JP2003142082A - Manufacturing method of electrode for battery and lithium battery - Google Patents

Manufacturing method of electrode for battery and lithium battery

Info

Publication number
JP2003142082A
JP2003142082A JP2001337647A JP2001337647A JP2003142082A JP 2003142082 A JP2003142082 A JP 2003142082A JP 2001337647 A JP2001337647 A JP 2001337647A JP 2001337647 A JP2001337647 A JP 2001337647A JP 2003142082 A JP2003142082 A JP 2003142082A
Authority
JP
Japan
Prior art keywords
water
active material
battery
negative electrode
dispersion liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001337647A
Other languages
Japanese (ja)
Inventor
Kazuhiro Watanabe
和▲ひろ▼ 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001337647A priority Critical patent/JP2003142082A/en
Publication of JP2003142082A publication Critical patent/JP2003142082A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance electrode strength by increasing dispersibility without using a viscosity improver such as conventionally used carboxymethyl cellulose when paste using a polar solvent is manufactured from an active material having a non-polar surface in manufacturing a negative electrode for a secondary battery. SOLUTION: The paste is manufactured by this manufacturing method having a first process for dispersing an active material capable of inserting and desorbing lithium into a water-soluble organic solvent, a second process for adding and dispersing water in the dispersed solution, a third process for adding a binder to the dispersed solution obtained from the second process, and a fourth process for applying the dispersed solution obtained from the third process to metal foil and thereafter drying it with hot air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】電池用電極の製造法とこれを
用いたリチウム電池に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a battery electrode and a lithium battery using the same.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急速に進んでいる。これにつれて駆動用
電源を担う小形、軽量で、かつ高エネルギー密度を有す
る二次電池への要望も高まっている。このような観点か
ら、非水系二次電池、特にリチウム二次電池は、とりわ
け高電圧、高エネルギー密度を有する電池としてその期
待は大きく、開発が急がれている。
2. Description of the Related Art In recent years, portable electronic devices for consumer use,
Cordless is advancing rapidly. Along with this, there is an increasing demand for a small-sized, lightweight secondary battery having a high energy density, which serves as a driving power source. From this point of view, non-aqueous secondary batteries, especially lithium secondary batteries, have great expectations as batteries having high voltage and high energy density, and their development is urgently needed.

【0003】従来、リチウム二次電池の正極活物質に
は、二酸化マンガン、五酸化バナジウム、二硫化チタン
などが用いられていた。これらの正極と、金属リチウム
負極および有機電解液とで電池を構成し、充放電を繰り
返していた。ところが、一般に負極にリチウム金属を用
いた二次電池では、充電時に生成するデンドライト状リ
チウムによる内部短絡や活物質と電解液の副反応といっ
た課題が大きな障害となっている。更には、高率充放電
特性や過放電特性においても満足するものが見出されて
いない。さらに最近ではリチウム電池の安全性が厳しく
要求されており、負極にリチウム金属あるいはリチウム
合金を用いた電池系においては安全性の確保が重要であ
る。
Heretofore, manganese dioxide, vanadium pentoxide, titanium disulfide and the like have been used as positive electrode active materials for lithium secondary batteries. A battery was constituted by these positive electrodes, a metallic lithium negative electrode and an organic electrolytic solution, and charging and discharging were repeated. However, generally, in a secondary battery using lithium metal for the negative electrode, problems such as an internal short circuit due to dendrite-like lithium generated during charging and a side reaction between the active material and the electrolytic solution are major obstacles. Further, no one has been found to be satisfactory in high-rate charge / discharge characteristics and over-discharge characteristics. Furthermore, recently, the safety of lithium batteries has been strictly required, and it is important to ensure the safety in battery systems using lithium metal or lithium alloy for the negative electrode.

【0004】このため層状化合物のインターカレーショ
ン反応を利用した電極活物質が注目を集めており、層間
化合物が二次電池の電極材料として使用されている。特
に、Liイオンをインターカレート/デインターカレート
し得る炭素材料はリチウム二次電池の負極材料として有
望であり、その開発が盛んに行なわれている。一方、負
極に炭素材料を用いることに伴い、正極活物質としては
より高電圧を有し、かつLiを含む化合物であるLiCoO2
やLiNiO2 、更にはこれらのCoおよびNiの一部を他元素
で置換した複合酸化物を用いることが提案されている。
Therefore, an electrode active material utilizing the intercalation reaction of a layered compound has been attracting attention, and an intercalation compound is used as an electrode material for secondary batteries. In particular, a carbon material capable of intercalating / deintercalating Li ions is promising as a negative electrode material for a lithium secondary battery, and its development is being actively conducted. On the other hand, with the use of a carbon material for the negative electrode, LiCoO 2 which has a higher voltage and is a compound containing Li as a positive electrode active material.
It has been proposed to use LiNiO 2 or LiNiO 2 , or a composite oxide in which some of Co and Ni are replaced with other elements.

