JPH1046266A - How to recover cobalt from waste batteries - Google Patents

How to recover cobalt from waste batteries

Info

Publication number
JPH1046266A
JPH1046266A JP20256096A JP20256096A JPH1046266A JP H1046266 A JPH1046266 A JP H1046266A JP 20256096 A JP20256096 A JP 20256096A JP 20256096 A JP20256096 A JP 20256096A JP H1046266 A JPH1046266 A JP H1046266A
Authority
JP
Japan
Prior art keywords
cobalt
acid
battery
roasted
magnetic separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20256096A
Other languages
Japanese (ja)
Inventor
Shigeo Iiri
茂雄 飯利
Katsuhiro Kato
勝弘 加藤
Makoto Murakami
真 村上
Shunpei Shimizu
駿平 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama Kagaku Kogyo Co Ltd
Original Assignee
Tama Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama Kagaku Kogyo Co Ltd filed Critical Tama Kagaku Kogyo Co Ltd
Priority to JP20256096A priority Critical patent/JPH1046266A/en
Publication of JPH1046266A publication Critical patent/JPH1046266A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

(57)【要約】 【課題】 二次電池の電池廃品から希少金属のコバルト
を、可及的少量の酸を用いて効率良く回収することがで
きる二次電池廃品からのコバルト回収方法を提供する。 【解決手段】 電極材中にコバルトを含む二次電池の電
池廃品を600℃以上の温度で焙焼する焙焼工程と、こ
の焙焼工程で得られた焙焼電池を裁断する裁断工程と、
この裁断工程で得られた焙焼電池の裁断物を篩分けて金
属スクラップと焙焼アッシュとに分離する篩分け工程
と、この篩分け工程で得られた焙焼アッシュ中から磁石
を用いてコバルト含有物を磁気分離する磁選工程と、こ
の磁選工程で選別されたコバルト含有物を酸に溶解する
酸溶解工程と、この酸溶解工程で得られた酸溶解物から
コバルトを回収する回収工程とを含む二次電池廃品から
のコバルト回収方法である。
PROBLEM TO BE SOLVED: To provide a method for recovering cobalt from waste secondary battery, which can efficiently recover rare metal cobalt from waste battery of secondary battery using as little acid as possible. . SOLUTION: A roasting step of roasting a waste battery of a secondary battery containing cobalt in an electrode material at a temperature of 600 ° C or higher, a cutting step of cutting the roasted battery obtained in the roasting step,
A sieving step of sieving the cut pieces of the roasted battery obtained in this cutting step into metal scrap and roasted ash, and using a magnet from the roasted ash obtained in the sieving step to remove cobalt from the roasted ash. A magnetic separation step of magnetically separating the inclusions, an acid dissolving step of dissolving the cobalt-containing substance selected in the magnetic separation step in an acid, and a recovery step of recovering cobalt from the acid dissolved product obtained in the acid dissolving step. This is a method for recovering cobalt from waste secondary batteries.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、二次電池の製造
工程で発生する不良品や使用済み二次電池の回収品等の
電池廃品からその電極材中に含まれる希少金属のコバル
トを効率的に回収することができる二次電池廃品からの
コバルト回収方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently removing the rare metal cobalt contained in the electrode material from battery waste such as defective products generated in the secondary battery manufacturing process and recovered products of used secondary batteries. The present invention relates to a method for recovering cobalt from waste secondary batteries that can be recovered.

【0002】[0002]

【従来の技術】例えば、リチウムイオン二次電池にはそ
の正極材としてリチウム酸コバルト(LiCoO2 )が
用いられており、また、ニッケル水素電池にはその正極
材の活物質である水素化ニッケル中に容量利用率向上を
目的として酸化コバルトが添加されており、更に、ニカ
ド電池にはその正極材(ニッケル)中に耐腐蝕性向上や
高容量化を目的として硝酸コバルトが添加されている。
2. Description of the Related Art For example, lithium ion secondary batteries use cobalt lithium oxide (LiCoO 2 ) as a positive electrode material, and nickel hydride batteries use nickel hydride as an active material of the positive electrode material. Cobalt oxide is added for the purpose of improving the capacity utilization factor, and cobalt nitrate is added to the cathode material (nickel) of the NiCd battery for the purpose of improving the corrosion resistance and increasing the capacity.

【0003】そして、このような正極材は、例えばリチ
ウムイオン二次電池の場合には、炭酸リチウムと酸化コ
バルトとを混合し、焼成してリチウム酸コバルトとし、
次いでこのリチウム酸コバルトとアセチレンブラックや
カーボン等の導電剤及びフッ素樹脂、フッ素ゴム等の結
着剤とを配合し、これを有機溶剤によりスラリー状に混
練し、この混練物をアルミニウム箔(以下、単に「アル
ミ箔」という)等の金属箔上に均一に塗布し、乾燥して
溶剤を除去し、金属箔に導電剤2〜10重量%及び結着
剤2〜10重量%が塗着され、これを所定の形状に裁断
することにより形成されている。
[0003] In the case of a lithium ion secondary battery, for example, such a positive electrode material is prepared by mixing lithium carbonate and cobalt oxide, and calcining the mixture to form cobalt lithium oxide.
Next, the lithium cobaltate is mixed with a conductive agent such as acetylene black or carbon, and a binder such as a fluororesin or a fluororubber, and the resulting mixture is kneaded in a slurry with an organic solvent. (Referred to simply as "aluminum foil"), etc., uniformly applied on a metal foil, dried to remove the solvent, 2 to 10% by weight of conductive agent and 2 to 10% by weight of binder are applied to the metal foil, This is formed by cutting this into a predetermined shape.

【0004】ところで、このような二次電池は、ノート
型パソコン、携帯電話、簡易携帯電話(PHS)、電気
シェーバー、ヘッドホンステレオ、VTR等のポータブ
ル電気機器の普及に伴って需要が急速に高まり、その生
産量が増加するにつれ、この二次電池の製造時に発生す
る不良品や使用済み二次電池の回収品等の電池廃品の量
が飛躍的に増加し、これら電池廃品の処理が問題になっ
てきている。
[0004] By the way, the demand for such a secondary battery is rapidly increasing with the spread of portable electric equipment such as a notebook personal computer, a portable telephone, a portable telephone (PHS), an electric shaver, a headphone stereo, and a VTR. As the production volume increases, the amount of battery waste such as defective products generated during the manufacture of this secondary battery and the collection of used secondary batteries increases dramatically, and the disposal of these battery wastes becomes a problem. Is coming.

【0005】その一方で、コバルトは資源に乏しく、我
が国ではそのほとんどを外国に依存しているにもかかわ
らず、その用途は二次電池の電極材、顔料、窯業、フェ
ライト、触媒、超硬合金等の日用品からハイテク製品に
至るまで極めて広範に亘っており、特にリチウムイオン
二次電池にはその1個当たり酸化コバルトとして約7g
も使用されている。このため、コバルトは元々高価であ
ると共にその需要が増大して益々高価になりつつある。
[0005] On the other hand, although cobalt is scarce in resources and most of it depends on foreign countries in Japan, its uses are as electrode materials for secondary batteries, pigments, ceramics, ferrites, catalysts, and cemented carbides. Etc., ranging from daily necessities to high-tech products. In particular, about 7 g of cobalt oxide per lithium ion secondary battery
Is also used. For this reason, cobalt is inherently expensive and its demand is increasing, and it is becoming more and more expensive.

