JP4491085B2 - Method for recovering positive electrode material from waste secondary battery and method for producing non-aqueous electrolyte secondary battery using the same - Google Patents

Method for recovering positive electrode material from waste secondary battery and method for producing non-aqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP4491085B2
JP4491085B2 JP15419399A JP15419399A JP4491085B2 JP 4491085 B2 JP4491085 B2 JP 4491085B2 JP 15419399 A JP15419399 A JP 15419399A JP 15419399 A JP15419399 A JP 15419399A JP 4491085 B2 JP4491085 B2 JP 4491085B2
Authority
JP
Japan
Prior art keywords
secondary battery
electrode material
positive electrode
battery waste
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15419399A
Other languages
Japanese (ja)
Other versions
JP2000348782A (en
Inventor
好郎 太田
勝弘 加藤
康博 白川
亮 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tama Chemical Co Ltd
Original Assignee
Toshiba Corp
Tama Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tama Chemical Co Ltd filed Critical Toshiba Corp
Priority to JP15419399A priority Critical patent/JP4491085B2/en
Publication of JP2000348782A publication Critical patent/JP2000348782A/en
Application granted granted Critical
Publication of JP4491085B2 publication Critical patent/JP4491085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Description

【0001】
【発明の属する技術分野】
この発明は、金属箔に電極材料が塗着されている二次電池廃材から正極材を回収する方法及びこれを用いた非水電解液二次電池に係り、特に、二次電池廃材から再び非水電解液二次電池の電極材としてそのまま再利用可能な状態で金属化合物を効率的に回収することができる方法及びこれを用いた非水電解液二次電池の製造方法に関する。
【0002】
【従来の技術】
例えば、リチウムイオン二次電池にはその正極材としてコバルト酸リチウム(LiCoO2 )が用いられており、また、ニッケル水素電池にはその正極の活物質である水素化ニッケル中に容量利用率向上を目的として酸化コバルトが添加されており、更に、ニカド電池にはその正極(ニッケル)中に耐腐蝕性向上や高容量化を目的として硝酸コバルトが添加されている。
【0003】
そして、このような正極材は、例えばリチウムイオン二次電池の場合には、炭酸リチウムと酸化コバルトとを混合し、焙焼してコバルト酸リチウムとし、次いでこのコバルト酸リチウムとグラファイト等の導電剤及びフッ素樹脂バインダー等の結着剤とを配合し、これを有機溶剤によりスラリー状に混練し、この混練物をアルミニウム箔(以下、単に「アルミ箔」という)等の金属箔上に均一に塗布し、乾燥して溶剤を除去し、金属箔に導電剤2〜10重量%及び結着剤2〜10重量%を含む正極材が塗着された金属箔塗着材を形成し、この金属箔塗着材を所定の形状に裁断し、二次電池の正極を形成している。
【0004】
このような二次電池は、ノート型パソコン、携帯電話、簡易携帯電話(PHS)、電気シェーバー、ヘッドホンステレオ、VTR等のポータブル電気機器の普及に伴ってその需要が急速に高まっているが、その生産量が増加するにつれて、二次電池製造時に発生する金属箔塗着材のスクラップや使用不能になって回収される二次電池から出る金属箔塗着材の廃棄物処理が社会的な問題になり始めている。以下、これら二次電池製造時に発生する金属箔塗着材のスクラップや、使用不能になった二次電池から出てくる金属箔塗着材の廃棄物を一括して「二次電池廃材」という。
【0005】
その一方で、特にコバルトはその資源に乏しく、我が国ではそのほとんどを外国に依存しているにもかかわらず、その用途は、二次電池の電極材料、顔料、窯業、フェライト、触媒、超硬合金等の日用品からハイテク製品に至るまで極めて広範に亘っており、特にリチウムイオン二次電池にはその1個当たり酸化コバルトとして約7gも使用されている。このため、コバルトは元々高価であると共にその需要が増大して益々高価になりつつある。
【0006】
そこで、これまでにも廃棄物の二次電池廃材からコバルト化合物を回収する幾つかの試みがなされ、アルキル燐酸を含む有機溶剤でコバルト化合物を抽出する方法(特開平3−10032号、特公昭56−11371号、特公平5−14013号、特開平7−268881号、特開平9−111360号、特開平9−195071号の各公報)等の溶剤抽出法や、二次電池廃材を酸素含有ガス気流中300〜600℃で熱分解処理して得られた焙焼物からコバルト化合物を回収する方法(特開平10−8150号公報)等の熱分解処理法や、この熱分解処理法と溶剤抽出法とを組み合わせた方法(特開平10−46266号公報)等が提案されている。
【0007】
しかしながら、コバルト化合物をアルキル燐酸に溶解して回収する溶剤抽出法では、溶液の状態で回収されることからこの溶液から金属コバルト等の形で析出させる必要があり、そのための薬剤や溶剤が必要になるほか、使用した薬剤や溶剤の廃液が発生してその処理が必要になり、しかも、リチウムイオン二次電池の製造に再利用するためには得られた金属コバルト等を再びコバルト酸リチウムにしなければならず、回収して再利用するコストが嵩んで経済的でないという問題がある。
【0008】
これに対して、熱分解処理法による場合には、上記溶剤抽出法のように回収して再利用するためにコストがかかりすぎるという問題はないが、加熱温度が600℃を超えて高くなると、アルミ箔が酸化されてアルミナ(Al2 3 )が発生し、これが回収される金属化合物、特にコバルト酸リチウム中に不純物として入り込み、この不純物のアルミナが回収されたコバルト酸リチウムを二次電池の電極材料として用いた際に二次電池の性能を低下せしめるという問題があり、反対に、この加熱温度が300℃より低いとフッ素樹脂バインダー等の結着剤が充分に分解されずにアルミ箔から電極材料が充分に剥離しないという問題が生じる。
【0009】
しかも、この熱分解処理法において、加熱温度が400℃を超えて比較的高く、かつ、供給される酸素量が不足すると、電極材料中に導電剤として配合されているグラファイトがコバルト酸リチウム中の酸素を引き抜く還元反応が起こるためと考えられるが、回収されるコバルト酸リチウムが二次凝集を起こして当初の粒径よりも大きくなり(焼結現象)、この場合も二次電池の性能を低下させる原因になって、せっかくコバルト酸リチウムの形で回収しても、そのままでは電極材料として再利用できないという問題がある。
この焼結現象は、熱分解処理操作中酸素を充分に供給した場合でも完全には避けられず、特に加熱温度が500℃を超えた場合にはこの現象が顕著になる。
【0010】
【発明が解決しようとする課題】
そこで、本発明者らは、二次電池廃材から正極材として有用な金属化合物を如何にしてそのまま再利用可能な状態で分離して回収するかについて鋭意研究を重ねた結果、二次電池廃材を酸素含有ガス気流中で熱分解処理する際に、この熱分解処理を二段回で行い、第一段階の金属箔から電極材料を剥離させるまでは電極材料中のグラファイトの分解を極力抑制し、また、金属箔を分離除去した後の第二段階ではグラファイトの分解を行うことにより、回収される金属化合物についてその粒径が大きくなる焼結現象を可及的に抑制できることを見出し、本発明を完成した。
【0011】
従って、本発明の目的は、二次電池廃材から正極材として有用な金属化合物をそのまま再利用可能な状態で効率良く、しかも、安価に回収することができる二次電池廃材からの正極材回収方法を提供することにある。