【0005】しかしながら、かかる非水系二次電池にお
いては高エネルギー密度が得られるものの、水系電池に
比べ高出力密度を得ることは困難である。これは電解液
のイオン電導度に起因するところが大きく、非水電解液
では水溶液に比べそのイオン電導度は100分の1以下であ
るのが現状である。これらの問題点を解決するための方
法として電極面積を大きくする、即ち薄形で大面積の負
極を用いることが考えられる。とりわけ、集電体である
金属箔に、電極活物質を溶液に分散させたペーストを塗
着、乾燥するといった製造法がよく知られており、比較
的容易に薄形、大面積の負極を得ることが可能である。
However, although such a non-aqueous secondary battery can obtain a high energy density, it is difficult to obtain a high output density as compared with an aqueous battery. This is largely due to the ionic conductivity of the electrolytic solution, and the ionic conductivity of the non-aqueous electrolytic solution is 100 times lower than that of the aqueous solution. As a method for solving these problems, it is conceivable to increase the electrode area, that is, to use a thin, large-area negative electrode. In particular, a manufacturing method in which a metal foil that is a current collector is coated with a paste in which an electrode active material is dispersed in a solution and dried is known, and a thin electrode and a large-area negative electrode can be relatively easily obtained. It is possible.

【0006】このような電極製造法において、黒鉛等の
粉末を溶液に分散させたペーストを集電体である銅箔の
両面に塗布、乾燥するといった手法により負極を製造し
た場合、薄形、大面積の負極を得ることは容易である
が、ペーストの分散性および結着材の結着力が負極性能
に大きな影響を与える。結着材として、非水系であるポ
リフッ化ビニリデン(PVDF)を用いる場合と水系である
スチレン・ブタジエン共重合体を用いる場合とに分けら
れる。前者は活物質間の結着力は良好であるが、負極集
電体として一般に用いられている銅箔との結着力が弱
い。したがって活物質に対して重量比で5重量%〜10重
量%程度必要であり、高容量化に対して不利である。一
方、スチレン・ブタジエン共重合体は活物質及び銅箔と
の結着力がPVDFよりも強い。このため活物質に対する重
量比で0.5重量%〜3重量%で十分であり、高容量化に対
して有利である。
In such an electrode manufacturing method, when a negative electrode is manufactured by a method in which a paste in which a powder of graphite or the like is dispersed in a solution is applied on both surfaces of a copper foil as a current collector and dried, a thin type, large size It is easy to obtain a negative electrode having an area, but the dispersibility of the paste and the binding force of the binder have a great influence on the negative electrode performance. The binder is classified into the case of using non-aqueous polyvinylidene fluoride (PVDF) and the case of using a water-based styrene-butadiene copolymer. The former has a good binding force between the active materials, but has a weak binding force with a copper foil generally used as a negative electrode current collector. Therefore, it is necessary to add about 5% to 10% by weight to the active material, which is disadvantageous for increasing the capacity. On the other hand, the styrene-butadiene copolymer has a stronger binding force to the active material and the copper foil than PVDF. Therefore, a weight ratio of 0.5 to 3% by weight to the active material is sufficient, which is advantageous for increasing the capacity.

【0007】[0007]

【発明が解決しようとする課題】スチレン・ブタジエン
共重合体は、一般に水に分散された形態(エマルショ
ン)で使用される。しかし黒鉛に代表される非極性表面
を持つ活物質は、極性溶媒である水への分散が非常に困
難である。従って従来はカルボキシメチルセルロース
(CMC)の水溶液等を用いて黒鉛を分散させ、その後
にスチレン/ブタジエン共重合体等の水エマルションを
結着材として混合したものをペーストとして用いてい
た。しかしこのような手法を用いても、黒鉛等の水への
分散は困難であり、ペースト中には二次凝集を起こした
黒鉛粒子が多数存在し、電池特性低下を招いていた。
Styrene-butadiene copolymers are generally used in the form of being dispersed in water (emulsion). However, it is very difficult to disperse an active material having a non-polar surface represented by graphite in water which is a polar solvent. Therefore, in the past, a paste was used in which graphite was dispersed using an aqueous solution of carboxymethyl cellulose (CMC), and then a water emulsion such as a styrene / butadiene copolymer was mixed as a binder. However, even if such a method is used, it is difficult to disperse graphite or the like in water, and there are many graphite particles that have undergone secondary agglomeration in the paste, resulting in deterioration of battery characteristics.

【0008】本発明はこの点に着目し、短時間に非極性
表面を持つ活物質を極性溶媒中に二次凝集を起こすこと
なく分散する手段を提供する。
The present invention pays attention to this point and provides means for dispersing an active material having a non-polar surface in a polar solvent in a short time without causing secondary aggregation.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本発明の電池用電極の製造方法は、リチウムイオンの挿
入と脱離とをする活物質を水溶性有機溶媒に分散させた
第一の分散液を作成する第一工程と、前記第一の分散液
に水を添加して分散させた第二の分散液を作成する第二
工程と、前記第二の分散液に結着材を添加させた第三の
分散液を作成する第三工程と、前記第三の分散液を金属
箔に塗布し乾燥する第4工程とを有することを特徴とす
る。
In order to achieve the above object, the method for producing a battery electrode according to the present invention comprises a first method in which an active material for inserting and releasing lithium ions is dispersed in a water-soluble organic solvent. A first step of creating a dispersion, a second step of creating a second dispersion by adding water to the first dispersion to disperse it, and a binder is added to the second dispersion. The method is characterized by including a third step of forming the third dispersion liquid thus prepared, and a fourth step of applying the third dispersion liquid to a metal foil and drying it.

