JPH10255862A - Valuable material separating method from lithium ion secondary battery - Google Patents

Valuable material separating method from lithium ion secondary battery

Info

Publication number
JPH10255862A
JPH10255862A JP6101397A JP6101397A JPH10255862A JP H10255862 A JPH10255862 A JP H10255862A JP 6101397 A JP6101397 A JP 6101397A JP 6101397 A JP6101397 A JP 6101397A JP H10255862 A JPH10255862 A JP H10255862A
Authority
JP
Japan
Prior art keywords
solution
electrode
ion secondary
lithium ion
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6101397A
Other languages
Japanese (ja)
Inventor
Motoo Yabuki
元央 矢吹
Masaru Hayashi
勝 林
Masataka Konuma
雅敬 小沼
Yoshiki Tomioka
由喜 富岡
Naohiko Oyasato
直彦 親里
Izuru Komatsu
出 小松
Hideo Kitamura
英夫 北村
Takeshi Gotanda
武志 五反田
Kimihiro Tadauchi
仁弘 忠内
Tomiaki Furuya
富明 古屋
Masaaki Morita
正明 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6101397A priority Critical patent/JPH10255862A/en
Publication of JPH10255862A publication Critical patent/JPH10255862A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To recover a valuable material such as rare metal from a used secondary lithium ion battery at a high recovering rate by soaking an electrode of the used secondary lithium ion battery in an acidic solution or the like, and separating the electrode into an electrode material and a current collecting body. SOLUTION: A used secondary lithium ion battery is disassembled, and an electrolyte is completely removed from an electrode, and is soaked in a solvent, and is cleaned. This electrode is soaked in any one of an acidic solution (such as hydrogen halide, sulfuric acid, hydrogen peroxide, nitric acid, etc.), a hydroxide solution of alkaline metal (such as sodium hydroxide or potassium hydroxide), an alcohol solution (such as a lithium alkoxide, sodium alkoxide, etc.) of alkaline metal or an organic solvent (such as ketone and ester), and is separated into an electrode material and a current collecting body. This electrode material is soaked in the acidic solution, and after valuable metal is dissolved, the valuable metal can be inexpensively recovered with high purity by chemical treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池に含まれる有価物を回収する際に用いられるリチ
ウムイオン二次電池からの有価物分離方法に関し、特
に、有価物を高回収率、低コストかつ高純度で回収する
ことができるリチウムイオン二次電池からの有価物分離
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating valuables from a lithium ion secondary battery used for recovering valuables contained in the lithium ion secondary battery. The present invention relates to a method for separating valuable materials from a lithium ion secondary battery that can be recovered at low cost and with high purity.

【0002】[0002]

【従来の技術】近年、非水電解液電池が高エネルギー密
度電池として注目されており、VTR、通信器機等の各
種電子機器の小型、軽量化に伴い、それらの電源として
使用されている。リチウムイオン二次電池は、従来の二
次電池と異なり、水銀、カドミウム、鉛などの有害金属
が含有されておらず、また、特性においても、サイクル
寿命が良好なことから年々、増加の一途を辿っている。
2. Description of the Related Art In recent years, non-aqueous electrolyte batteries have attracted attention as high energy density batteries, and as various electronic devices such as VTRs and communication devices have been reduced in size and weight, they have been used as power sources for these devices. Unlike conventional rechargeable batteries, lithium-ion rechargeable batteries do not contain harmful metals such as mercury, cadmium, and lead, and their characteristics also have a good cycle life. I am following.

【0003】ところで、リチウムイオン二次電池の正極
材として用いられている現在主流の材料、あるいは次期
候補に挙がっている材料はいずれも、国家備蓄材料に指
定されているレアメタルである。従って、使用済みのリ
チウムイオン二次電池に含まれるこれら材料の再利用方
法が注目されてきている。
[0003] By the way, the currently mainstream materials used as the positive electrode material of lithium ion secondary batteries or the materials listed as candidates for the next period are all rare metals designated as national stock materials. Therefore, attention has been paid to a method of recycling these materials contained in a used lithium ion secondary battery.

【0004】従来、リチウムイオン二次電池からの有価
金属の回収方法としては、例えば、特開平7−2073
49号公報に記載されたものが知られている。この回収
方法は、使用済みリチウムイオン二次電池を培焼、ふる
いわけ、粉砕後、さらに、培焼し、酸処理後、沈殿分離
を経て有価金属を回収するものである。この回収方法に
よれば、比較的良好な回収率を得ることができるが、ニ
ッケル、鉄、コバルトを完全に分離することができない
ので、高純度に回収することはできない。また、特開平
7−245126号公報には、使用済みリチウムイオン
二次電池を培焼、ふるいわけ、粉砕後、磁力選別して有
価金属を回収する方法が記載されている。この方法によ
れば、ふるいわけにより筐体部分(磁性材料)と分離す
るので低コストではあるが、回収物の純度は非常に悪い
のものである。特開平8−22846号公報には、使用
済みのリチウムイオン二次電池をアルカリ中に浸漬し、
正極材、負極シートをそれぞれ分離後、正極材は燃焼し
て、活物質を回収し、また、負極シートは筐体と分離し
て燃焼し、Cu箔として回収する方法が記載されいる。
この方法によれば、活物質をそのまま利用する、あるい
は新品の活物質と混合して利用することが可能である
が、燃焼によりCO2 が多量に発生すること、精製して
いないので活物質に不純物の混入のおそれがあること、
活物質はLiが理論量より少ない状態となっているの
で、現実にはそのまま利用しようとしても無理であるこ
と等の欠点がある。
Conventional methods for recovering valuable metals from lithium ion secondary batteries include, for example, Japanese Patent Application Laid-Open No. 7-2073.
One described in Japanese Patent Publication No. 49 is known. In this recovery method, used lithium ion secondary batteries are baked, sifted, pulverized, baked, acid-treated, and then subjected to sedimentation to recover valuable metals. According to this recovery method, a relatively good recovery rate can be obtained, but nickel, iron, and cobalt cannot be completely separated, so that high-purity recovery cannot be performed. Further, Japanese Patent Application Laid-Open No. 7-245126 describes a method of cultivating, sifting, and pulverizing a used lithium-ion secondary battery, and then sorting magnetically to collect valuable metals. According to this method, although the cost is low because it is separated from the housing portion (magnetic material) by sieving, the purity of the recovered material is very poor. JP-A-8-22846 discloses that a used lithium ion secondary battery is immersed in an alkali,
A method is described in which, after separating a positive electrode material and a negative electrode sheet, the positive electrode material is burned to recover the active material, and the negative electrode sheet is separated from the housing and burned, and recovered as Cu foil.
According to this method, it is possible to use the active material as it is or to mix it with a new active material. However, since a large amount of CO 2 is generated by combustion and the material is not purified, it can be used as an active material. There is a risk of contamination of impurities,
Since the active material has a state in which the amount of Li is smaller than the theoretical amount, there is a disadvantage that it is impossible to use it as it is in reality.

【0005】[0005]

【発明が解決しようとする課題】上述したように、従来
の回収方法で使用済みのリチウムイオン二次電池に含ま
れる有価金属を回収する場合、コスト、回収された有価
金属の純度の面から、まだ不十分であった。
As described above, when a valuable metal contained in a used lithium ion secondary battery is recovered by a conventional recovery method, cost and purity of the recovered valuable metal are reduced. Still not enough.

【0006】本発明は、上記事情に鑑みて成されたもの
であり、その目的は、使用済みのリチウムイオン二次電
池から有価物の回収率を向上させ、さらに、低コストか
つ高純度で回収することを可能とするリチウムイオン二
次電池から有価物分離方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the recovery rate of valuable materials from used lithium ion secondary batteries, and to recover them at low cost and high purity. It is an object of the present invention to provide a method for separating valuables from a lithium ion secondary battery that enables the separation.

【0007】[0007]

【課題を解決するための手段】リチウムイオン二次電池
からの有価物回収で最も重要視されるのが、電極と正極
活物質の回収である。特に正極活物質には、現在、コバ
ルト酸リチウムを使用することが主流であり、この高価
なコバルトの回収方法について広く検討されている。か
かる電極、正極活物質を高回収率、低コスト、かつ高純
度で回収するためには、集電体と正極活物質を確実に分
離する必要がある。これらはバインダー等により非常に
強く密着されているため、物理的操作により分解するこ
とは容易ではない。
The most important thing in recovering valuable materials from a lithium ion secondary battery is the recovery of the electrode and the positive electrode active material. In particular, at present, lithium cobalt oxide is mainly used as a positive electrode active material, and a method for recovering this expensive cobalt has been widely studied. In order to recover such an electrode and a positive electrode active material with a high recovery rate, low cost, and high purity, it is necessary to reliably separate the current collector from the positive electrode active material. Since these are adhered very strongly by a binder or the like, it is not easy to decompose them by physical operation.

【0008】本発明者らは鋭意研究を行った結果、リチ
ウムイオン二次電池の電極を、所定の酸性溶液、アルカ
リ金属の水酸化物溶液、アルカリ金属のアルコール溶液
若しくは有機溶媒中に浸漬することにより容易に電極材
と集電体を分離することができることを見出だした。ま
た、上記電極を所定の温度で加熱することによって有機
バインダーを揮散させ、集電体と電極材の密着性を低下
させた後、この両者を水等の溶媒中に浸漬することによ
り電極材と集電体を容易に分離することができることを
見出だした。
As a result of intensive studies, the present inventors have found that the electrodes of a lithium ion secondary battery are immersed in a predetermined acidic solution, alkali metal hydroxide solution, alkali metal alcohol solution or organic solvent. It has been found that the electrode material and the current collector can be separated more easily. Further, by heating the electrode at a predetermined temperature to volatilize the organic binder and reduce the adhesiveness between the current collector and the electrode material, the electrode material and the electrode material are immersed in a solvent such as water. It has been found that the current collector can be easily separated.

【0009】すなわち、本発明の特徴は、予め解体され
たリチウムイオン二次電池の電極を酸性溶液、アルカリ
金属の水酸化物溶液、アルカリ金属のアルコール溶液若
しくは有機溶媒のうちのいずれかに浸漬し、前記電極を
電極材と集電体とに分離する工程を少なくとも具備する
ことである。
That is, a feature of the present invention is that the electrode of a lithium ion secondary battery that has been dismantled in advance is immersed in one of an acidic solution, an alkali metal hydroxide solution, an alkali metal alcohol solution and an organic solvent. And separating the electrode into an electrode material and a current collector.

