JPH10287864A - Recovery of valuable metal from active material of positive electrode for lithium ion secondary battery - Google Patents

Recovery of valuable metal from active material of positive electrode for lithium ion secondary battery

Info

Publication number
JPH10287864A
JPH10287864A JP9594997A JP9594997A JPH10287864A JP H10287864 A JPH10287864 A JP H10287864A JP 9594997 A JP9594997 A JP 9594997A JP 9594997 A JP9594997 A JP 9594997A JP H10287864 A JPH10287864 A JP H10287864A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
secondary battery
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9594997A
Other languages
Japanese (ja)
Inventor
Tsutomu Watanabe
努 渡辺
Tadashi Sugiya
杉矢  正
Natsuhiro Sano
夏博 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP9594997A priority Critical patent/JPH10287864A/en
Publication of JPH10287864A publication Critical patent/JPH10287864A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the recovery of a valuable metal such as cobalt or nickel from an active material of a positive electrode for a lithium ion secondary battery at a high extraction ratio by bringing a metal extracting agent into contact with an eluate prepared by adding a mineral acid-containing liquid to the active material of the positive electrode. SOLUTION: (B) A mineral acid or a mixture liquid thereof with hydrogen peroxide is added to (A) an active material of a positive electrode for a lithium ion secondary battery and the obtained eluate is then separated. An organic solvent containing (C) a metal extracting agent such as a compound represented by the formula (X<1> and X<2> are each O or S) is subsequently brought into contact with the separated eluate to carry out the extraction and separation treatment. The mineral acid is then brought into contact with the phase of the extracted organic solvent to perform the reverse extraction separation. The operations are preferably carried out by using the components A and B so as to provide (1:1:1) to (1:5:5) molar ratio of the valuable metal in the component A, mineral acid in the component B and hydrogen peroxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池用正極活物質から有価金属の回収方法に関するも
のである。
The present invention relates to a method of recovering valuable metals from a positive electrode active material for a lithium ion secondary battery.

【0002】[0002]

【従来の技術】近年、リチウムイオン二次電池はエネル
ギ−密度が高く小型で軽量であるという特徴から携帯電
話、PHS、携帯用のパーソナルコンピュ−タを中心に
その需要は急速に伸びている。更に、今後は大型のエネ
ルギー貯蔵用媒体として、電気自動車の動力源として活
用されることも期待されている。リチウムイオン二次電
池は、その正極材としては高起電力を持つLiCo
2、LiNiO2 、LiMn24 等のリチウム含有
遷移金属酸化物が利用されており、現在、比較的合成が
容易かつ安定なLiCoO2 が正極に主に採用されてい
る。
2. Description of the Related Art In recent years, the demand for lithium ion secondary batteries has been rapidly growing, especially for portable telephones, PHSs, and portable personal computers because of their features of high energy density, small size and light weight. In addition, it is expected that it will be used as a large energy storage medium and a power source for electric vehicles in the future. The lithium ion secondary battery uses LiCo with high electromotive force as its cathode material.
Lithium-containing transition metal oxides such as O 2 , LiNiO 2 , and LiMn 2 O 4 are used, and currently LiCoO 2, which is relatively easy to synthesize and is stable, is mainly used for the positive electrode.

【0003】しかしながら、Coを筆頭にNi等は希少
金属であり、またこれらは経済資源偏在などの問題か
ら、材料コストが高く、かかる貴金属を回収すること
は、資源の有効利用方法としては極めて重要なことであ
る。今までに、これら貴金属を回収する方法として、廃
リチウム二次電池よりCo等の貴金属原子を回収する方
法が幾つか提案されている。例えば、使用済み二次電池
を焙焼し、次に粉砕し、篩分けし又は篩下を磁力選別す
る方法(特開平6−322452号公報、特開平6−3
46160号公報、特開平7−245126号公報)、
また同様に焙焼し、粉砕し、次いで篩分けし、酸処理し
た後、アルカリを添加してCo、Ni等を炭酸塩、水酸
化物として沈殿回収する方法(特開平7−207349
号公報)等が挙げられる。
[0003] However, Ni and the like are rare metals, such as Co, and the cost of the materials is high due to the problem of uneven distribution of economic resources. Recovering such precious metals is extremely important as a method of effectively utilizing resources. That is what. Until now, several methods have been proposed for recovering these noble metals from recovering noble metal atoms such as Co from waste lithium secondary batteries. For example, a method of roasting a used secondary battery, then pulverizing, sieving, or magnetically sorting under the sieve (JP-A-6-322452, JP-A-6-3-3)
46160, JP-A-7-245126),
Similarly, a method of roasting, pulverizing, sieving, and acid-treating, and adding an alkali to precipitate and recover Co, Ni, etc. as carbonates and hydroxides (Japanese Patent Laid-Open No. 7-207349)
Publication).

【0004】また、ニッケルとコバルトを精製分離する
方法として溶媒抽出法が以前より知られているが、例え
ば第一〜三級アミンまたは第四級アンモニウム塩を用い
る方法(特開昭50−57022号公報、特開昭54−
68720号公報)、ジアルキルホスフィンから誘導さ
れるジアルキルホスフィン酸化合物(特開昭57−73
142号公報、特開昭57−73143号公報、特開昭
61−44139号公報、特開平1−315384号公
報、特開平6−264156号公報)等が知られてい
る。また、コバルト酸リチウム等の正極剤を製造する時
に、リチウムイオン二次電池の規格値を外れたオフスペ
ックや製造ミス等による廃コバルト酸リチウム等からコ
バルトを回収する必要がでてきている。
As a method for purifying and separating nickel and cobalt, a solvent extraction method has been known for some time. For example, a method using a primary to tertiary amine or a quaternary ammonium salt (JP-A-50-57022) Gazette, JP-A-54-
68720), a dialkylphosphinic acid compound derived from a dialkylphosphine (JP-A-57-73).
142, JP-A-57-73143, JP-A-61-44139, JP-A-1-315384, JP-A-6-264156) and the like. Further, when producing a positive electrode agent such as lithium cobaltate, it is necessary to recover cobalt from waste lithium cobaltate or the like due to off-specification or production error outside the standard value of the lithium ion secondary battery.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、上記事
実に鑑み、リチウムイオン二次電池用正極活物質中に存
在する貴金属の分離回収方法について鋭意研究を行った
結果、該化合物を鉱酸又は鉱酸と過酸化水素との混合液
で溶解させた溶出液に、有価金属抽出剤を接触させるこ
とにより、それぞれの有価金属を分離回収できることを
確認し、本発明を完成した。
In view of the above facts, the present inventors have conducted intensive studies on a method for separating and recovering a noble metal present in a positive electrode active material for a lithium ion secondary battery. It has been confirmed that each valuable metal can be separated and recovered by bringing a valuable metal extractant into contact with an eluate dissolved with a mixed solution of an acid or a mineral acid and hydrogen peroxide, thereby completing the present invention.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、その
第1は、リチウムイオン二次電池用正極活物質に鉱酸又
は鉱酸と過酸化水素との混合液を加えた後、溶出液を分
離する第1工程、次いで分離した溶出液に金属抽出剤を
含有する有機溶媒と接触させて抽出分離処理を行う第2
工程、次いで抽出液有機溶媒相に鉱酸を接触させて逆抽
出分離する第3工程よりなることを特徴とする、リチウ
ムイオン二次電池用正極活物質からの有価金属の回収方
法を提供するものである。
That is, the first aspect of the present invention is to firstly add a mineral acid or a mixture of a mineral acid and hydrogen peroxide to a positive electrode active material for a lithium ion secondary battery and then remove the eluate. The first step of separation, and the second step of extracting and separating the separated eluate by contacting the separated eluate with an organic solvent containing a metal extractant.
Providing a method for recovering valuable metals from a positive electrode active material for a lithium ion secondary battery, comprising a third step of back-extraction separation by bringing a mineral acid into contact with the organic solvent phase of the extract liquid, followed by a third step. It is.

