JP6100991B2 - Method for recovering valuable material from positive electrode of lithium ion secondary battery - Google Patents

Method for recovering valuable material from positive electrode of lithium ion secondary battery Download PDF

Info

Publication number
JP6100991B2
JP6100991B2 JP2011117229A JP2011117229A JP6100991B2 JP 6100991 B2 JP6100991 B2 JP 6100991B2 JP 2011117229 A JP2011117229 A JP 2011117229A JP 2011117229 A JP2011117229 A JP 2011117229A JP 6100991 B2 JP6100991 B2 JP 6100991B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium ion
current collector
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011117229A
Other languages
Japanese (ja)
Other versions
JP2012248323A (en
Inventor
俊介 葛原
俊介 葛原
善弘 本間
善弘 本間
藤田 浩示
浩示 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP2011117229A priority Critical patent/JP6100991B2/en
Priority to PCT/JP2012/062981 priority patent/WO2012161168A1/en
Publication of JP2012248323A publication Critical patent/JP2012248323A/en
Application granted granted Critical
Publication of JP6100991B2 publication Critical patent/JP6100991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Description

本発明は、製造過程で発生した不良品のリチウムイオン二次電池、並びに使用機器及び電池の寿命などに伴い廃棄されるリチウムイオン二次電池の正極からコバルト、ニッケルなどの有価物を簡単に再利用可能な状態で回収可能なリチウムイオン二次電池の正極からの有価物の回収方法に関する。   The present invention easily recycles valuable materials such as cobalt and nickel from the defective lithium ion secondary battery generated during the manufacturing process, and the positive electrode of the lithium ion secondary battery that is discarded with the life of the device and battery used. The present invention relates to a method for recovering valuable materials from the positive electrode of a lithium ion secondary battery that can be recovered in a usable state.

リチウムイオン二次電池は、従来の鉛蓄電池、ニッカド二次電池などに比較して軽量、高容量、及び高起電力な二次電池であり、携帯電話、ノートパソコン等のモバイル機器などに広く使用されている。
このようなリチウムイオン二次電池の正極材料には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケル−マンガン−コバルト系酸化物などが用いられており、これらには希少有価物であるコバルト、及びニッケルが含まれている。そこで、使用済みのリチウムイオン二次電池からこれらの有価物を回収し、再びリチウムイオン二次電池の正極材料としてリサイクル利用を図ることが望まれている。
Lithium ion secondary batteries are lighter, higher capacity, and higher electromotive force secondary batteries than conventional lead-acid batteries and nickel-cadmium secondary batteries, and are widely used in mobile devices such as mobile phones and laptop computers. Has been.
As a positive electrode material for such a lithium ion secondary battery, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), nickel-manganese-cobalt-based oxides, and the like are used. Cobalt and nickel are included. Therefore, it is desired to recover these valuable materials from the used lithium ion secondary battery and to recycle them as a positive electrode material for the lithium ion secondary battery.

そこで、金属化合物を含む電極材料が金属箔に塗着されている二次電池の金属箔塗着廃材を、酸素含有ガス気流中で300℃〜600℃の温度に加熱して燃焼処理する二次電池の金属箔塗着廃材の燃焼処理法が提案されている(特許文献1参照)。
しかし、この提案の技術では、コバルト及びニッケルを含有する回収物中に集電体であるアルミニウムが多く含まれるため、前記回収物をそのままコバルト及びニッケルの再利用原料として利用できない。そのため、前記回収物を再利用原料にするには、更に多くの工程を必要としてしまい、回収工程が煩雑になるという問題がある。
Then, the secondary processing which heats the metal foil coating waste material of the secondary battery in which the electrode material containing a metal compound is coated on the metal foil to a temperature of 300 ° C. to 600 ° C. in an oxygen-containing gas stream is subjected to a combustion treatment. A combustion treatment method for metal foil coating waste materials of batteries has been proposed (see Patent Document 1).
However, in the proposed technique, the recovered material containing cobalt and nickel contains a large amount of aluminum as a current collector. Therefore, the recovered material cannot be used as it is as a reuse material of cobalt and nickel. For this reason, in order to use the recovered material as a reused raw material, more processes are required, and there is a problem that the recovery process becomes complicated.

したがって、リチウムイオン二次電池の正極から、コバルト、ニッケルなどの有価物を含む再利用原料を簡単かつ効率的に回収することができるリチウムイオン二次電池の正極からの有価物の回収方法の提供が求められているのが現状である。   Therefore, the provision of a method for recovering valuable materials from the positive electrode of a lithium ion secondary battery that can easily and efficiently recover reused materials containing valuable materials such as cobalt and nickel from the positive electrode of the lithium ion secondary battery. Is currently required.