【0012】
また、本発明の他の目的は、二次電池廃材からそのまま再利用可能な状態で回収された金属化合物が正極材の一部又は全部として用いる非水電解液二次電池の製造方法を提供することにある。
【0013】
【課題を解決するための手段】
すなわち、本発明は、金属箔に電極材料が塗着されている二次電池廃材を熱分解処理して電極材料中の金属化合物を回収する二次電池廃材からの正極材回収方法であり、二次電池廃材を酸素含有ガス気流中300℃以上500℃未満に加熱して金属箔から電極材料を剥離させる剥離工程と、得られた剥離処理物から金属箔を分離除去して粉体物を回収する分離工程と、回収された粉体物を酸素含有ガス気流中500℃以上650℃以下に加熱して粉体物中の燃焼性物質を焼却する焙焼工程と、得られた焙焼物を正極材用途の金属化合物として回収する回収工程とを含む、二次電池廃材からの正極材回収方法である。
【0014】
また、本発明は、二次電池廃材から回収された金属化合物を正極材の一部又は全部として非水電解液二次電池を製造する、非水電解液二次電池の製造方法である。
【0015】
本発明において、処理の対象となる二次電池廃材は、二次電池製造時に発生する金属箔塗着材のスクラップや使用不能になった二次電池から出てくる金属箔塗着材の廃棄物等の、金属化合物を含む電極材料が金属箔に塗着されているものである。
【0016】
また、このような二次電池廃材中に含まれる電極材料としては、その成分として酸化コバルトや硝酸コバルト等のコバルト化合物やリチウム化合物等を含むものであればよく、その電極材料が正極材であっても、また、負極材料であってもかまわない。この電極材料については、代表的には、コバルト化合物の含有量が多いリチウムイオン二次電池、ニッケル水素電池、ニカド電池等の正極材を挙げることができる。
【0017】
更に、このような電極材料と共に二次電池廃材を形成する金属箔についても、特に制限されるものではなく、代表的にはアルミ箔等が挙げられる。
【0018】
本発明方法においては、金属箔から電極材料を剥離させる剥離工程に先駆けて、好ましくは二次電池廃材を所定の大きさに裁断して裁断物とするのがよく、この裁断工程では、二次電池廃材を以後の工程で取り扱い易い大きさ、通常0.5〜5cm角程度の大きさの裁断物にするのがよい。
【0019】
また、二次電池廃材又はその裁断物について、金属箔から電極材料を剥離させる剥離工程は、酸素含有ガス気流中300℃以上500℃未満、好ましくは350〜450℃の加熱温度で熱分解処理することにより行う。この剥離工程における加熱温度が300℃より低いと、金属箔からの電極材料の剥離が完全でなくなる場合が生じ、また、500℃以上になると、フッ素樹脂バインダー等の結着剤が分解され、グラファイト等の導電剤の一部が分解されるだけでなく、これらグラファイト等の導電剤が還元剤として作用し、回収目的の金属化合物、特にコバルト酸リチウムの一部が還元される虞が生じる。
【0020】
この剥離工程で用いる装置としては、必要な熱分解処理を行うことができれば、ロータリーキルン、流動床式加熱炉、箱型高温乾燥機等、特に制限されないが、攪拌条件下で連続的な操業が可能なロータリーキルンを用いるのがよい。
そして、この剥離工程での熱分解処理に用いる酸素含有ガスとしては、空気や、酸素ガスに窒素ガスを適当な割合で混合した混合ガス等、酸素を適当な割合で含むものであればよく、特に限定されるものではないが、安価で取扱い易い空気を用いるのがよい。
【0021】
特に、例えば二次電池廃材又はその裁断物について送り量10〜200リットル/時間、好ましくは20〜30リットル/時間の能力を有するロータリーキルンを用いて剥離工程を連続的に操業する場合には、好ましくは、加熱温度200〜500℃、より好ましくは400〜450℃、滞留時間10〜120分、より好ましくは20〜30分、及び空気導入量10〜1000リットル/分、より好ましくは100〜200リットル/分の条件で行うのがよい。このような条件で剥離工程を操業することにより、この剥離工程での金属箔からの電極材料の剥離をほぼ完全に遂行できるほか、金属化合物の還元を抑制して粒度が大きくなる現象を抑制することができる。
【0022】
上記剥離工程で得られた剥離処理物は、次の分離工程で金属箔が可及的に分離除去される。この分離工程で用いる分離手段としては、篩等の手段、好ましくは振動篩が用いられ、粉体物が回収される。この粉体物は、電極材料中の金属化合物を主成分とし、これに導電剤として添加されたグラファイト等のほか、燃焼しきれずに残留した結着剤のフッ素樹脂バインダー等が含まれている。
【0023】
このようにして回収された粉体物は、焙焼工程に送られて酸素含有ガス気流中500℃以上650℃以下、好ましくは550〜600℃の加熱温度で熱分解処理され、この粉体物中に含まれているグラファイト、フッ素樹脂バインダー等の燃焼性物質が完全に酸化される。
【0024】
この焙焼工程における加熱温度が500℃より低いと、粉体物中の特にグラファイト等が完全に酸化されず、消失しない場合が生じ、また、650℃を超えて加熱すると、回収目的の金属化合物、例えばコバルト酸リチウムが焼結してその粒径が大きくなる虞が生じる。
また、この焙焼工程では、粉体物中に存在する導電剤由来のグラファイト等が還元剤として作用し、金属化合物が還元されてその粒径が大きくなる虞があるので、充分に酸素を供給して攪拌条件下に熱分解処理を行う必要がある。
【0025】
この焙焼工程で用いる装置としては、上記剥離工程と同様に、必要な熱分解処理を行うことができれば特に制限されないが、攪拌条件下で連続的な操業が可能なロータリーキルンを用いるのがよい。
そして、この焙焼工程での熱分解処理に用いる酸素含有ガスについても、空気や、酸素ガスに窒素ガスを適当な割合で混合した混合ガス等、酸素を適当な割合で含むものであればよく、特に限定されるものではないが、安価で取扱い易い空気を用いるのがよい。
【0026】
特に、例えば粉体物送り量5〜10kg/時間の能力を有するロータリーキルンを用いて焙焼工程を連続的に操業する場合には、好ましくは、加熱温度が550〜600℃、滞留時間30〜60分、及び空気導入量200〜400リットル/分の条件で行うのがよい。このように焙焼工程で空気を送り込みながら熱分解処理することにより、熱分解中温度が角に上昇するのが防止され、また、粉体物中のグラファイト等が効率良く酸素と接触して酸化されるので、粉体物中の金属化合物以外の導電剤や結着剤由来の物質を完全に酸化させて消失せしめることができるほか、金属化合物の還元を抑制してその粒度が大きくなる焼結現象を可及的に抑制することができる。
【0027】
この焙焼工程で得られた焙焼物は、次の回収工程で正極材用途の金属化合物として回収されるが、この回収工程の際に、必要により振動篩等の手段により篩分けし、得られた金属化合物中に残存する金属箔残留物や粗大粒子等を分離除去してもよい。
【0028】
この回収工程で得られる金属化合物は、通常、そのカーボン除去率が99重量%以上に達しており、カーボンフリーの金属化合物が得られる。このため、回収されたコバルト酸リチウム等の金属化合物は、そのまま正極材製造用原料の一部又は全部としてリサイクルすることができ、この場合には二次電池製造時に高価なコバルト酸リチウム等の金属化合物を無駄なく利用することができる。
【0029】
本発明の方法で得られた金属化合物は、これを正極材の一部として用いる場合には、組み合わせる材料について特に制限はなく、例えばコバルト酸リチウム(LiCoO2)を主体とする活物質、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4) 等と共に広く用いることができる。
【0030】
本発明の方法で得られた金属化合物を正極材の一部又は全部として用いた場合であっても、従来と同様にして非水電解液二次電池を製造することができる。すなわち、負極材料としては、リチウムをドープ、脱ドープ可能なものであれば、例えば、熱分解炭素、コークス、グラファイト、ガラス繊維状炭素、炭素繊維、あるいは金属リチウム、リチウム合金等が使用可能であり、また、電解液としては、リチウム塩を電解質としてこれを有機溶媒に溶解させた電解液が用いられる。ここで、有機溶媒としては、特に限定されるものではないが、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等の環状カーボネートや、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)等の鎖状カーボネートや、1,2-ジメトキシエタン(DME)、ジエトキシエタン(DEE)等の鎖状エーテル等から選ばれる少なくとも1種を用いることができ、また、電解質としては、例えば、過塩素酸リチウム(LiClO4)、六弗化リン酸リチウム(LiPF6) 、ホウ弗化リチウム(LiBF4) 等のリチウム塩を用いることができる。
【0031】
なお、本発明の上記剥離工程で回収された金属箔は、それが酸化されていなくて再生可能なものであれば、そのまま金属箔の製造原料としてリサイクルしてもよく、また、一部酸化されているような場合には、塩酸、硫酸等の適当な酸やアルカリに溶解して有用な金属化合物として回収することができる。