【0006】このため、従来においても、例えば超硬合
金や触媒の廃棄物を酸溶解処理し、得られたコバルト及
びニッケルを含む酸溶解液からアルキル燐酸を含む抽出
剤でこの抽出剤中にコバルトイオンを選択的に抽出し、
更に得られた抽出液をシュウ酸水溶液と接触させてシュ
ウ酸コバルトを析出させて回収することにより、コバル
ト及びニッケルを含む溶液から高純度でコバルトを回収
する方法が提案されている(特公平5−14013号公
報)。
For this reason, conventionally, for example, wastes of cemented carbides and catalysts are subjected to an acid dissolution treatment, and an extract containing alkyl phosphoric acid is extracted from the resulting acid solution containing cobalt and nickel. Selectively extract ions,
Furthermore, there has been proposed a method of recovering cobalt with high purity from a solution containing cobalt and nickel by contacting the obtained extract with an aqueous oxalic acid solution to precipitate and recover cobalt oxalate (Japanese Patent Application Publication No. Hei 5 (1999)). -14013).

【0007】[0007]

【発明が解決しようとする課題】そこで、上述した電池
廃品についても、これを粉砕して塩酸や硝酸等の鉱酸で
溶解し、不溶性のアセチレンブラックやカーボン等の導
電剤やフッ素樹脂、フッ素ゴム等の結着剤等を分離除去
し、コバルトを始めとするリチウム、アルミニウム等の
金属を含む酸溶解液を回収し、この酸溶解液からアルキ
ル燐酸を含む抽出剤でコバルトを選択的に回収すること
が検討されている。
Therefore, the above-mentioned battery waste is also crushed and dissolved with a mineral acid such as hydrochloric acid or nitric acid, and the conductive material such as insoluble acetylene black or carbon, fluororesin, fluororubber or the like is used. Separation and removal of binders etc., recover acid solution containing cobalt and other metals such as lithium and aluminum, and selectively recover cobalt from this acid solution using an extractant containing alkyl phosphoric acid. That is being considered.

【0008】しかしながら、この方法においては、酸溶
解液中には単に電池廃品中のコバルトやリチウム等の金
属化合物が溶解するだけでなく、金属箔のアルミニウム
等も含めて溶解するので、電池廃品の量が増加するに連
れてこの酸溶解処理に要する酸、例えば塩酸や硝酸等の
使用量が大幅に増加し、この酸溶解液から抽出剤でコバ
ルトイオンを抽出した後の酸廃液が大量に生じ、この大
量の酸廃液の処理に水酸化ナトリウム等の大量のアルカ
リが必要になってかえって廃液処理に多大な問題が発生
するほか、酸として塩酸を使用すると酸溶解処理時に塩
素ガスが大量に発生し、また、硝酸を使用すると酸溶解
処理時に亜硝酸ガスが大量に発生し、これらの酸性排ガ
スの処理にも多大な費用を要するという問題もある。
However, in this method, not only the metal compounds such as cobalt and lithium in the battery waste are dissolved in the acid solution but also the aluminum and the like of the metal foil are dissolved. As the amount increases, the amount of acid required for this acid dissolution treatment, for example, hydrochloric acid or nitric acid, increases significantly, and a large amount of acid waste liquid is generated after extracting cobalt ions from the acid solution with an extractant. In addition, a large amount of alkali such as sodium hydroxide is required to treat this large amount of acid waste solution, which in turn causes a great deal of problems in waste solution treatment.If hydrochloric acid is used as the acid, a large amount of chlorine gas is generated during acid dissolution treatment In addition, when nitric acid is used, a large amount of nitrous acid gas is generated during the acid dissolving treatment, and there is also a problem that the treatment of such acidic exhaust gas requires a large cost.

【0009】また、先ず始めに電池廃品中のアルミ箔等
の金属箔や一部のリチウム化合物等を水酸化ナトリウム
等のアルカリに溶解して除去し、次に残された正極材中
のコバルト化合物等の他の金属化合物、導電剤、結着剤
等を塩酸等の鉱酸で酸溶解処理し、可溶性の正極材と導
電剤や結着剤とを分離し、コバルトやリチウム等の金属
を含む酸溶解液を得てアルキル燐酸を含む抽出剤でコバ
ルトを選択的に回収する方法も考えられる。
First, metal foil such as aluminum foil and a part of lithium compound in battery waste are dissolved and removed in alkali such as sodium hydroxide, and then cobalt compound in remaining cathode material is removed. Other metal compounds, conductive agents, binders, etc. are subjected to acid dissolution treatment with a mineral acid such as hydrochloric acid to separate the soluble positive electrode material from the conductive agents and binders and contain metals such as cobalt and lithium. A method of obtaining an acid solution and selectively recovering cobalt with an extractant containing alkyl phosphoric acid is also conceivable.

【0010】しかしながら、この方法においては、酸浸
出処理とは別にアルカリによる金属箔を分離除去するた
めのアルカリ前処理が必要になって工程が複雑化し、更
にはこれらアルカリ前処理や酸浸出処理で用いたアルカ
リ廃液や酸廃液が大量に発生し、上記と同様に、廃液処
理に多大な問題が発生するほか、酸浸出処理時における
酸性排ガス問題も残る。
However, in this method, apart from the acid leaching treatment, an alkali pretreatment for separating and removing the metal foil with an alkali is required, which complicates the process. A large amount of the used alkaline waste liquid or acid waste liquid is generated, and in the same manner as described above, a large problem occurs in the waste liquid treatment, and there remains an acidic exhaust gas problem during the acid leaching treatment.

【0011】更に、特開平3−10032号公報には、
アルキル燐酸を含む有機溶液を水の存在下で用いること
により、コバルト及びニッケル酸化物からコバルトを選
択的に直接溶液抽出する方法が開示されている。
Further, Japanese Patent Application Laid-Open No. Hei 3-10032 discloses that
A method for selectively and directly extracting cobalt from cobalt and nickel oxide by using an organic solution containing an alkyl phosphoric acid in the presence of water is disclosed.

【0012】しかしながら、この方法においても、正極
材中でコバルト化合物等の金属化合物が導電剤や結着剤
で被覆されており、この導電剤や結着剤の存在が障害に
なって、アルキル燐酸を含む有機溶液−水系の抽出剤が
コバルト化合物と効率的に接触できず、この抽出剤によ
る抽出効率が高くても30〜40重量%程度と低く、到
底工業的に実施できる値ではない。
However, also in this method, a metal compound such as a cobalt compound is coated with a conductive agent or a binder in the positive electrode material, and the presence of the conductive agent or the binder hinders the formation of the alkyl phosphate. The extractant of the organic solution-water system containing the compound cannot efficiently contact the cobalt compound, and the extraction efficiency of this extractant is as low as about 30 to 40% by weight even at high efficiency, which is not a value that can be practically used industrially.

