WO2012070193A1 - Leaching solution and metal collection method - Google Patents

Leaching solution and metal collection method Download PDF

Info

Publication number
WO2012070193A1
WO2012070193A1 PCT/JP2011/006308 JP2011006308W WO2012070193A1 WO 2012070193 A1 WO2012070193 A1 WO 2012070193A1 JP 2011006308 W JP2011006308 W JP 2011006308W WO 2012070193 A1 WO2012070193 A1 WO 2012070193A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
lithium
recovery method
solution
electrode active
Prior art date
Application number
PCT/JP2011/006308
Other languages
French (fr)
Japanese (ja)
Inventor
泰子 山田
山口 欣秀
岡本 正英
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US13/989,476 priority Critical patent/US20130287654A1/en
Publication of WO2012070193A1 publication Critical patent/WO2012070193A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/52Reclaiming serviceable parts of waste cells or batteries, e.g. recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

The purpose of the present invention is to provide a valuable metal collection method for collecting a metal from a lithium ion battery using a relatively simple facility without employing any complicated process. In the present invention, for achieving the purpose, lithium is selectively leached out from a positive electrode active material comprising a composite oxide of lithium and a transition metal element using a weakly acidic solution having a pH value of 4-7 in such a manner that the Li/Co selection ratio is increased and a high Li collection ratio can be achieved, and lithium is then collected from a leaching solution. With respect to the acidic solution obtained after the leaching out of lithium, any neutralization step for the acidic solution can be eliminated and the amount of the waste of the acidic solution can be reduced by using a solute which can generate a gas or the like to allow acidity of the acidic solution to disappear naturally.

