JP2018021261A - Treatment method of lithium ion battery waste - Google Patents

Treatment method of lithium ion battery waste Download PDF

Info

Publication number
JP2018021261A
JP2018021261A JP2017203797A JP2017203797A JP2018021261A JP 2018021261 A JP2018021261 A JP 2018021261A JP 2017203797 A JP2017203797 A JP 2017203797A JP 2017203797 A JP2017203797 A JP 2017203797A JP 2018021261 A JP2018021261 A JP 2018021261A
Authority
JP
Japan
Prior art keywords
lithium
ion battery
lithium ion
battery waste
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017203797A
Other languages
Japanese (ja)
Inventor
直樹 樋口
Naoki Higuchi
直樹 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2017203797A priority Critical patent/JP2018021261A/en
Publication of JP2018021261A publication Critical patent/JP2018021261A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a treatment method of a lithium ion battery waste capable of enhancing filterability when filtering a neutralization treated article obtained by a neutralization treatment of an acid leaching liquid of the lithium ion battery waste, thereby enhancing treatment efficiency of whole treatment of the lithium ion battery waste and making separated and removed aluminum with a form of being easily handled suitable for uses in other applications.SOLUTION: There is provided a treatment method of a lithium ion battery waste including a neutralization treatment by adding alkali to an acid leaching liquid obtained by acid leaching the lithium ion battery waste containing at least aluminum, nickel and cobalt, filtering them to separate to a filtration residue having molar ratio of aluminum to lithium (Al/Li ratio) of less than 3.5 and a liquid after filtration containing lithium.SELECTED DRAWING: None

Description

本発明は、リチウムイオン電池廃棄物の処理方法に関する。   The present invention relates to a method for treating lithium ion battery waste.

近年、電子デバイス等をはじめ各産業分野で使用されている二次電池は、その使用量が飛躍的に上昇しており、電池の製品寿命に達して廃棄される量や製造過程で不良品として廃棄される量も増加している。   In recent years, the amount of secondary batteries used in various industrial fields including electronic devices has increased dramatically, reaching the end of the battery's product life and being rejected as a defective product in the manufacturing process. The amount discarded is also increasing.

二次電池にも各種あるものの、その容量並びに起電力の大きさから現在主流になっているのは、マンガン、コバルト及びニッケルを含有するリチウム金属塩を正極材に用いたものである。リチウム、マンガン、コバルト、ニッケルは比較的高価な元素であり、これらを廃棄された電池から回収して再利用することが望ましい。   Although there are various types of secondary batteries, the mainstream because of their capacity and electromotive force is the use of lithium metal salts containing manganese, cobalt and nickel as the positive electrode material. Lithium, manganese, cobalt, and nickel are relatively expensive elements, and it is desirable to recover these from discarded batteries and reuse them.

リチウムイオン二次電池から有価金属を回収する技術として、特許文献1には、アルミニウム箔からなる正極基板に正極活物質を固着させたリチウムイオン電池の正極材を硫酸溶液に浸漬し、硫酸溶液に溶出したアルミニウムを水酸化アルミニウムとして分離ろ過する方法が記載されている。特許文献1では、正極材を浸漬した硫酸溶液に炭酸水素塩又は炭酸塩を添加してpHを調整することによって、硫酸溶液中に溶出したアルミニウムを分離除去できるとの記載がされている。   As a technique for recovering valuable metals from a lithium ion secondary battery, Patent Document 1 discloses that a positive electrode material of a lithium ion battery in which a positive electrode active material is fixed to a positive electrode substrate made of aluminum foil is immersed in a sulfuric acid solution, A method for separating and filtering the eluted aluminum as aluminum hydroxide is described. Patent Document 1 describes that the aluminum eluted in the sulfuric acid solution can be separated and removed by adjusting the pH by adding bicarbonate or carbonate to the sulfuric acid solution in which the positive electrode material is immersed.

特開2014−114470号公報JP 2014-114470 A

しかしながら、特許文献1に記載された発明では、硫酸溶液に溶出したアルミニウムを中和処理により水酸化アルミニウムにして分離及び濾過しているが、その中和殿物の濾過時間は38分から1日と時間幅が大きく、濾過性が十分に高いとはいえない。更に、分離除去したアルミニウムをその後有効利用する可能性を考慮すると、分離除去したアルミニウムはただ廃棄するだけでなく、保存又は他用途への利用に適した取り扱い容易な形態にする必要性が求められる場合もある。   However, in the invention described in Patent Document 1, the aluminum eluted in the sulfuric acid solution is separated into aluminum hydroxide by neutralization and separated and filtered, and the filtration time of the neutralized residue is from 38 minutes to 1 day. The time width is large and the filterability is not sufficiently high. Furthermore, considering the possibility of effectively using the separated and removed aluminum, it is necessary not only to discard the separated and removed aluminum but also to make it easy to handle for storage or use in other applications. In some cases.