【0013】そこで、本発明者らは、電池廃品から希少
金属のコバルトを如何に分離して回収するかについて鋭
意研究を重ねた結果、電池廃品を600℃以上で焙焼処
理し、次いで裁断し、篩分けして得られた焙焼アッシュ
を磁石を用いて金属コバルト及びコバルト酸化物を主成
分とするコバルト含有物を磁選し、得られたコバルト含
有物を酸溶解処理して溶剤抽出処理することにより、電
池廃品中のコバルトを大量の酸を使用することなく、し
かも、効率良くコバルトを回収できることを見出し、本
発明を完成した。
The inventors of the present invention have conducted intensive studies on how to separate and recover the rare metal cobalt from battery waste. As a result, the battery waste was roasted at 600 ° C. or higher, and then cut. The roasted ash obtained by sieving is subjected to magnetic separation of a cobalt-containing material mainly composed of metal cobalt and cobalt oxide using a magnet, and the obtained cobalt-containing material is subjected to an acid dissolution treatment and a solvent extraction treatment. As a result, it has been found that cobalt in battery waste can be efficiently recovered without using a large amount of acid, and the present invention has been completed.

【0014】従って、本発明の目的は、二次電池の電池
廃品から希少金属のコバルトを、可及的少量の酸を用い
て効率良く回収することができる二次電池廃品からのコ
バルト回収方法を提供することにある。
Accordingly, an object of the present invention is to provide a method for recovering cobalt from waste secondary batteries, which can efficiently recover rare metal cobalt from waste batteries of secondary batteries by using as little acid as possible. To provide.

【0015】[0015]

【課題を解決するための手段】すなわち、本発明は、電
極材中にコバルトを含む二次電池の電池廃品を600℃
以上の温度で焙焼する焙焼工程と、この焙焼工程で得ら
れた焙焼電池を裁断する裁断工程と、この裁断工程で得
られた焙焼電池の裁断物を篩分けて金属スクラップとコ
バルト含有物を含む焙焼アッシュとに分離する篩分け工
程と、この篩分け工程で得られた焙焼アッシュ中から磁
石を用いてコバルト含有物を磁気分離する磁選工程と、
この磁選工程で選別されたコバルト含有物を酸に溶解す
る酸溶解工程と、この酸溶解工程で得られた酸溶解物か
らコバルトを回収する回収工程とを含む二次電池廃品か
らのコバルト回収方法である。
That is, according to the present invention, a waste battery of a secondary battery containing cobalt in an electrode material is heated to 600 ° C.
A roasting step of roasting at the above temperature, a cutting step of cutting the roasted battery obtained in this roasting step, and a metal scrap by sieving the cut piece of the roasted battery obtained in this cutting step. A sieving step of separating into roasted ash containing the cobalt-containing material, and a magnetic separation step of magnetically separating the cobalt-containing material from the roasted ash obtained in the sieving step using a magnet,
A method for recovering cobalt from waste secondary batteries, comprising: an acid dissolving step of dissolving the cobalt-containing substance selected in the magnetic separation step in an acid; and a collecting step of recovering cobalt from the acid dissolved substance obtained in the acid dissolving step. It is.

【0016】また、本発明は、電極材中にコバルトを含
む二次電池の電池廃品を600℃以上の温度で焙焼する
焙焼工程と、この焙焼工程で得られた焙焼電池を裁断す
る裁断工程と、この裁断工程で得られた焙焼電池の裁断
物を磁石により磁性体と非磁性体とに磁気分離する磁選
工程と、この磁選工程で得られた磁性体を篩分けて磁性
金属スクラップとコバルト含有物とに分離する篩分け工
程と、この篩分け工程で得られたコバルト含有物を酸に
溶解する酸溶解工程と、この酸溶解工程で得られた酸溶
解物からコバルトを回収する回収工程とを含む二次電池
廃品からのコバルト回収方法である。
Further, the present invention provides a roasting step of roasting a waste battery of a secondary battery containing cobalt in an electrode material at a temperature of 600 ° C. or more, and cutting the roasted battery obtained in the roasting step. Cutting step, a magnetic separation step of magnetically separating the cut piece of the roasted battery obtained in the cutting step into a magnetic substance and a non-magnetic substance by a magnet, and sieving the magnetic substance obtained in the magnetic separation step to obtain a magnetic material. A sieving step of separating into metal scrap and a cobalt-containing substance, an acid dissolving step of dissolving the cobalt-containing substance obtained in the sieving step in an acid, and cobalt from the acid dissolved substance obtained in the acid dissolving step. And a collecting step for collecting cobalt from waste secondary battery.

【0017】本発明方法において、コバルト回収の対象
となる二次電池廃品は、二次電池の製造時に発生する不
良品や使用済み二次電池の回収品等であり、電極材中に
コバルトを含むものである。この電極材中にコバルトを
含む二次電池としては、代表的には例えば、その正極材
中に酸化コバルトや硝酸コバルト等のコバルト化合物等
を含むリチウムイオン二次電池、ニッケル水素電池、ニ
カド電池等を挙げることができる。
In the method of the present invention, waste secondary batteries to be subjected to cobalt recovery are defective products generated during the manufacture of secondary batteries, recovered products of used secondary batteries, and the like, and the electrode material contains cobalt. It is a thing. As the secondary battery containing cobalt in the electrode material, typically, for example, a lithium ion secondary battery containing a cobalt compound such as cobalt oxide or cobalt nitrate in its positive electrode material, a nickel hydrogen battery, a nickel cadmium battery, etc. Can be mentioned.

【0018】本発明方法においては、先ずこのように電
極材中にコバルトを含む二次電池の電池廃品を600℃
以上、好ましくは700〜900℃の温度で通常1〜3
時間程度焙焼する。この電池廃品の焙焼工程での焙焼処
理は、好ましくは密閉容器中あるいは還元雰囲気中で行
われ、磁選工程で金属コバルト及びコバルト酸化物を主
成分とするコバルト含有物を効率良く磁気分離するため
に少なくとも電極材中のコバルト化合物の一部が還元さ
れて金属コバルトとなる必要がある。ここで、焙焼温度
が600℃より低いと、得られる焙焼アッシュ中のコバ
ルト含有物中における金属コバルトの量が少なくなり、
磁選工程で効率良くコバルト含有物を磁気分離するのが
困難になる。また、焙焼温度が900℃を超えても、磁
選工程でのコバルト含有物の選別には特に問題はない
が、焙焼工程でのエネルギーコストが嵩み、工業的に実
施するのに好ましくない。
In the method of the present invention, firstly, the waste battery of the secondary battery containing cobalt in the electrode material as described above is kept at 600 ° C.
Above, preferably at a temperature of 700 to 900 ° C, usually 1 to 3
Roast for about an hour. The roasting treatment in the roasting step of the battery waste is preferably performed in a closed vessel or in a reducing atmosphere, and efficiently separates the cobalt-containing material mainly composed of metal cobalt and cobalt oxide in the magnetic separation step. Therefore, at least a part of the cobalt compound in the electrode material needs to be reduced to metal cobalt. Here, when the roasting temperature is lower than 600 ° C., the amount of metallic cobalt in the cobalt-containing material in the obtained roasted ash decreases,
It becomes difficult to efficiently magnetically separate the cobalt-containing material in the magnetic separation step. Further, even if the roasting temperature exceeds 900 ° C., there is no particular problem in the separation of the cobalt-containing material in the magnetic separation step, but the energy cost in the roasting step increases, which is not preferable for industrial implementation. .