【0010】このとき、水溶性有機溶媒がアルコール、
N−メチルピロリドンまたはアセトンの少なくとも1つ
を含有することが有効である。また、結着材が、スチレ
ン・ブタジエン共重合体、ポリビニルアルコールの少な
くとも一方を含むことが有効である。さらに、活物質が
黒鉛、低結晶性炭素または合金の少なくとも一つを含有
することが有効である。
At this time, the water-soluble organic solvent is alcohol,
It is advantageous to contain at least one of N-methylpyrrolidone or acetone. Further, it is effective that the binder contains at least one of a styrene / butadiene copolymer and polyvinyl alcohol. Further, it is effective that the active material contains at least one of graphite, low crystalline carbon and alloy.

【0011】また、水溶性有機溶媒の混合量が水に対し
て1重量%以上40重量%以下であることが望ましい。
The amount of the water-soluble organic solvent mixed is preferably 1% by weight or more and 40% by weight or less with respect to water.

【0012】[0012]

【発明の実施の形態】充放電可能な正極と負極および非
水電解質を備えた非水電解質二次電池であって、リチウ
ムイオンの挿入・脱離が可能な活物質の表面は、一般的
に非極性的である。従って非極性部分を持つ有機溶媒へ
の分散は容易である。一方、結着材として使用されるス
チレン・ブタジエン共重合体は、水を用いたエマルショ
ンの形で提供されるのが一般的である。この結着材分散
液を、活物質が分散された有機溶媒中へ投入することも
考えられるが、一般的には結着材分散液が凝集を起こす
ため、活物質粒子間への分散が出来ず活物質間の結着力
が低下する。
BEST MODE FOR CARRYING OUT THE INVENTION A non-aqueous electrolyte secondary battery comprising a chargeable / dischargeable positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the surface of an active material capable of inserting and releasing lithium ions is generally It is non-polar. Therefore, dispersion in an organic solvent having a non-polar portion is easy. On the other hand, the styrene-butadiene copolymer used as the binder is generally provided in the form of an emulsion using water. It is possible to add this binder dispersion to an organic solvent in which the active material is dispersed, but in general, the binder dispersion causes agglomeration, so that it is possible to disperse between the active material particles. The binding force between the active materials is reduced.

【0013】そこで本発明では非極性表面を持つ活物質
に対してスチレン・ブタジエン共重合体分散液を使用す
るために、第一の工程として活物質を水溶性有機溶媒に
分散させる。水溶性有機溶媒は極性基と非極性基を同時
に持つため、黒鉛等の非極性表面を持つ活物質を容易に
分散できる。次に第二の工程として、水溶性有機溶媒中
に活物質が分散された分散液に水を添加する。さらに第
三の工程では、第二の工程で得られた分散液に結着材を
添加する。添加量は活物質にもよるが、活物質に対する
結着材固形成分で0.5重量%から3重量%程度である。第
四の工程では、第三の工程で得られた分散液を金属箔に
ドクターブレード等の手法により塗布後に熱風乾燥する
ことで負極を得る。
Therefore, in the present invention, since the styrene / butadiene copolymer dispersion is used for the active material having a non-polar surface, the active material is dispersed in a water-soluble organic solvent in the first step. Since the water-soluble organic solvent has a polar group and a nonpolar group at the same time, an active material having a nonpolar surface such as graphite can be easily dispersed. Next, in the second step, water is added to the dispersion liquid in which the active material is dispersed in the water-soluble organic solvent. Further, in the third step, a binder is added to the dispersion liquid obtained in the second step. The amount of addition depends on the active material, but is about 0.5 to 3% by weight of the binder solid component relative to the active material. In the fourth step, the dispersion obtained in the third step is applied to a metal foil by a method such as a doctor blade and then dried with hot air to obtain a negative electrode.

【0014】上記の説明ではそれぞれの工程を分けて説
明したが、水溶性有機溶媒と水をあらかじめ混合してお
いてから黒鉛を添加するというように、第一の工程と第
二の工程を連続で行なっても良い。さらに第一の工程か
ら第三の工程までを連続的に行ってもよい。
Although the respective steps have been described separately in the above description, the first step and the second step are continuously performed such that the water-soluble organic solvent and water are mixed in advance and then graphite is added. You can do it in. Further, the first step to the third step may be continuously performed.

【0015】非極性部分と極性部分をあわせ持つ物質と
して、脂肪酸せっけん,アルキルベンゼンスルホン酸塩
などの界面活性剤がある。しかしそれらの多くは第四の
工程のあとでも負極中に残存している。非水電解質二次
電池内においては、上記のような残存界面活性剤は電気
化学反応により分解され、不可逆容量やガス発生の原因
となるために望ましくない。このために、リチウムの挿
入が可能な活物質を分散させる水溶性有機溶媒としてア
ルコール、N−メチルピロリドン、アセトンを用いる。
これらの物質は第四の工程後に負極中に残存しないため
に望ましい。
As a substance having both a non-polar portion and a polar portion, there are surface active agents such as fatty acid soap and alkylbenzene sulfonate. However, many of them remain in the negative electrode even after the fourth step. In the non-aqueous electrolyte secondary battery, the above-mentioned residual surfactant is not desirable because it is decomposed by an electrochemical reaction and causes irreversible capacity and gas generation. For this purpose, alcohol, N-methylpyrrolidone, and acetone are used as the water-soluble organic solvent in which the active material into which lithium can be inserted is dispersed.
These materials are desirable because they do not remain in the negative electrode after the fourth step.