【0032】
【発明の実施の形態】
以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。
【0033】
実施例1
試料として、コバルト酸リチウム82重量%、導電剤としてのカーボン4重量%、及び結着剤としてのフッ素樹脂バインダー2重量%の組成を有する正極材がアルミ箔に塗着されたアルミ箔塗着材のスクラップ(アルミ箔塗着廃材)を用いた。
【0034】
このアルミ箔塗着廃材を約10〜100mm角に裁断して嵩比重0.1〜0.5の裁断物を調製した(裁断工程)。
得られた裁断物20〜30リットル/時間を直径30cm×長さ4m及び傾斜角1/100度のSUS−310S製のロータリーキルン(高砂工業社製)の投入口から装入し、回転速度2rpm、加熱温度400〜450℃、滞留時間20〜30分、及び空気導入量100〜200リットル/分の条件で熱分解処理を行い、その排出口から剥離処理物を抜き出した(剥離工程)。
【0035】
この剥離工程で得られた剥離処理物を冷却した後、この剥離処理物9〜20kg/時間を250メッシュの篩目を有する自動振動篩(西村機械社製)に導入し、振動モータ回転数1800rpm、振幅水平2.1mm及び垂直3.1mmの条件で篩分けし、篩上からアルミ箔を分離除去すると共に、篩下から粉体物17kg/時間を回収した(分離工程)。
この粉体物の組成はリチウム酸コバルト及びカーボンからなり、その平均粒径(測定法:レーザ回折散乱法)は3.5μmであった。
【0036】
この分離工程で回収された粉体物10kg/時間を、直径31mm×長さ4m、有効加熱部2.4m、及び傾斜角2/100度のインコネル(SUS310)製ロータリーキルン(高砂工業社製)の投入口から装入し、回転速度6rpm、加熱温度570〜630℃、投入口側から最高温度域への温度勾配30℃/m、滞留時間29分、及び空気導入量399リットル/分の条件で熱分解処理を行い、その排出口から焙焼物9kg/時間を抜き出した(焙焼工程)。
【0037】
この焙焼工程で得られた焙焼物を冷却した後、この焙焼物3kg/時間を250メッシュの篩目を有する自動振動篩(西村機械社製)に導入し、振動モータ回転数1800rpm、振幅水平2.1mm及び垂直3.1mmの条件で篩分けし、篩上から粒径の大きい焼結物を分離除去すると共に、篩下からコバルト酸リチウムの粉体2.8〜2.9kg/時間を回収した(回収工程)。
【0038】
実施例2
上記実施例1で得られたコバルト酸リチウムの回収粉体90重量%、グラファイト6重量%、及びポリ弗化ビニリデン4重量%を混合して正極合剤を調製し、これをN-メチル−2-ピロリドンに分散せしめてスラリー状とし、アルミニウム箔に塗布し、乾燥させた後、ローラープレスで圧縮成形して帯状の正極を得た。
【0039】
また、炭素材料93重量%とポリ弗化ビニリデン7重量%を混合して負極合剤を調製し、アルミニウム箔に代えて銅箔を使用し、上記正極と同様な方法で帯状の負極を得た。
【0040】
このようにして得られた帯状の正極と負極を、微孔性ポリプロピレンフィルムからなるセパレータを介して、巻き付けて捲回体とし、この捲回体に電極リードを取り付け、缶に挿入した後、ECとMECの1対1混合溶剤にホウ弗化リチウム(LiBF4) 1モルを溶解させて得られた電解液を上記缶中に注入し、缶開口部を封止して円筒形の非水電解液二次電池を作製した。
【0041】
得られた二次電池について、環境温度20℃及び電流制限1Aの下で4.2Vまで定電圧充電を行い、1時間休止後に2.7Vまで放電させた。次に、1時間休止後に電流制限1Aの下で4.2Vまで定電圧充電を行い、その後、−20℃で2.7Vまで放電させた。−20℃での放電容量〔Cap(-20)〕を20℃での放電容量〔Cap(20) 〕で割った容量比〔Cap(-20)/Cap(20)〕を求め、放電容量の温度特性を調べた。結果を表1に示す。
【0042】
実施例3
炭酸リチウム(Li2CO3)と酸化コバルト(Co3O4) をモル比(Li/Co)1.0となるように混合し、空気中で900℃、5時間焼成し、コバルト酸リチウム(LiCoO2)を得た。
この新鮮なコバルト酸リチウムと上記実施例1で得られたコバルト酸リチウムの回収粉体とを1:1の割合で混合し、得られた混合物90重量%、グラファイト6重量%、及びポリ弗化ビニリデン4重量%の割合で混合して正極合剤を調製し、上記実施例2と同様にして非水電解液二次電池を作製した。
得られた二次電池について、上記実施例2と同様にして放電容量の温度特性を調べた。結果を表1に示す。
【0043】
比較例1
上記実施例3で得られた新鮮なコバルト酸リチウム90重量%、グラファイト6重量%、及びポリ弗化ビニリデン4重量%の割合で混合して正極合剤を調製し、上記実施例2と同様にして非水電解液二次電池を作製した。
得られた二次電池について、上記実施例2と同様にして放電容量の温度特性を調べた。結果を表1に示す。
【0044】
【表1】

Figure 0004491085
【0045】
上記表1に示す結果から明らかなように、実施例1で得られたコバルト酸リチウムの回収粉体を用いた場合には、室温での放電容量は多少低下するものの、低温での容量現象は逆に少なく、放電容量の温度依存性が改善された非水電解液二次電池が得られる。
【発明の効果】
本発明によれば、二次電池廃材中の電極材料中の有用な金属化合物をそのまま再利用可能な状態で効率良く、しかも、安価に回収することができ、工業的価値の高いものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering a positive electrode material from a secondary battery waste material in which an electrode material is coated on a metal foil, and a non-aqueous electrolyte secondary battery using the same, and in particular, from a secondary battery waste material, The present invention relates to a method capable of efficiently recovering a metal compound in a state where it can be reused as it is as an electrode material of a water electrolyte secondary battery, and a method for producing a non-aqueous electrolyte secondary battery using the same.
[0002]
[Prior art]
For example, lithium cobalt oxide (LiCoO 2 ) is used as a positive electrode material for lithium ion secondary batteries, and capacity utilization is improved in nickel hydride, which is the active material of the positive electrode, for nickel metal hydride batteries. Cobalt oxide is added for the purpose. Further, in the nickel-cadmium battery, cobalt nitrate is added to the positive electrode (nickel) for the purpose of improving the corrosion resistance and increasing the capacity.
[0003]
For example, in the case of a lithium ion secondary battery, such a positive electrode material is a mixture of lithium carbonate and cobalt oxide, roasted to obtain lithium cobaltate, and then a conductive agent such as lithium cobaltate and graphite. And a binder such as a fluororesin binder, kneaded into a slurry with an organic solvent, and uniformly applied onto a metal foil such as an aluminum foil (hereinafter simply referred to as “aluminum foil”). And the solvent is removed by drying to form a metal foil coating material in which a positive electrode material containing 2 to 10% by weight of a conductive agent and 2 to 10% by weight of a binder is coated on the metal foil. The coating material is cut into a predetermined shape to form the positive electrode of the secondary battery.