【0007】さらに又本発明の第2は、前記の第2工程
を経たラフィネート(水溶液相)に、さらに金属抽出剤
を含有する有機溶媒と接触させて抽出分離処理を行う工
程、次いで抽出液有機溶媒相に鉱酸を接触させて逆抽出
分離する工程を行うことにより異種の有価金属を別々に
回収することを特徴とする、前記に記載のリチウムイオ
ン二次電池用正極活物質からの有価金属の回収方法を提
供するものである。
Further, a second aspect of the present invention is a step of bringing the raffinate (aqueous phase) which has been subjected to the second step into contact with an organic solvent containing a metal extractant to carry out an extraction separation treatment. The valuable metal from the positive electrode active material for a lithium ion secondary battery as described above, wherein different valuable metals are separately collected by performing a step of back extraction and separation by contacting a mineral acid with a solvent phase. The present invention provides a method for recovering the above.

【0008】さらに本発明の第3は、第1工程で分離さ
れた溶出溶液中に残存する過酸化水素を還元剤で分解し
た後第2工程に付することを特徴とする、前記のリチウ
ムイオン二次電池用正極活物質からの有価金属の回収方
法を提供するものである。さらに本発明の第4は、金属
抽出剤として、下記一般式(1):
[0008] A third aspect of the present invention is the above-mentioned lithium ion, wherein hydrogen peroxide remaining in the elution solution separated in the first step is decomposed with a reducing agent and then subjected to the second step. An object of the present invention is to provide a method for recovering valuable metals from a positive electrode active material for a secondary battery. A fourth aspect of the present invention is a metal extractant represented by the following general formula (1):

【0009】[0009]

【化2】 Embedded image

【0010】(式中、X1、X2は酸素原子または硫黄原
子を示す。但し、X1とX2は同じであっても又は異なっ
ていてもよい。)で表されるビス(1,1,3,3−テト
ラメチルブチル)ホスフィン酸化合物を使用する、前記
のリチウムイオン二次電池用正極活物質からの有価金属
の回収方法を提供するものである。
Wherein X 1 and X 2 represent an oxygen atom or a sulfur atom, provided that X 1 and X 2 may be the same or different. An object of the present invention is to provide a method for recovering valuable metals from the above-mentioned positive electrode active material for a lithium ion secondary battery, using a (1,3,3-tetramethylbutyl) phosphinic acid compound.

【0011】さらに又本発明の第5は、リチウムイオン
二次電池用正極活物質中の有価金属、鉱酸および過酸化
水素のモル比が、それぞれ1:1:1〜1:5:5の範
囲内である、前記のリチウムイオン二次電池用正極活物
質からの有価金属の回収方法を提供するものである。
A fifth aspect of the present invention is that the molar ratio of the valuable metal, the mineral acid and the hydrogen peroxide in the positive electrode active material for a lithium ion secondary battery is 1: 1: 1-1: 5: 5, respectively. Another object of the present invention is to provide a method for recovering valuable metals from the positive electrode active material for a lithium ion secondary battery, which is within the above range.

【0012】[0012]

【発明の実施の形態】以下本発明をさらに詳細に説明す
る本発明の方法における処理の対象となるるリチウムイ
オン二次電池用正極活物質とは、正極活材たるLiCo
2 、LiNiO2 、LiMn24 等のリチウム含有
遷移金属酸化物などの製造工程中から生成する不良品又
は品質管理上の抜取検査処理品、製品の規格外のオフス
ペック等などをいう。リチウムイオン二次電池正極剤中
の有価金属とは、リチウムイオン二次電池正極剤の種類
によっても異なるが、例えばAlやCo、Ni、Mn
(以下「Co等」という)であるが、主としてLiCo
2 、LiNiO2 、LiMn24 、LiNix Co
y O2 からもたらされるCo等の有価金属成分をいう。
本発明のかかる化合物中からの有価金属抽出剤は、含リ
ン系化合物及びカルボン酸化合物、アルキルスルホン酸
化合物、三級アミン化合物、キレート系化合物である
が、好ましくは含リン化合物であり、更に好ましくは一
般式(1):
BEST MODE FOR CARRYING OUT THE INVENTION The positive electrode active material for a lithium ion secondary battery to be treated in the method of the present invention, which explains the present invention in more detail, is LiCo as a positive electrode active material.
It refers to defective products generated during the manufacturing process of lithium-containing transition metal oxides such as O 2 , LiNiO 2 , LiMn 2 O 4 or the like, sampling inspection products for quality control, off-spec products out of specification, and the like. Valuable metals in the lithium ion secondary battery positive electrode agent differ depending on the type of the lithium ion secondary battery positive electrode agent, for example, Al, Co, Ni, Mn.
(Hereinafter referred to as “Co etc.”), but mainly LiCo
O 2 , LiNiO 2 , LiMn 2 O 4 , LiNix Co
refers to valuable metal components such as Co that results from y O 2.
The valuable metal extractant from such compounds of the present invention is a phosphorus-containing compound and a carboxylic acid compound, an alkylsulfonic acid compound, a tertiary amine compound, a chelate-based compound, preferably a phosphorus-containing compound, and more preferably. Is the general formula (1):

【0013】[0013]

【化3】 Embedded image

【0014】(X1、X2は前記に定義したとおり)で表
されるビス(1,1,3,3−テトラメチルブチル)ホス
フィン酸化合物、例えばビス−(1,1,3,3−テトラ
メチルブチル)ホスフィン酸、ビス−(1,1,3,3−
テトラメチルブチル)モノチオホスフィン酸、ビス−
(1,1,3,3−テトラメチルブチル)ジチオホスフィ
ン酸等である。
A bis (1,1,3,3-tetramethylbutyl) phosphinic acid compound represented by the formula (X 1 and X 2 are as defined above), for example, bis- (1,1,3,3- Tetramethylbutyl) phosphinic acid, bis- (1,1,3,3-
Tetramethylbutyl) monothiophosphinic acid, bis-
(1,1,3,3-tetramethylbutyl) dithiophosphinic acid and the like.