【0016】本発明で使用可能な結着材として、ジアセ
チルセルロ−ス、ヒドロキシプロピルセルロ−ス、エチ
レングリコ−ル、エチレン/プロピレン/ジエン共重合
体やアクリロニトリル/ブタジエン共重合体などがあげ
られる。しかし本発明では集電体との結着力が強く、水
への分散が容易なことから、スチレン・ブタジエン共重
合体、ポリビニルアルコールを用いる。スチレン・ブタ
ジエン共重合体はブタジエンとスチレンのラジカル共重
合で得られる合成ゴムであり(化1)のような構造単位
からなる。一般的にはm=75、n=25であり、本願
においてもこれを使用した。さらに、ポリビニルアルコ
ールはポバール、PVAと称し、一般的にはポリ酢酸ビ
ニルのエステル交換により得られ、(化2)のような構
造を有する。
Examples of the binder usable in the present invention include diacetyl cellulose, hydroxypropyl cellulose, ethylene glycol, ethylene / propylene / diene copolymers and acrylonitrile / butadiene copolymers. However, in the present invention, a styrene-butadiene copolymer and polyvinyl alcohol are used because they have a strong binding force with the current collector and can be easily dispersed in water. The styrene / butadiene copolymer is a synthetic rubber obtained by radical copolymerization of butadiene and styrene, and has a structural unit as shown in Chemical formula 1. Generally, m = 75 and n = 25, which were also used in the present application. Further, polyvinyl alcohol is referred to as Poval or PVA, and is generally obtained by transesterification of polyvinyl acetate and has a structure as shown in Chemical formula 2.

【0017】[0017]

【化1】 [Chemical 1]

【0018】[0018]

【化2】 [Chemical 2]

【0019】またリチウムイオンの挿入・脱離が可能な
活物質のうち、黒鉛系、低結晶性炭素および合金のうち
の少なくとも一つであることが必要である。これ以外の
物質では本発明による製造方法では分散がうまく行かな
いか、水によって活物質の劣化を招くことから望ましく
ない。
Further, it is necessary that the active material capable of inserting and releasing lithium ions is at least one of graphite, low crystalline carbon and alloy. Other substances are not desirable because the production method according to the present invention does not disperse well or water causes deterioration of the active material.

【0020】水溶性有機溶媒の水に対する割合は1重量
%以上、40重量%以下であることが必要である。水溶性有
機溶媒が40重量%よりも多い場合には結着材分散液が凝
集を起こして結着力が低下するためにのぞましくない。
また水溶性有機溶媒が1重量%よりも少ない場合には活
物質の分散ができず、粉体が二次凝集を起こす。このた
め水を添加した後に結着材を添加しても、二次凝集した
活物質粒子結着材が集中して活物質間の結着力が低下す
るために望ましくない。
The ratio of water-soluble organic solvent to water is 1% by weight.
% Or more and 40% by weight or less is required. When the content of the water-soluble organic solvent is more than 40% by weight, the binder dispersion liquid causes agglomeration to reduce the binding force, which is not desirable.
Further, if the water-soluble organic solvent is less than 1% by weight, the active material cannot be dispersed and the powder causes secondary aggregation. For this reason, even if the binder is added after the addition of water, the secondary agglomerated active material particle binder is concentrated and the binding force between the active materials is reduced, which is not desirable.

【0021】[0021]

【実施例】以下に本発明を具体的な例により説明する。
分散性の評価は、負極表面の平均粗さと活物質の剥離強
度で評価した。負極表面の平均粗さはタリステップを使
用して負極表面のトレースを行なうことで測定した。ま
た活物質の剥離強度は、幅4mmのステンレス製の引掻
き棒を負極に対して垂直にあて、この引掻き棒にかかる
垂直荷重を走査しながら負極に対して水平方向に引掻
き、活物質が銅箔から剥離する時の垂直荷重を測定する
ことで求めた。
The present invention will be described below with reference to specific examples.
The dispersibility was evaluated by the average roughness of the negative electrode surface and the peel strength of the active material. The average roughness of the negative electrode surface was measured by tracing the negative electrode surface using a Taly step. As for the peel strength of the active material, a stainless steel scratch bar having a width of 4 mm was perpendicular to the negative electrode, and the vertical load applied to the scratch bar was scanned while scratching in the horizontal direction with respect to the negative electrode. It was determined by measuring the vertical load when peeling from the.