上記課題を鑑み、本発明は、リチウムイオン電池廃棄物の酸浸出液の中和処理によって得られる中和処理物を濾過する際の濾過性を向上させることができ、これによりリチウムイオン電池廃棄物処理全体の処理効率を向上でき、且つ分離除去したアルミニウムを他用途への利用に適した取り扱い容易な形態にすることが可能なリチウムイオン電池廃棄物の処理方法を提供する。   In view of the above problems, the present invention can improve the filterability when filtering the neutralized product obtained by the neutralization treatment of the acid leaching solution of the lithium ion battery waste, whereby the lithium ion battery waste treatment Provided is a method for treating lithium ion battery waste, which can improve the overall treatment efficiency and can make the separated and removed aluminum easy to handle suitable for use in other applications.

本発明者は鋭意検討を重ねた結果、リチウムイオン電池廃棄物を酸浸出して得られた酸浸出液を中和処理した後、濾過して、濾過後液とアルミニウムを含む残渣とに分けることによって酸浸出液からアルミニウムを分離除去する処理において、中和処理後の濾過処理の濾過性を向上させ、更に分離除去したアルミニウムを他用途への利用に適した取り扱い容易な形態にするためには、残渣中のリチウムとアルミニウムのモル比(Al/Li比)を所定値未満に調整することが重要であることを見いだした。   As a result of intensive studies, the present inventor neutralized the acid leaching solution obtained by acid leaching of lithium ion battery waste, and then filtered to separate it into a post-filtration solution and a residue containing aluminum. In the process of separating and removing aluminum from the acid leachate, in order to improve the filterability of the filtration process after the neutralization process, and to make the separated and removed aluminum into an easy-to-handle form suitable for other uses, It has been found that it is important to adjust the molar ratio of lithium to aluminum (Al / Li ratio) below a predetermined value.

以上の知見を基礎として完成した本発明は一側面において、リチウムイオン電池廃棄物を酸浸出して得られた酸浸出液にアルカリを添加して中和処理し、濾過することにより、リチウムに対するアルミニウムのモル比(Al/Li比)が3.5未満のリチウムとアルミニウムを含む濾過残渣と、リチウムを含む濾過後液とに分離することを含むリチウムイオン電池廃棄物の処理方法が提供される。   The present invention completed on the basis of the above knowledge, in one aspect, by adding an alkali to the acid leaching solution obtained by acid leaching of lithium ion battery waste, neutralizing and filtering, the aluminum of lithium to lithium There is provided a method for treating lithium ion battery waste, comprising separating into a filtration residue containing lithium and aluminum having a molar ratio (Al / Li ratio) of less than 3.5 and a post-filtration liquid containing lithium.

本発明に係るリチウムイオン電池廃棄物の処理方法は一実施態様において、濾過後液が2.0g/L以上のリチウムを含む。   In one embodiment of the method for treating lithium ion battery waste according to the present invention, the liquid after filtration contains 2.0 g / L or more of lithium.

本発明に係るリチウムイオン電池廃棄物の処理方法は別の一実施態様において、酸浸出液のリチウムに対するアルミニウムのモル比(Al/Li比)が1.1以下となるように調製することを含む。   In another embodiment, the method for treating lithium ion battery waste according to the present invention includes preparing the acid leaching solution so that the molar ratio of aluminum to lithium (Al / Li ratio) is 1.1 or less.

本発明に係るリチウムイオン電池廃棄物の処理方法は更に別の一実施態様において、アルカリが水酸化物を含む。   In another embodiment of the method for treating lithium ion battery waste according to the present invention, the alkali contains a hydroxide.

本発明に係るリチウムイオン電池廃棄物の処理方法は更に別の一実施態様において、アルカリが水酸化ナトリウムである。   In another embodiment of the method for treating lithium ion battery waste according to the present invention, the alkali is sodium hydroxide.

本発明に係るリチウムイオン電池廃棄物の処理方法は更に別の一実施態様において、リチウム源を添加することにより、酸浸出液のAl/Li比を調整することを更に含む。   In another embodiment, the method for treating lithium ion battery waste according to the present invention further includes adjusting the Al / Li ratio of the acid leaching solution by adding a lithium source.

本発明に係るリチウムイオン電池廃棄物の処理方法は更に別の一実施態様において、濾過残渣を乾燥させることにより、リチウム・アルミニウム系複合水酸化物を作製することを含む。   In yet another embodiment, the method for treating lithium ion battery waste according to the present invention includes producing a lithium-aluminum composite hydroxide by drying a filtration residue.

本発明に係るリチウムイオン電池廃棄物の処理方法は更に別の一実施態様において、酸浸出液を30〜90℃に加温しながら中和処理を行うことを含む。   In still another embodiment, the method for treating lithium ion battery waste according to the present invention includes performing neutralization while heating the acid leaching solution to 30 to 90 ° C.

本発明によれば、リチウムイオン電池廃棄物の酸浸出液の中和処理によって得られる中和処理物を濾過する際の濾過性を向上させることができ、これによりリチウムイオン電池廃棄物処理全体の処理効率を向上でき、且つ分離除去したアルミニウムを他用途への利用に適した取り扱い容易な形態にすることが可能なリチウムイオン電池廃棄物の処理方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the filterability at the time of filtering the neutralization processed material obtained by the neutralization process of the acid leaching solution of a lithium ion battery waste can be improved, Thereby, the process of the whole lithium ion battery waste processing It is possible to provide a method for treating lithium ion battery waste that can improve the efficiency and can make the separated and removed aluminum suitable for use in other applications and easy to handle.