特開平10−8150号公報Japanese Patent Laid-Open No. 10-8150

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、リチウムイオン二次電池の正極から、コバルト、ニッケルなどの有価物を含む再利用原料を簡単かつ効率的に回収することができるリチウムイオン二次電池の正極からの有価物の回収方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, the present invention relates to a valuable material from a positive electrode of a lithium ion secondary battery that can easily and efficiently recover a reused raw material containing valuable materials such as cobalt and nickel from the positive electrode of the lithium ion secondary battery. The purpose is to provide a collection method.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 集電体と有価物とを含有するリチウムイオン二次電池の正極を、500℃〜650℃で加熱する加熱工程と、
前記加熱工程後の前記正極を篩分けして、前記有価物を含有しかつ前記集電体の含有量が2質量%以下の回収物を得る篩選別工程とを含むことを特徴とするリチウムイオン二次電池の正極からの有価物の回収方法である。
<2> 加熱工程における加熱温度が、590℃〜610℃である前記<1>に記載のリチウムイオン二次電池の正極からの有価物の回収方法である。
<3> 集電体が、アルミニウムである前記<1>から<2>のいずれかに記載のリチウムイオン二次電池の正極からの有価物の回収方法である。
<4> 有価物が、コバルト及びニッケルの少なくともいずれかである前記<1>から<3>のいずれかに記載のリチウムイオン二次電池の正極からの有価物の回収方法である。
<5> 篩選別工程が、篩目の目開きが2.0mm以下の篩を用い、該篩の篩下に回収物を得る前記<1>から<4>のいずれかに記載のリチウムイオン二次電池の正極からの有価物の回収方法である。
Means for solving the problems are as follows. That is,
<1> A heating step of heating a positive electrode of a lithium ion secondary battery containing a current collector and a valuable material at 500 ° C. to 650 ° C .;
And sieving the positive electrode after the heating step to obtain a recovered product containing the valuables and having a current collector content of 2% by mass or less. This is a method for recovering valuable materials from the positive electrode of the secondary battery.
<2> The method for recovering a valuable material from the positive electrode of the lithium ion secondary battery according to <1>, wherein the heating temperature in the heating step is 590 ° C to 610 ° C.
<3> The method for recovering a valuable material from the positive electrode of the lithium ion secondary battery according to any one of <1> to <2>, wherein the current collector is aluminum.
<4> The method for recovering a valuable material from the positive electrode of the lithium ion secondary battery according to any one of <1> to <3>, wherein the valuable material is at least one of cobalt and nickel.
<5> The lithium ion ion according to any one of <1> to <4>, wherein the sieve selection step uses a sieve having a mesh opening of 2.0 mm or less to obtain a recovered material under the sieve. This is a method for recovering valuable materials from the positive electrode of the secondary battery.

本発明によると、従来における前記諸問題を解決することができ、リチウムイオン二次電池の正極から、コバルト、ニッケルなどの有価物を含む再利用原料を簡単かつ効率的に回収することができるリチウムイオン二次電池の正極からの有価物の回収方法を提供することができる。   According to the present invention, lithium that can solve the above-described problems and can easily and efficiently recover a reused raw material containing valuables such as cobalt and nickel from the positive electrode of a lithium ion secondary battery. A method for recovering valuable materials from the positive electrode of an ion secondary battery can be provided.

図3は、実施例3における回収物の粒度とアルミニウム濃度の関係及び回収物の粒度と質量積算値の関係を示すグラフである。Figure 3 is a graph showing the relationship between the particle size and mass integrated value of relationship and recovery of particle size and concentration of aluminum recovered was in the third embodiment.

(リチウムイオン二次電池の正極からの有価物の回収方法)
本発明のリチウムイオン二次電池の正極からの有価物の回収方法は、加熱工程と、篩選別工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
(Recovery method of valuable materials from positive electrode of lithium ion secondary battery)
The method for recovering valuable materials from the positive electrode of the lithium ion secondary battery of the present invention includes at least a heating step and a sieve sorting step, and further includes other steps as necessary.

<加熱工程>
前記加熱工程としては、リチウムイオン二次電池の正極を、500℃〜650℃で加熱する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Heating process>
The heating step is not particularly limited as long as it is a step of heating the positive electrode of the lithium ion secondary battery at 500 ° C. to 650 ° C., and can be appropriately selected according to the purpose.

−リチウムイオン二次電池−
前記リチウムイオン二次電池としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、リチウムイオン二次電池の製造過程で発生した不良品のリチウムイオン二次電池、使用機器の不良、使用機器の寿命などにより廃棄されるリチウムイオン二次電池、寿命により廃棄される使用済みのリチウムイオン二次電池などが挙げられる。
-Lithium ion secondary battery-
The lithium ion secondary battery is not particularly limited and may be appropriately selected depending on the purpose. For example, a defective lithium ion secondary battery generated in the process of manufacturing a lithium ion secondary battery, used equipment Examples thereof include a lithium ion secondary battery that is discarded due to a defect, a life of a device used, a used lithium ion secondary battery that is discarded due to a life.