【0010】ここで、正極集電体にアルミニウム、負極
集電体に銅を用いたリチウムイオン二次電池の場合に
は、前記酸性溶液として、フッ化水素酸などのハロゲン
化水素酸、硫酸、過酸化水素水、酢酸、硝酸、発煙硝酸
若しくは過塩素酸のうち少なくとも一種以上を用いるこ
とが好ましい。また、前記アルカリ金属の水酸化物溶液
として、水酸化ナトリウム、水酸化カリウム若しくは水
酸化リチウムのうち少なくとも一種以上を、水溶液また
は溶融状態で用いることが好ましい。前記アルカリ金属
のアルコール溶液として、リチウムアルコキシド、ナト
リウムアルコキシド若しくはカリウムアルコキシドのう
ち少なくとも一種以上を用いることが好ましい。前記有
機溶媒として、ケトン、エステル、エーテル、アルコー
ル、アセトニトリル若しくは脂肪属系炭化水素のうち少
なくとも一種以上を用いることが好ましい。
Here, in the case of a lithium ion secondary battery using aluminum as the positive electrode current collector and copper as the negative electrode current collector, the acidic solution may be a hydrohalic acid such as hydrofluoric acid, sulfuric acid, It is preferable to use at least one of hydrogen peroxide, acetic acid, nitric acid, fuming nitric acid, and perchloric acid. Further, as the hydroxide solution of the alkali metal, it is preferable to use at least one of sodium hydroxide, potassium hydroxide and lithium hydroxide in an aqueous solution or a molten state. It is preferable to use at least one of lithium alkoxide, sodium alkoxide and potassium alkoxide as the alcohol solution of the alkali metal. It is preferable to use at least one of ketone, ester, ether, alcohol, acetonitrile and aliphatic hydrocarbon as the organic solvent.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0012】まず最初に、一般的なリチウムイオン二次
電池について説明する。図1は、一般的な有底円筒状の
リチウムイオン二次電池の構成を示す断面図である。有
底円筒状の容器1は、底部に絶縁体2が配置されてい
る。電極群3は、容器1に収納されている。電極群3
は、正極4、セパレータ5及び負極6をこの順序で積層
した帯状物を負極6が外側に位置するように渦巻き状に
巻回した構造となっている。容器1内には、非水電解液
が収容されている。中央部が開口された絶縁紙7は、容
器1内の電極群3の上方に載置されている。絶縁封止板
8は、容器1の上部開口部に配置され、かつ前記上部開
口部付近を内側にかしめ加工することにより封止板8は
容器1に液密に固定されている。正極端子9は、絶縁封
止板8の中央に嵌合されている。正極リード10の一端
は正極4に、他端は正極端子9にそれぞれ接続されてい
る。負極6は、図示しない負極リードを介して負極端子
である容器1に接続されている。
First, a general lithium ion secondary battery will be described. FIG. 1 is a cross-sectional view showing a configuration of a general bottomed cylindrical lithium ion secondary battery. A cylindrical container 1 with a bottom has an insulator 2 disposed at the bottom. The electrode group 3 is housed in the container 1. Electrode group 3
Has a structure in which a belt-like material in which a positive electrode 4, a separator 5, and a negative electrode 6 are laminated in this order is spirally wound so that the negative electrode 6 is located outside. A non-aqueous electrolyte is contained in the container 1. The insulating paper 7 whose center is opened is placed above the electrode group 3 in the container 1. The insulating sealing plate 8 is disposed in the upper opening of the container 1, and the sealing plate 8 is liquid-tightly fixed to the container 1 by caulking the vicinity of the upper opening inward. The positive terminal 9 is fitted in the center of the insulating sealing plate 8. One end of the positive electrode lead 10 is connected to the positive electrode 4, and the other end is connected to the positive electrode terminal 9. The negative electrode 6 is connected to the container 1 as a negative electrode terminal via a negative electrode lead (not shown).

【0013】次に、リチウムイオン二次電池の解体につ
いて説明する。本実施の形態に係るリチウムイオン二次
電池の有価物分離方法は、予めリチウムイオン二次電池
が解体されていることが前提となる。
Next, disassembly of the lithium ion secondary battery will be described. The method for separating valuable resources of a lithium ion secondary battery according to the present embodiment is based on the premise that the lithium ion secondary battery has been dismantled in advance.

【0014】一般に、「使用済みのリチウムイオン二次
電池」と呼ばれるものには、通常のサイクル寿命の電池
の他に、過充電、過放電等によって使用不可となったも
のも含まれる。通常のサイクル寿命の電池の場合、充電
時には負極に金属リチウムとして折出するリチウムは放
電時にはリチウムイオンとして電解液中に溶解するの
で、解体前に放電しておけば、危険を伴うことなく電池
の切断が可能である。一方、過充電等によって使用不可
となった電池の場合、電池内圧の上昇や電池温度の上昇
等により安全装置が作動するため、その後放電させるこ
とは不可能となる。そのため、充電された状態で、つま
り負極に金属リチウムが析出しているままでリチウムイ
オン二次電池を解体しなければならない。従って、危険
性回避のため、電池の切断は不活性ガス雰囲気、非水溶
媒、不活性溶液中で行う必要がある。
In general, what is called "used lithium ion secondary battery" includes not only batteries having a normal cycle life but also batteries that have become unusable due to overcharge, overdischarge, or the like. In the case of a battery with a normal cycle life, lithium that is deposited on the negative electrode as metallic lithium during charging dissolves in the electrolyte as lithium ions during discharging, so if discharged before disassembly, the battery can be used without danger. Cutting is possible. On the other hand, in the case of a battery that has become unusable due to overcharging or the like, the safety device operates due to an increase in battery internal pressure, an increase in battery temperature, and the like, so that subsequent discharge becomes impossible. Therefore, the lithium ion secondary battery must be disassembled in a charged state, that is, while the metallic lithium is deposited on the negative electrode. Therefore, it is necessary to cut the battery in an inert gas atmosphere, a non-aqueous solvent, or an inert solution to avoid danger.

【0015】具体的には、まず、パッケージされた使用
済みのリチウムイオン二次電池を放電する。これによ
り、通常のサイクル寿命の電池であれば、負極に折出し
ている金属リチウムはリチウムイオンとして電解液中に
溶解する。放電終了後、パッケージごと切断を行う。切
断方向は、特に限定されるものではなく、電池の縦方向
に対し垂直でも平行でも構わないが、垂直に切断する場
合は、数箇所の切断が必要である。また、上述したよう
に、切断時の雰囲気は、不活性ガスまたは不活性溶液中
で行うことが望ましい。
Specifically, first, the used lithium ion secondary battery packaged is discharged. As a result, in a battery having a normal cycle life, the metal lithium that has been deposited on the negative electrode is dissolved in the electrolyte as lithium ions. After the discharge, the entire package is cut. The cutting direction is not particularly limited, and the cutting direction may be perpendicular or parallel to the longitudinal direction of the battery. However, in the case of cutting vertically, several cuttings are required. Further, as described above, it is desirable that the cutting is performed in an inert gas or an inert solution.

【0016】上述した方法により電池を解体した後、電
極から電解液を完全に除去する。その方法としては溶媒
中に浸漬して洗浄する方法が挙げられる。一般に、リチ
ウムイオン二次電池の電解液には、プロピレンカーボネ
ート(PC)、1,2−ジメトキシエタン(DME)、
γ−ブチロラクトン(γ−BL)、テトラヒドロフラン
(THF)、ジエトキシエタン、エチレンカーボネート
(EC)等の非水溶媒中に、LiClO4 、LiB
4 、LiAsF6 、LiPF6 等の電解質を溶解した
ものが用いられている。これらは水、アルコール等の極
性溶媒に対する溶解度が高いが、水を洗浄溶液に使用す
ることは、負極に析出している金属リチウムの存在によ
り、危険を伴うため、アルコール等で電池を洗浄するこ
とが安全である。また、洗浄溶液にメタノール等の水と
共沸混合物を作らないアルコールを使用した場合には、
減圧蒸留によって電解質、電解液、洗浄溶液を分別でき
るので、再利用することも可能である。
After disassembling the battery by the above-described method, the electrolyte is completely removed from the electrodes. As a method therefor, there is a method of immersing in a solvent for washing. In general, the electrolyte of a lithium ion secondary battery includes propylene carbonate (PC), 1,2-dimethoxyethane (DME),
LiClO 4 , LiB in a non-aqueous solvent such as γ-butyrolactone (γ-BL), tetrahydrofuran (THF), diethoxyethane, ethylene carbonate (EC)
A solution in which an electrolyte such as F 4 , LiAsF 6 or LiPF 6 is dissolved is used. These have high solubility in polar solvents such as water and alcohol.However, using water for the cleaning solution involves danger due to the presence of metallic lithium precipitated on the negative electrode. Is safe. Also, when using an alcohol that does not form an azeotrope with water such as methanol for the washing solution,
Since the electrolyte, the electrolytic solution, and the cleaning solution can be separated by vacuum distillation, they can be reused.

【0017】ここで、上述した洗浄の際には次の事項に
注意しなければならない。第1に、正極活物質を含む正
極材が集電体から剥離している場合があるので、洗浄溶
液からろ過等によりそれらを回収する操作が必要である
こと、第2に、正極活物質にコバルト酸リチウムを、正
極集電体にアルミニウムを、負極集電体に銅を使用した
場合、電解液中に若干のコバルト、アルミニウム、銅が
溶解していること、第3に、電池缶の溶解により鉄、ニ
ッケル等が共存していること、である。これらは、非水
溶媒中における微量の水分が電解質を分解することによ
り、電解液中に酸性物質が発生し、電解液と接触する部
分の電極及び容器等の金属が溶解、腐食されることによ
るものである。従って、電解質や電解液の回収の際に
は、これらの金属イオンの回収も行う必要がある。
Here, the following matters must be taken into account during the above-mentioned cleaning. First, since the positive electrode material containing the positive electrode active material may be separated from the current collector, it is necessary to perform an operation of collecting them from the cleaning solution by filtration or the like. When lithium cobalt oxide, aluminum for the positive electrode current collector, and copper for the negative electrode current collector, some cobalt, aluminum, and copper are dissolved in the electrolytic solution. Third, dissolution of the battery can Therefore, iron, nickel, and the like coexist. These are due to the fact that a trace amount of water in the non-aqueous solvent decomposes the electrolyte, thereby generating an acidic substance in the electrolyte, and dissolving and corroding the metal of the electrode and the container and the like in a portion that comes into contact with the electrolyte. Things. Therefore, when recovering the electrolyte and the electrolytic solution, it is necessary to recover these metal ions.

【0018】そして、電池の洗浄後、各種素材を選別
し、電池パッケージ、電池の筐体、正極、負極、セパレ
ータ等に分離する。
After washing the battery, various materials are selected and separated into a battery package, a battery housing, a positive electrode, a negative electrode, a separator, and the like.

【0019】次に、本発明の実施の形態に係るリチウム
イオン二次電池からの有価物分離方法について説明す
る。
Next, a method for separating valuables from a lithium ion secondary battery according to an embodiment of the present invention will be described.

【0020】(1)酸性溶液中に浸漬して電極材と集電
体を分離する方法 この方法によれば、集電体を電極材から容易に分離する
ことができ、さらに、金属単体として回収することがで
きる。なお、電極材中の活物質成分の一部も溶解してし
まうため、この溶液化した金属成分についても回収する
必要がある。但し、溶液中には集電体成分はほとんど含
まれないため、その回収操作は容易である。
(1) Method of Separating Electrode Material and Current Collector by Dipping in Acid Solution According to this method, the current collector can be easily separated from the electrode material, and can be recovered as a single metal. can do. Since a part of the active material component in the electrode material is also dissolved, it is necessary to recover the metal component in the solution. However, since the current collector component is hardly contained in the solution, the recovery operation is easy.