【0015】また、その他の有価金属抽出剤としては、
含リン化合物、例えば、ジ−(2−エチルヘキシル)リ
ン酸、ジ−(n−ブチル)リン酸、ジ−(n−プロピ
ル)リン酸、ジ−(n−アミル)リン酸、ジ−(2−エ
チルブチル)リン酸、ジ−(2−エチルデシル)リン
酸、ジ−(2−エチルドデシル)リン酸、ビス−(2,
4,4,−トリメチルペンチル)リン酸等のリン酸エステ
ル、2−エチルヘキシルホスホン酸−モノ−2−エチル
ヘキシルエステル、1−メチルヘプチルホスホン酸−モ
ノ−1−メチルヘプチルエステル、1−メチルヘプチル
ホスホン酸−モノ−2−エチルヘキシルエステル等のホ
スホン酸エステル、ジ−(2,4,4−トリメチルペンチ
ル)ホスフィン酸、ジ−(2−エチルヘキシル)ホスフ
ィン酸、ジ−(n−オクチル)ホスフィン酸、ジ−(2
−メチル−5−ヘキセニル)ホスフィン酸、ジ−(p−
メチルシクロヘキシル)ホスフィン酸、ジ−(シクロヘ
キシル)ホスフィン酸、ジフェニルホスフィン酸、ジ−
(p−エチルフェニル)ホスフィン酸、ジ−(p−メチ
ルフェニル)ホスフィン酸、ジ−(2−メチル−5−ヘ
キセニル)ホスフィン酸、ジ−(2−メチル−5−ヘキ
セニル)ホスフィン酸、ジ−(2−メチル−5−ヘキセ
ニル)ホスフィン酸等のホスフィン酸等が挙げられる。
また、カルボン酸化合物としては、Versatic 9、 Versa
tic 911、ナフテン酸等が挙げられる。アルキルスルホ
ン酸化合物としては、5,8−ジノニルナフチル硫酸、
三級アミンとしては、例えばトリ−n−オクチルアミ
ン、トリ−イソオクチルアミン、トリ−n−デシルアミ
ン、トリ−イソデシルアミン、トリ−ドデシルアミン、
トリ−トリデシルアミン、N−デシル−N−オクチル−
ドデシルアミン等が挙げられる。
[0015] Other valuable metal extractants include:
Phosphorus-containing compounds, for example, di- (2-ethylhexyl) phosphoric acid, di- (n-butyl) phosphoric acid, di- (n-propyl) phosphoric acid, di- (n-amyl) phosphoric acid, di- (2 -Ethylbutyl) phosphoric acid, di- (2-ethyldecyl) phosphoric acid, di- (2-ethyldodecyl) phosphoric acid, bis- (2,
Phosphate esters such as (4,4, -trimethylpentyl) phosphoric acid, 2-ethylhexylphosphonic acid-mono-2-ethylhexyl ester, 1-methylheptylphosphonic acid-mono-1-methylheptyl ester, 1-methylheptylphosphonic acid -Phosphonic acid esters such as mono-2-ethylhexyl ester, di- (2,4,4-trimethylpentyl) phosphinic acid, di- (2-ethylhexyl) phosphinic acid, di- (n-octyl) phosphinic acid, di- (2
-Methyl-5-hexenyl) phosphinic acid, di- (p-
Methylcyclohexyl) phosphinic acid, di- (cyclohexyl) phosphinic acid, diphenylphosphinic acid, di-
(P-ethylphenyl) phosphinic acid, di- (p-methylphenyl) phosphinic acid, di- (2-methyl-5-hexenyl) phosphinic acid, di- (2-methyl-5-hexenyl) phosphinic acid, di- And phosphinic acids such as (2-methyl-5-hexenyl) phosphinic acid.
In addition, as the carboxylic acid compounds, Versatic 9, Versa
tic 911, naphthenic acid and the like. As the alkylsulfonic acid compound, 5,8-dinonylnaphthyl sulfate,
Examples of the tertiary amine include tri-n-octylamine, tri-isooctylamine, tri-n-decylamine, tri-isodecylamine, tri-dodecylamine,
Tri-tridecylamine, N-decyl-N-octyl-
Dodecylamine and the like.

【0016】キレート化合物としては、2- ヒドロキシ
- 5- ドデシルベンゾフェノンオキシム、2- ヒドロキ
シ- 5- ノニルベンゾフェノンオキシム、2- ヒドロキ
シ-3- クロロ- 5- ノニルベンゾフェノンオキシム、
5- ドデシルサリチルアルドオキシム、2- ヒドロキシ
- 5- ノニルベンジルフェノンオキシム、5- ノニル-
サリチルアルドオキシム、2- ヒドロキシ- 5- ノニル
アセトフェノンオキシム等が挙げられる。
As the chelate compound, 2-hydroxy
-5-dodecylbenzophenone oxime, 2-hydroxy-5-nonylbenzophenone oxime, 2-hydroxy-3-chloro-5-nonylbenzophenone oxime,
5-dodecylsalicylaldoxime, 2-hydroxy
-5-nonylbenzylphenone oxime, 5-nonyl-
Salicylaldoxime, 2-hydroxy-5-nonylacetophenone oxime and the like.

【0017】本発明の特徴である有価金属の回収方法
は、(1)リチウムイオン二次電池用正極活物質に、鉱
酸又は鉱酸と過酸化水素との混合液を加えた後、溶出液
を分離する第1工程、(2)次いで分離した溶出液に、
金属抽出剤を含有する有機溶媒を接触させて抽出分離処
理を行う第2工程、(3)次いで抽出液有機溶媒相に、
さらに鉱酸を接触させて逆抽出分離する第3工程、より
なる回収方法である。
The method of recovering valuable metals, which is a feature of the present invention, is characterized in that (1) a mineral acid or a mixture of a mineral acid and hydrogen peroxide is added to a positive electrode active material for a lithium ion secondary battery, and then an eluate is added. (2) Then, the separated eluate is
A second step in which an extraction and separation treatment is carried out by contacting an organic solvent containing a metal extractant, (3) and then an extract organic solvent phase,
A third step of back extraction and separation by further contacting with a mineral acid.

【0018】さらに前記(2)の第2工程でのラフィネ
ート(水溶液相)に他の有価金属がなお残存する場合に
は、残存する有価金属を抽出するに適した条件にして、
金属抽出剤を含有する有機溶媒をさらに接触させて抽出
分離処理を行う工程(2’)、次いでこの抽出液有機溶
媒相に、さらに鉱酸を接触させて逆抽出分離する工程
(3’)を行って、異種の有価金属を別々に回収する方
法である。
Further, if other valuable metals still remain in the raffinate (aqueous solution phase) in the second step of the above (2), the conditions are suitable for extracting the remaining valuable metals.
A step (2 ′) of performing extraction and separation treatment by further contacting an organic solvent containing a metal extractant, and then a step (3 ′) of back extraction and separation by further contacting a mineral acid with the organic solvent phase of the extract. In this method, different kinds of valuable metals are separately collected.

【0019】かかる第1工程は、初めに正極活物質を鉱
酸又は鉱酸と過酸化水素との混合物で溶解させることが
重要なことになる。使用する鉱酸は塩酸、硫酸、硝酸、
フッ化水素酸などであり、工業的に入手できるものであ
れば特に制限されるものではない。リチウムイオン二次
電池用正極活物質中に含まる元素としてCoとNiが存
在する場合は、何れの化合物であっても、鉱酸のみでは
溶解することができず、鉱酸と過酸化水素との混合水溶
液でないと完全に溶解させることはできない。これは、
酸共存下における過酸化水素の還元力によりCoとNi
の酸化数が3価から2価に還元されることにより、酸性
溶液に溶解されるものと考えられる。それに対して、L
iMn24等のマンガン酸リチウムは、鉱酸のみで溶解
することが出来るが、一部CoやNiを含むものは過酸
化水素を同様に添加する必要がある。
In the first step, it is important to first dissolve the positive electrode active material with a mineral acid or a mixture of a mineral acid and hydrogen peroxide. The mineral acids used are hydrochloric acid, sulfuric acid, nitric acid,
Hydrofluoric acid is not particularly limited as long as it is industrially available. When Co and Ni are present as elements contained in the positive electrode active material for a lithium ion secondary battery, any of the compounds cannot be dissolved only with a mineral acid, and the mineral acid and hydrogen peroxide cannot be dissolved. It cannot be completely dissolved unless it is a mixed aqueous solution of this is,
Co and Ni by reducing power of hydrogen peroxide in the presence of acid
Is considered to be dissolved in the acidic solution by reducing the oxidation number of the compound from trivalent to divalent. On the other hand, L
Lithium manganate such as iMn 2 O 4 can be dissolved only with a mineral acid, but those containing a part of Co or Ni require the addition of hydrogen peroxide as well.