前記リチウムイオン二次電池の構造としては、正極を有する構造であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、正極と、負極と、セパレーターと、電解質及び有機溶剤を含有する電解液と、前記正極、前記負極、前記セパレーター及び前記電解液を収容する金属製の電池ケースとを備えたものなどが挙げられる。   The structure of the lithium ion secondary battery is not particularly limited as long as it has a positive electrode structure, and can be appropriately selected according to the purpose. For example, the positive electrode, the negative electrode, the separator, the electrolyte, and the organic solvent And a battery case made of metal containing the positive electrode, the negative electrode, the separator, and the electrolytic solution.

前記リチウムイオン二次電池の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円筒形、ボタン形、コイン形、角形、平形などが挙げられる。   There is no restriction | limiting in particular as a shape of the said lithium ion secondary battery, According to the objective, it can select suitably, For example, a cylindrical shape, a button shape, a coin shape, a square shape, a flat shape etc. are mentioned.

−−正極−−
前記正極としては、集電体と有価物とを含有する正極であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、集電体と、前記集電体上に付与された有価物を含む正極材とを備えた正極などが挙げられる。
前記正極の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状などが挙げられる。
--- Positive electrode-
The positive electrode is not particularly limited as long as it is a positive electrode containing a current collector and a valuable material, and can be appropriately selected according to the purpose. For example, the current collector is applied to the current collector. And a positive electrode provided with a positive electrode material containing a valuable material.
There is no restriction | limiting in particular as a shape of the said positive electrode, According to the objective, it can select suitably, For example, flat form etc. are mentioned.

−−−集電体−−−
前記集電体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルミニウム、銅、鉄、ニッケル、チタン、ステンレス等の金属などが挙げられる。これらの中でも、篩分けによる有価物との分離が容易で、得られる回収物中の前記集電体の含有量を低減しやすい点で、アルミニウムが好ましい。
前記集電体の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状などが挙げられる。
---- Current collector ---
There is no restriction | limiting in particular as said collector, According to the objective, it can select suitably, For example, metals, such as aluminum, copper, iron, nickel, titanium, stainless steel, etc. are mentioned. Among these, aluminum is preferable in that separation from valuable materials by sieving is easy, and the content of the current collector in the obtained recovered product can be easily reduced.
There is no restriction | limiting in particular as a shape of the said collector, According to the objective, it can select suitably, For example, flat form etc. are mentioned.

−−−正極材−−−
前記正極材としては、前記有価物を含むものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、有価物を含有する正極活物質を少なくとも含み、必要により導電剤と、結着樹脂とを含む正極材などが挙げられる。
前記有価物としては、特に制限はなく、目的に応じて適宜選択することができるが、コバルト及びニッケルの少なくともいずれかであることが好ましい。
前記正極活物質としては、例えば、コバルト酸リチウム(LiCoO)、コバルトニッケル酸リチウム(LiCo1/2Ni1/2)、LiNiCoMn2(x+y+z)などが挙げられる。
前記導電剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カーボンブラック、グラファイト、カーボンファイバー、金属炭化物などが挙げられる。
前記結着樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ化ビニリデン、四フッ化エチレン、アクリロニトリル、エチレンオキシド等の単独重合体又は共重合体、スチレン−ブタジエンゴムなどが挙げられる。
---- Positive electrode material ---
The positive electrode material is not particularly limited as long as it contains the valuable material, and can be appropriately selected according to the purpose. For example, the positive electrode material includes at least a positive electrode active material containing the valuable material, and if necessary, a conductive agent. And a positive electrode material containing a binder resin.
There is no restriction | limiting in particular as said valuable material, Although it can select suitably according to the objective, It is preferable that it is at least any one of cobalt and nickel.
Examples of the positive electrode active material include lithium cobalt oxide (LiCoO 2 ), lithium cobalt nickel oxide (LiCo 1/2 Ni 1/2 O 2 ), and LiNi x Co y Mn z O 2 (x + y + z) .
There is no restriction | limiting in particular as said electrically conductive agent, According to the objective, it can select suitably, For example, carbon black, a graphite, a carbon fiber, a metal carbide etc. are mentioned.
The binder resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a homopolymer or copolymer such as vinylidene fluoride, tetrafluoroethylene, acrylonitrile, ethylene oxide, styrene-butadiene, etc. For example, rubber.

前記加熱工程は、前記リチウムイオン二次電池の電池ケースから取り出した前記正極に対して行う。前記正極を、前記電池ケースから取り出す方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電池ケース(電池筐体)をペンチ、カッターなどの工具を用いて分解し、前記電池ケース内の正極を取り出す方法などが挙げられる。   The heating step is performed on the positive electrode taken out from the battery case of the lithium ion secondary battery. The method for taking out the positive electrode from the battery case is not particularly limited and may be appropriately selected depending on the purpose. For example, the battery case (battery housing) is disassembled using a tool such as a pliers or a cutter. And a method of taking out the positive electrode in the battery case.