【0022】(実施例1)平均粒径10μmの天然黒鉛粉
末10gに、第一の工程としてNMP4gを添加して黒鉛を分散
させた。次に第二の工程として水6gを前記分散液に添加
し、黒鉛全体が液に浸るようにした後にスターラーを用
いて10分間攪拌をおこなった。このようにして得られた
分散液に第三の工程としてスチレン・ブタジエン共重合
体の水分散液(固形分50重量%)を0.62g添加してさら
に5分間攪拌を行なった。このようにして得られた分散
液に対して第四の工程として厚さ20μmの銅箔上にドク
ターブレード法を用いて厚さ200μmで塗布し、60℃、10
分で乾燥させることにより負極を得た。得られた負極表
面の平均粗さは10μmであり、剥離強度は540gであっ
た。またMNPのかわりにアルコール、アセトンを用いた
場合でも、表面粗さと剥離強度の測定結果は上記とほぼ
同じであった。
Example 1 As a first step, 4 g of NMP was added to 10 g of natural graphite powder having an average particle size of 10 μm to disperse graphite. Next, in the second step, 6 g of water was added to the above dispersion liquid so that the entire graphite was immersed in the liquid, and then stirred for 10 minutes using a stirrer. As a third step, 0.62 g of an aqueous dispersion of styrene / butadiene copolymer (solid content: 50% by weight) was added to the dispersion thus obtained, and the mixture was further stirred for 5 minutes. As a fourth step for the dispersion obtained in this way, a thickness of 200 μm was applied on a copper foil having a thickness of 20 μm using a doctor blade method, and 60 ° C., 10
A negative electrode was obtained by drying in minutes. The average surface roughness of the obtained negative electrode was 10 μm, and the peel strength was 540 g. Even when alcohol and acetone were used instead of MNP, the measurement results of surface roughness and peel strength were almost the same as above.

【0023】(比較例1)CMCを1重量%溶解した水溶液
10gに、実施例1で用いた黒鉛粉末10g添加し、スターラ
ーで10分間攪拌することで分散させた。その後は、実施
例1と同様の手法により負極を得た。実施例1と同様の手
法にて表面粗さと剥離強度を測定したところ、平均粗さ
は30μmであり、剥離強度は380gであった。
(Comparative Example 1) An aqueous solution containing 1% by weight of CMC dissolved therein.
To 10 g, 10 g of the graphite powder used in Example 1 was added and dispersed by stirring with a stirrer for 10 minutes. After that, a negative electrode was obtained by the same method as in Example 1. When the surface roughness and the peel strength were measured by the same method as in Example 1, the average roughness was 30 μm and the peel strength was 380 g.

【0024】このように、実施例1と比較例1を比べる
と、同一攪拌時間でも本発明の手法により活物質の分散
性が上がり、その結果として平均表面粗さと剥離強度の
向上が見られた。
Thus, comparing Example 1 with Comparative Example 1, the dispersibility of the active material was improved by the method of the present invention even with the same stirring time, and as a result, the average surface roughness and the peel strength were improved. .

【0025】(実施例2)特開平07-069611号公報の手
法を用いて平均粒径15μmの低結晶性炭素材料を得た。
この炭素質材料を用いて実施例1と同様の手法により電
極を作製し、表面粗さと剥離強度を測定したところ、平
均粗さは15μmであり、剥離強度は530gであった。
Example 2 A low crystalline carbon material having an average particle size of 15 μm was obtained by using the method disclosed in JP-A-07-069611.
An electrode was prepared using this carbonaceous material by the same method as in Example 1, and the surface roughness and peel strength were measured. As a result, the average roughness was 15 μm and the peel strength was 530 g.

【0026】(比較例2)上記炭素質材料を用いて比較
例1と同様の手法で負極を作製し、表面粗さと剥離強度
を測定したところ、平均粗さは35μmであり、剥離強度
は420gであった。
Comparative Example 2 A negative electrode was prepared using the above carbonaceous material in the same manner as in Comparative Example 1 and the surface roughness and peel strength were measured. The average roughness was 35 μm and the peel strength was 420 g. Met.

【0027】(実施例3)特開平13-00666号公報の手法
を用いて平均粒径20μmの合金材料を得た。この合金材
料を用い、実施例1と同様の手法により電極を作製し、
表面粗さと剥離強度を測定したところ、平均粗さは20μ
mであり、剥離強度は510gであった。
Example 3 An alloy material having an average particle size of 20 μm was obtained by using the method disclosed in Japanese Patent Laid-Open No. 13-00666. Using this alloy material, an electrode was produced in the same manner as in Example 1,
When the surface roughness and peel strength were measured, the average roughness was 20μ.
m, and the peel strength was 510 g.

【0028】(比較例3)上記炭素質材料を用いて比較
例1と同様の手法で負極を作製し、表面粗さと剥離強度
を測定したところ、平均粗さは45μmであり、剥離強度
は300gであった。
Comparative Example 3 A negative electrode was prepared using the above carbonaceous material in the same manner as in Comparative Example 1, and the surface roughness and peel strength were measured. The average roughness was 45 μm and the peel strength was 300 g. Met.

【0029】以上のように実施例2、3および比較例
2,3から、低結晶性炭素材料および合金材料において
も本発明の効果が示された。
As described above, from Examples 2 and 3 and Comparative Examples 2 and 3, the effects of the present invention were shown also in the low crystalline carbon materials and alloy materials.

