slag containing impurities and an alloy (metal) containing a valuable metal. In the reduction and melting step S16, the oxide of the impurity element obtained by oxidation in the oxidation roasting treatment remains as it is, and the oxide of the valuable metal that has been oxidized in the oxidation roasting treatment is reduced and melted. As a result, an alloy that is separated from the impurities and the reduced product is integrated can be obtained. The alloy obtained as a melt is also referred to as "fused gold".

還元熔融工程S16では、例えば炭素の存在下で処理を行うことができる。炭素としては、回収対象である有価金属のニッケル、コバルト等を容易に還元する能力がある還元剤であって、例えば、炭素1モルでニッケル酸化物等の有価金属の酸化物2モルを還元できる黒鉛等が挙げられる。また、炭素1モルあたり2モル〜4モルを還元できる炭化水素等を炭素の供給源として用いることもできる。このように、還元剤としての炭素の存在下で還元熔融することで、有価金属を効率的に還元して、有価金属を含む合金を効果的に得ることができる。 In the reduction melting step S16, for example, the treatment can be performed in the presence of carbon. The carbon is a reducing agent capable of easily reducing the valuable metals such as nickel and cobalt to be recovered. For example, 1 mol of carbon can reduce 2 mol of an oxide of a valuable metal such as nickel oxide. Examples include graphite. Further, a hydrocarbon or the like capable of reducing 2 mol to 4 mol per 1 mol of carbon can also be used as a carbon supply source. As described above, by reducing and melting in the presence of carbon as a reducing agent, the valuable metal can be efficiently reduced and an alloy containing the valuable metal can be effectively obtained.

炭素としては、人工黒鉛や天然黒鉛のほか、製品や後工程で不純物が許容できる程度であれば、石炭やコークス等を使用することもできる。また、還元熔融処理に際しては、炭素の存在量を適度に調節することが望ましい。具体的に、好ましくは、処理対象の酸化焙焼物100質量%に対して7.5質量%を超え10質量%以下となる割合、より好ましくは、8.0質量%以上9.0質量%以下となる割合の量の炭素の存在下で熔融する。 As carbon, in addition to artificial graphite and natural graphite, coal, coke and the like can be used as long as impurities are acceptable in the product and post-processes. Further, in the reduction melting treatment, it is desirable to appropriately adjust the abundance of carbon. Specifically, preferably, the ratio is more than 7.5% by mass and 10% by mass or less with respect to 100% by mass of the oxidized roasted product to be treated, and more preferably 8.0% by mass or more and 9.0% by mass or less. Melts in the presence of a proportion of carbon.

還元熔融処理における温度条件(熔融温度)としては、特に限定されないが、1320℃以上1600℃以下の範囲とすることが好ましく、1450℃以上1550℃以下の範囲とすることがより好ましい。また、還元熔融処理においては、酸化物系フラックスを添加して用いてもよい。なお、還元熔融処理においては、粉塵や排ガス等が発生することがあるが、従来公知の排ガス処理を施すことによって無害化することができる。 The temperature condition (melting temperature) in the reduction melting treatment is not particularly limited, but is preferably in the range of 1320 ° C. or higher and 1600 ° C. or lower, and more preferably in the range of 1450 ° C. or higher and 1550 ° C. or lower. Further, in the reduction melting treatment, an oxide-based flux may be added and used. In the reduction melting treatment, dust, exhaust gas, etc. may be generated, but it can be detoxified by performing a conventionally known exhaust gas treatment.

<2−2.第2の実施形態>
図4は、他の実施形態に係る有価金属回収方法の流れの一例を示す工程図である。この有価金属回収方法は、廃電池を焙焼する焙焼工程S21と、焙焼物を破砕する破砕工程S22と、破砕物に対して篩別処理を施して篩上物となる塊状物と篩下物となる粉末とに分離する篩別工程S23と、篩下物に対して磁選処理を施して着磁物と非着磁物とに区分する磁選工程S24と、を有する。
<2-2. Second embodiment>
FIG. 4 is a process diagram showing an example of the flow of the valuable metal recovery method according to another embodiment. This valuable metal recovery method includes a roasting step S21 for roasting a waste battery, a crushing step S22 for crushing a roasted product, and a lumpy substance and a sieving product which are sieved by subjecting the crushed material to a sieving process. It has a sieving step S23 for separating the sieving material into a powder, and a magnetic sorting step S24 for separating the sieving material into a magnetized material and a non-magnetized material by subjecting the sieving material to a magnetic separation process.