【0021】ここで、酸性溶液としては、酸化性酸性溶
液、非酸化性酸性溶液が考えられる。これらの溶液は、
分離、回収の対象となる材料によって選択する。電極内
において回収の対象となる有価物は、正極活物質、正極
集電体及び負極集電体である。一般に、電極の集電体材
料には金属を用い、正極活物質材料には酸化物が使用さ
れているので、正極活物質と正極集電体、負極活物質と
負極集電体とを酸性溶液で分離する場合、それぞれの集
電体材料によって酸性溶液を選択する必要がある。例え
ば、正極集電体にアルミニウムを使用している場合の正
極活物質の回収には、アルミニウムが酸化性酸性溶液
(例えば、硝酸)に対してその表面に酸不溶性の不動態
を形成することを利用することで、アルミニウムの溶解
を最小限に抑制しつつ集電体と分離することが可能であ
る。但し、加熱を行うことによってアルミニウム不動態
が溶解するため、この分離操作は冷時行わなければなら
ない。一方、負極集電体に銅を使用している場合の銅の
回収には、銅が非酸化性酸性溶液(例えば、ハロゲン化
水素酸やチオ硫酸塩溶液)に対し冷時溶解しないこと、
及び、負極集電体と負極活物質界面では酸溶解性がある
ことを利用することで、集電体と活物質を分離して集電
体を金属として回収することが可能である。また、酸化
性酸性溶液によって負極集電体のみ溶解し、電解、濃
縮、あるいは加熱等の処理を行ってから金属、酸化物、
塩等として回収することができる。なお、以上の回収操
作に対して、超音波洗浄器を併用すると剥離性を向上さ
せることができる。但し、アルミニウム集電体の場合に
適用できない。というのは、アルミニウムと電極材が一
部微粒子化されるため、このアルミニウムと電極材の分
離を物理的に分離することが多少困難となるからであ
る。
Here, the acidic solution may be an oxidizing acidic solution or a non-oxidizing acidic solution. These solutions are
Select according to the material to be separated and collected. The valuable resources to be collected in the electrode are a positive electrode active material, a positive electrode current collector, and a negative electrode current collector. Generally, a metal is used as a current collector material of an electrode, and an oxide is used as a positive electrode active material material. Therefore, a positive electrode active material and a positive electrode current collector, and a negative electrode active material and a negative electrode current collector are mixed with an acidic solution. In the case of separation by the above, it is necessary to select an acidic solution according to each current collector material. For example, to recover a positive electrode active material when aluminum is used for the positive electrode current collector, aluminum must form an acid-insoluble passivation on its surface with respect to an oxidizing acidic solution (for example, nitric acid). By utilizing, it is possible to separate from the current collector while minimizing the dissolution of aluminum. However, since the aluminum passivation is dissolved by heating, this separation operation must be performed in a cold state. On the other hand, when copper is used for the negative electrode current collector, copper is not dissolved in a non-oxidizing acidic solution (for example, a hydrohalic acid or thiosulfate solution) at the time of cooling,
Further, by utilizing the fact that there is acid solubility at the interface between the negative electrode current collector and the negative electrode active material, the current collector and the active material can be separated and the current collector can be recovered as a metal. Further, only the negative electrode current collector is dissolved by an oxidizing acidic solution, and after performing treatment such as electrolysis, concentration, or heating, the metal, oxide,
It can be recovered as salt or the like. In addition, peelability can be improved by using an ultrasonic cleaner in combination with the above collection operation. However, it cannot be applied to the case of an aluminum current collector. This is because the aluminum and the electrode material are partially finely divided, so that it is somewhat difficult to physically separate the aluminum and the electrode material.

【0022】(2)アルカリ金属の水酸化物溶液または
アルカリ金属のアルコール溶液中に浸漬して電極材と集
電体を分離する方法 この方法によれば、正極集電体であるアルミニウムのみ
が溶解されるため、箔状となって残る電極材と分離する
ことができる。また、この際、超音波洗浄器を併用する
ことにより、前記以外の溶媒の他、水等のほとんど全て
の溶媒に対し剥離性が向上し、負極活物質と負極集電体
との分離も可能になる。この場合、正極材、負極材とも
に微粒子化するため、ろ過操作が多少複雑化する。前記
アルカリ金属としては、溶液化した際にアルミニウム箔
を溶解させられるもので、かつ、活物質成分を溶解させ
ないものであればどの様なものを用いても良く、例え
ば、ナトリウム、リチウム、カリウム等のアルカリ金属
の水溶液またはアルコール溶液等が考えられる。
(2) Method of Separating Electrode Material and Current Collector by Dipping in Alkali Metal Hydroxide Solution or Alkali Metal Alcohol Solution According to this method, only the positive electrode current collector, aluminum, is dissolved. Therefore, it can be separated from the remaining electrode material in the form of a foil. In addition, at this time, by using an ultrasonic cleaner in combination, in addition to the solvents other than the above, the releasability of almost all solvents such as water is improved, and the negative electrode active material and the negative electrode current collector can be separated. become. In this case, since both the positive electrode material and the negative electrode material are finely divided, the filtration operation is somewhat complicated. As the alkali metal, any material that can dissolve the aluminum foil when it is made into a solution, and any material that does not dissolve the active material component may be used, such as sodium, lithium, and potassium. And an aqueous solution of an alkali metal or an alcohol solution.

【0023】(3)有機溶媒中に浸漬して電極材と集電
体を分離する方法 この方法は、集電体、正極活物質共に溶解させることな
くこれらを分離させることができ、更に分解生成ガス等
の発生もないため、簡便で回収操作の非常に容易な方法
である。また、水不溶性の溶媒を使用すれば、分留等の
溶媒回収操作を必要とせず、繰り返し利用することがで
きる。前記有機溶媒としては、ケトン、エステル、エー
テル、アルコール、アセトニトリル、脂肪属系炭化水素
の少なくとも一種以上の溶媒が使用でき、常温では1時
間以上浸漬すれば剥離させることができる。また、超音
波洗浄器を併用すれば、1/6程度に剥離時間を短縮さ
せることができる。但し、電極材が時間に関わらず微粒
子化すること、剥離時間が長い場合にはアルミニウム集
電体の一部も微粒子化するので注意を要する。
(3) Method of Separating Electrode Material and Current Collector by Dipping in Organic Solvent This method can separate both the current collector and the positive electrode active material without dissolving them, Since there is no generation of gas and the like, the method is simple and extremely easy to perform the recovery operation. When a water-insoluble solvent is used, the solvent can be repeatedly used without requiring a solvent recovery operation such as fractional distillation. As the organic solvent, at least one solvent selected from ketones, esters, ethers, alcohols, acetonitrile, and aliphatic hydrocarbons can be used, and can be peeled off by soaking at room temperature for 1 hour or more. Also, if an ultrasonic cleaning device is used together, the stripping time can be reduced to about 1/6. However, care must be taken because the electrode material is finely divided regardless of time, and when the stripping time is long, a part of the aluminum current collector is also finely divided.

【0024】(4)加熱によって電極材と集電体を分離
する方法 この方法によれば、電極材のバインダーとして使用して
いるフッ素系樹脂を完全に分解し、電極材の密着性を低
下させることにより、電極材と集電体との分離を容易に
行うことが可能となる。なお、加熱温度を300℃以上
にした場合、電極材のバインダーとして使用しているフ
ッ素系樹脂が徐々に分解しはじめ、加熱時間とともにフ
ッ素の揮散量が多くなるという問題がある。このフッ素
は空気中の水分と反応してフッ酸を生成し、加熱炉の劣
化を早めるばかりでなく、有害物除去の必要から加熱時
の排ガス処理施設が必要となる。従って、酸性ガス捕集
管を有したセラミック製の電気炉で加熱すれば、フッ酸
等の酸性ガスによる影響を受けることなく加熱処理が可
能となる。一方、加熱温度を300℃以下にした場合、
電極材等に電解質であるLiPF6 が残留していると洗
浄に用いた水やアルコールが揮発する約100℃でフッ
素やリン酸、三フッ化リンやオキシフッ化リン等が揮発
する。従って、予めガス捕集管を有した油回転ポンプや
ピストンポンプ、多段スチームエジェクター、ルーツ・
ポンプ等の真空ポンプで吸引乾燥し、有害物の汚染を低
減させることが必要である。なお、加熱温度を500℃
以上とした場合、廃ガスにダイオキシン等の有害ガスも
含まれるようになるため、加熱温度は300〜500℃
に設定することが好ましい。
(4) Method of Separating Electrode Material and Current Collector by Heating According to this method, the fluororesin used as a binder for the electrode material is completely decomposed, and the adhesion of the electrode material is reduced. Thus, the electrode material and the current collector can be easily separated. When the heating temperature is set to 300 ° C. or higher, there is a problem that the fluorine-based resin used as a binder of the electrode material gradually starts to decompose, and the amount of fluorine volatilized increases with the heating time. This fluorine reacts with moisture in the air to generate hydrofluoric acid, which not only accelerates the deterioration of the heating furnace, but also requires an exhaust gas treatment facility during heating due to the need to remove harmful substances. Therefore, if heating is performed in a ceramic electric furnace having an acidic gas collecting tube, heat treatment can be performed without being affected by an acidic gas such as hydrofluoric acid. On the other hand, when the heating temperature is set to 300 ° C. or less,
If LiPF 6 as an electrolyte remains in the electrode material or the like, fluorine, phosphoric acid, phosphorous trifluoride, phosphorous oxyfluoride, etc. volatilize at about 100 ° C. where water and alcohol used for cleaning volatilize. Therefore, oil rotary pumps and piston pumps having gas collection tubes in advance, multi-stage steam ejectors,
It is necessary to reduce the contamination of harmful substances by suction drying with a vacuum pump such as a pump. Note that the heating temperature is 500 ° C.
In the case described above, the harmful gas such as dioxin is included in the waste gas, so that the heating temperature is 300 to 500 ° C.
It is preferable to set

【0025】上述した酸性溶液や有機溶媒、加熱等によ
って剥離した電極材において、電極材が微粒子化されな
い方法で分離した場合の電極材及び集電体の分離方法と
しては、振動ろ過や噴流による分離が適している。振動
ろ過による方法では、箔状となっている電極材と集電体
を10mm以下のメッシュ幅の網の上にのせて振幅10
mm以上、振動数1000time/sec以下で振動
させることによって電極材のみ粉砕し、網下に振り落と
すことにより分離するものである。一方、噴流による方
法は、加熱等によって密着率の低下した電極に水噴流、
水蒸気噴流または空気噴流のようなエネルギーを電極材
のみを粉砕させるように調整して与えることにより分離
するものであり、試薬等を添加する必要がなく非常に簡
便な方法である。
When the electrode material is separated by a method in which the electrode material is not formed into fine particles in the above-described electrode solution separated by an acidic solution, an organic solvent, heating, or the like, the electrode material and the current collector may be separated by vibration filtration or jet flow. Is suitable. In the method using vibration filtration, the electrode material and the current collector in the form of a foil are placed on a mesh having a mesh width of 10 mm or less and an amplitude of 10
The electrode material is pulverized by vibrating at a frequency of 1000 mm / sec or less and the electrode material is pulverized, and separated by shaking it down under a net. On the other hand, in the method using a jet, a water jet is applied to an electrode having a reduced adhesion rate due to heating or the like.
The separation is performed by applying energy such as a water vapor jet or an air jet so that only the electrode material is pulverized, and it is a very simple method without adding a reagent or the like.

【0026】また、酸性溶液と超音波洗浄器の併用で電
極材を微粉化してしまった場合には、酸によって侵され
ない材質で作製された100mesh以下のふるいで正
極集電体と電極材を分離し、分離した電極材を含む溶液
に凝集剤を添加してバインダー等の正極活物質以外の酸
不溶性成分を凝集させ、ろ過または遠心分離等によって
分離を容易に行うことができる。
In the case where the electrode material is pulverized by using an acidic solution and an ultrasonic cleaner together, the positive electrode current collector and the electrode material are separated by a sieve of 100 mesh or less made of a material which is not attacked by acid. Then, a coagulant is added to the solution containing the separated electrode material to coagulate an acid-insoluble component other than the positive electrode active material such as a binder, and the separation can be easily performed by filtration or centrifugation.

【0027】有機溶媒と超音波洗浄器の併用で電極材を
微粉化してしまった場合には、前記酸性溶液と同様な操
作で分離することもできるが、溶媒を揮散させて分離す
る方法がさらに簡便である。
When the electrode material is pulverized by using an organic solvent and an ultrasonic cleaner together, the electrode material can be separated by the same operation as the above-mentioned acidic solution. However, a method of separating by evaporating the solvent is further used. It is simple.