【0020】かかる正極活物質と鉱酸又は鉱酸と過酸化
水素の混合物との反応・溶解温度は、特に限定される物
ではないが、通常0〜100℃、好ましくは25〜60
℃であり、反応・溶解時間は、通常5分〜10時間、好
ましくは0.5〜2時間である。また、正極活物質中の
有価金属、鉱酸および過酸化水素の反応・溶解時のモル
比は、それぞれ、1:1:1〜1:5:5、好ましくは
1:1:1〜1:2:2である。使用する過酸化水素の
量は、該正極活物質を完全に溶解させるために、使用す
る過酸化水素の量は多いほどよいが、後の溶媒抽出の際
問題となるために、残存過酸化水素を最小限に抑える必
要がある。
The reaction / dissolution temperature of such a positive electrode active material and a mineral acid or a mixture of a mineral acid and hydrogen peroxide is not particularly limited, but is usually 0 to 100 ° C, preferably 25 to 60 ° C.
° C, and the reaction / dissolution time is usually 5 minutes to 10 hours, preferably 0.5 to 2 hours. The molar ratio of the valuable metal, mineral acid and hydrogen peroxide in the positive electrode active material at the time of reaction and dissolution is 1: 1: 1-1: 5: 5, preferably 1: 1: 1-1: 1, respectively. 2: 2. The amount of hydrogen peroxide used is preferably as large as the amount of hydrogen peroxide used in order to completely dissolve the positive electrode active material. Need to be minimized.

【0021】過酸化水素が残存すると、2価のコバルト
イオンは容易に3価に酸化される。3価のコバルトイオ
ンははその強い酸化力により、抽出剤及び希釈剤を酸化
し、特に炭化水素系の希釈剤は長期にわたる使用中に酸
化を受けて一部カルボン酸になり、抽出の際、相分離や
選択性の低下といった問題を引き起こす原因となること
から、残存する過酸化水素を極力除くことが好ましい。
したがって、過酸化水素を使用した場合、該溶解液中に
残存する過酸化水素を分解するために10〜1000倍
モル、好ましくは10〜100倍モルの還元剤を添加す
る。使用する還元剤は、例えばアスコルビン酸、次亜リ
ン酸ナトリウム、亜硫酸水素ナトリウムなどであり、工
業的に入手できるものであれば特に制限されるものでは
ない。この時の反応温度は、通常0〜100℃、好まし
くは25〜60℃であり、反応時間は通常5分〜10時
間、好ましくは0.5〜2時間である。
When hydrogen peroxide remains, divalent cobalt ions are easily oxidized to trivalent. The trivalent cobalt ion oxidizes the extractant and the diluent due to its strong oxidizing power, and in particular, the hydrocarbon-based diluent is oxidized to partly carboxylic acid during long-term use. It is preferable to remove residual hydrogen peroxide as much as possible, since this may cause problems such as phase separation and a decrease in selectivity.
Therefore, when hydrogen peroxide is used, a 10- to 1000-fold, preferably 10- to 100-fold, molar amount of a reducing agent is added to decompose the hydrogen peroxide remaining in the solution. The reducing agent to be used is, for example, ascorbic acid, sodium hypophosphite, sodium hydrogen sulfite and the like, and is not particularly limited as long as it is industrially available. The reaction temperature at this time is usually 0 to 100 ° C, preferably 25 to 60 ° C, and the reaction time is usually 5 minutes to 10 hours, preferably 0.5 to 2 hours.

【0022】次いで、第2工程は、分離した溶出液をか
かる金属抽出剤を含有する有機溶媒と接触させて抽出分
離処理を行うものである。金属抽出剤は、上記に挙げた
抽出剤を使用することができるが、溶液中にCoとNi
が共存している場合は、ビス−(1,1,3,3−テトラ
メチルブチル)ホスフィン酸により、溶液のpHを調整
することにより容易に分離して回収することができる
が、必要に応じてホスフィン酸化合物を選択すればよ
く、特に制限されるものではない。
Next, in the second step, the separated eluate is brought into contact with an organic solvent containing such a metal extractant to perform an extraction separation treatment. As the metal extractant, the extractants listed above can be used, but Co and Ni are contained in the solution.
Can be easily separated and recovered by adjusting the pH of the solution with bis- (1,1,3,3-tetramethylbutyl) phosphinic acid. The phosphinic acid compound may be selected without limitation.

【0023】かかる抽出剤の有機溶媒は、特に制限され
るものではないが、たとえばトルエン、キシレン、ベン
ゼンどの芳香族系、ヘキサン、ヘプタン、オクタン、ケ
ロシン、n−パラフィンなどの脂肪族系など通常使用さ
れる水に不要な有機溶媒が使用可能である。これらの有
機溶媒は、1種又は2種以上を混合しても良い。上記抽
出剤と希釈剤との混合比(重量)は1:99〜99:
1、好ましくは5:95〜50:50が望ましい。抽出
の際の上記酸処理液と抽出溶媒との容積比は特に限定さ
れるものではないが、通常、20:1〜1:20、好ま
しくは5:1〜1:5が望まれる。抽出温度は、10〜
100℃好ましくは20〜70℃が好ましい。抽出時間
は5分〜2時間、好ましくは30分〜1時間である。
The organic solvent for the extractant is not particularly limited, but is usually used, for example, aromatics such as toluene, xylene and benzene, aliphatics such as hexane, heptane, octane, kerosene and n-paraffin. Unnecessary organic solvents for the water used can be used. These organic solvents may be used alone or in combination of two or more. The mixing ratio (weight) of the extractant and the diluent is 1:99 to 99:
1, preferably 5:95 to 50:50. The volume ratio between the acid-treated solution and the extraction solvent at the time of extraction is not particularly limited, but is usually 20: 1 to 1:20, preferably 5: 1 to 1: 5. The extraction temperature is between 10 and
100 ° C, preferably 20-70 ° C. The extraction time is 5 minutes to 2 hours, preferably 30 minutes to 1 hour.

【0024】また、上記溶媒抽出の際、相分離を良くす
るために抽出系に高級アルコール及び中性リン酸エステ
ル等の添加剤を加えることもできる。高級アルコールと
しては、たとえばイソデカノール、1−オクタノール、
2−オクタノール、2−エチル−1ヘキサノール、1−
ノナノール、1−ウンデカノール、1−ドデカノール、
シクロペンタノール、シクロヘキサノール等が挙げられ
る。
In the above solvent extraction, additives such as higher alcohols and neutral phosphates may be added to the extraction system in order to improve the phase separation. As higher alcohols, for example, isodecanol, 1-octanol,
2-octanol, 2-ethyl-1hexanol, 1-
Nonanol, 1-undecanol, 1-dodecanol,
Cyclopentanol, cyclohexanol and the like can be mentioned.

【0025】中性リン酸エステルとしては、例えばトリ
ブチルホスフェート、ブチルホスホン酸ジブチルエステ
ル、ジブチルホスフィンジブチルエステル、トリクレジ
ルホスフェート、トリブチルホスフィンオキサイド、ト
リオクチルホスフィンオキサイド等が挙げられる。上記
の添加剤の使用量は、抽出溶媒に対し、1〜50容量
%、好ましくは2〜20容量%が望まれる。
Examples of the neutral phosphate include tributyl phosphate, dibutyl butylphosphonate, dibutyl phosphine dibutyl ester, tricresyl phosphate, tributyl phosphine oxide, and trioctyl phosphine oxide. The use amount of the above additives is 1 to 50% by volume, preferably 2 to 20% by volume, based on the extraction solvent.