すなわち、第2の実施形態に係る方法は、第1の実施形態に係る方法と比べて、篩別工程と磁選工程との順番が異なり、篩別工程S23にて破砕物を篩別けて回収された篩下物の粉末に対して磁選工程S24における磁選処理を施すことを特徴としている。 That is, in the method according to the second embodiment, the order of the sieving step and the magnetic separation step is different from that in the method according to the first embodiment, and the crushed material is sieved and collected in the sieving step S23. It is characterized in that the powder of the sieved product is subjected to the magnetic separation treatment in the magnetic separation step S24.

各工程における処理の説明は、第1の実施形態の方法にて説明したとおりであり、したがってここでの説明は省略する。 The description of the processing in each step is as described in the method of the first embodiment, and therefore the description here will be omitted.

第2の実施形態に係る有価金属回収方法のように、破砕物を所定の目開きの篩を用いて篩別けた後、篩下物となる粉末に対して磁選処理を施すことで、篩下物中において有価金属と共に含まれる鉄等の不純物金属成分を着磁物として分離除去することができる。これにより、磁選処理を経て回収される非着磁物には、鉄等の不純物の含有が低減された有価金属が含まれるようになるため、このような非着磁物に対して、酸化焙焼工程S25及び還元熔融工程S26での処理を施すことで、廃電池に含まれる有価金属を、効率的にかつ安定的に回収できる。 As in the method for recovering valuable metals according to the second embodiment, the crushed material is sieved using a sieve having a predetermined opening, and then the powder to be a sieve product is subjected to a magnetic separation treatment to perform sieving. It is possible to separate and remove an impurity metal component such as iron contained together with a valuable metal in a material as a magnetized material. As a result, the non-magnetized material recovered through the magnetic separation treatment contains a valuable metal having a reduced content of impurities such as iron. Therefore, such non-magnetized material is roasted by oxidation. By performing the treatments in the baking step S25 and the reduction melting step S26, the valuable metal contained in the waste battery can be recovered efficiently and stably.

以下、実施例及び比較例を用いて、本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

[実施例、比較例]
(焙焼工程)
廃電池として、外形が角形をした車載用のリチウムイオン電池の使用済み品を用意した。この廃電池を大気雰囲気下で920℃の温度で6時間かけて焙焼した。
[Examples, comparative examples]
(Roasting process)
As a waste battery, we prepared a used lithium-ion battery for automobiles with a square outer shape. This waste battery was roasted in an air atmosphere at a temperature of 920 ° C. for 6 hours.

(破砕工程)
次に、破砕工程では、破砕機としてチェーンミルを用いて、焙焼工程から得られた焙焼物を1バッチ10kgとして破砕した。このような破砕により得られた破砕物を回収し、そのまま次工程の磁選工程に供した。
(Crushing process)
Next, in the crushing step, a chain mill was used as a crusher, and the roasted product obtained from the roasting step was crushed into 10 kg per batch. The crushed product obtained by such crushing was recovered and used as it was in the magnetic separation step of the next step.

(磁選工程)
次に、磁選工程では、磁選機として吊下げ磁選機を用い、ベルトコンベアにて搬送供給される破砕物に対して磁選処理を行った。このとき、ベルトコンベアの所定の位置(吊下げ式磁選機よりも上流側)の上部空間に邪魔板を吊下げて設置し、搬送される破砕物の高さ方向のサイズを調整し、サイズ調整された破砕物のみを磁選機に供給するようにした。調整したサイズ(試料の高さ)は、下記表1に示すとおりとした。また、1.0kg/分の搬送速度で破砕物を搬送し、磁選機に連続的に供給して磁選処理を施した。
(Magnetic separation process)
Next, in the magnetic separation step, a hanging magnetic separator was used as the magnetic separator, and the crushed material conveyed and supplied by the belt conveyor was subjected to the magnetic separation process. At this time, the obstruction plate is hung and installed in the upper space of the belt conveyor at a predetermined position (upstream from the hanging magnetic separator), and the size of the crushed material to be conveyed is adjusted in the height direction to adjust the size. Only the crushed material was supplied to the magnetic separator. The adjusted size (sample height) is as shown in Table 1 below. Further, the crushed material was transported at a transport speed of 1.0 kg / min and continuously supplied to a magnetic separator for magnetic separation processing.