[0004]
The demand for such secondary batteries is rapidly increasing with the spread of portable electric devices such as notebook computers, mobile phones, simple mobile phones (PHS), electric shavers, headphone stereos, VTRs, etc. As the production volume increases, the disposal of metal foil coating material scrap generated during the manufacture of secondary batteries and the disposal of metal foil coating material from secondary batteries that are recovered after they become unusable becomes a social problem. It is starting to become. Hereinafter, scraps of the metal foil coating material generated at the time of manufacturing the secondary battery and the waste of the metal foil coating material coming out of the secondary battery that has become unusable are collectively referred to as “secondary battery waste material”. .
[0005]
On the other hand, in particular, cobalt is scarce in its resources, and despite its dependence on foreign countries in Japan, its applications are for secondary battery electrode materials, pigments, ceramics, ferrites, catalysts, cemented carbides. In general, lithium ion secondary batteries use about 7 g of cobalt oxide as one of them. For this reason, cobalt is originally expensive, and its demand is increasing and becoming increasingly expensive.
[0006]
Thus, several attempts have been made to recover a cobalt compound from waste secondary battery waste, and a method for extracting a cobalt compound with an organic solvent containing an alkylphosphoric acid (Japanese Patent Laid-Open No. 3-10032, Japanese Patent Publication No. 56). -11371, JP-B-5-14013, JP-A-7-268881, JP-A-9-111360, JP-A-9-195071) and the like, and secondary battery waste material as oxygen-containing gas Thermal decomposition treatment methods such as a method of recovering a cobalt compound from a roasted product obtained by thermal decomposition treatment at 300 to 600 ° C. in an air stream (Japanese Patent Laid-Open No. 10-8150), and these thermal decomposition treatment methods and solvent extraction methods And the like (Japanese Patent Laid-Open No. 10-46266) have been proposed.
[0007]
However, in the solvent extraction method in which a cobalt compound is dissolved and recovered in an alkylphosphoric acid, it is recovered in the form of a solution, so it is necessary to deposit it in the form of metallic cobalt etc. from this solution. In addition, waste liquids of used chemicals and solvents are generated and need to be treated, and in order to reuse them in the manufacture of lithium ion secondary batteries, the obtained metallic cobalt must be converted to lithium cobalt oxide again. In other words, there is a problem that the cost of collection and reuse increases and it is not economical.
[0008]
On the other hand, in the case of the thermal decomposition method, there is no problem that it is too costly to recover and reuse as in the solvent extraction method, but when the heating temperature becomes higher than 600 ° C, The aluminum foil is oxidized to generate alumina (Al 2 O 3 ), which enters the recovered metal compound, particularly lithium cobalt oxide, as an impurity. The lithium cobalt oxide from which the alumina of the impurity is recovered is used as a secondary battery. When used as an electrode material, there is a problem that the performance of the secondary battery is deteriorated. On the contrary, if this heating temperature is lower than 300 ° C., the binder such as a fluororesin binder is not sufficiently decomposed from the aluminum foil. There arises a problem that the electrode material does not peel sufficiently.