−加熱−
前記加熱の温度は、500℃〜650℃であり、590℃〜610℃が好ましい。前記加熱の温度が、500℃未満であると、前記正極に含有される結着樹脂などが十分に分解されないため、前記篩選別工程において、前記集電体と前記有価物との分離が困難になる。前記加熱の温度が、650℃を超えると、アルミニウムなどの前記集電体が酸化されて脆くなるため、前記篩選別工程において、前記集電体と前記有価物との分離が困難になる。言い換えれば、前記集電体が脆くなり細かくなるため、前記篩選別工程において、前記集電体と前記有価物とが共に篩下に回収されて前記集電体と前記有価物との分離が困難になる。前記加熱の温度が、前記好ましい範囲内であると、加熱に用いるエネルギーを抑えつつ、再利用原料として利用可能な回収物の収率が高い点で有利である。
-Heating-
The heating temperature is 500 ° C. to 650 ° C., preferably 590 ° C. to 610 ° C. When the heating temperature is less than 500 ° C., the binder resin and the like contained in the positive electrode are not sufficiently decomposed, so that it is difficult to separate the current collector from the valuable material in the sieve sorting step. Become. When the heating temperature exceeds 650 ° C., the current collector such as aluminum is oxidized and becomes brittle, so that it is difficult to separate the current collector from the valuable material in the sieve sorting step. In other words, since the current collector becomes brittle and thin, it is difficult to separate the current collector and the valuable material in the sieve selection step because the current collector and the valuable material are recovered together under the sieve. become. When the heating temperature is within the preferable range, it is advantageous in that the yield of recovered material that can be used as a reused raw material is high while suppressing energy used for heating.

ここで、加熱温度とは、加熱時の正極周辺の気体の温度をいい、例えば、加熱時の加熱炉内において正極が配置された付近の気体の温度をいう。   Here, the heating temperature refers to the temperature of the gas around the positive electrode during heating, for example, the temperature of the gas in the vicinity where the positive electrode is disposed in the heating furnace during heating.

前記加熱の時間としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5時間〜6時間が好ましく、0.5時間〜1時間がより好ましい。   There is no restriction | limiting in particular as said heating time, Although it can select suitably according to the objective, 0.5 to 6 hours are preferable and 0.5 to 1 hour are more preferable.

前記加熱は、炉を用いて行うことが好ましい。前記炉としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ロータリーキルン炉、流動床炉、トンネル炉、マッフル等のバッチ式炉、キュウポラ、ストーカー炉などが挙げられる。本発明においては、大気雰囲気下でも加熱することができるので、例えば、ロータリーキルン炉等の普通に用いられている炉を使用することができ、炉の選択幅が広くなる。   The heating is preferably performed using a furnace. There is no restriction | limiting in particular as said furnace, According to the objective, it can select suitably, For example, batch type furnaces, such as a rotary kiln furnace, a fluidized bed furnace, a tunnel furnace, a muffle, a cupola, a stalker furnace, etc. are mentioned. In the present invention, since heating can be performed even in an air atmosphere, for example, a commonly used furnace such as a rotary kiln furnace can be used, and the selection range of the furnace is widened.

なお、前記正極における結着樹脂は、通常、有機物質であるため、前記加熱により熱分解され、回収物にはほとんど含まれなくなる。   In addition, since the binder resin in the positive electrode is usually an organic substance, it is thermally decomposed by the heating and hardly contained in the recovered material.

<篩選別工程>
前記篩選別工程としては、前記加熱工程後の前記正極を篩分けして、前記有価物を含有しかつ前記集電体の含有量が2質量%以下の回収物を得る工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Screening process>
As the sieving selection step, if the positive electrode after the heating step is sieved to obtain a recovered material containing the valuables and having a current collector content of 2% by mass or less, There is no restriction | limiting, According to the objective, it can select suitably.

前記回収物における前記集電体の含有量を2質量%以下にすることにより、前記有価物を含有する前記回収物が再利用原料として使用可能になる。前記回収物における前記集電体の含有量が、2質量%を超えると、前記回収物を再利用する際に、集電体を回収物から除去する工程、例えば、アルミ選別などの工程が更に必要になり、再利用の際の工程が煩雑になる。   By setting the content of the current collector in the recovered material to 2% by mass or less, the recovered material containing the valuable material can be used as a reuse raw material. When the content of the current collector in the recovered material exceeds 2% by mass, a step of removing the current collector from the recovered material when the recovered material is reused, for example, a step of sorting aluminum, etc. It becomes necessary and the process at the time of reuse becomes complicated.