他方、比較例1では、破砕物に対する磁選処理を行わず、破砕物をそのまま篩別工程に供給した。 On the other hand, in Comparative Example 1, the crushed product was not subjected to the magnetic separation treatment, and the crushed product was supplied to the sieving step as it was.

(篩別工程)
次に、篩別工程では、磁選処理を経て得られた非着磁物(実施例1〜7)、及び破砕物(比較例1)を秤量し、直径2.0mmの孔が多数開口した金属(ステンレス)板を篩に用いた篩機にかけ、篩下物と篩上物とに篩別けした。
(Sieve separation process)
Next, in the sieving step, the non-magnetized material (Examples 1 to 7) and the crushed material (Comparative Example 1) obtained through the magnetic separation treatment were weighed, and a metal having a large number of holes having a diameter of 2.0 mm was opened. The (stainless steel) plate was subjected to a sieving machine using a sieve, and the sieving product and the sieving product were separated.

[結果]
下記表1に、実施例1〜7及び比較例1での処理条件、篩別工程での篩別処理を経て回収された篩下物に含まれる鉄(Fe)の含有量の測定結果を示す。また、実施例1〜7において磁選工程での磁選処理を経て回収された着磁物中の組成の結果も併せて示す。なお、ICP発光分光分析器を用いて各金属元素の含有量を測定した。
[result]
Table 1 below shows the treatment conditions in Examples 1 to 7 and Comparative Example 1 and the measurement results of the iron (Fe) content contained in the sieving product recovered through the sieving treatment in the sieving step. .. In addition, the results of the composition in the magnetized material recovered through the magnetic separation treatment in the magnetic separation step in Examples 1 to 7 are also shown. The content of each metal element was measured using an ICP emission spectrophotometer.

Figure 2021139020
Figure 2021139020

表1に示すように、磁選処理を行った実施例1〜7では、磁選処理の後の篩別処理で回収された篩下物中におけるFeの含有量が低く、不純物のFeが除去された篩下物を得ることができた。 As shown in Table 1, in Examples 1 to 7 in which the magnetic sorting treatment was performed, the content of Fe in the sieving product recovered by the sieving treatment after the magnetic sorting treatment was low, and the impurity Fe was removed. I was able to obtain a sieve.

これに対して、磁選処理を行わなかった比較例1では、篩下物中におけるFeの含有量が非常に多くなってしまった。このような不純物であるFeの含有量が多い篩下物に対して後工程にて還元熔融処理を行った場合、スラグの融点や粘性等の設計が困難になると想定された。 On the other hand, in Comparative Example 1 in which the magnetic separation treatment was not performed, the Fe content in the sieved product was very high. It was assumed that it would be difficult to design the melting point, viscosity, etc. of the slag when the sieve melt with a high content of Fe, which is an impurity, is subjected to a reduction melting treatment in a subsequent step.

また、実施例1〜7のそれぞれの結果から、磁選処理を行うに先立ち、破砕物に対するサイズ調整を行うことにより(実施例1〜6)、着磁物中に分配されることになるNiやCoの有価金属の量を低減でき、ロスを抑制して効果的に有価金属を回収できることがわかった。 Further, from the results of Examples 1 to 7, Ni and Ni, which will be distributed in the magnetized material by adjusting the size of the crushed material prior to performing the magnetic separation treatment (Examples 1 to 6). It was found that the amount of valuable metal of Co can be reduced, loss can be suppressed, and valuable metal can be recovered effectively.