【0026】次いで、第3工程として、有価金属を含む
抽出液有機溶媒相に鉱酸水溶液を接触させて逆抽出分離
する。使用する鉱酸は、塩酸、硫酸、硝酸等であり、そ
の有機相との混合割合(容積)は20:1〜1:20、
好ましくは5:1〜1:5、逆抽出温度は10〜100
℃、好ましくは20〜70℃である。抽出時間は、5分
〜2時間、好ましくは0.5〜1時間である。かかる処
理によって有価金属を水相中に逆抽出し、更に有価金属
を該水相から回収する。逆抽出後の有機相は、再度抽出
に用いられ、繰り返し使用することができる。回収され
た有価金属は、高純度品であることから、リチウム二次
電池用の原料として再度使用することが可能になる。
Then, as a third step, an aqueous solution of a mineral acid is brought into contact with the organic solvent phase of the extract containing valuable metals to carry out back-extraction separation. The mineral acids used are hydrochloric acid, sulfuric acid, nitric acid and the like, and the mixing ratio (volume) with the organic phase is 20: 1 to 1:20,
Preferably 5: 1 to 1: 5, back extraction temperature is 10 to 100
° C, preferably 20-70 ° C. The extraction time is 5 minutes to 2 hours, preferably 0.5 to 1 hour. By this treatment, valuable metals are back-extracted into the aqueous phase, and valuable metals are recovered from the aqueous phase. The organic phase after back extraction is used again for extraction and can be used repeatedly. Since the recovered valuable metal is a high-purity product, it can be reused as a raw material for a lithium secondary battery.

【0027】また、抽出後のラフィネート(水相)は高
純度のリチウム溶液であり、炭酸ナトリウム又は/及び
炭酸水素ナトリウムを加えるなど公知の方法により分離
精製することができる。抽出方法は、通常抽出剤を含有
する有機溶媒を、有価金属を含有する水溶液とを接触混
合し、該水溶液から所望の有価金属を選択的に有機溶媒
相に抽出することにより行なわれるが、その接触方法は
ミキサ−セトラ−の様な装置を用いて連続的に多段処理
することが工業的には好ましい。
The raffinate (aqueous phase) after the extraction is a high-purity lithium solution, and can be separated and purified by a known method such as adding sodium carbonate and / or sodium hydrogen carbonate. The extraction method is usually performed by contact-mixing an organic solvent containing an extractant with an aqueous solution containing a valuable metal, and selectively extracting a desired valuable metal from the aqueous solution to an organic solvent phase. It is industrially preferable that the contact method is a continuous multi-stage treatment using an apparatus such as a mixer-settler.

【0028】[0028]

【実施例】以下、実施例によって本発明をさらに説明す
る。 (実施例1)撹拌機、温度計、滴下ロート、コンデンサ
ーを備えた300mL4つ口フラスコに、リチウムイオ
ン二次電池用正極活物質の規格外品より得られたLiC
oO 6.50g(66.3mmol)、16N硫酸1
0ml、純水85mlを入れておき、35%過酸化水素
水5.0gを室温で滴下した。滴下後100℃で1時間
反応・溶出させ、溶出液を室温まで冷却した後、未溶出
のコバルト酸リチウムを濾別した。残査のコバルト酸リ
チウムの重量より、溶出液中には90%のコバルト酸リ
チウムが溶解していることがわかった。また、同溶出液
を1/10N過マンガン酸カリウム水溶液で滴定したと
ころ、過酸化水素が100ppm残存していた。そこ
で、同水溶液にアスコルビン酸90.6mg(0.515
mmol)を加え残存している過酸化水素を還元した。
300mL三角フラスコに、上記の還元処理後の水溶液
と抽出溶媒あるビス(1,1,3,3−テトラメチルブチ
ル)ホスフィン酸を14.5重量%含むn−ヘキサン溶
液とをO/A容積比1:1で混合して、28%アンモニ
ア水でpHを5.4に調整し室温で1時間接触した後、
該有機相と水相を分液ロートに移し30分静置し、分液
した。300mL三角フラスコに該有機相と1N硫酸水
溶液を、O/A容積比1:1で混合し、室温で1時間接
触させ逆抽出を行い、30分静置した後、有機相と水相
を分離した。抽出後の水相と逆抽出後の水相中のコバル
トイオン濃度をICP分析法でリチウムイオン濃度を原
子吸光分析法で測定した。結果を表1に示す。
The present invention will be further described with reference to the following examples. Example 1 In a 300 mL four-necked flask equipped with a stirrer, a thermometer, a dropping funnel, and a condenser, LiC obtained from a nonstandard product of a positive electrode active material for a lithium ion secondary battery was added.
6.50 g (66.3 mmol) of oO 2 , 16N sulfuric acid 1
0 ml and 85 ml of pure water were put thereinto, and 5.0 g of 35% hydrogen peroxide solution was added dropwise at room temperature. After the dropwise addition, the mixture was reacted and eluted at 100 ° C. for 1 hour. After the eluate was cooled to room temperature, uneluted lithium cobaltate was separated by filtration. From the weight of the residual lithium cobaltate, it was found that 90% of the lithium cobaltate was dissolved in the eluate. The eluate was titrated with a 1 / 10N aqueous solution of potassium permanganate. As a result, 100 ppm of hydrogen peroxide remained. Therefore, 90.6 mg of ascorbic acid (0.515) was added to the aqueous solution.
mmol) was added to reduce the remaining hydrogen peroxide.
In a 300 mL Erlenmeyer flask, an O / A volume ratio of the aqueous solution after the above-mentioned reduction treatment and an n-hexane solution containing 14.5% by weight of bis (1,1,3,3-tetramethylbutyl) phosphinic acid as an extraction solvent was added. After mixing at 1: 1 and adjusting the pH to 5.4 with 28% aqueous ammonia, and contacting at room temperature for 1 hour,
The organic phase and the aqueous phase were transferred to a separating funnel, allowed to stand for 30 minutes, and separated. The organic phase and a 1N aqueous sulfuric acid solution are mixed in a 300 mL Erlenmeyer flask at an O / A volume ratio of 1: 1. The mixture is brought into contact at room temperature for 1 hour to perform reverse extraction. After allowing to stand for 30 minutes, the organic phase and the aqueous phase are separated. did. The cobalt ion concentration in the aqueous phase after extraction and the aqueous phase after back-extraction were measured by ICP analysis and lithium ion concentration by atomic absorption analysis. Table 1 shows the results.