【0030】(実施例4)バインダーとしてポリビニル
アルコールを用いた以外は実施例1と同様の手法により
負極を作製し、表面粗さと剥離強度を測定したところ、
平均粗さは10μmであり、剥離強度は500gであった。
Example 4 A negative electrode was prepared in the same manner as in Example 1 except that polyvinyl alcohol was used as the binder, and the surface roughness and peel strength were measured.
The average roughness was 10 μm and the peel strength was 500 g.

【0031】(比較例4)バインダーとしてアクリロニ
トリル・ブタジエン共重合体を用いた以外は実施例1と
同様の手法により負極を作製し、表面粗さと剥離強度を
測定したところ、平均粗さは10μmであり、剥離強度は4
40gであった。
Comparative Example 4 A negative electrode was prepared in the same manner as in Example 1 except that an acrylonitrile-butadiene copolymer was used as the binder, and the surface roughness and peel strength were measured. The average roughness was 10 μm. Yes, peel strength is 4
It was 40 g.

【0032】(実施例5)実施例1の手法を用い、使用
するNMPの割合を水に対して0.5 重量%、1.0 重量%、
5.0 重量%、10.0 重量%、20.0 重量%、40.0 重量
%、50.0重量%と変化させて負極を作製した。各負極の
剥離強度を実施例1と同様の手法にて測定した。結果を
図1に示す。この図1からわかるように、1重量%から4
0重量%を外れると剥離強度が極端に低下しており、本
発明の効果が示された。
(Example 5) Using the method of Example 1, the proportion of NMP used is 0.5% by weight, 1.0% by weight, and
Negative electrodes were produced by changing the amounts to 5.0% by weight, 10.0% by weight, 20.0% by weight, 40.0% by weight and 50.0% by weight. The peel strength of each negative electrode was measured by the same method as in Example 1. The results are shown in Fig. 1. As can be seen from this Figure 1, 1% by weight to 4
When it deviated from 0% by weight, the peel strength was extremely lowered, showing the effect of the present invention.

【0033】(実施例6)本願発明の製造法を用いリチ
ウムの挿入、脱落が可能な活物質の分散を行った時の、
製造時間の流れ、および従来から用いられるカルボキシ
メチルセルロース(CMC)による製造法により製造時
間の比較を行った。その工程の概略を示すと、下記のよ
うになる。→は時間の変化を表す。
(Embodiment 6) When an active material capable of inserting and removing lithium is dispersed using the manufacturing method of the present invention,
The manufacturing time was compared by the manufacturing time flow and the conventional manufacturing method using carboxymethyl cellulose (CMC). The outline of the process is as follows. → represents the change over time.

【0034】本願発明:陰極活物質(黒鉛)→NMP
→→ペースト 従来法: 陰極活物質(黒鉛)→CMC→→→→→→
ペースト NMPは負極活物質に対し、界面活性用の作用を示し、
その結果、ぬれ性を向上され、目的物のペーストを得る
までの時間が大幅に短縮された。
Present Invention: Cathode Active Material (Graphite) → NMP
→→ Paste conventional method: Cathode active material (graphite) → CMC →→→→→→
The paste NMP has a function of interfacial activity for the negative electrode active material,
As a result, the wettability was improved, and the time required to obtain the paste of the target was greatly shortened.

【0035】(実施例7)実施例1により得られた極板
と比較例1により得られた極板を用い、図2に示したよ
うな電池をそれぞれ組み立てた。1はステンレス製の正
極ケース、2はステンレス製の負極ケース、3はポリプ
ロピレン樹脂製の絶縁パッキング、4はLiCoO2を活物質
とする正極、5は実施例1または比較例1により得られ
た負極、6はポリプロピレン樹脂製の多孔質フィルムか
らなるセパレータである。電解液としてはエチレンカー
ボネート(EC),とジメチルカーボネート(DMC)をE
C:DMC=1:1の体積比で混合した溶媒に、LiPF6
1モル/リットルの濃度で溶解したものを用いた。
Example 7 Using the electrode plate obtained in Example 1 and the electrode plate obtained in Comparative Example 1, batteries shown in FIG. 2 were assembled. 1 is a positive electrode case made of stainless steel, 2 is a negative electrode case made of stainless steel, 3 is an insulating packing made of polypropylene resin, 4 is a positive electrode using LiCoO 2 as an active material, 5 is a negative electrode obtained in Example 1 or Comparative Example 1. , 6 are separators made of a polypropylene resin porous film. As the electrolyte, ethylene carbonate (EC) and dimethyl carbonate (DMC) are used.
LiPF 6 dissolved in a solvent mixed at a volume ratio of C: DMC = 1: 1 at a concentration of 1 mol / liter was used.

【0036】図3は0.2mAの定電流で4.2Vから3.
6Vの間で充放電をすることにより得られた各サイクル
の放電の電気容量を示したものである。電池Aは実施例
1により得られた極板を用いた電池,電池Bは比較例1に
より得られた極板を用いた電池である。電池Aは電池B
よりもサイクル特性が優れており、本発明の手法により
電池特性の改善が見られた。
FIG. 3 shows a constant current of 0.2 mA from 4.2V to 3.V.
The electric capacity of the discharge of each cycle obtained by charging and discharging between 6 V is shown. Battery A is an example
The battery using the electrode plate obtained in 1 and Battery B are the batteries using the electrode plate obtained in Comparative Example 1. Battery A is battery B
The cycle characteristics are superior to the above, and the battery characteristics are improved by the method of the present invention.