−篩分け−
前記篩分けとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、振動篩、多段式振動篩、サイクロン、JIS Z8801の標準篩などを用いて行うことができる。
前記篩分けにより、前記集電体と前記有価物を分離し、前記有価物を含有しかつ前記集電体の含有量が2質量%以下の回収物を得る。
篩の篩目の目開きとしては、特に制限はなく、目的に応じて適宜選択することができるが、2.0mm以下が好ましく、1.2mm以下がより好ましく、0.6mm以下が特に好ましい。即ち、篩目の目開きが2.0mm以下の篩の篩下に前記回収物を得ることが好ましく、篩目の目開きが1.2mm以下の篩の篩下に前記回収物を得ることがより好ましく、篩目の目開きが0.6mm以下の篩の篩下に前記回収物を得ることが特に好ましい。前記篩目の目開きが、2.0mmを超えると、前記回収物における前記集電体の含有量が多くなることがある。
前記篩分けとしては、乾式であってもよいし、湿式であってもよい。
-Sieving-
There is no restriction | limiting in particular as said sieving, According to the objective, it can select suitably, For example, it can carry out using a vibration sieve, a multistage vibration sieve, a cyclone, the standard sieve of JISZ8801, etc.
By the sieving, the current collector and the valuable material are separated, and a recovered material containing the valuable material and having a content of the current collector of 2% by mass or less is obtained.
There is no restriction | limiting in particular as opening of the mesh of a sieve, Although it can select suitably according to the objective, 2.0 mm or less is preferable, 1.2 mm or less is more preferable, 0.6 mm or less is especially preferable. That is, it is preferable to obtain the recovered product under a sieve having a sieve mesh opening of 2.0 mm or less, and obtaining the recovered product under a sieve having a sieve mesh opening of 1.2 mm or less. More preferably, it is particularly preferable to obtain the recovered material under a sieve having a sieve mesh opening of 0.6 mm or less. If the mesh opening exceeds 2.0 mm, the content of the current collector in the recovered product may increase.
The sieving may be dry or wet.

<その他の工程>
前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、粉砕工程、濃縮工程などが挙げられる。
<Other processes>
There is no restriction | limiting in particular as said other process, According to the objective, it can select suitably, For example, a crushing process, a concentration process, etc. are mentioned.

−粉砕工程−
前記粉砕工程としては、前記篩選別工程の前であって、前記加熱工程後に、前記集電体を粉砕せずかつ前記正極を粉砕する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記粉砕工程を行うことにより、前記篩選別工程において、前記集電体と前記有価物の分離効率が良くなり、得られる前記回収物の収率が高くなる。
アルミニウムなどの前記集電体は、通常の粉砕では、延伸して粉砕されず、一方、前記有価物を含有する前記正極材は、前記加熱工程により粉砕されやすくなっているため、前記粉砕工程は、特殊な装置を用いる必要がなく、例えば、ハンマークラッシャー、ロッドミル、ボールミル、ジョークラッシャー、ロールクラッシャー、カッターミル、ロータリークラッシャーなどにより行うことができる。
-Crushing process-
The pulverization step is not particularly limited as long as it is a step before the sieve selection step and after the heating step without pulverizing the current collector and pulverizing the positive electrode. You can choose.
By performing the pulverization step, in the sieving selection step, the separation efficiency of the current collector and the valuable material is improved, and the yield of the recovered product obtained is increased.
In the normal pulverization, the current collector such as aluminum is not stretched and pulverized. On the other hand, the positive electrode material containing the valuable material is easily pulverized by the heating step. For example, a hammer crusher, a rod mill, a ball mill, a jaw crusher, a roll crusher, a cutter mill, or a rotary crusher can be used.

−濃縮工程−
前記濃縮工程としては、前記篩選別工程の後に、前記回収物中の前記有価物を濃縮する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記回収物と炭素とを混合して焼成し、水で洗浄する工程などが挙げられる。
前記焼成の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、650℃〜800℃が好ましい。
前記濃縮工程を行うことにより、前記回収物中の前記有価物の濃度を上げ、再利用により適した回収物を得ることができる。
-Concentration process-
The concentration step is not particularly limited as long as it is a step of concentrating the valuables in the recovered product after the sieve sorting step, and can be appropriately selected according to the purpose. For example, the recovered product And a step of mixing and baking, and washing with water.
There is no restriction | limiting in particular as temperature of the said baking, Although it can select suitably according to the objective, 650 to 800 degreeC is preferable.
By performing the concentration step, it is possible to increase the concentration of the valuables in the recovered material and obtain a recovered material more suitable for reuse.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

参考例1)
<有価物の回収>
使用済みのパソコン用リチウムイオン二次電池を用いた。
使用済みのパソコン用リチウムイオン二次電池を、工具を用いて分解し、正極を電池ケースから取出した。取出した正極の合計量1,000gには、集電体としてのアルミニウム箔が100g、有価物を含有する正極材が900g含まれていた。
( Reference Example 1)
<Recovery of valuable materials>
A used lithium ion secondary battery for a personal computer was used.
The used lithium-ion secondary battery for personal computers was disassembled with a tool, and the positive electrode was taken out from the battery case. A total amount of 1,000 g of the extracted positive electrode contained 100 g of an aluminum foil as a current collector and 900 g of a positive electrode material containing a valuable material.