【0029】(実施例2)撹拌機、温度計、滴下ロー
ト、コンデンサーを備えた300mL4つ口フラスコに
LiNi0.8Co0.22 5.00g(51.0mmo
l)、16N硫酸10ml、純水85mlを入れてお
き、35%過酸化水素水5.0gを室温で滴下した。滴
下後100℃で1時間反応・溶出させ、溶出液を室温ま
で冷却した。同溶出液を1/10N過マンガン酸カリウ
ム水溶液で滴定したところ、過酸化水素が4.23%残
存していた。そこで、同溶出液にアスコルビン酸38.
3g(218mmol)を加え、残存している過酸化水
素を還元した(第1工程)。かかる還元処理後の水溶液
と、抽出溶媒であるビス(1,1,3,3−テトラメチル
ブチル)ホスフィン酸を14.5重量%含むn−ヘキサ
ン溶液とをO/A容積比1:1で混合して、接触のpH
を5.3に調整しコバルトを抽出した(第2工程)。か
かる有機相を1N硫酸水溶液をO/A容積比1:1で混
合し、室温で1時間接触させ逆抽出を行い、30分静置
した後、有機相と水相を分離し、コバルトを分離回収し
た(第3工程)。
(Example 2) 5.00 g (51.0 mmol) of LiNi 0.8 Co 0.2 O 2 was placed in a 300 mL four-necked flask equipped with a stirrer, a thermometer, a dropping funnel, and a condenser.
l), 10 ml of 16N sulfuric acid and 85 ml of pure water were put thereinto, and 5.0 g of 35% hydrogen peroxide solution was added dropwise at room temperature. After the addition, the mixture was reacted and eluted at 100 ° C. for 1 hour, and the eluate was cooled to room temperature. The eluate was titrated with a 1 / 10N aqueous solution of potassium permanganate to find that 4.23% of hydrogen peroxide remained. Therefore, ascorbic acid 38.
3 g (218 mmol) were added to reduce the remaining hydrogen peroxide (first step). An aqueous solution after the reduction treatment and an n-hexane solution containing 14.5% by weight of bis (1,1,3,3-tetramethylbutyl) phosphinic acid as an extraction solvent are mixed at an O / A volume ratio of 1: 1. Mix and contact pH
Was adjusted to 5.3 to extract cobalt (second step). The organic phase is mixed with a 1N sulfuric acid aqueous solution at an O / A volume ratio of 1: 1 and brought into contact at room temperature for 1 hour to perform back extraction. After allowing to stand for 30 minutes, the organic phase and the aqueous phase are separated, and cobalt is separated. Collected (third step).

【0030】更に、ニッケルを含有する第2工程でのコ
バルト抽出後のラフィネート(水溶液相)と、抽出溶媒
であるビス(1,1,3,3−テトラメチルブチル)ホス
フィン酸を14.5重量%含むn−ヘキサン溶液とをO
/A容積比1:1で混合して、28%アンモニア水でp
Hを8.5に調整し、室温で1時間接触した後、有機相
と水相を分液ロートに移し30分静置し、分液した(第
2'工程)。かかる有機相を1N硫酸水溶液をO/A容
積比1:1で混合し、室温で1時間接触させ逆抽出を行
い、30分静置した後、有機相と水相を分離しコバルト
抽出後のラフィネートからニッケルを分離回収した(第
3'工程)。結果を表1に示す。
Further, the raffinate (aqueous phase) after extraction of cobalt in the second step containing nickel and bis (1,1,3,3-tetramethylbutyl) phosphinic acid as an extraction solvent were added at 14.5 weight%. % N-hexane solution and O
/ A mixed at a volume ratio of 1: 1 and p with 28% aqueous ammonia
H was adjusted to 8.5, and after contacting at room temperature for 1 hour, the organic phase and the aqueous phase were transferred to a separating funnel, allowed to stand for 30 minutes, and separated (2 ′ step). The organic phase is mixed with a 1N aqueous solution of sulfuric acid at an O / A volume ratio of 1: 1 and brought into contact at room temperature for 1 hour to perform back extraction. After allowing to stand for 30 minutes, the organic phase and the aqueous phase are separated, and after the cobalt extraction. Nickel was separated and recovered from the raffinate (3 ′ step). Table 1 shows the results.

【0031】(実施例3)撹拌機、温度計、滴下ロー
ト、コンデンサーを備えた300mL4つ口フラスコ
に、LiMn24 5.00g(39.7mmol)、1
6N硫酸10ml、純水85mlを入れ、100℃で1
時間反応させ、反応液を室温まで冷却した。かかる処理
後の水溶液と抽出溶媒であるビス(1,1,3,3−テト
ラメチルブチル)ホスフィン酸を14.5重量%含むn
−ヘキサン溶液とをO/A容積比1:1で混合して、接
触のpHを8.09に調整した以外は実施例1と同様に
行った。結果を表1に示す。
Example 3 5.00 g (39.7 mmol) of LiMn 2 O 4 was placed in a 300 mL four-necked flask equipped with a stirrer, thermometer, dropping funnel and condenser.
Add 6 ml of 6N sulfuric acid and 85 ml of pure water,
The reaction was allowed to proceed for an hour, and the reaction solution was cooled to room temperature. The aqueous solution after the treatment and n containing 14.5% by weight of bis (1,1,3,3-tetramethylbutyl) phosphinic acid as an extraction solvent
-Hexane solution was mixed at an O / A volume ratio of 1: 1 to adjust the contact pH to 8.09, and the same operation as in Example 1 was performed. Table 1 shows the results.

【0032】(実施例4)抽出溶媒に20.5重量%の
トリ−イソオクチルアミンのキシレン溶液を用いて、接
触のpHを0.8に調整した以外は実施例1と同様に行
った。結果を表1に示す。
Example 4 The procedure of Example 1 was repeated except that the contact pH was adjusted to 0.8 using a 20.5% by weight xylene solution of tri-isooctylamine as the extraction solvent. Table 1 shows the results.

【0033】(実施例5)抽出溶媒に20.0重量%の
5,8−ジエチル−7−ヒドロキシ−6−ドデカノンオ
キシムのケロシン溶液を用いて、接触のpHを6.1に
調整した以外は実施例1と同様に行った。結果を表1に
示す。
Example 5 The contact pH was adjusted to 6.1 using a kerosene solution of 20.0% by weight of 5,8-diethyl-7-hydroxy-6-dodecanone oxime as an extraction solvent. Was performed in the same manner as in Example 1. Table 1 shows the results.

【0034】(実施例6)抽出溶媒に11.7重量%の
ナフテン酸のケロシン溶液を用いて、接触のpHを8.
4に調整した以外は実施例1と同様に行った。結果を表
1に示す。
Example 6 Using a 11.7% by weight solution of naphthenic acid in kerosene as an extraction solvent, the pH of the contact was adjusted to 8.
The procedure was performed in the same manner as in Example 1 except that the value was adjusted to 4. Table 1 shows the results.