本発明の実施の形態に係るリチウムイオン電池廃棄物の処理方法によって得られるリチウム・アルミニウム系複合水酸化物のSEM像の一例を表す写真である。It is a photograph showing an example of the SEM image of the lithium aluminum complex hydroxide obtained by the processing method of the lithium ion battery waste concerning an embodiment of the invention. 比較例における処理粉末のSEM像の一例を表す写真である。It is a photograph showing an example of the SEM image of the process powder in a comparative example.

以下、図面を参照しながら本発明について説明する。本発明の実施の形態に係るリチウムイオン電池廃棄物の処理方法は、アルミニウム、マンガン、ニッケル及びコバルトを少なくとも含有するリチウムイオン電池廃棄物を処理するものであって(1)酸浸出工程と(2)中和処理工程と(3)濾過工程とを少なくとも含む。   Hereinafter, the present invention will be described with reference to the drawings. The processing method of the lithium ion battery waste which concerns on embodiment of this invention processes the lithium ion battery waste containing at least aluminum, manganese, nickel, and cobalt, Comprising: (1) Acid leaching process and (2 ) At least a neutralization treatment step and (3) a filtration step.

(1)酸浸出工程
酸浸出工程では、アルミニウム、マンガン、ニッケル及びコバルトを少なくとも含有するリチウムイオン電池廃棄物を、酸で溶解することにより、アルミニウム、リチウム、コバルト及びニッケルを少なくとも含む酸浸出液を得る。
(1) Acid leaching step In the acid leaching step, an acid leaching solution containing at least aluminum, lithium, cobalt and nickel is obtained by dissolving lithium ion battery waste containing at least aluminum, manganese, nickel and cobalt with an acid. .

酸浸出工程に用いられる酸としては、例えば、硫酸、塩酸、硝酸、酢酸等があるが、中でも硫酸が、常温での無酸化性と金属に対する対配位能の点で好ましい。酸浸出工程では、酸の添加によってpHを例えば1.5〜3.5に調整することが好ましい。   Examples of the acid used in the acid leaching step include sulfuric acid, hydrochloric acid, nitric acid, and acetic acid. Among them, sulfuric acid is preferable in terms of non-oxidation property at room temperature and ability to coordinate with metals. In the acid leaching step, it is preferable to adjust the pH to, for example, 1.5 to 3.5 by adding an acid.

リチウム電池廃棄物からアルミニウムを効果的且つ効率的に除去するとともに、分離除去時の濾過性を向上させるためには、酸浸出液中に存在するリチウム濃度を一定以上に制御することが好ましい。即ち、酸浸出工程においては、リチウムに対するアルミニウムのモル比(Al/Li比)を1.1以下に、より好ましくは1.0以下に、更に好ましくは0.9以下となるように、酸浸出液を調製する。   In order to effectively and efficiently remove aluminum from lithium battery waste and improve filterability during separation and removal, it is preferable to control the concentration of lithium present in the acid leaching solution to a certain level or more. That is, in the acid leaching step, the acid leaching solution is adjusted so that the molar ratio of aluminum to lithium (Al / Li ratio) is 1.1 or less, more preferably 1.0 or less, and even more preferably 0.9 or less. To prepare.

リチウム・アルミニウム系複合水酸化物を形成させる目的からすると、アルミニウム濃度に対してリチウム濃度が高くても特に問題とならないことから0を超えるモル比とすることができる。これにより、アルミニウムの除去率を高く維持できるとともに、後述する中和処理におけるアルミニウムの沈殿形態が結晶性のある粒子となり、その後の濾過処理における濾過性が向上する。   For the purpose of forming a lithium / aluminum composite hydroxide, even if the lithium concentration is high with respect to the aluminum concentration, there is no particular problem, so the molar ratio can exceed 0. Thereby, while being able to maintain the removal rate of aluminum high, the precipitation form of the aluminum in the neutralization process mentioned later becomes a particle | grain with crystallinity, and the filterability in subsequent filtration process improves.

なお、リチウムイオン電池廃棄物の酸浸出だけでリチウム量が不足する場合には、リチウム源を添加して、酸浸出液中のAl/Li比を調整することが好ましい。添加するリチウム源としては、試薬などを用いることも可能であるが、リチウムイオン電池廃棄物の処理プロセス途中において得られる炭酸リチウム、水酸化リチウムなどのリチウム化合物、これらを水に溶解させたリチウム水溶液などを利用することが、資源有効利用の観点から好ましい。   In addition, when the amount of lithium is insufficient only by acid leaching of lithium ion battery waste, it is preferable to add a lithium source to adjust the Al / Li ratio in the acid leaching solution. As a lithium source to be added, a reagent or the like can be used, but lithium compounds such as lithium carbonate and lithium hydroxide obtained during the treatment process of lithium ion battery waste, and an aqueous lithium solution in which these are dissolved in water It is preferable from the viewpoint of effective use of resources.