[0009]
Moreover, in this thermal decomposition treatment method, when the heating temperature is relatively high exceeding 400 ° C. and the amount of supplied oxygen is insufficient, the graphite compounded as a conductive agent in the electrode material is contained in the lithium cobalt oxide. This is thought to be due to a reduction reaction that draws out oxygen, but the recovered lithium cobalt oxide causes secondary agglomeration and becomes larger than the original particle size (sintering phenomenon), which also reduces the performance of the secondary battery. However, even if it is recovered in the form of lithium cobaltate, it cannot be reused as an electrode material.
This sintering phenomenon cannot be completely avoided even when oxygen is sufficiently supplied during the thermal decomposition treatment operation, and this phenomenon becomes prominent particularly when the heating temperature exceeds 500 ° C.
[0010]
[Problems to be solved by the invention]
Therefore, the present inventors conducted extensive research on how to separate and recover a metal compound useful as a positive electrode material from a secondary battery waste material in a reusable state as it is. When performing pyrolysis treatment in an oxygen-containing gas stream, this pyrolysis treatment is performed in two stages, suppressing the decomposition of graphite in the electrode material as much as possible until the electrode material is peeled from the first stage metal foil, In addition, in the second stage after separating and removing the metal foil, it was found that the sintering phenomenon in which the particle size of the recovered metal compound is increased can be suppressed as much as possible by decomposing graphite. completed.
[0011]
Therefore, an object of the present invention is to recover a positive electrode material from a secondary battery waste material that can be efficiently and inexpensively recovered from a secondary battery waste material, which is useful as a positive electrode material in a reusable state. Is to provide.
[0012]
Another object of the present invention is to provide a method for producing a non-aqueous electrolyte secondary battery in which a metal compound recovered in a reusable state from a secondary battery waste is used as part or all of the positive electrode material. There is.
[0013]
[Means for Solving the Problems]
That is, the present invention is a method for recovering a positive electrode material from a secondary battery waste material by thermally decomposing a secondary battery waste material coated with an electrode material on a metal foil to recover a metal compound in the electrode material. A secondary battery waste material is heated in an oxygen-containing gas stream to 300 ° C or higher and lower than 500 ° C to separate the electrode material from the metal foil, and the metal foil is separated and removed from the obtained peeled material to collect the powder. A separation step, a roasting step in which the recovered powder is heated to 500 ° C. or more and 650 ° C. or less in an oxygen-containing gas stream, and a combustible substance in the powder is incinerated; And a recovery step of recovering as a metal compound for use as a material.
[0014]
Moreover, this invention is a manufacturing method of a non-aqueous electrolyte secondary battery which manufactures a non-aqueous electrolyte secondary battery using the metal compound collect | recovered from the secondary battery waste material as a part or all of a positive electrode material.
[0015]
In the present invention, the secondary battery waste material to be treated is a scrap of metal foil coating material generated during the production of the secondary battery or a waste of metal foil coating material coming out of a secondary battery that has become unusable. An electrode material containing a metal compound is applied to a metal foil.
[0016]
In addition, the electrode material contained in such secondary battery waste material may be any material that contains a cobalt compound such as cobalt oxide or cobalt nitrate, a lithium compound, or the like as its component, and the electrode material is a positive electrode material. Alternatively, it may be a negative electrode material. Typical examples of the electrode material include positive electrode materials such as lithium ion secondary batteries, nickel-metal hydride batteries, and nickel-cadmium batteries having a high cobalt compound content.
[0017]
Furthermore, the metal foil that forms the secondary battery waste together with such an electrode material is not particularly limited, and typically includes an aluminum foil or the like.
[0018]
In the method of the present invention, prior to the peeling step of peeling the electrode material from the metal foil, preferably the secondary battery waste material is cut into a predetermined size to obtain a cut product. In this cutting step, The battery waste material is preferably cut into a size that is easy to handle in the subsequent steps, usually about 0.5 to 5 cm square.
[0019]
Moreover, about the secondary battery waste material or its cut | judging thing, the peeling process which peels an electrode material from metal foil heat-processes at the heating temperature of 300 degreeC or more and less than 500 degreeC in an oxygen containing gas stream, Preferably it is 350-450 degreeC. By doing. If the heating temperature in this peeling step is lower than 300 ° C., peeling of the electrode material from the metal foil may not be complete, and if it is 500 ° C. or higher, the binder such as a fluororesin binder is decomposed and graphite In addition to the decomposition of a part of the conductive agent such as graphite, the conductive agent such as graphite acts as a reducing agent, and there is a possibility that a part of the metal compound for recovery, particularly lithium cobaltate, is reduced.
[0020]
The apparatus used in this peeling step is not particularly limited as long as the necessary pyrolysis treatment can be performed, such as a rotary kiln, a fluidized bed heating furnace, a box type high temperature dryer, etc., but continuous operation is possible under stirring conditions. A good rotary kiln is recommended.
And as an oxygen-containing gas used for the thermal decomposition treatment in this peeling step, any gas containing oxygen in an appropriate ratio, such as air or a mixed gas in which nitrogen gas is mixed with oxygen gas at an appropriate ratio, may be used. Although not particularly limited, it is preferable to use air that is inexpensive and easy to handle.
[0021]
In particular, for example, when the stripping process is continuously operated using a rotary kiln having a capacity of 10 to 200 liters / hour, preferably 20 to 30 liters / hour for a secondary battery waste material or a cut product thereof, for example. The heating temperature is 200 to 500 ° C., more preferably 400 to 450 ° C., the residence time is 10 to 120 minutes, more preferably 20 to 30 minutes, and the air introduction amount is 10 to 1000 liters / minute, more preferably 100 to 200 liters. / Min. By operating the stripping process under such conditions, the stripping of the electrode material from the metal foil in the stripping process can be performed almost completely, and the reduction of the metal compound is suppressed and the phenomenon of increasing the particle size is suppressed. be able to.
[0022]
The metal foil is separated and removed as much as possible in the next separating step from the stripped product obtained in the above stripping step. As the separation means used in this separation step, means such as a sieve, preferably a vibrating sieve is used, and the powdered material is recovered. This powder contains a metal compound as a main component in the electrode material, and contains, for example, graphite added as a conductive agent thereto, and a binder fluororesin binder remaining without being burned.
[0023]
The powder material collected in this manner is sent to the roasting process and pyrolyzed at a heating temperature of 500 ° C. or higher and 650 ° C. or lower, preferably 550 to 600 ° C. in an oxygen-containing gas stream. Combustible substances such as graphite and fluororesin binder contained therein are completely oxidized.