【0037】[0037]

【発明の効果】以上説明したように、本発明はリチウム
の挿入・脱離が可能な活物質を水溶性有機溶媒に分散さ
せる第一の工程、前記分散液に水を添加して分散させる
第二の工程、第二の工程で得られた分散液に結着材を添
加する第三の工程、前記結着材が添加された分散液を金
属箔に塗布後に熱風乾燥する第4の工程とを有する二次
電池用負極の製造方法である。本発明の手法により負極
活物質が黒鉛系、低結晶性炭素および合金のうちの少な
くとも一つである二次電池用負極をこれまでよりも短時
間に製造することが可能となる。
As described above, according to the present invention, the first step of dispersing an active material capable of inserting and desorbing lithium in a water-soluble organic solvent, the first step of dispersing water by adding water to the dispersion liquid A second step, a third step of adding a binder to the dispersion obtained in the second step, and a fourth step of applying the binder-added dispersion to a metal foil and then drying with hot air. A method for producing a negative electrode for a secondary battery having the above. By the method of the present invention, it becomes possible to manufacture a negative electrode for a secondary battery in which the negative electrode active material is at least one of graphite, low crystalline carbon and alloy in a shorter time than ever.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例5におけるMNPの重量比率と電極の剥
離強度の関係を示す図
FIG. 1 is a graph showing the relationship between the weight ratio of MNP and the peel strength of electrodes in Example 5.

【図2】実施例7において作製した電池の断面図FIG. 2 is a cross-sectional view of the battery manufactured in Example 7.

【図3】実施例7における本発明による極板を用いた電
池と比較例による極板を用いた電池のサイクル特性を比
較した図
FIG. 3 is a diagram comparing the cycle characteristics of the battery using the electrode plate according to the present invention and the battery using the electrode plate according to the comparative example in Example 7.

【符号の説明】[Explanation of symbols]

1 正極ケース 2 負極ケース 3 ポリプロピレン樹脂製絶縁パッキング 4 正極 5 負極 6 セパレータ 1 Positive case 2 Negative electrode case 3 Insulating packing made of polypropylene resin 4 positive electrode 5 Negative electrode 6 separator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ14 AK03 AL06 AL12 AM03 AM07 BJ03 BJ12 CJ02 CJ08 CJ28 DJ08 DJ16 EJ12 HJ10 5H050 AA19 BA17 CA08 CB07 CB12 DA03 DA11 EA00 EA22 EA23 FA02 FA17 GA00 GA02 GA10 GA27 HA10    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5H029 AJ14 AK03 AL06 AL12 AM03                       AM07 BJ03 BJ12 CJ02 CJ08                       CJ28 DJ08 DJ16 EJ12 HJ10                 5H050 AA19 BA17 CA08 CB07 CB12                       DA03 DA11 EA00 EA22 EA23                       FA02 FA17 GA00 GA02 GA10                       GA27 HA10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンの挿入と脱離とをする活
物質を水溶性有機溶媒に分散させた第一の分散液を作成
する第一工程と、前記第一の分散液に水を添加して分散
させた第二の分散液を作成する第二工程と、前記第二の
分散液に結着材を添加させた第三の分散液を作成する第
三工程と、前記第三の分散液を金属箔に塗布し乾燥する
第四工程とを有する電池用電極の製造方法。
1. A first step of preparing a first dispersion liquid in which an active material for inserting and releasing lithium ions is dispersed in a water-soluble organic solvent, and water is added to the first dispersion liquid. Second step of creating a second dispersion liquid dispersed by, a third step of creating a third dispersion liquid by adding a binder to the second dispersion liquid, the third dispersion liquid Is applied to a metal foil and dried, and a fourth step of producing a battery electrode.
【請求項2】 水溶性有機溶媒がアルコール、N−メチ
ルピロリドンまたはアセトンの少なくとも1つを含有す
ることを特徴とする請求項1記載の電池用電極の製造方
法。
2. The method for producing a battery electrode according to claim 1, wherein the water-soluble organic solvent contains at least one of alcohol, N-methylpyrrolidone and acetone.
【請求項3】 結着材が、スチレン・ブタジエン共重合
体、ポリビニルアルコールの少なくとも一方を含むこと
を特徴とする請求項1または2記載の電池用電極の製造
方法。
3. The method for producing a battery electrode according to claim 1, wherein the binder contains at least one of a styrene / butadiene copolymer and polyvinyl alcohol.
【請求項4】 活物質が黒鉛、低結晶性炭素または合金
の少なくとも一つを含有することを特徴とする請求項
1、2または3記載の電池用電極の製造方法。
4. The method for producing a battery electrode according to claim 1, wherein the active material contains at least one of graphite, low crystalline carbon and an alloy.
【請求項5】 水溶性有機溶媒の混合量が水に対して1
重量%以上40重量%以下であることを特徴とする請求
項1、2、3または4記載の電池用電極の製造方法。
5. The mixing amount of the water-soluble organic solvent is 1 with respect to water.
The method for producing a battery electrode according to claim 1, 2, 3 or 4, wherein the content is not less than 40% by weight.
【請求項6】 請求項1〜5記載の製造法により作成し
た電極と、非水電解質とを有するリチウム電池。
6. A lithium battery comprising an electrode prepared by the manufacturing method according to claim 1 and a non-aqueous electrolyte.
JP2001337647A 2001-11-02 2001-11-02 Manufacturing method of electrode for battery and lithium battery Pending JP2003142082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001337647A JP2003142082A (en) 2001-11-02 2001-11-02 Manufacturing method of electrode for battery and lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001337647A JP2003142082A (en) 2001-11-02 2001-11-02 Manufacturing method of electrode for battery and lithium battery