以下に制限されるものではないが、例えば、焙焼処理などによって炭酸リチウムの形態に変化させたリチウムイオン電池廃棄物を、水またはカルシウム塩を含有する水溶液(例えば水酸化カルシウム、塩化カルシウム、硝酸カルシウム、硫酸カルシウム、次亜塩素酸カルシウムの水溶液等)に溶解させることによって得られるリチウム溶解液なども酸浸出液へ添加するリチウム源として利用可能である。なお、リチウム源を添加して酸浸出液中のAl/Li比を調整するタイミングは特に限定されない。例えば、後述する中和工程の途中にアルミニウムを含む沈殿物が生じるpH領域でリチウム源を添加しても構わない。   Although not limited to the following, for example, lithium ion battery waste that has been changed to lithium carbonate by roasting or the like is treated with water or an aqueous solution containing a calcium salt (for example, calcium hydroxide, calcium chloride, nitric acid). Lithium solution obtained by dissolving in calcium, calcium sulfate, calcium hypochlorite aqueous solution, etc.) can also be used as a lithium source to be added to the acid leaching solution. In addition, the timing which adds a lithium source and adjusts Al / Li ratio in an acid leaching solution is not specifically limited. For example, the lithium source may be added in a pH range where a precipitate containing aluminum is generated during the neutralization step described later.

(2)中和工程
中和工程では、酸浸出工程で得られた酸浸出液に中和剤を添加し、pHを所定の範囲に調整することにより、酸浸出液中にアルミニウムを含む沈殿物を生じさせる。中和剤としては、ナトリウム塩(NaHCO3、Na2CO3)やカリウム塩(KHCO3、K2CO3)等のアルカリ性の炭酸水素塩又は炭酸塩、或いは水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリが利用可能である。
(2) Neutralization step In the neutralization step, a neutralizing agent is added to the acid leaching solution obtained in the acid leaching step, and the pH is adjusted to a predetermined range, thereby producing a precipitate containing aluminum in the acid leaching solution. Let As the neutralizing agent, alkaline hydrogen carbonate or carbonate such as sodium salt (NaHCO 3 , Na 2 CO 3 ) or potassium salt (KHCO 3 , K 2 CO 3 ), sodium hydroxide, potassium hydroxide, water Alkalis such as lithium oxide can be used.

上記アルカリの中でも特に、水酸化物を用いることが好ましい。水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等を利用することが好ましい。この中でも、水酸化ナトリウムを使用することが特に好ましい。炭酸ナトリウムや炭酸水素ナトリウム等を使用した場合、中和により液量が増加するために処理量が増加して処理時間が長くなる場合があるが、中和剤として水酸化ナトリウムを用いることにより、炭酸ナトリウムや炭酸水素ナトリウム等を使用する場合に比べて中和に必要な薬液の量を低減することができるため、処理効率を向上させることができる。   Among the alkalis, it is particularly preferable to use a hydroxide. As the hydroxide, it is preferable to use sodium hydroxide, potassium hydroxide, lithium hydroxide or the like. Among these, it is particularly preferable to use sodium hydroxide. When sodium carbonate or sodium hydrogen carbonate is used, the amount of liquid increases due to neutralization, so the treatment amount may increase and the treatment time may become longer, but by using sodium hydroxide as a neutralizing agent, Since the amount of the chemical solution required for neutralization can be reduced as compared with the case where sodium carbonate, sodium hydrogen carbonate, or the like is used, the processing efficiency can be improved.

中和工程では、中和剤の添加により酸浸出液のpHをpH3.0〜7.5の範囲に調整する。pHが3.0未満の場合には、酸浸出液に溶出したアルミニウムの沈殿が生じず、アルミニウムの分離除去ができない場合がある。pHが7.5より高い場合には、酸浸出液中に浸出したニッケルなどの他金属の析出が始まるため、他金属の回収ロスが大きくなるのに加え、析出物が多くなることによって後述する濾過工程における濾過時間が長期化するなど、残渣の取り扱いが困難になる。   In the neutralization step, the pH of the acid leaching solution is adjusted to a range of pH 3.0 to 7.5 by adding a neutralizing agent. When the pH is less than 3.0, precipitation of aluminum eluted in the acid leaching solution does not occur, and aluminum may not be separated and removed. When the pH is higher than 7.5, precipitation of other metals such as nickel leached in the acid leaching solution starts, so that the recovery loss of other metals is increased and the filtration described later is caused by an increase in precipitates. Residue handling becomes difficult, for example, the filtration time in the process is prolonged.

中和終了時のpHは、4.0〜6.0がより好ましく、更に好ましくは5.0〜6.0である。中和工程では、酸浸出液を30〜90℃、より好ましくは50〜85℃で一定温度に加温しながら行うことが好ましい。   The pH at the end of neutralization is more preferably 4.0 to 6.0, and still more preferably 5.0 to 6.0. In the neutralization step, the acid leaching solution is preferably heated to a constant temperature at 30 to 90 ° C, more preferably 50 to 85 ° C.