Description

滲出液および金属回収方法Exudate and metal recovery method
 本発明は、リチウムイオン電池から金属を簡便に回収する金属回収技術に関する。 The present invention relates to a metal recovery technique for easily recovering metal from a lithium ion battery.
 近年、電子機器の携帯化が進むにつれて2次電池の使用量が急激に増大している。携帯電話や携帯型音楽プレイヤーなどの比較的小電力の機器に限らず、電動工具、電動自転車、電気自動車などの高出力を要する機器へも2次電池の適用が広がるに至り、高エネルギー密度が得られるリチウムイオン電池に注目が集まっている。高出力機器への適用が増えたことにより、使用済み電池からの有価物回収の必要性が高まっており、リチウムイオン電池からの有価金属を回収するためのさまざまな技術が提案されている。 In recent years, the usage of secondary batteries has increased rapidly as electronic devices have become more portable. Rechargeable batteries are widely used not only for devices with relatively low power, such as mobile phones and portable music players, but also for devices that require high power, such as electric tools, electric bicycles, and electric vehicles, resulting in high energy density. Attention has been focused on the resulting lithium ion battery. Due to the increase in application to high-power devices, the necessity of recovering valuable materials from used batteries is increasing, and various techniques for recovering valuable metals from lithium ion batteries have been proposed.
 例えば、非特許文献1には、リチウムイオン電池のリサイクル技術が特集されており、リチウムイオン電池を構成する有価金属類を回収する方法が系統的に説明されている。非特許文献1に掲載された典型的なリサイクル方法によると、例えば、使用済みリチウムイオン電池は開封・解体・粉砕などの機械的な処理の後に、酸滲出によって有価金属を含む正極活物質を全て溶解させ、そこから、所望成分毎の溶解特性の差を利用して、成分毎に分別して沈殿形成させる、あるいは所望成分を優先的に溶媒抽出するなどの処理によって所望成分毎に分別回収される。 For example, Non-Patent Document 1 features a recycling technology of a lithium ion battery, and systematically describes a method for recovering valuable metals constituting the lithium ion battery. According to a typical recycling method published in Non-Patent Document 1, for example, a used lithium ion battery is charged with all positive electrode active materials containing valuable metals by acid leaching after mechanical processing such as opening, dismantling, and grinding. Dissolve and use the difference in dissolution characteristics of each desired component to separate and collect each component by precipitation, or separate and collect the desired component by a process such as preferential solvent extraction. .
 また、特許文献1には、酸滲出によって得られる有価金属を溶解した液を陰極液とし、陽イオン交換膜を隔膜とする隔膜電解法を用いて銅およびコバルトを回収する技術が開示されている。尚、本書面内では、有価金属処理前の液を滲出液、有価金属処理後の液を溶解液と定義する。 Patent Document 1 discloses a technique for recovering copper and cobalt using a diaphragm electrolysis method in which a solution in which a valuable metal obtained by acid leaching is dissolved is used as a catholyte and a cation exchange membrane is used as a diaphragm. . In this document, the liquid before the valuable metal treatment is defined as the exudate, and the liquid after the valuable metal treatment is defined as the solution.
特許第3675392号公報Japanese Patent No. 3675392 公開番号 CN101673859APublic number CN101673859A
 非特許文献1においては、さまざまな工夫により有価物の回収率向上と回収物の高純度化の両立を目指しているが、工程が煩雑であるうえ、多量の廃電池を処理するには莫大な設備投資が必要という点で改善の余地が大きい。 Non-Patent Document 1 aims at improving both the recovery rate of valuable materials and increasing the purity of recovered materials by various devices, but the process is complicated and it is enormous for processing a large amount of waste batteries. There is much room for improvement in terms of capital investment.
 また、特許文献1は、具体的には、陽イオン交換膜が有するイオン選択特性を利用した設備(特許文献1の図2に示す隔膜電解槽)と陰イオン選択膜の陰イオン選択性を利用した拡散透析設備(説明図なし)を用いる。より具体的に説明すると、隔膜電解によるCuの電析回収→pH調整→隔膜電解によるコバルトの電析回収→pH調整→Fe(OH)3およびAl(OH)3の沈殿回収→炭酸塩添加によるLi2CO3回収という一連の処理により主要有価金属を回収できる。この技術によると、銅(2価イオン)およびコバルト(3価イオン)を電気化学的に還元して回収するので高純度な金属を得ることができるが、多量の廃電池を処理する場合には莫大な電気量の印加が必要という点で改善の余地がある。 Further, Patent Document 1 specifically uses the anion selectivity of the anion-selective membrane and the equipment (diaphragm electrolytic cell shown in FIG. 2 of Patent Document 1) using the ion-selective characteristics of the cation exchange membrane. Use the diffusion dialysis equipment (not shown). More specifically, Cu electrodeposition recovery by diaphragm electrolysis → pH adjustment → cobalt electrodeposition recovery by diaphragm electrolysis → pH adjustment → precipitation recovery of Fe (OH) 3 and Al (OH) 3 → by carbonate addition The main valuable metals can be recovered by a series of processes called Li2CO3 recovery. According to this technology, copper (divalent ions) and cobalt (trivalent ions) are electrochemically reduced and recovered, so that a high-purity metal can be obtained. However, when processing a large amount of waste batteries, There is room for improvement in that a huge amount of electricity needs to be applied.
 例えば、約100kgのコバルトを回収するためには、1アンペアの電流を約100時間流し続ける必要があるが、その前に銅の電析でもほぼ同等の電気量を印加するのであるから、隔膜電解だけで全ての金属を回収することは案外な手間を要する。さらに、多段のpH調整を経るごとに液量が増大するために一連の処理の最終段階でLi2CO3を回収する際にはリチウムの濃度が低下しており、炭酸塩を添加してもリチウムの回収率は必ずしも高くならないと考えられる。これは、炭酸リチウムの飽和溶解度は20℃で1.3wt%もあるので液量が多くなるほど未回収成分が増えるためである。これを避けるためには濃縮工程を追加するなどの処理が必要である。さらに、Fe(OH)3やAl(OH)3は弱酸性~中性の水溶液中でゲル状化しやすい傾向があるため、上記特許文献1の技術に基づいてFe(OH)3やAl(OH)3を濾別回収する工程の操作は容易ではなく、一方、濾別操作を容易化するために液を希釈するとリチウムの回収率が低下する。また、Fe(OH)3やAl(OH)3のゲル状沈殿の表面はリチウムイオンを吸着する特性もあるので、この観点でもリチウム回収率を大幅に改善することは難しい。 