【0019】この焙焼工程では、例えば電池廃品の正極
材中のコバルト酸化物(例えば、Co2 3 )がこの電
池廃品中のアルミニウム(Al)やカーボン(C)等を
還元剤として還元され、その一部が完全に還元されて磁
性体の金属コバルト(Co)に変換すると共に、部分的
に還元されて生成した酸化コバルト(Co3 4 )はこ
の金属コバルトと共に存在すると考えられる。
In the roasting step, for example, cobalt oxide (eg, Co 2 O 3 ) in the positive electrode material of the battery waste is reduced using aluminum (Al), carbon (C), etc. in the battery waste as a reducing agent. It is conceivable that cobalt oxide (Co 3 O 4 ), which is partially reduced to be completely converted to magnetic cobalt (Co) as a magnetic substance and partially reduced to be produced, exists together with the metal cobalt.

【0020】上記焙焼工程で得られた焙焼電池は次に裁
断機で裁断されて裁断物となり、この焙焼電池の裁断物
中には、鉄、アルミニウム、ステンレス等の金属で形成
された電池の外側容器や、アルミ箔、銅箔等の金属箔で
形成された集電体等に由来する比較的大きな裁断片の金
属スクラップと、集電体に塗着されていたコバルト化合
物等の金属化合物、アセチレンブラックやカーボン等の
導電剤及びフッ素樹脂、フッ素ゴム等の結着剤等の正極
材や負極材、ポリエチレン多孔膜等で形成されたセパレ
ータ等の有機物質等に由来する金属コバルトやコバルト
酸化物その他の金属やその酸化物、カーボン等からなる
比較的小さな粉末状あるいは顆粒状の焙焼アッシュとが
存在する。
The roasted battery obtained in the above-mentioned roasting step is then cut by a cutter into a cut product, and the cut product of the roasted battery is formed of a metal such as iron, aluminum, stainless steel or the like. Relatively large scrap metal scrap derived from the outer container of the battery or the current collector formed of metal foil such as aluminum foil or copper foil, and metal such as a cobalt compound applied to the current collector Compounds, conductive materials such as acetylene black and carbon, and positive electrode materials and negative electrode materials such as binders such as fluororesins and fluororubbers, and metallic cobalt and cobalt derived from organic substances such as separators formed of polyethylene porous films and the like. There is a relatively small powdered or granular roasted ash made of oxide or other metal, its oxide, carbon or the like.

【0021】そして、上記裁断工程で得られた焙焼電池
の裁断物は、先に篩分け工程で比較的大きな裁断片の金
属スクラップと比較的小さな粉末状あるいは顆粒状の焙
焼アッシュとに篩分けられて分離され、次いで磁選工程
で磁性体のコバルト含有物が選別されるか、あるいは、
先に磁選工程で磁石により磁性体と非磁性体とに選別さ
れ、次いで篩分け工程で磁性体を篩分けて磁性金属スク
ラップとコバルト含有物とに分離されるが、磁選工程で
の処理量を低減すると共に金属スクラップと焙焼アッシ
ュとをより完全に分離するために、好ましくは前者の先
に篩分けを行ってから磁選する方法である。
The cut piece of the roasted battery obtained in the above cutting step is sieved into a relatively large piece of metal scrap and a relatively small powdery or granular roasted ash in the sieving step. It is separated and separated, and then the cobalt-containing material of the magnetic substance is separated in the magnetic separation step, or
First, it is separated into a magnetic substance and a non-magnetic substance by a magnet in a magnetic separation step, and then the magnetic substance is sieved in a sieving step to be separated into a magnetic metal scrap and a cobalt-containing substance. In order to reduce the amount of metal scrap and the roasted ash more completely, it is preferable that the former is sieved and then the magnetic separation is performed.

【0022】上記篩分け工程では、好ましくは振動篩が
用いられ、金属スクラップに付着した焙焼アッシュが可
及的に除去され、回収された金属スクラップ、例えば
鉄、ステンレス、アルミニウム、銅は再資源化して有効
利用される。また、上記磁選工程では、特に制限される
ものではないが、例えばドラム型湿式分離機やベルト型
湿式分離機、更には種々のタイプの乾式分離機等の装置
を用い、磁性物質と非磁性物質との付着時間の差を利用
して磁気分離が行われる。
In the sieving step, preferably, a vibrating sieve is used to remove as much as possible the roasted ash adhering to the metal scrap, and the collected metal scrap, such as iron, stainless steel, aluminum and copper, is recycled. To be used effectively. Further, in the magnetic separation step, although not particularly limited, for example, using a drum type wet separator, a belt type wet separator, and various types of dry separators and the like, using a magnetic substance and a non-magnetic substance The magnetic separation is performed using the difference in the adhesion time between the magnetic field and the magnetic field.

【0023】ここで、篩分け工程で得られた焙焼アッシ
ュについては、これを磁選工程に移送する前に、必要に
よりボールミル等の粉砕機で粉砕処理し、この焙焼アッ
シュの粒度を平均粒度2mm以下、好ましくは1.65
1mm(12メッシュ)以下、より好ましくは1.16
8mm(16メッシュ)以下に粉砕するのがよい。この
ように焙焼アッシュを平均粒度2mm以下に粉砕するこ
とにより、金属コバルト及びコバルト酸化物を比較的高
濃度に含む粉体とコバルト以外の金属及びその酸化物を
比較的高濃度に含む粉体とに分かれ、磁選工程で比較的
高濃度に金属コバルト及びコバルト酸化物を含むコバル
ト含有物が得られる。
Here, the roasted ash obtained in the sieving step is, if necessary, pulverized by a pulverizer such as a ball mill before being transferred to the magnetic separation step. 2 mm or less, preferably 1.65
1 mm (12 mesh) or less, more preferably 1.16
It is preferable to grind to 8 mm (16 mesh) or less. By crushing the roasted ash to an average particle size of 2 mm or less, a powder containing a relatively high concentration of metal cobalt and cobalt oxide and a powder containing a metal other than cobalt and its oxide at a relatively high concentration In the magnetic separation step, a cobalt-containing material containing relatively high concentrations of metallic cobalt and cobalt oxide is obtained.

【0024】篩分け工程から磁選工程を経て、あるい
は、磁選工程から篩分け工程を経て得られたコバルト含
有物は、焙焼電池を裁断して生じた磁選前の焙焼アッシ
ュに対して、その重量が少しでも減少していれば、後の
酸溶解処理で必要とする酸の使用量がそれだけ減少する
ことになり、酸溶解工程で使用する酸の量を減少せしめ
る効果が得られるが、この酸溶解工程で使用する酸の量
は可及的に減少せしめるのがよく、また、工業的に実施
する上で、好ましくは磁選前の焙焼アッシュに対して重
量比0.6以下、より好ましくは0.5以下にするのが
よい。
The cobalt-containing material obtained from the sieving step through the magnetic separation step, or from the magnetic separation step through the sieving step, is applied to the roasted ash before magnetic separation generated by cutting the roasted battery. If the weight is reduced even a little, the amount of acid used in the subsequent acid dissolution treatment will be reduced accordingly, and the effect of reducing the amount of acid used in the acid dissolution step will be obtained. The amount of the acid used in the acid dissolving step is preferably reduced as much as possible, and on the industrial basis, the weight ratio is preferably 0.6 or less, more preferably the roasted ash before magnetic separation. Is preferably 0.5 or less.