【0028】以上の操作によって分離した電極材におい
て回収対象となる正極活物質は、電極材を作製した直後
の組成と比較し、Li/M(M=Co,Mn,Ni)比
が小さくなっているため、そのまま正極材を再利用する
ことはできない。従って、正極活物質は各成分ごとに分
離回収する必要がある。加熱操作によってバインダー成
分を揮散させる方法以外で分離した電極材は、バインダ
ーが含有した状態になっているため、正極活物質とバイ
ンダーの分離を行う必要がある。分離方法としては、加
熱によってバインダー成分を揮散させる方法でも良い
が、最終的にリチウムと遷移金属とを分離した状態でそ
れぞれ単体として回収する方が再利用し易いため、酸性
溶液等で正極活物質のみ溶解し、バインダーと分離する
方法が良い。酸性溶液としては、塩酸、硝酸、硫酸、過
塩素酸及びそれらの混合溶液または過酸化水素水との混
合溶液等を使用して正極活物質を溶解させる。この溶液
をろ過し、リチウム、コバルト、マンガン、ニッケル等
の有価金属イオン混合溶液を得る。この有価金属イオン
混合溶液をイオン交換、電気分解、沈殿分離などの方法
によって単一成分としてそれぞれ分離し、精製後、塩、
酸化物または金属として回収する。
The positive electrode active material to be recovered in the electrode material separated by the above operation has a smaller Li / M (M = Co, Mn, Ni) ratio than the composition immediately after the preparation of the electrode material. Therefore, the cathode material cannot be reused as it is. Therefore, it is necessary to separate and collect the positive electrode active material for each component. Since the electrode material separated by a method other than the method of volatilizing the binder component by the heating operation contains the binder, it is necessary to separate the positive electrode active material and the binder. As a separation method, a method in which the binder component is volatilized by heating may be used.However, it is easier to reuse lithium and the transition metal as a single substance in a separated state. Only a method of dissolving and separating from the binder is good. As the acidic solution, the positive electrode active material is dissolved using hydrochloric acid, nitric acid, sulfuric acid, perchloric acid, a mixed solution thereof, a mixed solution with hydrogen peroxide solution, or the like. This solution is filtered to obtain a mixed solution of valuable metal ions such as lithium, cobalt, manganese, and nickel. This valuable metal ion mixed solution is separated as a single component by a method such as ion exchange, electrolysis, and precipitation separation.
Recover as oxides or metals.

【0029】[0029]

【実施例】上述した本発明の実施の形態の実施例を以下
に詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the above-described embodiment of the present invention will be described below in detail.

【0030】なお、以下の実施例におけるリチウムイオ
ン二次電池は次に述べるようにして作製されたものであ
る。
The lithium ion secondary batteries in the following examples were manufactured as described below.

【0031】炭酸リチウム1.05モル、酸化コバルト
1.90モル、酸化第二スズ0.084モルを乳鉢で混
合し、650℃で5時間仮焼した後、空気中で850
℃、12時間焼成して得られた組成Li1.03Co0.9 5
Sn0.042 2 のリチウムコバルト酸化物をボールミル
粉砕し、平均粒径3μmの粉末を作製する。このコバル
ト酸リチウム粉末80重量%とアセチレンブラック15
重量%及びポリテトラフルオロエチレン粉末5重量%か
らなる混合物をイソプロビニアルコールを用いて混練
し、ペースト状とした後、集電体であるアルミニウム箔
に塗布し、乾燥させ、ロールプレスを行ってシート状の
正極を作製した。
1.05 mol of lithium carbonate, 1.90 mol of cobalt oxide and 0.084 mol of stannic oxide were mixed in a mortar, calcined at 650 ° C. for 5 hours, and then 850 in air.
° C., the composition Li 1.03 obtained by calcining for 12 hours Co 0.9 5
The lithium cobalt oxide of Sn 0.042 O 2 is ball-milled to produce a powder having an average particle diameter of 3 μm. 80% by weight of this lithium cobaltate powder and acetylene black 15
The mixture consisting of 5% by weight of polytetrafluoroethylene powder and 5% by weight of polytetrafluoroethylene powder was kneaded with isopropiniol alcohol to form a paste, which was then applied to an aluminum foil as a current collector, dried, and roll-pressed to form a sheet. A positive electrode in the shape of was prepared.

【0032】一方、フェノール樹脂粉末を窒素ガス中に
おいて1700度で2時間焼成後、ボールミル粉砕して
得られた平均粒径2μmの炭素質物質粉末96重量%と
ポリテトラフルオロエチレン粉末4重量%からなる混合
物をイソプロピルアルコールを用いて混練し、集電体で
ある銅箔に塗布し、乾燥させ、ロールプレスを行ってシ
ート状の負極を作製した。
On the other hand, the phenol resin powder was calcined in nitrogen gas at 1700 ° C. for 2 hours and then ball-milled to obtain 96% by weight of a carbonaceous substance powder having an average particle size of 2 μm and 4% by weight of polytetrafluoroethylene powder. The resulting mixture was kneaded using isopropyl alcohol, applied to a copper foil as a current collector, dried, and roll-pressed to produce a sheet-shaped negative electrode.

【0033】前記正極、ポリプロピレン性多孔質フィル
ムからなるセパレータ及び前記負極をこの順序で積層し
た後、前記負極が外側に位置するように渦巻き状に巻回
して電極群を製造した。
The positive electrode, the separator made of a porous polypropylene film, and the negative electrode were laminated in this order, and then spirally wound so that the negative electrode was located outside, thereby producing an electrode group.

【0034】更に、エチレンカーボネート、プロピレン
カーボネート及び1,2ジメトキシエタンの混合溶媒
(混合体積率40:40;20)1Lに六フッ化リン酸
リチウム(LiPF6 )を1.0モル溶解し、非水電解
液を調整した。
Further, 1.0 mol of lithium hexafluorophosphate (LiPF 6 ) was dissolved in 1 L of a mixed solvent of ethylene carbonate, propylene carbonate and 1,2-dimethoxyethane (mixing volume ratio: 40:40; 20), and The water electrolyte was adjusted.

【0035】前記電極群をステンレススチール製の有底
円筒状容器内に収納する。
The electrode group is housed in a stainless steel bottomed cylindrical container.

【0036】正極リード(アルミニウム)及び負極リー
ド(ニッケル)を溶接し、前記非水電解液を減圧法にて
注入する。
The positive electrode lead (aluminum) and the negative electrode lead (nickel) are welded, and the nonaqueous electrolyte is injected by a reduced pressure method.

【0037】電池内圧上昇時の安全解放弁であるアルミ
ニウム封口弁と電流遮断装置、所定温度に達した場合に
電流を遮断するPTC(Positive Temperature Coeffic
ient)素子、絶縁板、キャップを取り付け、かしめ加工
を行って、前述した図1に示す円筒型リチウム二次電池
を組立て、更に、電池にポリ塩化ビニル製のカバーを付
ける。
An aluminum sealing valve, which is a safety release valve when the internal pressure of the battery rises, and a current cutoff device, and a PTC (Positive Temperature Coeffic) for cutting off the current when a predetermined temperature is reached.
ient) An element, an insulating plate, and a cap are attached, caulking is performed, the cylindrical lithium secondary battery shown in FIG. 1 is assembled, and a cover made of polyvinyl chloride is attached to the battery.

【0038】正極蓋及び缶底に鉄のニッケルメッキから
なるリードを溶接し、過充放電の保護回路を取り付け、
最後にポリカーボネート(PC)製の電池パック内に装
填する。
A lead made of nickel-plated iron is welded to the positive electrode lid and the bottom of the can, and a protection circuit for overcharging and discharging is attached.
Finally, the battery pack is loaded into a battery pack made of polycarbonate (PC).

【0039】作製した電池を50mVの電流で4.2V
まで充電し、50mVの電流で2.7Vになるまで放電
するという充放電サイクルを500回繰り返し行う。
The prepared battery was operated at a current of 50 mV and a voltage of 4.2 V.
The charging and discharging cycle of charging the battery until it reaches 2.7 V with a current of 50 mV is repeated 500 times.

【0040】続いて、電池に15Ωの抵抗を取り付け、
300mA/hの速度で定電流放電を行う。電流値が、
10mA以下になったら、放電を止める。
Subsequently, a 15 Ω resistor was attached to the battery,
A constant current discharge is performed at a speed of 300 mA / h. The current value is
When the current becomes 10 mA or less, the discharge is stopped.

【0041】(実施例1)上述した放電後のリチウムイ
オン二次電池をArガス雰囲気中でカッターで切断後、
メタノール溶液の入ったポリテトラフルオロエチレン
(PTFE)製ビーカーに入れ、超音波洗浄器を使用し
て洗浄を行う。この操作をメタノール溶液を変えて3回
繰り返す。洗浄に使用したメタノール溶液をガラスビー
カーに移し入れ、加熱蒸発後、残渣に王水5mlを加え
て加熱分解後、100mlメスフラスコに移し入れて定
容し、1CP(誘導結合プラズマ)発光分光法でFe,
Ni,Al,Cu,Co,Snを、原子吸光法でLiを
測定し、電池1個あたりの電解溶液中に含有する金属イ
オン量を算出した。結果を表1に示す。
Example 1 After the above-described discharged lithium ion secondary battery was cut by a cutter in an Ar gas atmosphere,
It is placed in a beaker made of polytetrafluoroethylene (PTFE) containing a methanol solution, and is cleaned using an ultrasonic cleaner. This operation is repeated three times while changing the methanol solution. The methanol solution used for washing was transferred to a glass beaker, heated and evaporated, and the residue was heated and decomposed by adding 5 ml of aqua regia, transferred to a 100-ml volumetric flask, and made constant in volume by 1CP (inductively coupled plasma) emission spectroscopy. Fe,
Ni, Al, Cu, Co and Sn were measured for Li by the atomic absorption method, and the amount of metal ions contained in the electrolytic solution per one battery was calculated. Table 1 shows the results.

【0042】[0042]

【表1】 表1 電池1個あたりの電解液中に含有する金属イオン量 (mg/電池1個) P Li Cu Co Fe Ni Al Sn 865 33.4 0.45 1.02 0.47 0.023 0.16 0.27 [Table 1] Table 1 Amount of metal ions contained in the electrolytic solution per battery (mg / battery) P Li Cu Co Fe Ni Al Sn Sn 865 33.4 0.45 1.02 0.47 0.023 0.16 0.27

【0043】前記メタノール洗浄を行った電極群を電池
筐体、ポリ塩化ビニルカバー、ポリカーボネートバッ
ク、リード、各種安全装置から分離後、10-1Torr
のルーツポンプで吸引を行い、15分後、表面が完全に
乾燥したら、更に電極群をセパレータ、正極、負極にそ
れぞれ分離する。
After separating the electrode group having been subjected to the methanol washing from the battery housing, a polyvinyl chloride cover, a polycarbonate bag, a lead, and various safety devices, 10 -1 Torr
After 15 minutes, when the surface is completely dried, the electrode group is further separated into a separator, a positive electrode, and a negative electrode.

【0044】正極及びセパレータをガラスビーカーに入
れ、1規定硝酸200mlを添加し、マグネチックスタ
ーラーを用いて100rpmで攪拌し、正極集電体(A
l箔)から電極材を剥離後、ポリプロピレン製の5mm
メッシュのふるいでろ過する。水洗後、ふるい上の残渣
物を乾燥し、ふるいを振幅50mmで振動数2time
s/secで振動させ、電極材を粉砕し、正極集電体及
びセパレータと分離した。
The positive electrode and the separator were placed in a glass beaker, 200 ml of 1 N nitric acid was added, and the mixture was stirred at 100 rpm using a magnetic stirrer.
l) After peeling off the electrode material from the foil, 5mm
Filter through a mesh sieve. After washing with water, the residue on the sieve is dried, and the sieve is oscillated at an amplitude of 50 mm and a frequency of 2 times.
By vibrating at s / sec, the electrode material was pulverized and separated from the positive electrode current collector and the separator.

【0045】更に、電極材に6規定塩酸50mlを添加
し、正極活物質を溶解した後、凝集剤(クリフロックP
A−312)を加えて酸不溶物を凝集沈殿させ、5μm
のポリビニリデンフルオライド(PVDF)フィルター
でろ過する。
Further, 50 ml of 6N hydrochloric acid was added to the electrode material to dissolve the positive electrode active material, and then a coagulant (Cliflock P) was added.
A-312) was added to coagulate and precipitate the acid-insoluble material, and 5 μm
Through a polyvinylidene fluoride (PVDF) filter.