1 破砕物
1A 着磁物
1B 非着磁物
1D 破砕物
1E 破砕物
11 ベルトコンベア
12 吊下げ式磁選機
13 (着磁物排出用)ベルトコンベア
20 磁石
30 邪魔板
1 Crushed material 1A Magnetized material 1B Non-magnetized material 1D Crushed material 1E Crushed material 11 Belt conveyor 12 Suspended magnetic separator 13 (For discharging magnetized material) Belt conveyor 20 Magnet 30 Obstacle plate

Claims (9)

廃電池を焙焼する焙焼工程と、
焙焼物を破砕する破砕工程と、
破砕物に対して磁選処理を施して着磁物と非着磁物とに区分する磁選工程と、
前記非着磁物を篩別けして篩上物と篩下物とに分離する篩別工程と、
を有する、廃電池からの有価金属回収方法。
The roasting process for roasting waste batteries and
The crushing process to crush the roasted food and
A magnetic separation process in which the crushed material is subjected to a magnetic separation process to separate it into a magnetized material and a non-magnetized material.
A sieving step of sieving the non-magnetized material and separating it into a sieving product and a sieving product.
A method for recovering valuable metals from waste batteries.
前記磁選工程では、前記破砕物に対して吊下げ式磁選機を用いて磁選処理を施す、
請求項1に記載の廃電池からの有価金属回収方法。
In the magnetic separation step, the crushed material is subjected to a magnetic separation process using a hanging magnetic separator.
The method for recovering valuable metals from a waste battery according to claim 1.
前記磁選工程では、
前記破砕物のサイズが所定以下となるように調整し、サイズ調整した破砕物に対して前記磁選処理を施す、
請求項2に記載の廃電池からの有価金属回収方法。
In the magnetic separation process,
The size of the crushed material is adjusted to be less than or equal to a predetermined value, and the crushed material adjusted in size is subjected to the magnetic separation treatment.
The method for recovering valuable metals from a waste battery according to claim 2.
前記磁選工程では、
前記破砕工程を経てベルトコンベアに載置されて搬送される前記破砕物のうち、該ベルトコンベアの上部空間に設置された邪魔板によって高さ方向で一定のサイズ以下に調整した破砕物に対して前記磁選処理を施す、
請求項3に記載の廃電池からの有価金属回収方法。
In the magnetic separation process,
Of the crushed materials that are placed on the belt conveyor and transported through the crushing step, the crushed materials that have been adjusted to a certain size or less in the height direction by an obstacle plate installed in the upper space of the belt conveyor. Perform the magnetic separation process.
The method for recovering valuable metals from a waste battery according to claim 3.
前記磁選工程では、
前記破砕物を、高さ方向のサイズで20mm以上120mm以下の範囲に調整し、サイズ調整した破砕物に対して前記磁選処理を施す、
請求項3又は4に記載の廃電池からの有価金属回収方法。
In the magnetic separation process,
The size of the crushed material in the height direction is adjusted to a range of 20 mm or more and 120 mm or less, and the size-adjusted crushed material is subjected to the magnetic separation treatment.
The method for recovering valuable metals from a waste battery according to claim 3 or 4.
前記篩下物を酸化焙焼する酸化焙焼工程と、
酸化焙焼物を還元熔融して、スラグと、有価金属を含有する合金とを得る還元熔融工程と、をさらに有する、
請求項1乃至5のいずれかに記載の廃電池からの有価金属回収方法。
An oxidative roasting step of oxidatively roasting the sieve material, and
Further comprising a reduction melting step of reducing and melting an oxidized roasted product to obtain a slag and an alloy containing a valuable metal.
The method for recovering valuable metals from a waste battery according to any one of claims 1 to 5.
前記有価金属は、少なくとも、コバルト、ニッケル、及び銅からなる群から選ばれる1種以上を含む、
請求項1乃至6のいずれかに記載の廃電池からの有価金属回収方法。
The valuable metal comprises at least one selected from the group consisting of cobalt, nickel, and copper.
The method for recovering valuable metals from a waste battery according to any one of claims 1 to 6.
廃電池を焙焼する焙焼工程と、
焙焼物を破砕する破砕工程と、
破砕物を篩別けして篩上物と篩下物とに分離する篩別工程と、
前記篩下物に対して磁選処理を施して着磁物と非着磁物とに区分する磁選工程と、
を有する、廃電池からの有価金属回収方法。
The roasting process for roasting waste batteries and
The crushing process to crush the roasted food and
A sieving process in which the crushed material is sieved and separated into a sieving product and a sieving product.
A magnetic separation step of subjecting the sieve material to a magnetic separation process to separate it into a magnetized material and a non-magnetized material.
A method for recovering valuable metals from waste batteries.
前記非着磁物を酸化焙焼する酸化焙焼工程と、
酸化焙焼物を還元熔融して、スラグと、有価金属を含有する合金とを得る還元熔融工程と、をさらに有する、
請求項8に記載の廃電池からの有価金属回収方法。
Oxidative roasting step of oxidative roasting the non-magnetized material and
Further comprising a reduction melting step of reducing and melting an oxidized roasted product to obtain a slag and an alloy containing a valuable metal.
The method for recovering valuable metals from a waste battery according to claim 8.
JP2020039182A 2020-03-06 2020-03-06 Method for recovering valuable metals from waste batteries Active JP7413847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020039182A JP7413847B2 (en) 2020-03-06 2020-03-06 Method for recovering valuable metals from waste batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020039182A JP7413847B2 (en) 2020-03-06 2020-03-06 Method for recovering valuable metals from waste batteries