【0025】この磁選工程で得られたコバルト含有物
は、金属コバルト及びコバルト酸化物を主成分とするも
のであるが、これら以外に、例えば金属コバルトと焼結
した銅やアルミニウム等の金属やその酸化物を相当の割
合で含有する。このコバルト含有物中における金属コバ
ルト及びコバルト酸化物の合計の含有割合(以下、これ
を単に「コバルト含有率」という)は、通常20重量%
以上、好ましくは40重量%以上であるのがよい。この
コバルト含有率は、高ければ高いほど、単位コバルト量
に対して必要とされる酸の量が減少し、酸溶解工程での
酸の使用量が減少する。
The cobalt-containing material obtained in the magnetic separation step is mainly composed of metallic cobalt and cobalt oxide. In addition to these, for example, metals such as copper and aluminum sintered with metallic cobalt and their metals. Contains a significant proportion of oxides. The total content of metal cobalt and cobalt oxide in the cobalt-containing material (hereinafter simply referred to as “cobalt content”) is usually 20% by weight.
It is preferably at least 40% by weight. The higher the cobalt content, the smaller the amount of acid required per unit amount of cobalt, and the smaller the amount of acid used in the acid dissolving step.

【0026】本発明において、磁選工程で得られたコバ
ルト含有物は、次に塩酸、硫酸、硝酸等の適当な酸を用
いて溶解し、酸溶解物とされる(酸溶解工程)。この酸
溶解工程で用いられる酸としては、典型的には塩酸や硫
酸等の鉱酸が挙げられ、その使用量は通常コバルト含有
物1モルに対して1〜3モルの範囲である。
In the present invention, the cobalt-containing substance obtained in the magnetic separation step is then dissolved using a suitable acid such as hydrochloric acid, sulfuric acid, nitric acid, etc., to obtain an acid-dissolved substance (acid dissolving step). Examples of the acid used in the acid dissolving step include mineral acids such as hydrochloric acid and sulfuric acid, and the amount of the acid is usually in the range of 1 to 3 mol per mol of the cobalt-containing substance.

【0027】酸溶解工程で得られた酸溶解物は、次にコ
バルトを回収するための回収工程に移送される。この回
収工程については、それが酸溶解物からコバルトを選択
的に回収できる工程であればよく、例えば、pH調整に
よりコバルト化合物以外の金属化合物を可及的に分離除
去した後、pH10に調整して水酸化コバルトを析出さ
せ、この水酸化コバルトを還元雰囲気中で還元して金属
コバルトとして回収する方法や、アルキル燐酸を含む有
機溶剤で有機相中にコバルト化合物を選択的に液液抽出
する方法(特公昭56−11371号公報、特公平5−
14013号公報)や、アルキル燐酸を含む有機溶剤−
水−過酸化水素(水溶性還元剤)系のエマルジョン抽出
剤で加熱攪拌下にコバルト化合物を選択的に固液抽出す
る方法(特願平7−268881号公報)等が挙げら
れ、好ましくは溶剤抽出によりコバルトを回収する溶剤
抽出方法である。
The acid dissolved product obtained in the acid dissolving step is then transferred to a recovery step for recovering cobalt. The recovery step may be any step capable of selectively recovering cobalt from the acid solution. For example, the metal compound other than the cobalt compound is separated and removed as much as possible by adjusting the pH, and then adjusted to pH 10. To precipitate cobalt hydroxide and reduce the cobalt hydroxide in a reducing atmosphere to recover it as metallic cobalt, or to selectively liquid-liquid extract a cobalt compound in an organic phase with an organic solvent containing alkyl phosphoric acid. (Japanese Patent Publication No. 56-11371,
No. 14013) and organic solvents containing alkyl phosphoric acid.
A method in which a cobalt compound is selectively solid-liquid extracted with heating and stirring using a water-hydrogen peroxide (water-soluble reducing agent) emulsion extractant (Japanese Patent Application No. 7-268881), preferably a solvent This is a solvent extraction method for recovering cobalt by extraction.

【0028】この溶剤抽出方法でコバルト化合物を抽出
するのに用いられるアルキル燐酸としては、例えば、2
−エチルヘキシルホスホン酸モノ−2−エチルヘキシル
エステル(M2EHPA)等のアルキルホスホン酸モノ
アルキルエステル、及び、燐酸ビス−2−エチルヘキシ
ル(D2EHPA)、燐酸ビス−2−ドデシル等のジア
ルキル燐酸であって、アルキル基の炭素数が6以上のも
のが挙げられる。
The alkyl phosphoric acid used to extract the cobalt compound by this solvent extraction method includes, for example, 2
Monoalkyl esters of alkyl phosphonic acids such as -ethylhexyl phosphonic acid mono-2-ethylhexyl ester (M2EHPA) and dialkyl phosphoric acids such as bis-2-ethylhexyl phosphate (D2EHPA) and bis-2-dodecyl phosphate; Having 6 or more carbon atoms.

【0029】なお、本発明の磁選によりコバルト含有物
を選別した残りの焙焼アッシュについては、それが銅等
の金属を豊富に含むものであるから、必要により、例え
ば電解精錬等の方法でこれらの金属を回収してもよい。
The remaining roasted ash obtained by separating the cobalt-containing material by the magnetic separation according to the present invention contains abundant metals such as copper. Therefore, if necessary, these metals may be subjected to a method such as electrolytic refining, if necessary. May be collected.

【0030】[0030]

【発明の実施の形態】以下、添付図面に示すフローチャ
ートに従って、本発明の二次電池廃品からのコバルト回
収方法についての好適な実施の形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the method for recovering cobalt from waste secondary batteries according to the present invention will be described below with reference to the flowcharts shown in the accompanying drawings.

【0031】先ず、電気炉やガス炉等の装置を用い、電
池廃品を600℃以上の温度、好ましくは700〜90
0℃で1〜3時間焙焼する。この焙焼処理により、電池
廃品中のコバルト化合物はその一部が金属コバルトに還
元され、その際に他のコバルト化合物はコバルト酸化物
としてこの金属コバルトに付着あるいは吸着されたよう
な状態で存在すると考えられる。
First, using a device such as an electric furnace or a gas furnace, the battery waste is kept at a temperature of 600 ° C. or more,
Bake at 0 ° C for 1-3 hours. By this roasting treatment, a part of the cobalt compound in the battery waste is reduced to metallic cobalt, and at that time, the other cobalt compound is present as a cobalt oxide attached or adsorbed to the metallic cobalt. Conceivable.

【0032】次に、焙焼工程で得られた焙焼電池を放置
冷却あるいは強制冷却して室温まで冷却し、シュレッダ
ー等の裁断機で例えば3〜10mmの大きさに裁断す
る。そして、裁断工程で得られた焙焼電池の裁断物は、
次に振動篩等を用いて好ましくは20メッシュを篩別で
きる条件で金属スクラップと焙焼アッシュとに篩分けら
れる。
Next, the roasted battery obtained in the roasting step is cooled to room temperature by standing cooling or forced cooling, and cut into a size of, for example, 3 to 10 mm by a cutting machine such as a shredder. And the cut piece of the roasted battery obtained in the cutting step is
Next, it is sieved into metal scrap and roasted ash by using a vibrating sieve or the like, preferably under a condition where 20 mesh can be sieved.

【0033】この篩分け工程で得られた焙焼アッシュに
ついては、電磁石等を用いて金属コバルト及びコバルト
酸化物を主成分とするコバルト含有物とそれ以外の金属
及びその酸化物を主とする残留アッシュとに磁気分離す
る。ここで、コバルト含有物として磁気分離する割合
は、好ましくは磁選前の焙焼アッシュに対して重量比
0.6以下、より好ましくは0.5以下であるのがよ
く、結果として焙焼アッシュ中の金属コバルト及びコバ
ルト酸化物は1.6〜2倍以上の濃度に濃縮される。
The roasted ash obtained in this sieving step is obtained by using an electromagnet or the like to leave a cobalt-containing material mainly composed of metallic cobalt and cobalt oxide and a residual metal mainly composed of other metals and their oxides. Magnetic separation into ash. Here, the ratio of magnetic separation as a cobalt-containing material is preferably not more than 0.6, more preferably not more than 0.5, by weight, relative to the roasted ash before magnetic separation. Are concentrated to a concentration of 1.6 to 2 times or more.