【0046】このろ液と前記1規定硝酸で正極材と正極
集電体を分離した際に得られた溶液を1000mlメス
フラスコに移し入れ、水で希釈、定容し、ICP発光分
光法でFe,Ni,Al,Cu,Pを測定し、1規定硝
酸剥離の際に正極材中に混入する金属不純物量を算出し
た。結果を表2に示す。
The solution obtained when the filtrate and the positive electrode material and the positive electrode current collector were separated with the above 1N nitric acid was transferred to a 1000 ml volumetric flask, diluted with water, and the volume was fixed. , Ni, Al, Cu, and P were measured, and the amount of metal impurities mixed into the positive electrode material during 1N nitric acid peeling was calculated. Table 2 shows the results.

【0047】[0047]

【表2】 表2 剥離の際に正極材中に混入する金属不純物量 (g/電池1個) 剥離条件 Al Cu Fe Ni P 1規定硝酸 0.033 <0.0002 0.0008 0.002 <0.005 6規定硝酸 0.010 <0.0002 0.0007 0.002 <0.005 250 ℃加熱、水 0.015 <0.0002 0.0008 0.002 <0.005 400 ℃加熱、水 0.005 <0.0002 0.0008 0.002 <0.005 Table 2 Table 2 Amount of metal impurities mixed in the positive electrode material at the time of peeling (g / one battery) Stripping conditions Al Cu Fe Ni P 1N nitric acid 0.033 <0.0002 0.0008 0.002 <0.0055 6N nitric acid 0.010 <0.0002 0.0007 0.002 <0.005 250 ° C heating, water 0.015 <0.0002 0.0008 0.002 <0.005 400 ° C heating, water 0.005 <0.0002 0.0008 0.002 <0.005

【0048】一方、前記1規定硝酸で分離した正極集電
体の重量を測定後、塩酸50mlを加えて溶解し、10
00mlメスフラスコに移し入れ、定容し、ICP発光
分光法でFe,Ni,Cu,Co,Sn,Pを、原子吸
光法でLiを測定し、電池1個あたりの正極集電体中に
含有する不純物量を測定し、回収したAlの回収率を算
出した。結果を表3に示す。
On the other hand, after measuring the weight of the positive electrode current collector separated with 1N nitric acid, 50 ml of hydrochloric acid was added to dissolve
Transfer to a 00 ml volumetric flask, measure the volume, measure Fe, Ni, Cu, Co, Sn, P by ICP emission spectroscopy and Li by atomic absorption spectroscopy, and include in the positive electrode current collector per battery The amount of impurities to be collected was measured, and the recovery rate of the recovered Al was calculated. Table 3 shows the results.

【0049】[0049]

【表3】 表3 回収したAl箔の不純物量及び回収率 (g/電池1個) 回収率 剥離条件 Cu Sn Fe Ni Co P Li (%) 1規定硝酸 <0.0002 <0.0005 0.006 <0.0002 <0.0002 <0.005 <0.0002 97.3 6規定硝酸 <0.0002 <0.0005 0.006 <0.0002 <0.0002 <0.005 <0.0002 98.7 250 ℃加熱、水 <0.0002 <0.0005 0.006 <0.0002 <0.0002 <0.005 <0.0002 98.3400 ℃加熱、水 <0.0002 <0.0005 0.007 <0.0002 <0.0002 <0.005 <0.0002 99.0 Table 3 Table 3 Impurity amount and recovery rate of recovered Al foil (g / battery) Recovery rate Peeling conditions Cu Sn Fe Ni Co P Li (%) 1N nitric acid <0.0002 <0.0005 0.006 <0.0002 <0.0002 < 0.005 <0.0002 97.3 6N nitric acid <0.0002 <0.0005 0.006 <0.0002 <0.0002 <0.005 <0.0002 98.7 250 ° C heating, water <0.0002 <0.0005 0.006 <0.0002 <0.0002 <0.005 <0.0002 98.3 400 ° C heating, water <0.0002 <0.0005 0.007 <0.0002 <0.0002 <0.005 <0.0002 99.0

【0050】また、一方、前記メタノール洗浄後に分離
した負極に1規定塩酸100mlを添加後、超音波洗浄
器(45kHz)を使用し、10分間放置し、負極集電
体(Cu箔)から負極活物質を剥離させる。ポリプロピ
レン製の5mmメッシュのふるいでろ過、水洗後、ふる
い上の残渣物(Cu箔)を乾燥し、重量を測定する。更
に硝酸50mlを加えてCu箔を溶解後、100mlメ
スフラスコに移し入れ、定容し、ICP発光分光法でF
e,Ni,Al,Co,Sn,Pを、原子吸光法でLi
を測定し、電池1個あたりの負極集電体中に含有する不
純物量を測定し、回収したCuの回収率を算出した。結
果を表4に示す。
On the other hand, 100 ml of 1 N hydrochloric acid was added to the negative electrode separated after the methanol washing, and the mixture was left for 10 minutes using an ultrasonic cleaner (45 kHz) to remove the negative electrode active material from the negative electrode current collector (Cu foil). The material is exfoliated. After filtration and washing with a 5 mm mesh sieve made of polypropylene, the residue (Cu foil) on the sieve is dried, and the weight is measured. Further, 50 ml of nitric acid was added to dissolve the Cu foil, then transferred to a 100 ml volumetric flask, made to a constant volume, and subjected to ICP emission spectroscopy.
e, Ni, Al, Co, Sn, P are converted to Li by atomic absorption
Was measured, the amount of impurities contained in the negative electrode current collector per battery was measured, and the recovery rate of the recovered Cu was calculated. Table 4 shows the results.

【0051】[0051]

【表4】 表4 回収したCuの不純物量及び回収率 (g/電池1個) 回収率 剥離条件 Al Sn Fe Ni Co P Li (%) Cu箔 <0.0002 0.001 <0.0002 <0.0002 <0.0002 <0.005 <0.0002 98.7 電解Cu <0.0002 <0.0005 <0.0002 <0.0002 <0.0002 <0.005 <0.0002 99.5 Table 4 Recovered Cu impurity amount and recovered rate (g / battery) recovered rate Stripping conditions Al Sn FeNiCoPLi (%) Cu foil <0.0002 0.001 <0.0002 <0.0002 <0.0002 <0.005 < 0.0002 98.7 Electrolytic Cu <0.0002 <0.0005 <0.0002 <0.0002 <0.0002 <0.005 <0.0002 99.5

【0052】(実施例2)実施例1と同様に電極群を分
離後、負極につき、硝酸と硫酸の混酸50mlで溶解
後、水を加えて全量を約1200mlとする。これに円
筒状の白金製陰極と平板状の白金製陽極の上端が液面よ
り5mm上になるよう設置し、室温で、0.5Aの電流
を流して、3時間電解後、水を加えて液面を5mm上昇
させ、更に30分間電解を行う。最後に液中の浸漬した
部分にCuを析出していなければ電解を停止し、析出し
たCuの重量を測定後、更に硝酸50mlを加えて析出
したCuを溶解し、1000mlメスフラスコに移し入
れ、定容し、ICP発光分光法でFe,Ni,Al,C
o,Sn,Pを、原子吸光法でLiを測定し、電池1個
あたりの負極集電体中に含有する不純物量を測定し、回
収したCuの純度及び回収率を算出した。結果を上記表
4に示す。
(Example 2) After the electrode group was separated in the same manner as in Example 1, the negative electrode was dissolved in a mixed acid of nitric acid and sulfuric acid (50 ml), and water was added to make the total amount to about 1200 ml. A cylindrical platinum cathode and a plate-shaped platinum anode were placed so that the upper ends thereof were 5 mm above the liquid level. At room temperature, a current of 0.5 A was passed, and after electrolysis for 3 hours, water was added. The liquid level is raised by 5 mm, and electrolysis is further performed for 30 minutes. Lastly, if Cu was not precipitated in the part immersed in the solution, the electrolysis was stopped, and after measuring the weight of the precipitated Cu, 50 ml of nitric acid was further added to dissolve the precipitated Cu, transferred to a 1000 ml volumetric flask, Constant volume, ICP emission spectroscopy, Fe, Ni, Al, C
For o, Sn, and P, Li was measured by the atomic absorption method, the amount of impurities contained in the negative electrode current collector per battery was measured, and the purity and recovery rate of the recovered Cu were calculated. The results are shown in Table 4 above.

【0053】(実施例3)正極材と正極集電体の分離に
6規定硝酸を使用した以外は、全て実施例1と同様の操
作を行った。結果を上記表2に示す。
Example 3 The same operation as in Example 1 was performed except that 6N nitric acid was used to separate the positive electrode material and the positive electrode current collector. The results are shown in Table 2 above.

【0054】(実施例4)実施例1と同様に洗浄後の電
極群に1規定水酸化ナトリウム溶液200mlを添加
し、正極集電体を溶解後、ポリプロピレン製のふるい
(50mesh)でろ過、水洗する。ろ液は、塩酸50
mlを添加して酸性にし、1000mlメスフラスコに
移し入れ、定容後、ICP発光分光法でFe,Ni,C
o,Sn,Cu,Pを測定し、電池1個あたりの正極集
電体中に含有する不純物量を算出した。結果を表5に示
す。
Example 4 In the same manner as in Example 1, 200 ml of a 1N sodium hydroxide solution was added to the electrode group after washing to dissolve the positive electrode current collector, followed by filtration through a polypropylene sieve (50 mesh) and washing with water. I do. The filtrate is hydrochloric acid 50
ml, acidified, transferred to a 1000 ml volumetric flask, and, after constant volume, Fe, Ni, C by ICP emission spectroscopy.
o, Sn, Cu, and P were measured, and the amount of impurities contained in the positive electrode current collector per battery was calculated. Table 5 shows the results.

【0055】[0055]

【表5】 表5 アルカリ溶液分離によるAl溶解液中の金属不純物量 (g/電池1個) 剥離条件 Cu Sn Fe Ni Co P Li 1規定NaOH 0.006 0.002 <0.0002 <0.0002 0.002 <0.005 <0.0002 6規定NaOH 0.007 0.003 <0.0002 <0.0002 0.003 <0.005 <0.0002 ナトリウム 0.006 0.002 <0.0002 <0.0002 0.002 <0.005 <0.0002 エトキシド Table 5 Table 5 Stripping conditions of metal impurities (g / one battery) in Al solution by alkali solution separation Cu Sn Fe Ni Co P Li 1N NaOH 0.006 0.002 <0.0002 <0.0002 0.002 <0.005 <0.0002 6N NaOH 0.007 0.003 <0.0002 <0.0002 0.003 <0.005 <0.0002 Sodium 0.006 0.002 <0.0002 <0.0002 0.002 <0.005 <0.0002 Ethoxide

【0056】一方、ろ過残渣である正極材及び負極は1
規定塩酸溶液に浸漬し、実施例1と同様に超音波洗浄を
行い、負極集電体と活物質のスラリーを得た後、ろ過を
行って分離し、実施例1と同様な操作を行ってそれぞれ
を溶解、成分分析を行った。負極集電体の不純物量、純
度、回収率結果を表6に、正極材中の不純物分析結果を
表7に示す。
On the other hand, the positive electrode material and the negative electrode
After being immersed in a normal hydrochloric acid solution and subjected to ultrasonic cleaning in the same manner as in Example 1 to obtain a slurry of the negative electrode current collector and the active material, the slurry was separated by filtration, and the same operation as in Example 1 was performed. Each was dissolved and component analysis was performed. Table 6 shows the results of the impurity amount, purity, and recovery rate of the negative electrode current collector, and Table 7 shows the results of impurity analysis in the positive electrode material.