[0024]
When the heating temperature in this roasting process is lower than 500 ° C., especially graphite in the powder is not completely oxidized and does not disappear, and when heated above 650 ° C., the metal compound to be recovered For example, lithium cobaltate may sinter and its particle size may increase.
In this roasting process, graphite derived from the conductive agent present in the powder material acts as a reducing agent, and the metal compound may be reduced to increase its particle size. Therefore, it is necessary to perform a thermal decomposition treatment under stirring conditions.
[0025]
The apparatus used in this roasting step is not particularly limited as long as the necessary pyrolysis treatment can be performed as in the above-described peeling step, but a rotary kiln capable of continuous operation under stirring conditions is preferably used.
The oxygen-containing gas used for the thermal decomposition treatment in the roasting process may be any gas that contains oxygen in an appropriate ratio, such as air or a mixed gas in which nitrogen gas is mixed with oxygen gas at an appropriate ratio. Although not particularly limited, it is preferable to use air that is inexpensive and easy to handle.
[0026]
In particular, for example, when the roasting process is continuously operated using a rotary kiln having a capacity of 5 to 10 kg / hour of powder feed rate, preferably the heating temperature is 550 to 600 ° C. and the residence time is 30 to 60. It is good to carry out on the conditions of the minute and air introduction amount 200-400 liter / min. By carrying out the thermal decomposition process while feeding air in the roasting process in this way, it is possible to prevent the temperature during the thermal decomposition from rising to the corner, and the graphite in the powdered material is efficiently contacted with oxygen and oxidized. As a result, it is possible to completely oxidize the conductive agent or binder-derived material other than the metal compound in the powder and eliminate it, and to suppress the reduction of the metal compound to increase the particle size. The phenomenon can be suppressed as much as possible.
[0027]
The roasted product obtained in this roasting step is recovered as a metal compound for use in the positive electrode material in the next recovery step. In this recovery step, it is obtained by sieving by means such as a vibration sieve if necessary. The metal foil residue and coarse particles remaining in the metal compound may be separated and removed.
[0028]
The metal compound obtained in this recovery step usually has a carbon removal rate of 99% by weight or more, and a carbon-free metal compound is obtained. Therefore, the recovered metal compound such as lithium cobaltate can be directly recycled as a part or all of the raw material for producing the positive electrode material. In this case, the expensive metal such as lithium cobaltate is used at the time of manufacturing the secondary battery. The compound can be used without waste.
[0029]
When the metal compound obtained by the method of the present invention is used as a part of the positive electrode material, there is no particular limitation on the material to be combined. For example, an active material mainly composed of lithium cobaltate (LiCoO 2 ), nickel acid It can be widely used with lithium (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ) and the like.
[0030]
Even when the metal compound obtained by the method of the present invention is used as part or all of the positive electrode material, a non-aqueous electrolyte secondary battery can be produced in the same manner as in the past. That is, as the negative electrode material, for example, pyrolytic carbon, coke, graphite, glass fiber carbon, carbon fiber, lithium metal, lithium alloy, or the like can be used as long as it can be doped and dedoped with lithium. As the electrolytic solution, an electrolytic solution in which a lithium salt is used as an electrolyte and dissolved in an organic solvent is used. Here, the organic solvent is not particularly limited, and examples thereof include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC). At least one selected from chain carbonates and chain ethers such as 1,2-dimethoxyethane (DME) and diethoxyethane (DEE) can be used. Examples of the electrolyte include perchloric acid. Lithium salts such as lithium (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), and lithium borofluoride (LiBF 4 ) can be used.
[0031]
The metal foil recovered in the above peeling step of the present invention may be recycled as it is as a raw material for producing metal foil as long as it is not oxidized and can be recycled, and is partially oxidized. In such a case, it can be recovered as a useful metal compound by dissolving in an appropriate acid such as hydrochloric acid or sulfuric acid or an alkali.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail based on examples and comparative examples.
[0033]
Example 1
As a sample, an aluminum foil coating material in which a positive electrode material having a composition of 82% by weight of lithium cobaltate, 4% by weight of carbon as a conductive agent, and 2% by weight of a fluororesin binder as a binder is coated on an aluminum foil. Scrap (aluminum foil coating waste material) was used.
[0034]
This aluminum foil coating waste material was cut into about 10 to 100 mm square to prepare a cut product having a bulk specific gravity of 0.1 to 0.5 (cutting step).
The obtained cut material 20-30 liters / hour was charged from the inlet of a SUS-310S rotary kiln (manufactured by Takasago Industrial Co., Ltd.) having a diameter of 30 cm, a length of 4 m and an inclination angle of 1/100 degrees. A thermal decomposition treatment was performed under the conditions of a heating temperature of 400 to 450 ° C., a residence time of 20 to 30 minutes, and an air introduction amount of 100 to 200 liters / minute, and a release treatment product was extracted from the discharge port (peeling step).
[0035]
After cooling the peel-treated product obtained in this peeling process, 9-20 kg / hour of this peel-treated product is introduced into an automatic vibration sieve (made by Nishimura Kikai Co., Ltd.) having a 250 mesh screen, and the vibration motor rotation speed is 1800 rpm. Further, sieving was performed under conditions of amplitude horizontal 2.1 mm and vertical 3.1 mm, the aluminum foil was separated and removed from the top of the sieve, and 17 kg / hour of the powder material was collected from under the sieve (separation step).
The composition of the powder was composed of cobalt lithium and carbon, and the average particle size (measurement method: laser diffraction scattering method) was 3.5 μm.
[0036]
10 kg / hour of the powder collected in this separation step was taken from an Inconel (SUS310) rotary kiln (manufactured by Takasago Industry Co., Ltd.) having a diameter of 31 mm × length of 4 m, an effective heating section of 2.4 m, and an inclination angle of 2/100 degrees. Charged from the inlet, under conditions of a rotational speed of 6 rpm, a heating temperature of 570 to 630 ° C., a temperature gradient from the inlet to the maximum temperature range of 30 ° C./m, a residence time of 29 minutes, and an air introduction amount of 399 liters / minute. A pyrolysis treatment was performed, and 9 kg / hour of roasted product was extracted from the outlet (roasting step).
[0037]
After the roasted product obtained in this roasting process is cooled, 3 kg / hour of the roasted product is introduced into an automatic vibration sieve (manufactured by Nishimura Kikai Co., Ltd.) having a 250 mesh screen, and the vibration motor rotational speed is 1800 rpm, amplitude horizontal Sieving is performed under conditions of 2.1 mm and 3.1 mm vertically, and a sintered product having a large particle diameter is separated and removed from the top of the sieve, and 2.8 to 2.9 kg / hour of lithium cobaltate powder is added from under the sieve. Collected (collection process).