【0034】磁選工程で選別されたコバルト含有物は、
次に塩酸や硫酸等の鉱酸に溶解され(酸溶解工程)、次
いで酸溶解液中のコバルト化合物はアルキル燐酸を含む
有機溶剤で有機相中に選択的に液液抽出され、回収され
る。
The cobalt-containing material selected in the magnetic separation step is as follows:
Next, the compound is dissolved in a mineral acid such as hydrochloric acid or sulfuric acid (acid dissolving step), and then the cobalt compound in the acid solution is selectively liquid-liquid extracted into the organic phase with an organic solvent containing alkylphosphoric acid and recovered.

【0035】本発明においては、二次電池廃品を焙焼処
理し、次いで裁断処理したのち金属スクラップと焙焼ア
ッシュとを篩分けし、得られた焙焼アッシュを磁選工程
で磁石により選別して金属コバルト及びコバルト酸化物
を高濃度に含むコバルト含有物とし、次いでこのコバル
ト含有物に酸溶解処理と溶剤抽出処理を施してコバルト
の回収を行うので、酸溶解処理で必要とする酸の使用量
を可及的に低減することができるほか、コバルトの回収
効率を向上せしめることができる。
In the present invention, the waste rechargeable battery is roasted and then cut, and then the metal scrap and the roasted ash are sieved. The obtained roasted ash is separated by a magnet in a magnetic separation step. Since the cobalt-containing material containing metal cobalt and cobalt oxide in high concentration is used, and then the cobalt-containing material is subjected to acid dissolution treatment and solvent extraction treatment to recover cobalt, the amount of acid used in the acid dissolution treatment is required. Can be reduced as much as possible, and the recovery efficiency of cobalt can be improved.

【0036】[0036]

【実施例】以下、実施例及び比較例に基づいて、本発明
方法を具体的に説明する。
EXAMPLES The method of the present invention will be specifically described below based on examples and comparative examples.

【0037】実施例1 外形寸法18mmφ×65mmで重量35.93gの円
筒型のリチウムイオン二次電池の廃品1個を用い、これ
を環状の電気炉の中心部に入れて800℃で2時間焙焼
した。
Example 1 One waste cylindrical lithium ion secondary battery having an outer dimension of 18 mmφ × 65 mm and a weight of 35.93 g was used, placed in the center of an annular electric furnace, and roasted at 800 ° C. for 2 hours. Baked.

【0038】このように焙焼処理して得られた焙焼電池
を、裁断機を用いて約10mmの大きさに裁断し、得ら
れた裁断物を16メッシュの振動篩を用いて篩分けし
た。この篩分けにより、電池容器由来の鉄片や負極材由
来の銅箔片、正極材由来のアルミ箔片等の裁断片を主体
とする篩上の金属スクラップ14.38gと篩下の焙焼
アッシュ16.81gとに分別した。
The roasted battery obtained by the roasting process was cut into a size of about 10 mm using a cutting machine, and the obtained cut product was sieved using a 16-mesh vibrating sieve. . By this sieving, 14.38 g of metal scrap on a sieve mainly composed of cut pieces such as iron pieces derived from a battery container, copper foil pieces derived from a negative electrode material, and aluminum foil pieces derived from a positive electrode material, and roasting ash 16 .81 g.

【0039】上記篩分け処理により得られた焙焼アッシ
ュ16.81gについて、電磁石を用い、この電磁石に
吸着するコバルト含有物14.57gとこの電磁石には
吸着しないそれ以外の残留アッシュ2.24gとに磁気
分離し、コバルト含有物を回収した。この磁選処理で回
収されたコバルト含有物は、磁選前の焙焼アッシュに対
して重量比0.87であり、焙焼アッシュ中の金属コバ
ルト及びコバルト酸化物は1.15倍に濃縮された。
Using 16.81 g of the roasted ash obtained by the above sieving treatment, using an electromagnet, 14.57 g of a cobalt-containing substance adsorbed by the electromagnet and 2.24 g of other residual ash not adsorbed by the electromagnet were obtained. And the content of cobalt was recovered. The weight ratio of the cobalt-containing material recovered by the magnetic separation process with respect to the roasted ash before the magnetic separation was 0.87, and the metal cobalt and the cobalt oxide in the roasted ash were concentrated 1.15 times.

【0040】次に、このようにして得られたコバルト含
有物14.57gを、濃度10重量%の塩酸と濃度10
重量%の硝酸の重量比2:1の混酸186mlを用いて
溶解し、濾過して不溶物4.61gを分離除去し、酸溶
解物を得た。
Next, 14.57 g of the cobalt-containing material thus obtained was mixed with 10% by weight hydrochloric acid and 10% by weight.
The mixture was dissolved in 186 ml of a mixed acid of 2% by weight of nitric acid of 2% by weight and filtered to separate and remove 4.61 g of an insoluble substance to obtain an acid dissolved substance.

【0041】得られた酸溶解物を10重量%水酸化ナト
リウム水溶液を用いてpH6に調整し、不純物として混
入している鉄、アルミニウム、銅のイオンを水酸化物と
して沈殿させ、濾過して除去したのち、得られた濾液を
pH10に調整して水酸化コバルトを沈殿させ、この水
酸化コバルトの沈殿物を濾過して回収し、乾燥させて水
酸化コバルト10.78gを得た。この水酸化コバルト
10.78gを水素気流中500℃で1時間加熱し、還
元して金属コバルト6.84gを得た。得られた金属コ
バルトの純度は99.3%であり、電池廃品中に含まれ
ていた全コバルトに対するコバルト回収率は87.8%
であった。
The obtained acid solution is adjusted to pH 6 using a 10% by weight aqueous solution of sodium hydroxide, and iron, aluminum and copper ions contaminated as impurities are precipitated as hydroxides and removed by filtration. After that, the obtained filtrate was adjusted to pH 10 to precipitate cobalt hydroxide, and the precipitate of cobalt hydroxide was collected by filtration and dried to obtain 10.78 g of cobalt hydroxide. 10.78 g of this cobalt hydroxide was heated in a hydrogen stream at 500 ° C. for 1 hour, and reduced to obtain 6.84 g of metallic cobalt. The purity of the obtained metallic cobalt was 99.3%, and the cobalt recovery rate with respect to all the cobalt contained in the battery waste was 87.8%.
Met.