中和工程では、酸浸出液を攪拌しながら行う。攪拌は添加するアルカリと酸浸出液が十分混合するようにすることが好ましい。具体的には、酸浸出液を攪拌機により100〜1000rpm、より具体的には200〜500rpm程度で攪拌することが好ましい。攪拌速度が100rpmよりも遅い場合、混合が十分でないということがある。攪拌速度が1000rpmを超えると、液が飛散しロスが増える場合がある。   In the neutralization step, the acid leaching solution is stirred. Stirring is preferably performed so that the alkali to be added and the acid leaching solution are sufficiently mixed. Specifically, it is preferable to stir the acid leaching solution with a stirrer at 100 to 1000 rpm, more specifically about 200 to 500 rpm. If the stirring speed is slower than 100 rpm, mixing may not be sufficient. If the stirring speed exceeds 1000 rpm, the liquid may scatter and loss may increase.

(3)濾過工程
濾過工程では、中和工程で得られたスラリー状の中和処理液を濾過することにより、中和処理液中に沈殿したアルミニウムを含む濾過残渣と、濾過後液とに分離する。本実施形態では、上述した酸浸出工程において、リチウムに対するアルミニウムのモル比(Al/Li比)が1.1以下となるような、リチウムが比較的過剰となるような酸浸出液を処理している。この酸浸出液を用いることにより、濾過後液中には、2.0g/L以上、より具体的には2.4g/L以上のリチウムを含む濾過後液が得られるとともに、リチウムに対するアルミニウムのモル比(Al/Li比)が3.5未満の濾過残渣が得られる。
(3) Filtration step In the filtration step, the slurry-like neutralization treatment liquid obtained in the neutralization step is filtered to separate into a filtration residue containing aluminum precipitated in the neutralization treatment solution and a post-filtration solution. To do. In the present embodiment, in the acid leaching step described above, an acid leaching solution in which lithium is relatively excessive is processed such that the molar ratio of aluminum to lithium (Al / Li ratio) is 1.1 or less. . By using this acid leaching solution, a post-filtration solution containing 2.0 g / L or more, more specifically 2.4 g / L or more of lithium is obtained in the post-filtration solution, and the mole of aluminum relative to lithium is obtained. A filtration residue having a ratio (Al / Li ratio) of less than 3.5 is obtained.

濾過残渣中のリチウムに対するアルミニウムのモル比(Al/Li比)の下限値は特に制限されないが、リチウム・アルミニウム系複合水酸化物([LiAl2(OH)6+[X1/n n-・yH2O]- 、X1/n n-は層間の陰イオン)をより多く形成させて濾過性を向上させる目的を考慮すると、化学量論比から、その下限値は2程度である。また、濾過残渣中のAl/Li比は中和処理を終了するpHによって多少上下するが、pH3.0〜7.5で中和処理を終了する場合、残渣中のAl/Li比が3.5未満、より好ましくは3.4以下であれば濾過性が良好となる。 The lower limit of the molar ratio of aluminum to lithium (Al / Li ratio) in the filtration residue is not particularly limited, but lithium-aluminum composite hydroxide ([LiAl 2 (OH) 6 ] + [X 1 / n n− In consideration of the purpose of improving filterability by forming more anions (yH 2 O] and X 1 / n n− ), the lower limit is about 2 from the stoichiometric ratio. Moreover, although the Al / Li ratio in the filtration residue slightly increases or decreases depending on the pH at which the neutralization treatment is finished, when the neutralization treatment is finished at pH 3.0 to 7.5, the Al / Li ratio in the residue is 3. If it is less than 5, more preferably 3.4 or less, the filterability will be good.

より具体的には、酸浸出液中に含まれるニッケル、コバルト等のロスの割合を考慮すると、中和終了時のpHは5前後(4.5〜5.5)とした場合に、その後の濾過によって得られる残渣のAl/Li比が2.0〜3.5、更に好ましくは2.3〜3.0、更に好ましくは2.5〜2.8となるようにするのが好ましい。   More specifically, considering the ratio of losses of nickel, cobalt, etc. contained in the acid leaching solution, when the pH at the end of neutralization is around 5 (4.5 to 5.5), the subsequent filtration It is preferable that the Al / Li ratio of the residue obtained by the above is 2.0 to 3.5, more preferably 2.3 to 3.0, and even more preferably 2.5 to 2.8.

酸浸出液中に浸出したアルミニウムは、Al(OH)3、LiAlO2、LiAl2(OH)7等の混合沈殿物として回収される。本濾過工程は、中和工程と同様に加温しながら行ってもよいが、本実施形態では、加温せずに常温で行っても短時間で濾過処理を行うことができる。処理効率を鑑みれば、濾過工程は加温せずに行うことが好ましい。本実施形態に係る中和処理液は、中和工程の後に一定時間(数時間〜数日程度)中和処理液を加温せずに保持した後で濾過したとしても、十分良好な濾過性が得られる。 Aluminum leached in the acid leaching solution is recovered as a mixed precipitate of Al (OH) 3 , LiAlO 2 , LiAl 2 (OH) 7, etc. Although this filtration process may be performed while heating similarly to the neutralization process, in this embodiment, even if it performs at normal temperature without heating, a filtration process can be performed in a short time. In view of processing efficiency, it is preferable to perform the filtration step without heating. The neutralization treatment liquid according to the present embodiment has sufficiently good filterability even if the neutralization treatment liquid is filtered for a certain period of time (several hours to several days) without being heated. Is obtained.