Publications (2)

Publication Number Publication Date
JP2021139020A true JP2021139020A (en) 2021-09-16
JP7413847B2 JP7413847B2 (en) 2024-01-16

Family

ID=77667943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020039182A Active JP7413847B2 (en) 2020-03-06 2020-03-06 Method for recovering valuable metals from waste batteries

Country Status (1)

Country Link
JP (1) JP7413847B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116315232A (en) * 2023-03-29 2023-06-23 盐城工学院 Environment-friendly recycling method for waste power batteries

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017846B2 (en) 2005-11-16 2012-09-05 Jfeスチール株式会社 Reuse of chromium-containing steel refining slag
JP2016037661A (en) 2014-08-11 2016-03-22 日本重化学工業株式会社 Method for recovering valuable metal
JP6268130B2 (en) 2015-06-11 2018-01-24 日本リサイクルセンター株式会社 Method for recovering valuable materials from lithium-ion batteries
JP6587861B2 (en) 2015-08-11 2019-10-09 学校法人早稲田大学 Lithium-ion battery processing method
JP6690565B2 (en) 2017-01-31 2020-04-28 Jfeスチール株式会社 Magnetic force sorting method and device
JP2019065374A (en) 2017-10-05 2019-04-25 Dowaエコシステム株式会社 Noble metal recovery method from incineration ash

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116315232A (en) * 2023-03-29 2023-06-23 盐城工学院 Environment-friendly recycling method for waste power batteries

Also Published As

Publication number Publication date
JP7413847B2 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP2019135321A (en) Method for recovering valuable metal from waste lithium-ion battery
WO2021177005A1 (en) Method for recovering valuable metals from waste battery
JP2018197385A (en) Phosphorus removing method, and valuable metal recovering method
JP2021031760A (en) Process for recovering valuable metal
JP2021095628A (en) Method for collecting valuable element
JP2021031762A (en) Process for recovering valuable metal
JP7322687B2 (en) Valuable metal recovery method from waste batteries
JP7413847B2 (en) Method for recovering valuable metals from waste batteries
JP7447643B2 (en) Valuable metal recovery method
JP2021066903A (en) Method for recovering valuable metal
JP7389354B2 (en) Valuable metal recovery method
JP2000313926A (en) Method for recovering valuable from used lithium- manganese battery
JP7389343B2 (en) Method for recovering valuable metals from waste batteries
KR20220139978A (en) How to recover valuable metals
JP7389344B2 (en) Method for recovering valuable metals from waste batteries
JP7416153B1 (en) How to recover valuable metals
JP2021031761A (en) Process for recovering valuable metal
WO2024048247A1 (en) Method for recovering valuable metals
WO2024048248A1 (en) Method for recovering valuable metals
JP7220840B2 (en) Valuable metal manufacturing method
CA3230561A1 (en) Method for producing valuable metal
KR20230121900A (en) How to recover valuable metals
JP2023040514A (en) Method for producing valuable metal
KR20240019311A (en) Methods of producing valuable metals
JP2023159056A (en) Method for recovering valuable materials from lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R150 Certificate of patent or registration of utility model

Ref document number: 7413847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150