【0042】比較例1 上記実施例1で得られた焙焼アッシュ16.81gを磁
選工程で磁気分離することなくそのまま実施例1で用い
た混酸(濃度10重量%の塩酸と濃度10重量%の硝酸
の重量比2:1)に溶解させたところ、混酸221ml
を必要とし、また、濾過して不溶物4.90gが分離回
収された。得られた酸溶解物を上記実施例1と同様にし
て処理して金属コバルトの回収を行った。得られた金属
コバルトの純度は85.9%であり、電池廃品中に含ま
れていた全コバルトに対するコバルト回収率は87.1
%であった。
Comparative Example 1 16.81 g of the roasted ash obtained in Example 1 was used as it was in Example 1 without magnetic separation in a magnetic separation step (hydrochloric acid having a concentration of 10% by weight and hydrochloric acid having a concentration of 10% by weight). When dissolved in a 2: 1 weight ratio of nitric acid, 221 ml of mixed acid was obtained.
And 4.90 g of insoluble matter was separated and recovered by filtration. The obtained acid solution was treated in the same manner as in Example 1 to recover metallic cobalt. The purity of the obtained metallic cobalt was 85.9%, and the cobalt recovery rate with respect to all the cobalt contained in the battery waste was 87.1%.
%Met.

【0043】[0043]

【発明の効果】本発明によれば、可及的少量の酸を用い
て、二次電池の電池廃品から希少金属のコバルトを効率
良く回収することができ、工業的価値の高いものであ
る。
According to the present invention, the rare metal cobalt can be efficiently recovered from the waste battery of the secondary battery by using as little acid as possible, which is of high industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、本発明の好適な実施形態に係る二次
電池廃品からのコバルト回収方法を示すフローチャート
である。
FIG. 1 is a flowchart showing a method for recovering cobalt from waste secondary batteries according to a preferred embodiment of the present invention.

フロントページの続き (72)発明者 清水 駿平 神奈川県川崎市川崎区駅前本町12番1、多 摩化学工業株式会社内Continued on the front page (72) Inventor Shunpei Shimizu 12-1, Ekimae Honcho, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture, inside Tama Chemical Industry Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 電極材中にコバルトを含む二次電池の電
池廃品を600℃以上の温度で焙焼する焙焼工程と、こ
の焙焼工程で得られた焙焼電池を裁断する裁断工程と、
この裁断工程で得られた焙焼電池の裁断物を篩分けて金
属スクラップと焙焼アッシュとに分離する篩分け工程
と、この篩分け工程で得られた焙焼アッシュ中から磁石
を用いてコバルト含有物を磁気分離する磁選工程と、こ
の磁選工程で選別されたコバルト含有物を酸に溶解する
酸溶解工程と、この酸溶解工程で得られた酸溶解物から
コバルトを回収する回収工程とを含むことを特徴とする
二次電池廃品からのコバルト回収方法。
1. A roasting step of roasting a waste battery of a secondary battery containing cobalt in an electrode material at a temperature of 600 ° C. or higher, and a cutting step of cutting the roasted battery obtained in the roasting step. ,
A sieving step of sieving the cut pieces of the roasted battery obtained in this cutting step into metal scrap and roasted ash, and using a magnet from the roasted ash obtained in the sieving step to remove cobalt from the roasted ash. A magnetic separation step of magnetically separating the inclusions, an acid dissolving step of dissolving the cobalt-containing substance selected in the magnetic separation step in an acid, and a recovery step of recovering cobalt from the acid dissolved product obtained in the acid dissolving step. A method for recovering cobalt from waste secondary batteries.
【請求項2】 回収工程が、溶剤抽出によりコバルトを
回収する溶剤抽出工程である請求項1に記載の二次電池
廃品からのコバルト回収方法。
2. The method for recovering cobalt from waste secondary batteries according to claim 1, wherein the recovery step is a solvent extraction step of recovering cobalt by solvent extraction.
【請求項3】 焙焼工程での電池廃品の焙焼は、密閉容
器中又は還元雰囲気中で700〜900℃の温度で行う
請求項1又は2に記載の二次電池からのコバルト回収方
法。
3. The method for recovering cobalt from a secondary battery according to claim 1, wherein the roasting of the waste battery in the roasting step is performed at a temperature of 700 to 900 ° C. in a closed container or a reducing atmosphere.
【請求項4】 篩分け工程で得られた焙焼アッシュは、
磁選工程で磁選される前に所定の粒度に粉砕される請求
項1〜3の何れかに記載の二次電池廃品からのコバルト
回収方法。
4. The roasted ash obtained in the sieving step,
The method for recovering cobalt from waste secondary batteries according to claim 1, wherein the cobalt is crushed to a predetermined particle size before being subjected to magnetic separation in the magnetic separation step.
【請求項5】 焙焼アッシュは、平均粒度2mm以下に
粉砕されている請求項1〜4の何れかに記載の二次電池
廃品からのコバルト回収方法。
5. The method for recovering cobalt from waste secondary batteries according to claim 1, wherein the roasted ash is pulverized to an average particle size of 2 mm or less.
【請求項6】 磁選工程での焙焼アッシュの磁選は、湿
式磁気分離により行う請求項1〜5の何れかに記載の二
次電池廃品からのコバルト回収方法。
6. The method for recovering cobalt from waste secondary batteries according to claim 1, wherein the magnetic separation of the roasted ash in the magnetic separation step is performed by wet magnetic separation.
【請求項7】 磁選工程で選別されたコバルト含有物
は、磁選前の焙焼アッシュに対して重量比0.6以下で
ある請求項1〜6の何れかに記載の二次電池廃品からの
コバルト回収方法。
7. The waste secondary battery according to claim 1, wherein the weight ratio of the cobalt-containing material selected in the magnetic separation step is 0.6 or less with respect to the roasted ash before the magnetic separation. Cobalt recovery method.
【請求項8】 電極材中にコバルトを含む二次電池の電
池廃品を600℃以上の温度で焙焼する焙焼工程と、こ
の焙焼工程で得られた焙焼電池を裁断する裁断工程と、
この裁断工程で得られた焙焼電池の裁断物を磁石により
磁性体と非磁性体とに磁気分離する磁選工程と、この磁
選工程で得られた磁性体を篩分けて磁性金属スクラップ
とコバルト含有物とに分離する篩分け工程と、この篩分
け工程で得られたコバルト含有物を酸に溶解する酸溶解
工程と、この酸溶解工程で得られた酸溶解物からコバル
トを回収する回収工程とを含むことを特徴とする二次電
池廃品からのコバルト回収方法。
8. A roasting step of roasting a waste battery of a secondary battery containing cobalt in an electrode material at a temperature of 600 ° C. or higher, and a cutting step of cutting the roasted battery obtained in the roasting step. ,
A magnetic separation step of magnetically separating the cut piece of the roasted battery obtained in this cutting step into a magnetic substance and a non-magnetic substance by a magnet, and sieving the magnetic substance obtained in this magnetic separation step to obtain a magnetic metal scrap and a cobalt-containing substance. And an acid dissolving step of dissolving the cobalt-containing substance obtained in the sieving step in an acid, and a collecting step of recovering cobalt from the acid dissolved substance obtained in the acid dissolving step. A method for recovering cobalt from waste secondary batteries, comprising:
JP20256096A 1996-07-31 1996-07-31 How to recover cobalt from waste batteries Pending JPH1046266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20256096A JPH1046266A (en) 1996-07-31 1996-07-31 How to recover cobalt from waste batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20256096A JPH1046266A (en) 1996-07-31 1996-07-31 How to recover cobalt from waste batteries

Publications (1)

Publication Number Publication Date
JPH1046266A true JPH1046266A (en) 1998-02-17

Family

ID=16459525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20256096A Pending JPH1046266A (en) 1996-07-31 1996-07-31 How to recover cobalt from waste batteries

Country Status (1)