Publications (1)

Publication Number Publication Date
JP2003142082A true JP2003142082A (en) 2003-05-16

Family

ID=19152248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001337647A Pending JP2003142082A (en) 2001-11-02 2001-11-02 Manufacturing method of electrode for battery and lithium battery

Country Status (1)

Country Link
JP (1) JP2003142082A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054096A (en) * 2004-08-11 2006-02-23 Mitsubishi Chemicals Corp Slurry for electrode of lithium secondary battery and manufacturing method of electrode for lithium secondary battery
WO2008117857A1 (en) * 2007-03-26 2008-10-02 Toyota Jidosha Kabushiki Kaisha Treated active material, method for treating thereof, and paste containing the treated active material
WO2013115368A1 (en) 2012-02-02 2013-08-08 東洋インキScホールディングス株式会社 Composition for forming secondary cell electrode, secondary cell electrode, and secondary cell
JP2016152153A (en) * 2015-02-18 2016-08-22 株式会社Gsユアサ Power storage element and method of manufacturing power storage element
CN110643053A (en) * 2019-09-29 2020-01-03 昆山聚创新能源科技有限公司 Sodium carboxymethyl cellulose solution and preparation method and application thereof
JP2022156054A (en) * 2021-03-31 2022-10-14 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode and nonaqueous electrolyte secondary battery having the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054096A (en) * 2004-08-11 2006-02-23 Mitsubishi Chemicals Corp Slurry for electrode of lithium secondary battery and manufacturing method of electrode for lithium secondary battery
JP4715125B2 (en) * 2004-08-11 2011-07-06 三菱化学株式会社 Slurry for lithium secondary battery electrode and method for producing lithium secondary battery electrode
WO2008117857A1 (en) * 2007-03-26 2008-10-02 Toyota Jidosha Kabushiki Kaisha Treated active material, method for treating thereof, and paste containing the treated active material
JP2008243470A (en) * 2007-03-26 2008-10-09 Toyota Motor Corp Processed active material and its processing method as well as paste containing processed active material
WO2013115368A1 (en) 2012-02-02 2013-08-08 東洋インキScホールディングス株式会社 Composition for forming secondary cell electrode, secondary cell electrode, and secondary cell
KR20160079937A (en) 2012-02-02 2016-07-06 토요잉크Sc홀딩스주식회사 Composition for forming secondary cell electrode, secondary cell electrode, and secondary cell
JP2016152153A (en) * 2015-02-18 2016-08-22 株式会社Gsユアサ Power storage element and method of manufacturing power storage element
CN110643053A (en) * 2019-09-29 2020-01-03 昆山聚创新能源科技有限公司 Sodium carboxymethyl cellulose solution and preparation method and application thereof
JP2022156054A (en) * 2021-03-31 2022-10-14 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode and nonaqueous electrolyte secondary battery having the same
JP7399904B2 (en) 2021-03-31 2023-12-18 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode and non-aqueous electrolyte secondary battery including the same

Similar Documents

Publication Publication Date Title
JP5060289B2 (en) Nonaqueous electrolyte secondary battery electrode, nonaqueous electrolyte secondary battery, and automobile, electric tool or stationary device equipped with the same
JP4717847B2 (en) Positive electrode active material and lithium secondary battery including the same
JP3585122B2 (en) Non-aqueous secondary battery and its manufacturing method
JP4743752B2 (en) Lithium ion secondary battery
KR101678798B1 (en) Method for producing nonaqueous electrolyte secondary battery
JP5818116B2 (en) Sealed lithium secondary battery and manufacturing method thereof
JP2007234565A (en) Nonaqueous electrolyte secondary battery
CN111758179B (en) Positive electrode, electrode group and nonaqueous electrolyte battery
CN104752751B (en) The manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2005259682A (en) Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
JP2006294482A (en) Lithium ion secondary battery
JP5392585B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
WO2015121731A1 (en) Nonaqueous electrolyte secondary battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JP5843107B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2019046687A (en) Method of manufacturing negative electrode for aqueous lithium ion secondary battery and method of manufacturing aqueous lithium ion secondary battery
JP5682793B2 (en) Lithium secondary battery and manufacturing method thereof
EP3709397A1 (en) Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2017188305A (en) Method for evaluating lithium ion secondary battery output
JP2005197073A (en) Positive electrode for lithium secondary battery
JP5626035B2 (en) Method for pretreatment and use of lithium ion secondary battery
JP2018060751A (en) Lithium ion secondary battery and method for manufacturing the same
JP2003142082A (en) Manufacturing method of electrode for battery and lithium battery
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP2000012029A (en) Nonaqueous electrolyte secondary battery