−加熱工程−
ボックス炉(光洋サーモシステム社製)に正極1,000gを入れ、加熱温度を500℃(炉内温度)とし、昇温速度10℃/分間で500℃まで昇温した。温度到達後、1時間加熱した。炉内雰囲気は空気雰囲気とした。
-Heating process-
1,000 g of the positive electrode was placed in a box furnace (manufactured by Koyo Thermo Systems Co., Ltd.), the heating temperature was 500 ° C. (in-furnace temperature), and the temperature was raised to 500 ° C. at a temperature rising rate of 10 ° C./min. After reaching the temperature, it was heated for 1 hour. The atmosphere in the furnace was an air atmosphere.

−篩選別工程−
加熱後の正極を、篩目が0.075mm、0.15mm、0.3mm、0.6mm、1.2mm、2.0mm、10mmの各篩をこの順に重ねた多段式篩(7段)を用いて篩選別した。
-Screening process-
The heated positive electrode is a multi-stage sieve (7 stages) in which sieves of 0.075 mm, 0.15 mm, 0.3 mm, 0.6 mm, 1.2 mm, 2.0 mm, and 10 mm are stacked in this order. And screened.

篩選別後の各篩上及び篩下の回収物について、アルミニウム濃度(Al濃度)を求めた。また、それら回収物について、粒度の細かい方からの質量積算値を求めた。結果を図1に示す。
なお、アルミニウム濃度については、ICP発光分光分析(Perkin Elmer社製、Optima3300XL)により求めた。
また、粒度は、篩目を基準として算出した。即ち、篩目が0.075mmの篩を通過した回収物については、粒度を「0.075mm以下」(なお、図においては、「〜0.075」と表記する。)とした。篩目が0.15mmmの篩を通過し、かつ篩目が0.075mmの篩上に残った回収物については、粒度を「0.075mmを超え0.15mm以下」(なお、図においては、「0.15/0.075」と表記する。)とした。
また、前記多段式篩による篩選別において、集電体の含有量が2質量%以下の回収物の、回収物総量に占める割合(質量割合)を表1及び図9に示す。
The aluminum concentration (Al concentration) was determined for each sieve and the recovered material after sieving. Moreover, the mass integration value from the finer particle size was calculated | required about those collect | recovered materials. The results are shown in FIG.
In addition, about aluminum concentration, it calculated | required by ICP emission-spectral-analysis (The product made by Perkin Elmer, Optima3300XL).
The particle size was calculated based on the sieve mesh. That is, for the recovered material that passed through a sieve having a sieve mesh of 0.075 mm, the particle size was set to “0.075 mm or less” (in the drawing, expressed as “˜0.075”). For the recovered material that passed through the sieve having a sieve mesh of 0.15 mm and the sieve mesh remaining on the sieve of 0.075 mm, the particle size was “over 0.075 mm and not more than 0.15 mm” (in the figure, It is expressed as “0.15 / 0.075”).
Moreover, in the sieve selection by the multistage sieve, the ratio (mass ratio) of the recovered material having a current collector content of 2% by mass or less to the total recovered material is shown in Table 1 and FIG.

(参考例1〜、6、実施例〜5、及び比較例1〜2)
参考例1において、加熱温度を表1に記載の加熱温度に変えた以外は参考例1と同様にして、有価物の回収を行った。
篩選別後の各篩上及び篩下の回収物について、アルミニウム濃度(Al濃度)を求めた。また、それら回収物について、粒度の細かい方からの質量積算値を求めた。結果を図2〜図8に示す。
また、前記多段式篩による篩選別において、集電体の含有量が2質量%以下の回収物の、回収物総量に占める割合(質量割合)を表1及び図9に示す。
(Reference Example 1-2, 6, Example 3-5, and Comparative Examples 1 and 2)
In Reference Example 1, valuable materials were collected in the same manner as Reference Example 1 except that the heating temperature was changed to the heating temperature shown in Table 1.
The aluminum concentration (Al concentration) was determined for each sieve and the recovered material after sieving. Moreover, the mass integration value from the finer particle size was calculated | required about those collect | recovered materials. The results are shown in FIGS.
Moreover, in the sieve selection by the multistage sieve, the ratio (mass ratio) of the recovered material having a current collector content of 2% by mass or less to the total recovered material is shown in Table 1 and FIG.

参考例1〜、6、実施例〜5では、図1〜6、9及び表1の結果から、集電体の含有量が2質量%以下の回収物、即ち再利用原料が回収でき、且つ篩選別後の回収物におけるその質量割合は、約40質量%以上であり、高効率で再利用原料を回収することができた。
特に、加熱温度が590℃〜610℃である実施例〜5では、より高効率で集電体の含有量が2質量%以下の回収物が回収できた。
In Reference Examples 1 to 2 and 6 and Examples 3 to 5, from the results shown in FIGS. 1 to 6 and 9 and Table 1, a recovered material having a current collector content of 2 mass% or less, that is, a recycled material can be recovered. And the mass ratio in the collection | recovery thing after sieve screening was about 40 mass% or more, and it was able to collect | reuse a reuse raw material with high efficiency.
In particular, in Examples 3 to 5 in which the heating temperature was 590 ° C. to 610 ° C., a recovered material with higher efficiency and a current collector content of 2% by mass or less could be recovered.