[0038]
Example 2
A positive electrode mixture was prepared by mixing 90% by weight of the recovered lithium cobaltate powder obtained in Example 1 above, 6% by weight of graphite and 4% by weight of polyvinylidene fluoride, and this was mixed with N-methyl-2. -Dispersed in pyrrolidone to form a slurry, applied to an aluminum foil, dried, and then compression molded with a roller press to obtain a strip-shaped positive electrode.
[0039]
Also, 93% by weight of the carbon material and 7% by weight of polyvinylidene fluoride were mixed to prepare a negative electrode mixture, and a copper foil was used instead of the aluminum foil, and a strip-shaped negative electrode was obtained in the same manner as the above positive electrode. .
[0040]
The strip-like positive electrode and negative electrode thus obtained are wound around a separator made of a microporous polypropylene film to form a wound body, and electrode leads are attached to the wound body and inserted into a can. Electrolyte obtained by dissolving 1 mol of lithium borofluoride (LiBF 4 ) in a 1: 1 solvent mixture of MEC and MEC is poured into the can, and the can opening is sealed to form a cylindrical non-aqueous electrolysis A liquid secondary battery was produced.
[0041]
The obtained secondary battery was charged at a constant voltage to 4.2 V under an environmental temperature of 20 ° C. and a current limit of 1 A, and discharged to 2.7 V after 1 hour of rest. Next, after resting for 1 hour, constant voltage charging was performed up to 4.2 V under a current limit of 1 A, and then discharged to 2.7 V at −20 ° C. The capacity ratio [Cap (-20) / Cap (20)] obtained by dividing the discharge capacity [Cap (-20)] at -20 ° C by the discharge capacity [Cap (20)] at 20 ° C is obtained. The temperature characteristics were investigated. The results are shown in Table 1.
[0042]
Example 3
Lithium carbonate (Li 2 CO 3 ) and cobalt oxide (Co 3 O 4 ) were mixed so as to have a molar ratio (Li / Co) of 1.0, fired in air at 900 ° C. for 5 hours, and then lithium cobaltate ( LiCoO 2 ) was obtained.
The fresh lithium cobaltate and the recovered lithium cobaltate powder obtained in Example 1 were mixed at a ratio of 1: 1. The resulting mixture was 90% by weight, graphite 6% by weight, and polyfluorinated. A positive electrode mixture was prepared by mixing in a proportion of 4% by weight of vinylidene, and a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2.
For the obtained secondary battery, the temperature characteristics of the discharge capacity were examined in the same manner as in Example 2. The results are shown in Table 1.
[0043]
Comparative Example 1
A positive electrode mixture was prepared by mixing 90% by weight of fresh lithium cobaltate obtained in Example 3 above, 6% by weight of graphite, and 4% by weight of polyvinylidene fluoride. Thus, a non-aqueous electrolyte secondary battery was produced.
With respect to the obtained secondary battery, the temperature characteristics of the discharge capacity were examined in the same manner as in Example 2. The results are shown in Table 1.
[0044]
[Table 1]
Figure 0004491085
[0045]
As is clear from the results shown in Table 1 above, when the recovered powder of lithium cobaltate obtained in Example 1 was used, the discharge capacity at room temperature was somewhat reduced, but the capacity phenomenon at low temperature was Conversely, a non-aqueous electrolyte secondary battery in which the temperature dependency of the discharge capacity is improved is obtained.
【The invention's effect】
According to the present invention, the useful metal compound in the electrode material in the secondary battery waste can be efficiently recovered in a reusable state as it is, and has high industrial value.

Claims (6)

金属箔に電極材料が塗着されている二次電池廃材を熱分解処理して電極材料中の金属化合物を回収する二次電池廃材からの正極材回収方法であり、二次電池廃材を酸素含有ガス気流中300℃以上500℃未満に加熱して金属箔から電極材料を剥離させる剥離工程と、得られた剥離処理物から金属箔を分離除去して粉体物を回収する分離工程と、回収された粉体物を酸素含有ガス気流中500℃以上650℃以下に加熱して粉体物中の燃焼性物質を焼却する焙焼工程と、得られた焙焼物を正極材用途の金属化合物として回収する回収工程とを含むことを特徴とする二次電池廃材からの正極材回収方法。This is a method for recovering positive electrode material from secondary battery waste that recovers metal compounds in the electrode material by thermally decomposing secondary battery waste with electrode material coated on the metal foil. The secondary battery waste contains oxygen. A separation step in which the electrode material is peeled off from the metal foil by heating to 300 ° C. or more and less than 500 ° C. in a gas stream, a separation step in which the metal foil is separated and removed from the obtained release treatment product, and a powder material is collected, and a recovery A roasting step in which the combustible material in the powder is incinerated by heating the obtained powder to 500 ° C. or more and 650 ° C. or less in an oxygen-containing gas stream, and the obtained roast is used as a metal compound for a positive electrode material And a recovery step of recovering the positive electrode material from the secondary battery waste material. 金属箔から電極材料を剥離させる剥離工程に先駆けて行なわれ、二次電池廃材を所定の大きさに裁断する裁断工程を有する請求項1に記載の二次電池廃材からの正極材回収方法。The method for recovering a positive electrode material from the secondary battery waste material according to claim 1, further comprising a cutting step of cutting the secondary battery waste material into a predetermined size, prior to a peeling step of peeling the electrode material from the metal foil. 焙焼工程では、ロータリーキルンを用いて攪拌下に加熱する請求項1又は2に記載の二次電池廃材からの正極材回収方法。The method for recovering positive electrode material from secondary battery waste material according to claim 1, wherein in the roasting step, heating is performed with stirring using a rotary kiln. 剥離工程及び/又は焙焼工程では、酸素含有ガスとして空気を導入しながら加熱する請求項1〜3のいずれかに記載の二次電池廃材からの正極材回収方法。The method for recovering positive electrode material from secondary battery waste material according to any one of claims 1 to 3, wherein heating is performed while introducing air as an oxygen-containing gas in the peeling step and / or the roasting step. 回収される金属化合物がコバルト酸リチウムである請求項1〜4のいずれかに記載の二次電池廃材からの正極材回収方法。The method for recovering a positive electrode material from a secondary battery waste material according to any one of claims 1 to 4, wherein the recovered metal compound is lithium cobalt oxide. 請求項1〜5のいずれかの方法で金属化合物を回収し、この回収された金属化合物を正極材の一部又は全部として非水電解液二次電池を製造することを特徴とする非水電解液二次電池の製造方法A metal compound is recovered by the method according to claim 1, and a non-aqueous electrolyte secondary battery is manufactured by using the recovered metal compound as a part or all of a positive electrode material. A method for manufacturing a liquid secondary battery.