【0057】[0057]

【表6】 表6 アルカリ溶液分離によるCu箔中の金属不純物 (g/電池1個) 剥離条件 Al Sn Fe Ni Co P Li Na 1規定 NaOH <0.0002 <0.0005 <0.0002 <0.0002 <0.0002 <0.005 0.0003 0.003 6規定 NaOH <0.0002 <0.0005 <0.0002 <0.0002 <0.0002 <0.005 0.0005 0.007 ナトリウム <0.0002 <0.0005 <0.0002 <0.0002 <0.0002 <0.005 0.0004 0.006 エトキシド Table 6 Conditions for stripping metal impurities (g / one battery) in Cu foil by alkali solution separation AlSnFeNiCoPLiNa 1N NaOH <0.0002 <0.0005 <0.0002 <0.0002 <0.0002 <0.005 0.0003 0.003 6 Specified NaOH <0.0002 <0.0005 <0.0002 <0.0002 <0.0002 <0.005 0.0005 0.007 Sodium <0.0002 <0.0005 <0.0002 <0.0002 <0.0002 <0.005 0.0004 0.006 Ethoxide

【0058】[0058]

【表7】 表7 アルカリ溶液分離による正極材中の金属不純物 (g/電池1個) 剥離条件 Al Cu Sn Fe Ni P Na 1規定NaOH 0.029 0.0003 0.15 0.007 0.005 <0.005 0.002 6規定NaOH 0.020 0.0003 0.15 0.007 0.005 <0.005 0.005 ナトリウム 0.023 0.0003 0.15 0.007 0.005 <0.005 0.007 エトキシド Table 7 Table 7 Conditions for stripping metal impurities (g / one battery) in positive electrode material by alkali solution separation Al Cu Sn Fe Ni PNa 1N NaOH 0.029 0.0003 0.15 0.007 0.005 <0.005 0.002 6N NaOH 0.020 0.0003 0.15 0.007 0.005 <0.005 0.005 Sodium 0.023 0.0003 0.15 0.007 0.005 <0.005 0.007 Ethoxide

【0059】(実施例5)実施例1と同様に洗浄後の電
極群に6規定水酸化ナトリウム溶液30mlを添加し、
正極集電体を溶解した以外は、実施例4と同様の操作を
行った。結果を上記表5〜7に示す。
(Example 5) In the same manner as in Example 1, 30 ml of a 6N sodium hydroxide solution was added to the cleaned electrode group.
The same operation as in Example 4 was performed except that the positive electrode current collector was dissolved. The results are shown in Tables 5 to 7 above.

【0060】(実施例6)実施例1と同様に洗浄後の電
極群にメチルイソブチルケトン(MIBK)50mlを
添加し、超音波洗浄器(45kHz)を使用し、10分
間放置し、正極集電体(Al箔)及び負極集電体(Cu
箔)から活物質を剥離させる。ポリプロピレン製の5m
mメッシュのふるいでろ過、水洗後、ふるい上の残渣物
(Al箔、Cu箔)を乾燥し、重量を測定する。更に、
Al箔は塩酸50mlを加えて溶解し、Cu箔は硝酸5
0mlで溶解し、それぞれ1000mlメスフラスコに
移し入れ、定容後、Al箔溶解液からはICP発光分光
法でFe,Ni,Cu,Co,Sn,Pを、原子吸光法
でLiを測定し、Cu箔溶解液からはICP発光分光法
でFe,Ni,Al,Co,Sn,Pを、原子吸光法で
Liを測定し、それぞれ不純物量、純度、回収率を算出
した。結果を表8に示す。
(Example 6) In the same manner as in Example 1, 50 ml of methyl isobutyl ketone (MIBK) was added to the cleaned electrode group, and the mixture was allowed to stand for 10 minutes using an ultrasonic cleaner (45 kHz). (Al foil) and negative electrode current collector (Cu
The active material is peeled from the foil. 5m made of polypropylene
After filtration and washing with an m-mesh sieve, the residue (Al foil, Cu foil) on the sieve is dried and its weight is measured. Furthermore,
Al foil is dissolved by adding 50 ml of hydrochloric acid, and Cu foil is
After dissolving with 0 ml, each was transferred to a 1000 ml volumetric flask, and after constant volume, Fe, Ni, Cu, Co, Sn, and P were measured from the Al foil solution by ICP emission spectroscopy, and Li was measured by atomic absorption method. From the Cu foil solution, Fe, Ni, Al, Co, Sn, and P were measured by ICP emission spectroscopy, and Li was measured by atomic absorption spectrometry, and the impurity amount, purity, and recovery were calculated, respectively. Table 8 shows the results.

【0061】[0061]

【表8】 表8 MIBK分離による正極、負極集電体中の不純物 (g/電池1個) 剥離条件 Al Cu Sn Fe Ni Co P Li 正極集電体 <0.0002 <0.0005 <0.0002 <0.0002 <0.0002 <0.005 <0.0002 負極集電体 0.0004 <0.0005 <0.0003 <0.0002 <0.0002 <0.005 <0.0002 Table 8 Table 7 Conditions for stripping impurities (g / one battery) in positive and negative electrode current collectors by MIBK separation Al Cu Sn Fe Ni Co P Li positive electrode current collector <0.0002 <0.0005 <0.0002 <0.0002 <0.0002 <0.005 <0.0002 Negative electrode collector 0.0004 <0.0005 <0.0003 <0.0002 <0.0002 <0.005 <0.0002

【0062】(実施例7)実施例1と同様に洗浄後の電
極群にナトリウムエトキシド溶液30mlを添加して正
極集電体を溶解させた以外は、実施例4と同様の操作を
行った。結果を上記表5〜7に示す。
(Example 7) The same operation as in Example 4 was performed except that the positive electrode current collector was dissolved by adding 30 ml of a sodium ethoxide solution to the electrode group after the cleaning in the same manner as in Example 1. . The results are shown in Tables 5 to 7 above.

【0063】(実施例8)実施例1と同様に電極群を分
離後、正極及び負極につき、予め250℃に調節した窒
素ガス環流型の電気炉で1時間加熱処理を行う。この正
極及び負極をガラスビーカーに入れ、水200mlを添
加し、マグネチックスターラーを用いて100rpmで
攪拌し、正極集電体から電極材を剥離した以外は実施例
1と同様の操作を行った。結果を上記表2、3に示す。
(Embodiment 8) After separating the electrode group in the same manner as in Embodiment 1, the positive electrode and the negative electrode are subjected to a heat treatment for 1 hour in a nitrogen gas recirculation type electric furnace previously adjusted to 250 ° C. The same operation as in Example 1 was performed except that the positive electrode and the negative electrode were put in a glass beaker, 200 ml of water was added, the mixture was stirred at 100 rpm using a magnetic stirrer, and the electrode material was separated from the positive electrode current collector. The results are shown in Tables 2 and 3 above.

【0064】(実施例9)実施例1と同様に電極群を分
離後、正極につき、予め400℃に調節した窒素ガス環
流型の電気炉で1時間加熱処理を行った以外は、実施例
8と同様の操作を行った。結果を上記表2、3に示す。
Example 9 Example 8 was repeated except that the electrode group was separated in the same manner as in Example 1, and the positive electrode was subjected to a heat treatment for 1 hour in a nitrogen gas recirculation type electric furnace previously adjusted to 400 ° C. The same operation as described above was performed. The results are shown in Tables 2 and 3 above.

【0065】(実施例10)実施例3によって得られた
正極材溶解液(正極を6規定硝酸に浸漬後、ろ過した際
のろ液と正極材中の正極活物質を塩酸で溶解し、ろ過し
た際のろ液を混合した溶液)をポリエチレンビーカーに
移し入れ、純水を加えて全量を2000mlにする。更
にフッ化水素酸70mlを添加し、陽イオン交換樹脂
(100〜200mesh)80mlの入ったポリエチ
レン製カラムに流し入れる。
Example 10 Positive electrode material solution obtained in Example 3 (After immersing the positive electrode in 6N nitric acid, the filtrate obtained by filtration and the positive electrode active material in the positive electrode material were dissolved with hydrochloric acid, and the solution was filtered. The solution obtained by mixing the filtrates obtained above is transferred to a polyethylene beaker, and pure water is added to bring the total volume to 2000 ml. Further, 70 ml of hydrofluoric acid is added, and the mixture is poured into a polyethylene column containing 80 ml of a cation exchange resin (100 to 200 mesh).

【0066】前記溶液がカラムから流出後、1規定フッ
化水素酸100mlを流す。
After the solution has flowed out of the column, 100 ml of 1 N hydrofluoric acid is passed.

【0067】次に、この操作を3回繰り返した後、0.
2規定塩酸100mlを前記カラムに流す。
Next, after repeating this operation three times,
100 ml of 2N hydrochloric acid is passed through the column.

【0068】次に、この操作を3回繰り返した後、8規
定塩酸100mlを前記カラムに流す。
Next, after repeating this operation three times, 100 ml of 8N hydrochloric acid is passed through the column.

【0069】次に、この操作を4回繰り返し、コバルト
イオンをカラムから流出させる。
Next, this operation is repeated four times to cause cobalt ions to flow out of the column.

【0070】流出したコバルト溶液に18規定硫酸2m
lを加え、120℃で加熱蒸発後、大気中、約1000
℃で1時間加熱して酸化コバルトを得る。
The cobalt solution that has flowed out is added with 2 m of 18N sulfuric acid.
After heating and evaporating at 120 ° C., about 1000
Heat at 1 ° C. for 1 hour to obtain cobalt oxide.

【0071】得られた酸化コバルトの重量を測定し、コ
バルトの回収率を算出した。
The weight of the obtained cobalt oxide was measured, and the recovery of cobalt was calculated.

【0072】また、前記得られた酸化コバルトを塩酸で
溶解し、水で希釈、定容後、鉄、スズ、ニッケル、銅、
アルミニウムイオン濃度をICP(誘導結合プラズマ)
発光分光法で、リチウムイオン濃度を原子吸光法で測定
し、酸化コバルト中に含有する不純物量を算出した。コ
バルトの回収率及び不純物量の結果を表9に示す。
Further, the obtained cobalt oxide is dissolved in hydrochloric acid, diluted with water, and made to a constant volume. Then, iron, tin, nickel, copper,
ICP (inductively coupled plasma) for aluminum ion concentration
By emission spectroscopy, the lithium ion concentration was measured by an atomic absorption method, and the amount of impurities contained in the cobalt oxide was calculated. Table 9 shows the results of the recovery rate of cobalt and the amount of impurities.

【0073】[0073]

【表9】 表9 イオン交換分離による精製後のコバルト回収率及び不純物 (g/電池1個) 回収率 Al Cu Sn Fe Ni Li (%) 陽イオン交換分離 <0.0002 <0.0002 <0.0005 <0.0002 0.002 <0.005 98.3 陰イオン交換分離 <0.0002 <0.0002 0.16 0.0002 <0.0002 <0.005 98.0 陽・陰イオン <0.0002 <0.0002 <0.0005 <0.0002 <0.0002 <0.005 99.0 交換分離 Table 9 Cobalt recovery and impurity (g / battery) recovery after purification by ion exchange separation Al Cu Sn Fe Ni Li (%) Cation exchange separation <0.0002 <0.0002 <0.0005 <0.0002 0.002 < 0.005 98.3 Anion exchange separation <0.0002 <0.0002 0.16 0.0002 <0.0002 <0.005 98.0 Cation / anion <0.0002 <0.0002 <0.0005 <0.0002 <0.0002 <0.005 99.0 Exchange separation

【0074】(実施例11)実施例3によって得られた
正極材溶解液(正極を6規定硝酸に浸漬後、ろ過した際
のろ液と正極材中の正極活物質を塩酸で溶解し、ろ過し
た際のろ液を混合した溶液)をポリエチレンビーカーに
移し入れ、塩酸を添加して酸濃度を8規定とする。
(Example 11) A solution of the positive electrode material obtained in Example 3 (after immersing the positive electrode in 6N nitric acid, the filtrate obtained by filtration and the positive electrode active material in the positive electrode material were dissolved with hydrochloric acid, and the solution was filtered. The solution obtained by mixing the filtrates obtained above is transferred to a polyethylene beaker, and hydrochloric acid is added to adjust the acid concentration to 8N.