本実施形態に係るアルミニウムの除去方法によれば、酸浸出液のAl/Li比を調整することにより、リチウムが酸浸出後液中に一定濃度以上存在する条件下で、中和処理を実施し、且つ中和処理液中に一定濃度以上リチウムが残存するような条件で中和処理を終了させて、上述の濾過処理を行う。これにより、中和処理で発生するAl(OH)3等のゲル状の沈殿物が少なく、粉末に近い形態の沈殿物が得られるため、濾過に必要な時間が短時間化され、濾過性を向上できる。 According to the method for removing aluminum according to the present embodiment, by adjusting the Al / Li ratio of the acid leaching solution, the neutralization treatment is performed under a condition where lithium is present in a concentration higher than a certain concentration in the solution after the acid leaching, In addition, the above-described filtration treatment is performed by terminating the neutralization treatment under conditions such that lithium remains in a certain concentration or more in the neutralization treatment solution. As a result, gel-like precipitates such as Al (OH) 3 generated in the neutralization treatment are few, and precipitates in a form close to powder are obtained, so the time required for filtration is shortened and the filterability is reduced. It can be improved.

分離除去後のアルミニウム沈殿物は、ゲル状ではなく粉状であるため、濾過残渣の取り扱いが容易である。この濾過残渣を、自然乾燥するか、或いは例えば60〜80℃で加熱して水分を除去する(加熱乾燥)ことによって、白色粉状のリチウム・アルミニウム系複合水酸化物粉末が得られる。   Since the aluminum precipitate after separation and removal is in the form of a powder rather than a gel, it is easy to handle the filtration residue. The filtered residue is naturally dried or, for example, heated at 60 to 80 ° C. to remove moisture (heat drying), whereby white powdery lithium aluminum composite hydroxide powder is obtained.

このリチウム・アルミニウム系複合水酸化物をSEMで観察した結果、図1に示すように、直径1〜2μm程度の薄片状を有する結晶の集合体が得られていることがわかる。以下に制限されるものではないが、この複合酸化物を容器に入れて保存することも可能であるし、例えば、リンの吸着材等の他用途に利用することによって、リチウムイオン電池廃棄物から分離除去したアルミニウムを他用途へも利用することも可能であると考えられる。或いは、この複合化合物をリチウム電池廃棄物の処理プロセス中のいずれかに利用する場合も考えられる。いずれにしても本実施形態によれば、資源の有効利用の観点からより効率的なリチウムイオン電池廃棄物の処理方法が提供できる。   As a result of observing this lithium-aluminum-based composite hydroxide with an SEM, it can be seen that an aggregate of crystals having a flake shape with a diameter of about 1 to 2 μm is obtained as shown in FIG. Although not limited to the following, it is also possible to store this composite oxide in a container. For example, by using it for other purposes such as an adsorbent of phosphorus, it is possible to remove it from lithium ion battery waste. It is considered that the separated and removed aluminum can be used for other purposes. Alternatively, the composite compound may be used in any of the lithium battery waste treatment processes. In any case, according to the present embodiment, a more efficient method for treating lithium ion battery waste can be provided from the viewpoint of effective use of resources.

以下に本発明の実施例を比較例と共に示すがこれらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   EXAMPLES Examples of the present invention are shown below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

ニッケル、コバルト、マンガン、アルミニウム、リチウムを含むリチウムイオン電池廃棄物を硫酸で溶解して酸浸出液を調製し、必要に応じてリチウム源を酸浸出液に添加して、Al/Li比が0.6〜2.2の酸浸出液(A1〜A7)を用意した。各酸浸出液の組成と酸浸出液のpHを表1に示す。この酸浸出液を80℃に加温して、300rpmで攪拌しながら、濃度200g/Lの水酸化ナトリウム溶液を中和剤として添加し、酸浸出液のpHが5.0になった時点で中和処理を終了させ、中和処理液を得た。この中和処理液を濾過し、濾過後液と濾過残渣とに分離した。濾過後液の組成を表2に、残渣の組成を表3に示す。   A lithium ion battery waste containing nickel, cobalt, manganese, aluminum, and lithium is dissolved in sulfuric acid to prepare an acid leaching solution. If necessary, a lithium source is added to the acid leaching solution, and an Al / Li ratio is 0.6. -2.2 acid leaching solutions (A1 to A7) were prepared. Table 1 shows the composition of each acid leachate and the pH of the acid leachate. This acid leachate is heated to 80 ° C., and stirred at 300 rpm, a sodium hydroxide solution having a concentration of 200 g / L is added as a neutralizing agent, and neutralized when the pH of the acid leachate reaches 5.0. The treatment was terminated to obtain a neutralization treatment solution. This neutralization treatment liquid was filtered, and separated into a post-filtration liquid and a filtration residue. Table 2 shows the composition of the liquid after filtration, and Table 3 shows the composition of the residue.

各サンプルに対する濾過特性を評価した。結果を表4に示す。   The filtration characteristics for each sample were evaluated. The results are shown in Table 4.