JP15419399A 1999-06-01 1999-06-01 Method for recovering positive electrode material from waste secondary battery and method for producing non-aqueous electrolyte secondary battery using the same Expired - Lifetime JP4491085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15419399A JP4491085B2 (en) 1999-06-01 1999-06-01 Method for recovering positive electrode material from waste secondary battery and method for producing non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15419399A JP4491085B2 (en) 1999-06-01 1999-06-01 Method for recovering positive electrode material from waste secondary battery and method for producing non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2000348782A JP2000348782A (en) 2000-12-15
JP4491085B2 true JP4491085B2 (en) 2010-06-30

Family

ID=15578879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15419399A Expired - Lifetime JP4491085B2 (en) 1999-06-01 1999-06-01 Method for recovering positive electrode material from waste secondary battery and method for producing non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4491085B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088617A1 (en) * 2006-02-02 2007-08-09 Kawasaki Plant Systems Kabushiki Kaisha Method of recovering valuable substance from lithium secondary battery, and recovery apparatus therefor
JP2010034021A (en) * 2008-07-03 2010-02-12 Sumitomo Chemical Co Ltd Method of recycling oxide-containing battery material from waste battery material
CN102101701A (en) * 2010-12-31 2011-06-22 湖南邦普循环科技有限公司 Method for recovering cobalt and lithium from waste lithium cobaltite and preparing lithium cobaltite
JP5859332B2 (en) 2011-02-15 2016-02-10 住友化学株式会社 Method for recovering active material from battery waste
JP5675452B2 (en) * 2011-03-15 2015-02-25 三井金属鉱業株式会社 Manufacturing method of recycled materials
JP5360135B2 (en) * 2011-06-03 2013-12-04 住友金属鉱山株式会社 Valuable metal recovery method
JP5269222B1 (en) * 2012-02-29 2013-08-21 Jx日鉱日石金属株式会社 Method for separating and collecting current collector and positive electrode active material from positive electrode material for lithium ion battery
JP5269228B1 (en) * 2012-03-30 2013-08-21 Jx日鉱日石金属株式会社 Method for separating and recovering positive electrode active material from positive electrode material for lithium ion battery
CN103915661B (en) * 2013-01-09 2016-12-28 中国科学院过程工程研究所 A kind of direct recovery the method repairing anode material for lithium-ion batteries
CN105489959A (en) * 2014-09-30 2016-04-13 上海比亚迪有限公司 Recycling method for lithium ion secondary battery negative electrode material
JP6587861B2 (en) * 2015-08-11 2019-10-09 学校法人早稲田大学 Lithium-ion battery processing method
FR3041820B1 (en) * 2015-09-25 2021-02-12 Ecoring PROCESS AND INSTALLATION FOR PRE-TREATMENT AND FUSION OF USED OR WASTE PORTABLE BATTERIES OR ACCUMULATORS
KR102581658B1 (en) * 2016-02-26 2023-09-21 한국전기연구원 The positive electrode active materical recovery unit and a recovery method using the same
CN108400399B (en) * 2018-02-02 2020-07-07 昆明理工大学 Method for preparing lithium manganese phosphate/carbon cathode material from waste lithium manganate battery
KR102566856B1 (en) * 2018-11-07 2023-08-11 에스케이이노베이션 주식회사 Method of regenerating lithium precursor and recycling system of lithium precursor
CN109742476A (en) * 2019-01-09 2019-05-10 东北师范大学 A kind of recoverying and utilizing method of waste lithium ion cell anode material
EP4116000A4 (en) 2020-03-06 2024-04-10 Dowa Eco System Co Ltd Method for concentrating valuable metal contained in lithium ion secondary battery
KR20210147597A (en) * 2020-05-29 2021-12-07 주식회사 엘지에너지솔루션 Reuse method of active material of positive electrode scrap
KR20220022171A (en) * 2020-08-18 2022-02-25 에스케이이노베이션 주식회사 Method of recycling active metal of lithium secondary battery
KR20220025406A (en) * 2020-08-24 2022-03-03 주식회사 엘지에너지솔루션 Electrode active material recovery device and reuse method of active material of positive electrode scrap
CN112490527B (en) * 2020-12-03 2022-04-01 东莞理工学院 Method for regenerating lithium ion battery positive electrode material, positive electrode material and lithium ion battery
CN113948787A (en) * 2021-10-15 2022-01-18 广东瑞科美电源技术有限公司 Recycling and regenerating method and application of retired cobalt acid lithium battery and anode material
CN114229816B (en) * 2021-11-18 2023-04-11 广东邦普循环科技有限公司 Method for recycling and preparing anode material from waste lithium iron phosphate battery
CN114335782B (en) * 2021-12-27 2023-12-15 上海电力大学 Method for stripping waste lithium battery anode material from aluminum foil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255861A (en) * 1997-03-13 1998-09-25 Toshiba Corp Disposal method for waste

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046266A (en) * 1996-07-31 1998-02-17 Tama Kagaku Kogyo Kk Method for recovering cobalt from spent secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255861A (en) * 1997-03-13 1998-09-25 Toshiba Corp Disposal method for waste

Also Published As

Publication number Publication date
JP2000348782A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
JP4491085B2 (en) Method for recovering positive electrode material from waste secondary battery and method for producing non-aqueous electrolyte secondary battery using the same
EP4095982A1 (en) Method for reusing active material using positive electrode scrap
KR101349900B1 (en) Recycling method of electrode active material of metal oxide, electrode active material of metal oxide for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery fabricated thereby
JP7278475B2 (en) Method for reusing active material using positive electrode scrap
EP4164026A1 (en) Apparatus for recovering active material and method for reusing active material by using same
EP4145590A1 (en) Method for reusing active material by using positive electrode scrap
EP4120431A1 (en) Apparatus for recovering active material and method for reusing active material by using same
EP4102618A1 (en) Method for reusing active material using cathode scrap
KR20220042659A (en) Reuse method of active material of positive electrode scrap
CN111362257B (en) Fluorinated graphene/sulfur composite material, preparation method thereof and application of fluorinated graphene/sulfur composite material in lithium battery
JP7451683B2 (en) How to reuse active materials using cathode scraps
EP4164027A1 (en) Active material reuse method using cathode scraps
US20240047775A1 (en) Lithium ion battery recycling process utilizing magnetic separation of electrode materials
EP4178005A1 (en) Active material reuse method using cathode scraps
JP7357801B2 (en) How to reuse active materials using cathode scraps
KR20220042663A (en) Reuse method of active material of positive electrode scrap
KR20230042933A (en) Recovery method of lithium precursor from lithium secondary battery
JP2024502892A (en) How to reuse active materials using cathode scraps
KR20220001363A (en) Reuse method of active material of positive electrode scrap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4491085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term