【0035】(実施例7)抽出溶媒に16.1重量%の
ジ−(2エチルヘキシル)リン酸のケロシン溶液を用い
て、接触のpHを6.5に調整した以外は実施例1と同
様に行った。結果を表1に示す。
Example 7 The procedure of Example 1 was repeated except that the pH of the contact was adjusted to 6.5 using a 16.1% by weight solution of di- (2-ethylhexyl) phosphoric acid in kerosene as the extraction solvent. went. Table 1 shows the results.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【発明の効果】表1から判るように、本発明の抽出方法
によれば、極めて高い抽出率で、リチウムイオン二次電
池用正極活物質から、コバルト、ニッケル等の有価金属
を回収することができる。
As can be seen from Table 1, according to the extraction method of the present invention, valuable metals such as cobalt and nickel can be recovered from the positive electrode active material for a lithium ion secondary battery at an extremely high extraction rate. it can.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオン二次電池用正極活物質に
鉱酸又は鉱酸と過酸化水素との混合液を加えた後、溶出
液を分離する第1工程、次いで分離した溶出液に金属抽
出剤を含有する有機溶媒を接触させて抽出分離処理を行
う第2工程、次いで抽出液有機溶媒相に鉱酸を接触させ
て逆抽出分離する第3工程よりなることを特徴とする、
リチウムイオン二次電池用正極活物質からの有価金属の
回収方法。
1. A first step in which a mineral acid or a mixture of a mineral acid and hydrogen peroxide is added to a positive electrode active material for a lithium ion secondary battery, followed by separation of an eluate, and then metal extraction into the separated eluate A second step of performing extraction and separation treatment by contacting an organic solvent containing the agent, and then a third step of back extraction and separation by contacting a mineral acid with the organic solvent phase of the extract,
A method for recovering valuable metals from a positive electrode active material for a lithium ion secondary battery.
【請求項2】 第2工程を経たラフィネート(水溶液
相)に、さらに金属抽出剤を含有する有機溶媒を接触さ
せて抽出分離処理を行う工程、次いで抽出液有機溶媒相
に鉱酸を接触させて逆抽出分離する工程を行うことによ
り、異種の有価金属を別々に回収することを特徴とす
る、請求項1に記載のリチウムイオン二次電池用正極活
物質からの有価金属の回収方法。
2. A step of subjecting the raffinate (aqueous phase) passed through the second step to an organic solvent containing a metal extractant to carry out extraction separation treatment, and then contacting a mineral acid with the organic solvent phase of the extract. The method for recovering valuable metals from a positive electrode active material for a lithium ion secondary battery according to claim 1, wherein different valuable metals are separately recovered by performing a step of back extraction and separation.
【請求項3】 第1工程で分離された溶出溶液中に残存
する過酸化水素を還元剤で分解した後第2工程に付する
ことを特徴とする、請求項1又は2に記載のリチウムイ
オン二次電池用正極活物質からの有価金属の回収方法。
3. The lithium ion according to claim 1, wherein hydrogen peroxide remaining in the elution solution separated in the first step is decomposed with a reducing agent and then subjected to the second step. A method for recovering valuable metals from a positive electrode active material for a secondary battery.
【請求項4】 金属抽出剤は、下記一般式(1): 【化1】 (式中、X1、X2は酸素原子または硫黄原子を示す。但
し、X1とX2は同じであっても又は異なっていてもよ
い。)で表されるビス(1,1,3,3−テトラメチルブ
チル)ホスフィン酸化合物である、請求項1ないし3項
のいずれか1項に記載のリチウムイオン二次電池用正極
活物質からの有価金属の回収方法。
4. The metal extractant has the following general formula (1): (Wherein X 1 and X 2 each represent an oxygen atom or a sulfur atom, provided that X 1 and X 2 may be the same or different) (1,1,3) The method for recovering valuable metals from a positive electrode active material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the method is a (3,3-tetramethylbutyl) phosphinic acid compound.
【請求項5】 リチウムイオン二次電池用正極活物質中
の有価金属、鉱酸および過酸化水素のモル比が、それぞ
れ1:1:1〜1:5:5の範囲内である、請求項1な
いし4項のいずれか1項に記載のリチウムイオン二次電
池用正極活物質からの有価金属の回収方法。
5. The molar ratio of a valuable metal, a mineral acid, and hydrogen peroxide in a positive electrode active material for a lithium ion secondary battery is in the range of 1: 1: 1-1: 5: 5, respectively. 5. The method for recovering valuable metals from a positive electrode active material for a lithium ion secondary battery according to any one of items 1 to 4.
JP9594997A 1997-04-14 1997-04-14 Recovery of valuable metal from active material of positive electrode for lithium ion secondary battery Pending JPH10287864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9594997A JPH10287864A (en) 1997-04-14 1997-04-14 Recovery of valuable metal from active material of positive electrode for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9594997A JPH10287864A (en) 1997-04-14 1997-04-14 Recovery of valuable metal from active material of positive electrode for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH10287864A true JPH10287864A (en) 1998-10-27

Family

ID=14151519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9594997A Pending JPH10287864A (en) 1997-04-14 1997-04-14 Recovery of valuable metal from active material of positive electrode for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH10287864A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027151A (en) * 2001-07-18 2003-01-29 Tmc Kk Method for recovering electrode material for battery
JP2007122885A (en) * 2005-10-25 2007-05-17 Sumitomo Metal Mining Co Ltd Valuable metal recovery method from lithium ion battery
WO2007074513A1 (en) 2005-12-27 2007-07-05 Kawasaki Plant Systems Kabushiki Kaisha Apparatus and method for recovering valuable substance from lithium rechargeable battery
WO2007088617A1 (en) 2006-02-02 2007-08-09 Kawasaki Plant Systems Kabushiki Kaisha Method of recovering valuable substance from lithium secondary battery, and recovery apparatus therefor
JP2009193778A (en) * 2008-02-13 2009-08-27 Nippon Mining & Metals Co Ltd Valuable metal recovery method from lithium battery slag containing co, nickel, and mn
US7713396B2 (en) 2003-06-19 2010-05-11 Kawasaki Jukogyo Kabushiki Kaisha Method and apparatus for recycling electrode material of lithium secondary battery
JP2010229534A (en) * 2009-03-30 2010-10-14 Nippon Mining & Metals Co Ltd Method of separating and recovering nickel and lithium
US7820317B2 (en) 2004-04-06 2010-10-26 Recupyl Method for the mixed recycling of lithium-based anode batteries and cells
JP2011074410A (en) * 2009-09-29 2011-04-14 Jx Nippon Mining & Metals Corp Method for separating and recovering nickel and lithium
JP2011094227A (en) * 2009-09-30 2011-05-12 Dowa Eco-System Co Ltd Method for recovering lithium
JP2012035180A (en) * 2010-08-05 2012-02-23 Sumitomo Metal Mining Co Ltd Treatment method for valuable metal recovery treatment liquid
JP2012072488A (en) * 2010-08-30 2012-04-12 Jx Nippon Mining & Metals Corp Method for leaching positive electrode active material
WO2012070193A1 (en) * 2010-11-25 2012-05-31 株式会社日立製作所 Leaching solution and metal collection method
KR101201947B1 (en) 2010-10-12 2012-11-16 엘에스니꼬동제련 주식회사 Method for recovering valuable metals from lithium secondary battery wastes
JP2013512345A (en) * 2009-11-30 2013-04-11 韓国地質資源研究院 Method for producing CMB liquid phase catalyst from lithium ion battery and ternary positive electrode active material
CN103154282A (en) * 2011-05-27 2013-06-12 英派尔科技开发有限公司 Effective recovery of lithium from lithium ion battery waste
JP2013194315A (en) * 2012-03-22 2013-09-30 Dowa Eco-System Co Ltd Method for recovering valuable material from lithium ion secondary battery
JP2013245404A (en) * 2012-05-25 2013-12-09 Korea Inst Of Geoscience & Mineral Resources (Kigam) Method for selectively separating and collecting manganese from cobalt and nickel using screening effect of mixed extracting agent
JP2014043647A (en) * 2012-08-27 2014-03-13 Korea Inst Of Geoscience & Mineral Resources (Kigam) Extraction behavior suppression of cobalt by screen effects of mixed extractant and method of selectively collecting manganese
KR101445443B1 (en) * 2011-03-23 2014-09-26 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Solvent extraction method of aluminum
JP2016113672A (en) * 2014-12-16 2016-06-23 住友金属鉱山株式会社 Method for recovering valuable metal from waste lithium-ion battery
CN107058742A (en) * 2017-04-01 2017-08-18 司马忠志 A kind of method that lithium is reclaimed from waste and old lithium ion battery
CN109346741A (en) * 2018-11-30 2019-02-15 成都尤尼瑞克科技有限公司 A kind of method that the waste and old positive electrode of lithium battery recycles
CN109585962A (en) * 2018-11-30 2019-04-05 成都尤尼瑞克科技有限公司 A kind of method of the waste and old positive electrode of resource utilization lithium battery
EP3550039A1 (en) * 2018-04-06 2019-10-09 Basf Se Process for the recovery of transition metals
WO2023195533A1 (en) * 2021-09-30 2023-10-12 株式会社アサカ理研 Method for recovering lithium from waste lithium ion batteries