【0075】この溶液を陰イオン交換樹脂(100〜2
00mesh)80mlの入ったポリエチレン製カラム
に流し入れる。前記溶液がカラムから流出後、9規定塩
酸100mlを前記カラムに流す。
This solution was treated with an anion exchange resin (100 to 2).
00mesh) Pour into a polyethylene column containing 80 ml. After the solution flows out of the column, 100 ml of 9N hydrochloric acid is passed through the column.

【0076】次に、この操作を3回繰り返した後、1規
定塩酸100mlを前記カラムに流す。
Next, after repeating this operation three times, 100 ml of 1N hydrochloric acid is passed through the column.

【0077】次に、この操作を4回繰り返し、コバルト
イオンをカラムから流出させる。
Next, this operation is repeated four times to cause cobalt ions to flow out of the column.

【0078】流出したコバルト溶液に18規定硫酸2m
lを加え、120℃で加熱蒸発後、大気中、約1000
℃で1時間加熱して酸化コバルトを得る。得られた酸化
コバルトの重量を測定し、コバルトの回収率を算出し
た。
The cobalt solution that has flowed out is added with 2 m of 18N sulfuric acid.
After heating and evaporating at 120 ° C., about 1000
Heat at 1 ° C. for 1 hour to obtain cobalt oxide. The weight of the obtained cobalt oxide was measured, and the recovery rate of cobalt was calculated.

【0079】また、前記得られた酸化コバルトを塩酸で
溶解し、水で希釈、定容後、鉄、スズ、ニッケル、銅、
アルミニウムイオン濃度をICP(誘導結合プラズマ)
発光分光法で、リチウム、ナトリウムイオン濃度を原子
吸光法で測定し、酸化コバルト中に含有する不純物量を
算出した。コバルトの回収率及び不純物量、純度の結果
を上記表9に示す。
Further, the obtained cobalt oxide is dissolved in hydrochloric acid, diluted with water, and the volume is adjusted. Then, iron, tin, nickel, copper,
ICP (inductively coupled plasma) for aluminum ion concentration
Lithium and sodium ion concentrations were measured by atomic absorption spectrometry by emission spectroscopy, and the amount of impurities contained in cobalt oxide was calculated. Table 9 shows the results of the recovery rate of cobalt, the amount of impurities, and the purity.

【0080】(実施例12)実施例10に従い、陽イオ
ン交換分離を行った後、流出したコバルト溶液につき、
更に実施例11の陰イオン交換分離を行う。
(Example 12) According to Example 10, after performing cation exchange separation, the cobalt solution flowing out was
Further, the anion exchange separation of Example 11 is performed.

【0081】流出したコバルト溶液を実施例10と同様
の操作を行って酸化コバルトを回収し、回収率を算出し
た。また、酸化コバルト中の不純物含有量についても同
様の操作を行って算出した。結果を上記表9に示す。
The cobalt solution that had flowed out was subjected to the same operation as in Example 10 to recover cobalt oxide, and the recovery rate was calculated. Further, the content of impurities in cobalt oxide was calculated by performing the same operation. The results are shown in Table 9 above.

【0082】以上の実施例の結果から、本発明によって
正極集電体(Al箔)、負極集電体(Cu箔)及び正極
活物質(LiCoO2 )を分離することにより、その分
離操作のみでも十分高純度のものを回収することができ
る。従って、分離後に簡単な化学処理を行うことによ
り、純度99.9%以上の有価物を容易に得られること
から、非常に有効な手法であると考えられる。
According to the results of the above examples, the present invention separates the positive electrode current collector (Al foil), the negative electrode current collector (Cu foil) and the positive electrode active material (LiCoO 2 ) so that the separation operation alone is possible. Sufficiently high purity can be recovered. Therefore, by performing a simple chemical treatment after the separation, a valuable material having a purity of 99.9% or more can be easily obtained, which is considered to be a very effective method.

【0083】[0083]

【発明の効果】以上説明したように、本発明によれば、
リチウムイオン二次電池中の電極を酸性溶液、アルカリ
金属の水酸化物溶液、アルカリ金属のアルコール溶液若
しくは有機溶媒のいずれかに浸漬することにより電極材
と集電体とを容易に分離することができるので、その
後、酸性溶液中に浸漬し、有価金属を溶解後、化学処理
により低コストかつ高純度で回収することができる。従
って、その工業的価値は非常に高い。
As described above, according to the present invention,
The electrode material and the current collector can be easily separated by immersing the electrode in the lithium ion secondary battery in any of an acidic solution, an alkali metal hydroxide solution, an alkali metal alcohol solution or an organic solvent. After that, after immersing in an acidic solution to dissolve valuable metals, it can be recovered at low cost and high purity by chemical treatment. Therefore, its industrial value is very high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般的な円筒型リチウムイオン二次電池の一部
断面図である。
FIG. 1 is a partial cross-sectional view of a general cylindrical lithium ion secondary battery.

【符号の説明】[Explanation of symbols]

1 容器 2 絶縁体 3 電極群 4 正極 5 セパレータ 6 負極 7 絶縁紙 8 絶縁封止板 9 正極端子 10 正極リード DESCRIPTION OF SYMBOLS 1 Container 2 Insulator 3 Electrode group 4 Positive electrode 5 Separator 6 Negative electrode 7 Insulating paper 8 Insulating sealing plate 9 Positive electrode terminal 10 Positive electrode lead

フロントページの続き (72)発明者 富岡 由喜 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 親里 直彦 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 小松 出 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 北村 英夫 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 五反田 武志 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 忠内 仁弘 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 古屋 富明 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 森田 正明 神奈川県川崎市幸区小向東芝町1番地 東 芝リサーチコンサルティング株式会社内Continued on the front page. (72) Inventor Yuki Tomioka 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Yokohama Office (72) Inventor Naohiko Chisato 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Toshiba Corporation Inside Yokohama Office (72) Inventor Koide Izumi Komatsu 8th Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Prefecture Inside (72) Inventor Hideo Kitamura 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Yokohama Business Co., Ltd. In-house (72) Inventor Takeshi Gotanda 8th Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Yokohama Office (72) Inventor Yoshihiro Chunai 8-8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Yokohama Business Co., Ltd. (72) Inventor Tomiaki Furuya 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Yokohama Office (72) Inventor Masaaki Morita 1st, Komukai-Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Toshiba Research Consulting Co., Ltd. In company

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオン二次電池の電極を酸性溶
液、アルカリ金属の水酸化物溶液、アルカリ金属のアル
コール溶液若しくは有機溶媒のうちのいずれかに浸漬
し、前記電極を電極材と集電体とに分離する工程を少な
くとも具備することを特徴とするリチウムイオン二次電
池からの有価物分離方法。
An electrode of a lithium ion secondary battery is immersed in one of an acid solution, an alkali metal hydroxide solution, an alkali metal alcohol solution or an organic solvent, and the electrode is made of an electrode material and a current collector. A method for separating valuables from a lithium ion secondary battery, comprising at least a step of separating the valuables from the lithium ion secondary battery.
【請求項2】 前記酸性溶液として、ハロゲン化水素
酸、硫酸、過酸化水素水、酢酸、硝酸、発煙硝酸若しく
は過塩素酸のうち少なくとも一種以上を用いることを特
徴とする請求項1記載のリチウムイオン二次電池からの
有価物分離方法。
2. The lithium according to claim 1, wherein at least one of hydrohalic acid, sulfuric acid, aqueous hydrogen peroxide, acetic acid, nitric acid, fuming nitric acid, and perchloric acid is used as the acidic solution. A method for separating valuables from an ion secondary battery.
【請求項3】 前記アルカリ金属の水酸化物溶液とし
て、水酸化ナトリウム、水酸化カリウム若しくは水酸化
リチウムのうち少なくとも一種以上を、水溶液または溶
融状態で用いることを特徴とする請求項1記載のリチウ
ムイオン二次電池からの有価物分離方法。
3. The lithium according to claim 1, wherein at least one of sodium hydroxide, potassium hydroxide and lithium hydroxide is used in the form of an aqueous solution or a molten state as the alkali metal hydroxide solution. A method for separating valuables from an ion secondary battery.
【請求項4】 前記アルカリ金属のアルコール溶液とし
て、リチウムアルコキシド、ナトリウムアルコキシド若
しくはカリウムアルコキシドのうち少なくとも一種以上
を用いることを特徴とする請求項1記載のリチウムイオ
ン二次電池からの有価物分離方法。
4. The method according to claim 1, wherein at least one of lithium alkoxide, sodium alkoxide and potassium alkoxide is used as the alkali metal alcohol solution.
【請求項5】 前記有機溶媒として、ケトン、エステ
ル、エーテル、アルコール、アセトニトリル若しくは脂
肪属系炭化水素のうち少なくとも一種以上を用いること
を特徴とする請求項1記載のリチウムイオン二次電池か
らの有価物分離方法。
5. The valuable resource from the lithium ion secondary battery according to claim 1, wherein at least one of ketone, ester, ether, alcohol, acetonitrile and aliphatic hydrocarbon is used as the organic solvent. Object separation method.
JP6101397A 1997-03-14 1997-03-14 Valuable material separating method from lithium ion secondary battery Pending JPH10255862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6101397A JPH10255862A (en) 1997-03-14 1997-03-14 Valuable material separating method from lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6101397A JPH10255862A (en) 1997-03-14 1997-03-14 Valuable material separating method from lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH10255862A true JPH10255862A (en) 1998-09-25

Family

ID=13159031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6101397A Pending JPH10255862A (en) 1997-03-14 1997-03-14 Valuable material separating method from lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH10255862A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2796207A1 (en) * 1999-07-07 2001-01-12 Tredi Recovery of lithium and other metals from lithium cells and batteries involves leaching cell and battery comminution products with hydrochloric acid and selective precipitation of heavy metal hydroxides from obtained separated solution
WO2001008245A1 (en) * 1999-07-26 2001-02-01 Ariel Rosenberg High efficiency process for treating mixed metal waste
JP2002500424A (en) * 1997-12-23 2002-01-08 エイイーエイ テクノロジー パブリック リミテッド カンパニー Chemical battery
JP2003031229A (en) * 2001-07-12 2003-01-31 Tmc Kk Method for recovering valuable metal
JP2003045506A (en) * 2001-07-31 2003-02-14 Toyota Motor Corp Method of separating and recovering alkaline secondary battery positive electrode material, method of analyzing characteristics of alkaline secondary battery positive electrode material, and the alkaline secondary battery
JP2005011698A (en) * 2003-06-19 2005-01-13 Kawasaki Heavy Ind Ltd Recycle processing method and device for lithium secondary battery electrode material
WO2005124921A1 (en) * 2004-06-21 2005-12-29 Toyota Jidosha Kabushiki Kaisha Method of disposing of lithium battery
JP2006331707A (en) * 2005-05-24 2006-12-07 Toyota Motor Corp Recycling method of battery
JP2007122885A (en) * 2005-10-25 2007-05-17 Sumitomo Metal Mining Co Ltd Valuable metal recovery method from lithium ion battery
WO2007077745A1 (en) * 2005-12-27 2007-07-12 Panasonic Ev Energy Co., Ltd. Method for separating active material of electrode plate for storage battery
WO2007088617A1 (en) * 2006-02-02 2007-08-09 Kawasaki Plant Systems Kabushiki Kaisha Method of recovering valuable substance from lithium secondary battery, and recovery apparatus therefor
WO2009145015A1 (en) * 2008-05-28 2009-12-03 トヨタ自動車株式会社 Method for treating lithium batteries
WO2010002019A1 (en) * 2008-07-03 2010-01-07 住友化学株式会社 Method for recovering oxide-containing battery material from waste battery material
JP2012153956A (en) * 2011-01-27 2012-08-16 Sumitomo Metal Mining Co Ltd Valuable metal leaching method, and valuable metal collection method employing the leaching method
US8404138B2 (en) 2007-02-20 2013-03-26 Toyota Jidosha Kabushiki Kaisha Stripping agent for secondary battery electrode material and method of treating secondary battery using the stripping agent
KR101368216B1 (en) * 2011-11-28 2014-03-11 주식회사 진영정공 Method for recovering valuable metals from Lithium Battery Waste
KR101376980B1 (en) * 2012-05-10 2014-03-27 한양대학교 에리카산학협력단 Method for separating Cu sheet by electrode having Cu sheet and carbon sheet
JP2014203567A (en) * 2013-04-02 2014-10-27 トヨタ自動車株式会社 Method of recovering positive electrode active material particle
US20160043450A1 (en) * 2014-08-06 2016-02-11 Steven E. Sloop Recycling positive-electrode material of a lithium-ion battery
DE102014014894A1 (en) * 2014-10-13 2016-04-14 Adensis Gmbh Process for the recovery of active material from the cathodes of lithium-ion batteries
KR20180084183A (en) 2017-01-16 2018-07-25 주식회사 엘지화학 Method for recovering positive electrode mixture material from lithium secondary battery
KR101897134B1 (en) * 2018-04-09 2018-09-10 에스케이이노베이션 주식회사 Method of regenerating lithium precursor from used lithium secondary battery
CN110600828A (en) * 2019-09-10 2019-12-20 陕西科技大学 Method for ultrasonically stripping current collector and active substance in waste lithium battery
CN111392750A (en) * 2020-04-02 2020-07-10 天齐锂业股份有限公司 Method for removing impurities and recovering lithium from waste lithium ion batteries
CN113502398A (en) * 2021-07-09 2021-10-15 郑州中科新兴产业技术研究院 Method and device for stripping and leaching out anode piece of retired battery
CN114421042A (en) * 2022-01-14 2022-04-29 郑州大学 Method for recovering metal aluminum, lithium carbonate and sodium nitrate from waste lithium iron phosphate material and application thereof
CN114535260A (en) * 2022-02-21 2022-05-27 中国科学院青海盐湖研究所 Treatment method and application of aluminum electrolysis waste cathode carbon block
CN115020854A (en) * 2022-06-16 2022-09-06 华中科技大学 Method for accelerating separation of battery electrode material and current collector
CN115070997A (en) * 2022-06-13 2022-09-20 宁波江丰复合材料科技有限公司 Separation method of BS (base station) base and product for CFRP (carbon fiber reinforced plastics) industry
KR20230066759A (en) 2021-11-08 2023-05-16 동신대학교산학협력단 Method for recovering cathode active material of lithium secondary battery using hybrid composite solvent