また、回収物に有価物が含まれていることをSEM−EDX分析(KEYENCE社製、VE−9800)により確認した。実施例4における篩目0.075mmの篩下に残った回収物(粒度0.075mm以下)の分析結果を図10A〜図10Cに示す。図10Aは、回収物のSEM写真である。図10Bは、回収物のコバルト(Co)マッピング像である。図10Cは、回収物のニッケル(Ni)マッピング像である。これらの結果より、前記回収物に、有価物であるコバルト、及びニッケルが含まれていることが確認できた。   Further, it was confirmed by SEM-EDX analysis (manufactured by KEYENCE, VE-9800) that the recovered material contains valuable materials. The analysis results of the recovered material (particle size of 0.075 mm or less) remaining under the sieve having a mesh size of 0.075 mm in Example 4 are shown in FIGS. 10A to 10C. FIG. 10A is a SEM photograph of the recovered material. FIG. 10B is a cobalt (Co) mapping image of the recovered material. FIG. 10C is a nickel (Ni) mapping image of the recovered material. From these results, it was confirmed that the recovered material contains cobalt and nickel which are valuable materials.

本発明のリチウムイオン二次電池の正極からの有価物の回収方法は、リチウムイオン二次電池の正極から、コバルト、ニッケルなどの有価物を含む再利用原料を簡単かつ効率的に回収することができることから、使用済みのリチウムイオン二次電池から有価物を回収する方法に好適に適用できる。   The method for recovering valuable materials from the positive electrode of the lithium ion secondary battery according to the present invention is capable of easily and efficiently recovering reused raw materials containing valuable materials such as cobalt and nickel from the positive electrode of the lithium ion secondary battery. Therefore, the method can be suitably applied to a method for recovering valuable materials from a used lithium ion secondary battery.

Claims (3)

集電体と有価物とを含有するリチウムイオン二次電池の正極を、大気雰囲気下、590℃〜610℃で0.5時間〜6時間加熱する加熱工程と、
前記加熱工程後の前記正極を篩分けして、前記有価物を含有しかつ前記集電体の含有量が2質量%以下の回収物を得る篩選別工程とを含み、
前記集電体が、アルミニウムであり、
前記有価物が、コバルト及びニッケルの少なくともいずれかであり、
前記有価物を含有しかつ前記集電体の含有量が2質量%以下の回収物の質量割合が、回収物総量に対して40質量%以上であり、
前記篩選別工程が、篩目の目開きが1.2mm以上2.0mm以下の篩を用い、該篩の篩下に回収物を得ることを特徴とするリチウムイオン二次電池の正極からの有価物の回収方法。
A heating step of heating a positive electrode of a lithium ion secondary battery containing a current collector and a valuable material at 590 ° C. to 610 ° C. for 0.5 hours to 6 hours in an air atmosphere ;
Sieving the positive electrode after the heating step, and a sieving step for obtaining a recovered material containing the valuables and having a current collector content of 2% by mass or less,
The current collector is aluminum;
The valuable material is at least one of cobalt and nickel;
The mass ratio of the recovered material containing the valuable material and the content of the current collector of 2% by mass or less is 40% by mass or more based on the total amount of the recovered material,
The sieve screening step uses a sieve having a sieve mesh opening of 1.2 mm or more and 2.0 mm or less, and obtains a recovered material under the sieve. Collection method of things.
前記加熱工程において、集電体と有価物とを含有するリチウムイオン二次電池の正極を、大気雰囲気下、600℃〜610℃で0.5時間〜1時間加熱する請求項1に記載のリチウムイオン二次電池の正極からの有価物の回収方法。2. The lithium according to claim 1, wherein in the heating step, a positive electrode of a lithium ion secondary battery containing a current collector and a valuable material is heated at 600 ° C. to 610 ° C. for 0.5 hour to 1 hour in an air atmosphere. A method for recovering valuable materials from the positive electrode of an ion secondary battery. 前記有価物を含有しかつ前記集電体の含有量が2質量%以下の回収物の質量割合が、回収物総量に対して、75.8質量%以上である請求項2に記載のリチウムイオン二次電池の正極からの有価物の回収方法。3. The lithium ion according to claim 2, wherein a mass ratio of a recovered material containing the valuable material and having a current collector content of 2 mass% or less is 75.8 mass% or more based on a total amount of the recovered material. A method for recovering valuable materials from the positive electrode of a secondary battery.
JP2011117229A 2011-05-25 2011-05-25 Method for recovering valuable material from positive electrode of lithium ion secondary battery Active JP6100991B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011117229A JP6100991B2 (en) 2011-05-25 2011-05-25 Method for recovering valuable material from positive electrode of lithium ion secondary battery
PCT/JP2012/062981 WO2012161168A1 (en) 2011-05-25 2012-05-22 Method for recovering valuable material from positive electrode in lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117229A JP6100991B2 (en) 2011-05-25 2011-05-25 Method for recovering valuable material from positive electrode of lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2012248323A JP2012248323A (en) 2012-12-13
JP6100991B2 true JP6100991B2 (en) 2017-03-22