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027151A (en) * 2001-07-18 2003-01-29 Tmc Kk Method for recovering electrode material for battery
US7713396B2 (en) 2003-06-19 2010-05-11 Kawasaki Jukogyo Kabushiki Kaisha Method and apparatus for recycling electrode material of lithium secondary battery
US7820317B2 (en) 2004-04-06 2010-10-26 Recupyl Method for the mixed recycling of lithium-based anode batteries and cells
JP2007122885A (en) * 2005-10-25 2007-05-17 Sumitomo Metal Mining Co Ltd Valuable metal recovery method from lithium ion battery
WO2007074513A1 (en) 2005-12-27 2007-07-05 Kawasaki Plant Systems Kabushiki Kaisha Apparatus and method for recovering valuable substance from lithium rechargeable battery
WO2007088617A1 (en) 2006-02-02 2007-08-09 Kawasaki Plant Systems Kabushiki Kaisha Method of recovering valuable substance from lithium secondary battery, and recovery apparatus therefor
US8858677B2 (en) 2006-02-02 2014-10-14 Kawasaki Jukogyo Kabushiki Kaisha Method and apparatus for recovering valuable substance from lithium secondary battery
TWI392745B (en) * 2008-02-13 2013-04-11 Jx Nippon Mining & Metals Corp A method for recovering a valuable metal from a lithium battery residue containing Co, Ni, and Mn
JP2009193778A (en) * 2008-02-13 2009-08-27 Nippon Mining & Metals Co Ltd Valuable metal recovery method from lithium battery slag containing co, nickel, and mn
KR101036407B1 (en) * 2008-02-13 2011-05-23 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 METHOD FOR RECOVERING VALUABLE METAL FROM LITHIUM BATTERY WASTE CONTAINING Co, Ni, AND Mn
JP2010229534A (en) * 2009-03-30 2010-10-14 Nippon Mining & Metals Co Ltd Method of separating and recovering nickel and lithium
JP2011074410A (en) * 2009-09-29 2011-04-14 Jx Nippon Mining & Metals Corp Method for separating and recovering nickel and lithium
KR101232574B1 (en) 2009-09-29 2013-02-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for separate recovery of nickel and lithium
JP2011094227A (en) * 2009-09-30 2011-05-12 Dowa Eco-System Co Ltd Method for recovering lithium
JP2013512345A (en) * 2009-11-30 2013-04-11 韓国地質資源研究院 Method for producing CMB liquid phase catalyst from lithium ion battery and ternary positive electrode active material
JP2012035180A (en) * 2010-08-05 2012-02-23 Sumitomo Metal Mining Co Ltd Treatment method for valuable metal recovery treatment liquid
JP2012072488A (en) * 2010-08-30 2012-04-12 Jx Nippon Mining & Metals Corp Method for leaching positive electrode active material
KR101201947B1 (en) 2010-10-12 2012-11-16 엘에스니꼬동제련 주식회사 Method for recovering valuable metals from lithium secondary battery wastes
JP2012126988A (en) * 2010-11-25 2012-07-05 Hitachi Ltd Leaching solution and metal collection method
WO2012070193A1 (en) * 2010-11-25 2012-05-31 株式会社日立製作所 Leaching solution and metal collection method
KR101445443B1 (en) * 2011-03-23 2014-09-26 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Solvent extraction method of aluminum
US9147918B2 (en) 2011-05-27 2015-09-29 Empire Technology Development Llc Effective recovery of lithium from lithium ion battery waste
CN103154282A (en) * 2011-05-27 2013-06-12 英派尔科技开发有限公司 Effective recovery of lithium from lithium ion battery waste
CN103154282B (en) * 2011-05-27 2015-04-22 英派尔科技开发有限公司 Effective recovery of lithium from lithium ion battery waste
JP2013194315A (en) * 2012-03-22 2013-09-30 Dowa Eco-System Co Ltd Method for recovering valuable material from lithium ion secondary battery
JP2013245404A (en) * 2012-05-25 2013-12-09 Korea Inst Of Geoscience & Mineral Resources (Kigam) Method for selectively separating and collecting manganese from cobalt and nickel using screening effect of mixed extracting agent
JP2014043647A (en) * 2012-08-27 2014-03-13 Korea Inst Of Geoscience & Mineral Resources (Kigam) Extraction behavior suppression of cobalt by screen effects of mixed extractant and method of selectively collecting manganese
JP2016113672A (en) * 2014-12-16 2016-06-23 住友金属鉱山株式会社 Method for recovering valuable metal from waste lithium-ion battery
CN107058742A (en) * 2017-04-01 2017-08-18 司马忠志 A kind of method that lithium is reclaimed from waste and old lithium ion battery
EP3550039A1 (en) * 2018-04-06 2019-10-09 Basf Se Process for the recovery of transition metals
CN109346741A (en) * 2018-11-30 2019-02-15 成都尤尼瑞克科技有限公司 A kind of method that the waste and old positive electrode of lithium battery recycles
CN109585962A (en) * 2018-11-30 2019-04-05 成都尤尼瑞克科技有限公司 A kind of method of the waste and old positive electrode of resource utilization lithium battery
CN109346741B (en) * 2018-11-30 2020-08-11 成都尤尼瑞克科技有限公司 Method for recycling waste positive electrode material of lithium battery
WO2023195533A1 (en) * 2021-09-30 2023-10-12 株式会社アサカ理研 Method for recovering lithium from waste lithium ion batteries

Similar Documents

Publication Publication Date Title
JPH10287864A (en) Recovery of valuable metal from active material of positive electrode for lithium ion secondary battery
JP7217612B2 (en) Method for processing positive electrode active material waste of lithium ion secondary battery
KR101623930B1 (en) Method for recovering valuable metals from cathodic active material of used lithium battery
Pranolo et al. Recovery of metals from spent lithium-ion battery leach solutions with a mixed solvent extractant system
AU2018252056B2 (en) Method for comprehensively recycling copper-nickel sulfide ore and system thereof
JP5898021B2 (en) Method and apparatus for recycling lithium ion battery
JP5128272B2 (en) Method for mixed recycling of lithium-based anode batteries and cells
CN111886352B (en) Solvent extraction process
JP4581553B2 (en) Lithium recovery method
KR20190066351A (en) A Method for Preparing Nickel-Cobalt-Manganese Complex Sulfate Solution by Recycling A Waste Cathode Material of Lithium Secondary Battery Using Solvent Extraction Process to Control Impurities
JP5719792B2 (en) Method for producing chemical manganese dioxide from ternary positive electrode active material, chemical manganese dioxide produced by the production method, and secondary battery containing chemical manganese dioxide
JP5161361B1 (en) Method for separating metal in mixed metal solution
CN113474069B (en) Method for producing a solution containing nickel and cobalt from a nickel and cobalt-containing hydroxide
CA2853224A1 (en) Method for producing high-purity cobalt sulfate aqueous solution
WO2022130793A1 (en) Method for processing lithium ion battery waste
JP7348130B2 (en) Method for removing magnesium ions from metal-containing solution and method for recovering metals
KR20210069724A (en) How to extract components from solution
CN107403931B (en) Process for preparing high purity phosphates
Zhou et al. Comprehensive recovery of NCM cathode materials for spent lithium-ion batteries by microfluidic device
TWI835612B (en) Method for producing aqueous solution containing nickel or cobalt
JP5161379B1 (en) Method for separating mixed metal solution
EP4282996A1 (en) Solvent extraction method for selectively recovering nickel, cobalt and manganese
KR20230136948A (en) Selective recovery method of valuable metals using solvent extraction from lithium secondary battery waste
JPH10237419A (en) Extract and recovering method for valuable metal from waste lithium battery
KR102667133B1 (en) Method for recovering valuable metals from spent cathodic active material