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002500424A (en) * 1997-12-23 2002-01-08 エイイーエイ テクノロジー パブリック リミテッド カンパニー Chemical battery
JP4753220B2 (en) * 1997-12-23 2011-08-24 ユニヴァーシティ オブ ザ ハイランズ アンド アイランズ Chemical battery
FR2796207A1 (en) * 1999-07-07 2001-01-12 Tredi Recovery of lithium and other metals from lithium cells and batteries involves leaching cell and battery comminution products with hydrochloric acid and selective precipitation of heavy metal hydroxides from obtained separated solution
US7078122B1 (en) 1999-07-26 2006-07-18 Ariel Rosenberg High efficiency process for treating mixed metal waste
WO2001008245A1 (en) * 1999-07-26 2001-02-01 Ariel Rosenberg High efficiency process for treating mixed metal waste
JP2003031229A (en) * 2001-07-12 2003-01-31 Tmc Kk Method for recovering valuable metal
JP2003045506A (en) * 2001-07-31 2003-02-14 Toyota Motor Corp Method of separating and recovering alkaline secondary battery positive electrode material, method of analyzing characteristics of alkaline secondary battery positive electrode material, and the alkaline secondary battery
JP2005011698A (en) * 2003-06-19 2005-01-13 Kawasaki Heavy Ind Ltd Recycle processing method and device for lithium secondary battery electrode material
WO2005124921A1 (en) * 2004-06-21 2005-12-29 Toyota Jidosha Kabushiki Kaisha Method of disposing of lithium battery
JP2006004883A (en) * 2004-06-21 2006-01-05 Toyota Motor Corp Lithium battery treating method
JP4492222B2 (en) * 2004-06-21 2010-06-30 トヨタ自動車株式会社 Lithium battery treatment method
KR100832900B1 (en) 2004-06-21 2008-05-28 도요다 지도샤 가부시끼가이샤 Method of disposing of lithium battery
JP2006331707A (en) * 2005-05-24 2006-12-07 Toyota Motor Corp Recycling method of battery
JP2007122885A (en) * 2005-10-25 2007-05-17 Sumitomo Metal Mining Co Ltd Valuable metal recovery method from lithium ion battery
JP2007179774A (en) * 2005-12-27 2007-07-12 Panasonic Ev Energy Co Ltd Method for separating active material of electrode plate for storage battery
US8354180B2 (en) 2005-12-27 2013-01-15 Panasonic Ev Energy Co., Ltd. Method for separating active material of electrode plate for storage battery
WO2007077745A1 (en) * 2005-12-27 2007-07-12 Panasonic Ev Energy Co., Ltd. Method for separating active material of electrode plate for storage battery
WO2007088617A1 (en) * 2006-02-02 2007-08-09 Kawasaki Plant Systems Kabushiki Kaisha Method of recovering valuable substance from lithium secondary battery, and recovery apparatus therefor
US8858677B2 (en) 2006-02-02 2014-10-14 Kawasaki Jukogyo Kabushiki Kaisha Method and apparatus for recovering valuable substance from lithium secondary battery
JP4909907B2 (en) * 2006-02-02 2012-04-04 川崎重工業株式会社 Recovery method and recovery device for recovering valuable material from lithium secondary battery
US8404138B2 (en) 2007-02-20 2013-03-26 Toyota Jidosha Kabushiki Kaisha Stripping agent for secondary battery electrode material and method of treating secondary battery using the stripping agent
WO2009145015A1 (en) * 2008-05-28 2009-12-03 トヨタ自動車株式会社 Method for treating lithium batteries
CN102077409A (en) * 2008-07-03 2011-05-25 住友化学株式会社 Method for recovering oxide-containing battery material from waste battery material
JP2010034021A (en) * 2008-07-03 2010-02-12 Sumitomo Chemical Co Ltd Method of recycling oxide-containing battery material from waste battery material
WO2010002019A1 (en) * 2008-07-03 2010-01-07 住友化学株式会社 Method for recovering oxide-containing battery material from waste battery material
JP2012153956A (en) * 2011-01-27 2012-08-16 Sumitomo Metal Mining Co Ltd Valuable metal leaching method, and valuable metal collection method employing the leaching method
KR101368216B1 (en) * 2011-11-28 2014-03-11 주식회사 진영정공 Method for recovering valuable metals from Lithium Battery Waste
KR101376980B1 (en) * 2012-05-10 2014-03-27 한양대학교 에리카산학협력단 Method for separating Cu sheet by electrode having Cu sheet and carbon sheet
JP2014203567A (en) * 2013-04-02 2014-10-27 トヨタ自動車株式会社 Method of recovering positive electrode active material particle
US20160043450A1 (en) * 2014-08-06 2016-02-11 Steven E. Sloop Recycling positive-electrode material of a lithium-ion battery
WO2016022858A1 (en) * 2014-08-06 2016-02-11 Sloop Steven E Recycling positive-electrode material of a lithium-ion battery
CN106688135A (en) * 2014-08-06 2017-05-17 史蒂文·E·斯卢普 Recycling positive-electrode material of a lithium-ion battery
US9825341B2 (en) 2014-08-06 2017-11-21 Steven E. Sloop Recycling positive-electrode material of a lithium-ion battery
CN110676533A (en) * 2014-08-06 2020-01-10 史蒂文·E·斯卢普 Method for treating positive electrode material of lithium ion battery
CN106688135B (en) * 2014-08-06 2019-09-27 史蒂文·E·斯卢普 The method for recycling the positive electrode of lithium ion battery
CN110676533B (en) * 2014-08-06 2023-02-17 史蒂文·E·斯卢普 Method for treating positive electrode material of lithium ion battery
DE102014014894A1 (en) * 2014-10-13 2016-04-14 Adensis Gmbh Process for the recovery of active material from the cathodes of lithium-ion batteries
KR20180084183A (en) 2017-01-16 2018-07-25 주식회사 엘지화학 Method for recovering positive electrode mixture material from lithium secondary battery
KR101897134B1 (en) * 2018-04-09 2018-09-10 에스케이이노베이션 주식회사 Method of regenerating lithium precursor from used lithium secondary battery
WO2019199015A1 (en) * 2018-04-09 2019-10-17 에스케이이노베이션 주식회사 Method for recovering active metal of lithium secondary battery
CN110600828A (en) * 2019-09-10 2019-12-20 陕西科技大学 Method for ultrasonically stripping current collector and active substance in waste lithium battery
CN111392750A (en) * 2020-04-02 2020-07-10 天齐锂业股份有限公司 Method for removing impurities and recovering lithium from waste lithium ion batteries
CN113502398A (en) * 2021-07-09 2021-10-15 郑州中科新兴产业技术研究院 Method and device for stripping and leaching out anode piece of retired battery
KR20230066759A (en) 2021-11-08 2023-05-16 동신대학교산학협력단 Method for recovering cathode active material of lithium secondary battery using hybrid composite solvent
CN114421042A (en) * 2022-01-14 2022-04-29 郑州大学 Method for recovering metal aluminum, lithium carbonate and sodium nitrate from waste lithium iron phosphate material and application thereof
CN114535260A (en) * 2022-02-21 2022-05-27 中国科学院青海盐湖研究所 Treatment method and application of aluminum electrolysis waste cathode carbon block
CN114535260B (en) * 2022-02-21 2023-07-21 中国科学院青海盐湖研究所 Treatment method and application of aluminum electrolysis waste cathode carbon block
CN115070997A (en) * 2022-06-13 2022-09-20 宁波江丰复合材料科技有限公司 Separation method of BS (base station) base and product for CFRP (carbon fiber reinforced plastics) industry
CN115020854A (en) * 2022-06-16 2022-09-06 华中科技大学 Method for accelerating separation of battery electrode material and current collector

Similar Documents

Publication Publication Date Title
JPH10255862A (en) Valuable material separating method from lithium ion secondary battery
JP3452769B2 (en) Battery treatment method
CN100440615C (en) A recovery method for waste lithium ion cell
JP2787153B2 (en) Secondary battery and method of manufacturing the same
JP4491085B2 (en) Method for recovering positive electrode material from waste secondary battery and method for producing non-aqueous electrolyte secondary battery using the same
CN101831548A (en) Method for recovering valuable metals from waste lithium manganese oxide battery
JP2001273898A (en) Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing same, and nonaqueous electrolyte secondary battery using the active material
KR102223720B1 (en) Method for recovering positive electrode mixture material from lithium secondary battery
JP2015002107A (en) Method for extracting electrolytic solution from organic electrolytic battery
JP2003272720A (en) Recovery method for lithium cobaltate
JPH0864240A (en) Nonaqueous electrolyte battery
KR20030070469A (en) Recovery Method of Cobalt from spent lithium ion battery
US20240021900A1 (en) Method for the high efficiency recycling of lithium iron phosphate batteries for closed loop battery production
JPH10188977A (en) Lithium secondary battery
US20220416325A1 (en) RECYCLING ALL SOLID-STATE BATTERIES (ASSBs) AND ANODE RECOVERY
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JPH08329946A (en) Manufacture of nonaqueous electrolyte secondary battery
JP3426900B2 (en) Non-aqueous electrolyte battery
CA2225738C (en) Purification process for lithium battery electrolytes
JPH06111820A (en) Nonaqueous battery
JP2005135849A (en) Positive electrode activator for lithium battery
JP2003142082A (en) Manufacturing method of electrode for battery and lithium battery
US20240097224A1 (en) Recycling system, recycling method, method for manufacturing electrode, and method for manufacturing battery
US20240047775A1 (en) Lithium ion battery recycling process utilizing magnetic separation of electrode materials
JP7394268B1 (en) Manufacturing method of positive electrode active material