表1〜4に示すように、濾過残渣のAl/Li比が3.5未満である濾過残渣(A3、A4、A7)は、単位時間・単位面積あたりの濾過量が100Lを超えており、他濾過残渣に比べて極めて短時間で濾過処理を行うことができた。   As shown in Tables 1 to 4, the filtration residue (A3, A4, A7) in which the Al / Li ratio of the filtration residue is less than 3.5 has a filtration amount per unit time / unit area of more than 100 L, The filtration treatment could be performed in a very short time compared to other filtration residues.

更に、A2とA4で得られた濾過残渣をそれぞれ60℃で加熱して水分を蒸発乾固させたところいずれも白色粉状の処理物が得られた。更に、濾過残渣A2と、A4に対して、走査型電子顕微鏡(SEM)で確認した結果を図1及び図2に示す。   Furthermore, when the filtration residue obtained by A2 and A4 was each heated at 60 degreeC and the water | moisture content was evaporated and dried, the processed material of the white powder form was obtained in all. Furthermore, the result confirmed with the scanning electron microscope (SEM) with respect to filtration residue A2 and A4 is shown in FIG.1 and FIG.2.

サンプルA4では、直径1〜2μm程度の薄片状を有する結晶の集合体がみられたが、サンプルA2では、直径1μm未満の粒塊状の結晶の集合体がみられた。濾過残渣A2及びA4に対しX線回折解析(XRD)で観察したところ、サンプルA4では、リチウム・アルミニウム系複合水酸化物([LiAl2(OH)6+[X1/n n-・yH2O]- 、X1/n n-は層間の陰イオン)が生成されていることが分かったが、サンプルA2ではリチウム・アルミニウム系複合酸化物の生成はみられなかった。 In sample A4, an aggregate of crystals having a flake shape having a diameter of about 1 to 2 μm was observed, but in sample A2, an aggregate of crystal aggregates having a diameter of less than 1 μm was observed. When the filtration residues A2 and A4 were observed by X-ray diffraction analysis (XRD), in the sample A4, a lithium / aluminum composite hydroxide ([LiAl 2 (OH) 6 ] + [X 1 / n n− · yH 2 O] and X 1 / n n− were found to be an anion between layers), but in Sample A2, no lithium / aluminum-based composite oxide was formed.

Claims (8)

リチウムイオン電池廃棄物を酸浸出して得られた酸浸出液にアルカリを添加して中和処理し、濾過することにより、リチウムに対するアルミニウムのモル比(Al/Li比)が3.5未満のリチウムとアルミニウムを含む濾過残渣と、リチウムを含む濾過後液とに分離することを含むリチウムイオン電池廃棄物の処理方法。   Lithium ion battery waste is obtained by adding an alkali to the acid leaching solution obtained by acid leaching, neutralizing the solution, and filtering to obtain a lithium whose molar ratio of aluminum to lithium (Al / Li ratio) is less than 3.5. And a filtration residue containing aluminum, and a post-filtration liquid containing lithium, and a method for treating lithium ion battery waste. 前記濾過後液が2.0g/L以上のリチウムを含む請求項1に記載のリチウムイオン電池廃棄物の処理方法。   The method for treating lithium ion battery waste according to claim 1, wherein the post-filtration liquid contains 2.0 g / L or more of lithium. 酸浸出液のリチウムに対するアルミニウムのモル比(Al/Li比)が1.1以下となるように調製することを含む請求項1又は2に記載のリチウムイオン電池廃棄物の処理方法。   The processing method of the lithium ion battery waste of Claim 1 or 2 including preparing so that the molar ratio (Al / Li ratio) of aluminum with respect to lithium of an acid leaching solution may be 1.1 or less. 前記アルカリが水酸化物を含む請求項1〜3のいずれか1項に記載のリチウムイオン電池廃棄物の処理方法。   The processing method of the lithium ion battery waste of any one of Claims 1-3 in which the said alkali contains a hydroxide. 前記アルカリが水酸化ナトリウムである請求項1〜4のいずれか1項に記載のリチウムイオン電池廃棄物の処理方法。   The said alkali is sodium hydroxide, The processing method of the lithium ion battery waste of any one of Claims 1-4. リチウム源を添加することにより、前記酸浸出液のAl/Li比を調整することを更に含む請求項1〜5のいずれか1項に記載のリチウムイオン電池廃棄物の処理方法。   The method for treating lithium ion battery waste according to any one of claims 1 to 5, further comprising adjusting an Al / Li ratio of the acid leaching solution by adding a lithium source. 前記濾過残渣を乾燥させることにより、リチウム・アルミニウム系複合水酸化物粉末を得ることを含む請求項1〜6のいずれか1項に記載のリチウムイオン電池廃棄物の処理方法。   The processing method of the lithium ion battery waste of any one of Claims 1-6 including obtaining lithium aluminum complex hydroxide powder by drying the said filtration residue. 前記酸浸出液を30〜90℃に加温しながら中和処理を行うことを含む請求項1〜7のいずれか1項に記載のリチウムイオン電池廃棄物の処理方法。   The processing method of the lithium ion battery waste of any one of Claims 1-7 including performing a neutralization process, heating the said acid leaching solution at 30-90 degreeC.
JP2017203797A 2017-10-20 2017-10-20 Treatment method of lithium ion battery waste Pending JP2018021261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017203797A JP2018021261A (en) 2017-10-20 2017-10-20 Treatment method of lithium ion battery waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017203797A JP2018021261A (en) 2017-10-20 2017-10-20 Treatment method of lithium ion battery waste