Family

ID=47217245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117229A Active JP6100991B2 (en) 2011-05-25 2011-05-25 Method for recovering valuable material from positive electrode of lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP6100991B2 (en)
WO (1) WO2012161168A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6483569B2 (en) * 2015-08-13 2019-03-13 Jx金属株式会社 Lithium-ion battery processing method
KR102249266B1 (en) * 2018-11-13 2021-05-06 부경대학교 산학협력단 Method of recovery of nickel and cobalt
KR20220001363A (en) * 2020-06-29 2022-01-05 주식회사 엘지에너지솔루션 Reuse method of active material of positive electrode scrap
CN114068909B (en) * 2021-11-10 2023-03-28 中南大学 Method for regenerating NCMA (non-volatile memory) anode material by using retired NCM anode material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3257954B2 (en) * 1996-06-21 2002-02-18 多摩化学工業株式会社 Combustion treatment of aluminum foil waste from secondary batteries
TW511306B (en) * 2001-08-20 2002-11-21 Ind Tech Res Inst Clean process of recovering metals from waste lithium ion batteries
JP2003272720A (en) * 2002-03-15 2003-09-26 Japan Science & Technology Corp Recovery method for lithium cobaltate
JP2005042189A (en) * 2003-07-25 2005-02-17 Ise Chemicals Corp Recovery method of cobalt
JP5427993B2 (en) * 2009-03-26 2014-02-26 日本電工株式会社 Method and apparatus for recovering valuable resources of manganese-based lithium ion secondary batteries
JP5535717B2 (en) * 2009-09-30 2014-07-02 Dowaエコシステム株式会社 Lithium recovery method
JP2012079630A (en) * 2010-10-05 2012-04-19 Dowa Eco-System Co Ltd Recovery method of valuables from lithium ion secondary battery and recovered material having valuables

Also Published As

Publication number Publication date
JP2012248323A (en) 2012-12-13
WO2012161168A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP6748274B2 (en) How to recover valuables from lithium-ion secondary batteries
JP6198027B1 (en) How to recover valuable materials from used lithium ion batteries
WO2013051305A1 (en) Method for recovering valuable materials from lithium ion secondary cells
JP6859598B2 (en) How to recover valuables from used lithium-ion batteries
JP6692196B2 (en) How to recover valuables from lithium-ion secondary batteries
JP5651462B2 (en) Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
JP5675452B2 (en) Manufacturing method of recycled materials
JP6840512B2 (en) How to recover valuables from lithium-ion secondary batteries
JP5269228B1 (en) Method for separating and recovering positive electrode active material from positive electrode material for lithium ion battery
JP2012079630A (en) Recovery method of valuables from lithium ion secondary battery and recovered material having valuables
JP5269222B1 (en) Method for separating and collecting current collector and positive electrode active material from positive electrode material for lithium ion battery
JP6100991B2 (en) Method for recovering valuable material from positive electrode of lithium ion secondary battery
US11482737B2 (en) Method for recovering valuable material from lithium ion secondary battery
JP5247877B2 (en) Method for separating and collecting current collector and positive electrode active material from positive electrode material for lithium ion battery
JP6676124B1 (en) Method of recovering valuable resources from lithium ion secondary batteries
CN114375520A (en) Method for recycling active material using cathode waste
CN114930612A (en) Waste battery treatment method
EP3836288B1 (en) Method for recovering valuable material from lithium ion secondary battery
US20210210807A1 (en) Method for recovering valuable material from lithium ion secondary battery
WO2023243385A1 (en) Recycled positive electrode material, method for producing same, method for using recycled positive electrode material, recycled positive electrode, and lithium ion secondary battery
EP3832781A1 (en) Method for recovering valuable material from lithium ion secondary battery
EP4350841A1 (en) Sorting method for valuable materials
JP2023183355A (en) Recycled cathode material and manufacturing method thereof, method of using recycled cathode material, recycled cathode, and lithium ion secondary battery
WO2012161172A1 (en) Method for recovering valuable material from positive electrode in lithium-ion secondary battery
JP2023004914A (en) Recycled cathode material precursor, recycled cathode material, production method thereof, and recycled lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151112

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20151218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170224

R150 Certificate of patent or registration of utility model

Ref document number: 6100991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250