Country Link
JP (1) JPH1046266A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348782A (en) * 1999-06-01 2000-12-15 Tama Kagaku Kogyo Kk Method for recovering positive electrode material from waste secondary battery and non-aqueous electrolyte secondary battery using the same
JP2003027151A (en) * 2001-07-18 2003-01-29 Tmc Kk Method for recovering electrode material for battery
JP2003031229A (en) * 2001-07-12 2003-01-31 Tmc Kk Collection of valuable metals
US7820317B2 (en) 2004-04-06 2010-10-26 Recupyl Method for the mixed recycling of lithium-based anode batteries and cells
KR101300652B1 (en) * 2013-01-28 2013-08-28 주식회사 연화인텍 A method for decompostion of paraffin oil and polyethylene from waste secondary battery separator membrane
US8696785B2 (en) 2008-06-19 2014-04-15 Toyota Jidosha Kabushiki Kaisha Method and apparatus for recycling battery pack
WO2016012943A1 (en) 2014-07-22 2016-01-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for recycling the electrolyte of a li-ion battery and method for recycling li-ion batteries
WO2016012941A1 (en) 2014-07-22 2016-01-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for recycling the electrolyte of a li-ion battery and method for recycling li-ion batteries
WO2016167359A1 (en) * 2015-04-17 2016-10-20 Jx金属株式会社 Method for processing lithium ion cell
KR101883100B1 (en) * 2017-04-04 2018-07-27 연세대학교 산학협력단 Method of recovering valuable metals from wasted batteries and system for the same
JP2021521327A (en) * 2018-04-11 2021-08-26 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Method of recovering lithium and transition metals using heat
CN113881858A (en) * 2021-09-08 2022-01-04 荆门市格林美新材料有限公司 Method for recycling cobalt-containing waste
CN114231745A (en) * 2021-11-26 2022-03-25 广东邦普循环科技有限公司 A kind of recovery method of valuable metal in positive electrode sheet of lithium battery
CN115432699A (en) * 2022-10-21 2022-12-06 湖南宸宇富基新能源科技有限公司 Waste negative electrode base regenerated graphite material and preparation and application thereof
WO2025135678A1 (en) * 2023-12-18 2025-06-26 포스코홀딩스 주식회사 Valuable metal recovery alloy and method for recovering valuable metal

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348782A (en) * 1999-06-01 2000-12-15 Tama Kagaku Kogyo Kk Method for recovering positive electrode material from waste secondary battery and non-aqueous electrolyte secondary battery using the same
JP2003031229A (en) * 2001-07-12 2003-01-31 Tmc Kk Collection of valuable metals
JP2003027151A (en) * 2001-07-18 2003-01-29 Tmc Kk Method for recovering electrode material for battery
US7820317B2 (en) 2004-04-06 2010-10-26 Recupyl Method for the mixed recycling of lithium-based anode batteries and cells
US8696785B2 (en) 2008-06-19 2014-04-15 Toyota Jidosha Kabushiki Kaisha Method and apparatus for recycling battery pack
KR101300652B1 (en) * 2013-01-28 2013-08-28 주식회사 연화인텍 A method for decompostion of paraffin oil and polyethylene from waste secondary battery separator membrane
WO2016012943A1 (en) 2014-07-22 2016-01-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for recycling the electrolyte of a li-ion battery and method for recycling li-ion batteries
WO2016012941A1 (en) 2014-07-22 2016-01-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for recycling the electrolyte of a li-ion battery and method for recycling li-ion batteries
CN107532231A (en) * 2015-04-17 2018-01-02 捷客斯金属株式会社 The processing method of lithium ion battery
US11145915B2 (en) 2015-04-17 2021-10-12 Jx Nippon Mining & Metals Corporation Method for treating lithium ion battery
WO2016167359A1 (en) * 2015-04-17 2016-10-20 Jx金属株式会社 Method for processing lithium ion cell
KR20170137856A (en) * 2015-04-17 2017-12-13 제이엑스금속주식회사 Processing method of lithium ion battery
EP3284834A4 (en) * 2015-04-17 2018-10-31 JX Nippon Mining & Metals Corporation Method for processing lithium ion cell
US10727546B2 (en) 2015-04-17 2020-07-28 Jx Nippon Mining & Metals Corporation Method for treating lithium ion battery
KR101883100B1 (en) * 2017-04-04 2018-07-27 연세대학교 산학협력단 Method of recovering valuable metals from wasted batteries and system for the same
JP2021521327A (en) * 2018-04-11 2021-08-26 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Method of recovering lithium and transition metals using heat
CN113881858A (en) * 2021-09-08 2022-01-04 荆门市格林美新材料有限公司 Method for recycling cobalt-containing waste
CN114231745A (en) * 2021-11-26 2022-03-25 广东邦普循环科技有限公司 A kind of recovery method of valuable metal in positive electrode sheet of lithium battery
WO2023093182A1 (en) * 2021-11-26 2023-06-01 广东邦普循环科技有限公司 Method for recycling valuable metal in lithium battery positive plate
CN115432699A (en) * 2022-10-21 2022-12-06 湖南宸宇富基新能源科技有限公司 Waste negative electrode base regenerated graphite material and preparation and application thereof
CN115432699B (en) * 2022-10-21 2023-07-11 湖南宸宇富基新能源科技有限公司 Waste negative electrode-based regenerated graphite material and preparation and application thereof
WO2025135678A1 (en) * 2023-12-18 2025-06-26 포스코홀딩스 주식회사 Valuable metal recovery alloy and method for recovering valuable metal

Similar Documents

Publication Publication Date Title
CN114174544B (en) A method for recycling lithium batteries
JP4144820B2 (en) Method for regenerating positive electrode active material from lithium ion secondary battery
JP2021512215A (en) How to Recycle Lithium Batteries
KR100930453B1 (en) How to Recover Metals from Battery Residues
JP3918041B2 (en) Method for recovering metals from used nickel-metal hydride batteries
JP5651462B2 (en) Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
JP2017115179A (en) Recovery method of valuable substance
JPH1046266A (en) How to recover cobalt from waste batteries
CN114072954A (en) Method for physically separating and recovering multiple components from waste lithium ion battery
JP2019130474A (en) Regenerated negative electrode active material recovered from discarded lithium ion battery containing lithium titanate and recovery method of the same
JP7268382B2 (en) How to dispose of used lithium-ion batteries
JP7621709B2 (en) Method for selectively removing aluminum from waste electrodes and method for recovering metal components from waste electrodes using the same
JPH036208B2 (en)
JP7271833B2 (en) Lithium recovery method
JPH116020A (en) Method for recovering high-purity cobalt compound from scrap lithium ion battery
KR100358528B1 (en) recycling method of lithium ion secondary battery
WO2022085222A1 (en) Method for recovering lithium and method for producing lithium carbonate
JP7286085B2 (en) Method for recovering lithium from lithium-ion batteries
JP4099057B2 (en) Cobalt recovery method and cobalt recovery system in lithium ion battery
CA3219839A1 (en) Process for recycling battery materials by way of hydrometallurgical treatment
JP3777226B2 (en) Method for recovering reusable rare earth-containing compounds
JP3434318B2 (en) Separation and recovery of valuable metals from used lithium secondary batteries
CN111180821A (en) Harmless recycling and sorting method for waste lithium ion batteries
JP2889537B2 (en) Method of separating iron from waste containing one or more of nickel and cadmium
JPH09195071A (en) Method of peeling metal foil from waste material coated with metal foil of secondary battery