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014226446A Division JP6290770B2 (en) 2014-11-06 2014-11-06 Lithium-ion battery waste treatment method

Publications (1)

Publication Number Publication Date
JP2018021261A true JP2018021261A (en) 2018-02-08

Family

ID=61164297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017203797A Pending JP2018021261A (en) 2017-10-20 2017-10-20 Treatment method of lithium ion battery waste

Country Status (1)

Country Link
JP (1) JP2018021261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200031303A (en) * 2018-09-14 2020-03-24 (주)세기리텍 A method of separating a material of a battery and a regenerating material obtained by this method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171641A (en) * 1981-04-15 1982-10-22 Kenjiro Yanagase Capturing and concentrating method for lithium in geothermal hot water
JP2000015216A (en) * 1998-06-30 2000-01-18 Toshiba Corp Method for recycling positive electrode active material from lithium ion secondary battery
JP2007122885A (en) * 2005-10-25 2007-05-17 Sumitomo Metal Mining Co Ltd Valuable metal recovery method from lithium ion battery
JP2013076112A (en) * 2011-09-29 2013-04-25 Jx Nippon Mining & Metals Corp Method for separating iron and aluminum
JP2016088816A (en) * 2014-11-06 2016-05-23 Jx金属株式会社 Aluminum separation method from aluminum-containing acidic solution, lithium aluminum-based composite hydroxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171641A (en) * 1981-04-15 1982-10-22 Kenjiro Yanagase Capturing and concentrating method for lithium in geothermal hot water
JP2000015216A (en) * 1998-06-30 2000-01-18 Toshiba Corp Method for recycling positive electrode active material from lithium ion secondary battery
US6261712B1 (en) * 1998-06-30 2001-07-17 Kabushiki Kaisha Toshiba Method of reclaiming cathodic active material of lithium ion secondary battery
JP2007122885A (en) * 2005-10-25 2007-05-17 Sumitomo Metal Mining Co Ltd Valuable metal recovery method from lithium ion battery
JP2013076112A (en) * 2011-09-29 2013-04-25 Jx Nippon Mining & Metals Corp Method for separating iron and aluminum
JP2016088816A (en) * 2014-11-06 2016-05-23 Jx金属株式会社 Aluminum separation method from aluminum-containing acidic solution, lithium aluminum-based composite hydroxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200031303A (en) * 2018-09-14 2020-03-24 (주)세기리텍 A method of separating a material of a battery and a regenerating material obtained by this method
KR102097466B1 (en) 2018-09-14 2020-04-06 (주)세기리텍 A method of separating a material of a battery and a regenerating material obtained by this method

Similar Documents

Publication Publication Date Title
JP6622998B2 (en) Method for removing iron and aluminum from lithium ion battery scrap and method for recovering valuable metals
JP6948481B2 (en) How to collect valuables
JP4916094B2 (en) Precursor for positive electrode material of lithium ion secondary battery, method for producing the same, and method for producing positive electrode material using the same
WO2012081645A1 (en) Method for separating positive-pole active substance and method for recovering valuable metals from lithium ion battery
JP2021507111A (en) Reuse of batteries by leachate treatment with metallic nickel
JP2019160429A (en) Lithium recovery method
JP6352669B2 (en) Lithium-ion battery waste treatment method
JP6290633B2 (en) Lithium ion battery waste treatment method and metal recovery method using the same
US11970405B2 (en) Method for producing lithium carbonate
JP6986997B2 (en) Lithium carbonate manufacturing method and lithium carbonate
WO2020137997A1 (en) Valuable metal recovery method
JP2012036420A (en) Method of leaching nickel and cobalt, and method of recovering valuable metal from lithium ion battery
JP2023063319A (en) Method for treating lithium-ion battery waste and method for producing sulfate
JP7246570B2 (en) Method for producing mixed metal salt
JP2020158819A (en) Refining method of nickel hydroxide
JP6480235B2 (en) Method for removing iron and aluminum from lithium-ion battery scrap
CN107001065B (en) Stannous oxide powder and method for producing stannous oxide powder
JP6290770B2 (en) Lithium-ion battery waste treatment method
JP2018021261A (en) Treatment method of lithium ion battery waste
CN108063295B (en) Method for extracting lithium from slag generated by pyrogenic recovery of lithium battery
JP6301814B2 (en) Method for separating aluminum from acidic solution containing aluminum, and method for producing lithium / aluminum composite hydroxide
CN1930087A (en) Tantalum oxide and/or niobium oxide and method for preparation thereof
Shin et al. Recovery of lithium from LiAlO2 in waste box sagger through sulfation to produce Li2SO4 and sequential wet conversion to Li3PO4, LiCl and Li2CO3
JP6513748B2 (en) Lithium recovery method
WO2016194658A1 (en) Aqueous cobalt chloride solution purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190212