For example, in order to recover about 100 kg of cobalt, it is necessary to continue a current of 1 ampere for about 100 hours, but before that, almost the same amount of electricity is applied even in the electrodeposition of copper. Collecting all the metal by itself alone is an unexpected process. Furthermore, since the amount of liquid increases each time multi-stage pH adjustment is performed, the concentration of lithium decreases when Li2CO3 is recovered at the final stage of a series of treatments. The rate is not necessarily high. This is because the saturated solubility of lithium carbonate is 1.3 wt% at 20 ° C., so that the unrecovered components increase as the liquid amount increases. In order to avoid this, processing such as adding a concentration step is necessary. Further, since Fe (OH) 3 and Al (OH) 3 tend to be gelled in a weakly acidic to neutral aqueous solution, Fe (OH) 3 and Al (OH) are based on the technique of Patent Document 1. ) The operation of the step of collecting 3 by filtration is not easy. On the other hand, when the liquid is diluted to facilitate the filtration operation, the lithium recovery rate is lowered. Further, since the surface of the gel-like precipitate of Fe (OH) 3 or Al (OH) 3 also has a property of adsorbing lithium ions, it is difficult to significantly improve the lithium recovery rate from this viewpoint.
 本願において開示される発明のうち代表的なものの概要を簡単に説明すれば次のとおりである。 The following is a brief description of an outline of typical inventions disclosed in the present application.
 リチウムと遷移金属元素とを含む正極活物質から、弱酸性(pHが4~7)の滲出液を用いてリチウムを選択的に滲出させ、不滲出固形分である遷移金属元素成分と滲出液中のリチウム成分とに分離させる。酸性溶液として、自然消滅して溶質濃度が低下する溶液を用いるため、廃液フリーのプロセスである。 Lithium is selectively leached from a positive electrode active material containing lithium and a transition metal element using a weakly acidic (pH 4 to 7) exudate, and the transition metal element component that is a non-exudable solid content and the exudate To separate the lithium component. This is a waste-free process because a solution that spontaneously disappears and the solute concentration decreases is used as the acidic solution.
 本発明によれば、リチウムイオン電池から有価金属を簡便に高効率に回収する有価金属回収方法を提供することができる。 According to the present invention, it is possible to provide a valuable metal recovery method for easily recovering a valuable metal from a lithium ion battery with high efficiency.
本発明の実施例に係る滲出液の組成および滲出液で処理して得られた溶解液の分析結果のLi/Co比である。It is the Li / Co ratio of the analysis result of the solution obtained by processing with the composition of the exudate and the exudate according to the example of the present invention. 本発明に係る実施例の有価金属を回収するための工程フロー概略である。It is the process flow outline for collect | recovering valuable metals of the Example which concerns on this invention. 本発明の実施例に係る過酸化水素水濃度によるpHと酸化還元電位の相関のプロットである。It is a plot of the correlation of pH and oxidation-reduction potential according to the hydrogen peroxide concentration according to the example of the present invention. 本発明の実施例に係る滲出液の組成および滲出液で処理して得られた溶解液の分析結果のLi/Co比である。It is the Li / Co ratio of the analysis result of the solution obtained by processing with the composition of the exudate and the exudate according to the example of the present invention. 本発明の実施例に係る滲出時間と溶存オゾン濃度との関係のプロットである。It is a plot of the relationship between the exudation time and dissolved ozone concentration which concern on the Example of this invention.
 以下、本発明を実施するための形態を説明する。 Hereinafter, modes for carrying out the present invention will be described.
 本実施例の有価金属回収方法の概略について図2を用いて説明する。図2は、本実施例の廃リチウム電池(以下、廃電池)から有価金属を回収するための概略の工程フローである。まず始めに廃電池を解体(S101)して得られる各構成部材を部材毎に分別(S102)し、有価金属を高濃度で含有する電極活物質のみを取り出す。こうして取り出した電極活物質をリチウム選択滲出液で処理(リチウム選択滲出;S103)してリチウムが滲出した溶液とする。このリチウム選択滲出液と非滲出分とを固液分離する(S104)。リチウムを含むA液(S105)に炭酸塩や炭酸ガスを混合すれば炭酸リチウムLi2CO3としてLiを回収することができる(S106)。上記固液分離により、固体成分B(S107)が回収されている。複数の遷移金属を含む場合には、固体成分Bを溶解させた後にpH調整する簡便な操作により、水酸化物として順番に析出・沈降することで、これを濾別回収(S108)する。この一連の操作により、廃電池からの有価金属類を回収することができる。 The outline of the valuable metal recovery method of the present embodiment will be described with reference to FIG. FIG. 2 is a schematic process flow for recovering valuable metals from the waste lithium battery (hereinafter, waste battery) of this example. First, each constituent member obtained by disassembling a waste battery (S101) is sorted for each member (S102), and only an electrode active material containing a valuable metal in a high concentration is taken out. The electrode active material thus taken out is treated with a selective lithium exudate (selective lithium exudation; S103) to obtain a lithium exuded solution. This lithium selective exudate and non-exudate are subjected to solid-liquid separation (S104). Li carbonate can be recovered as lithium carbonate Li2CO3 by mixing carbonate or carbon dioxide with the liquid A containing lithium (S105) (S106). The solid component B (S107) is recovered by the solid-liquid separation. In the case where a plurality of transition metals are contained, the solid component B is dissolved and separated by filtration by depositing and sedimenting in turn as a hydroxide by a simple operation of adjusting the pH after dissolving the solid component B (S108). Through this series of operations, valuable metals from the waste battery can be recovered.
 以下、図2に示す工程に従って有価金属回収フローをさらに詳しく説明する。廃電池から有価金属を回収するためには、まず電池を解体する必要があるが、解体に先立ち、電池内には電荷が残っている可能性があるので放電する。本実施例では、電解質を含有する導電性液体中に電池を浸漬することによって電池内に残っている電荷を放電させる。 Hereinafter, the valuable metal recovery flow will be described in more detail in accordance with the steps shown in FIG. In order to recover valuable metals from the waste battery, it is necessary to first disassemble the battery, but before the disassembly, there is a possibility that electric charge remains in the battery, and thus the battery is discharged. In this embodiment, the charge remaining in the battery is discharged by immersing the battery in a conductive liquid containing an electrolyte.
 この放電操作により、電池内に分散しているリチウムイオンを正極活物質内部に濃縮させることができるので、リチウム回収量を最大化できる。また、リチウムが特定の結晶構造にとりこまれている状態を確保することにより滲出処理におけるリチウム選択性が最大となる。正極活物質がLiCoO2の場合、完全充電状態ではLi0.4CoO2、完全放電状態ではLiCoO2と言われているので、上記放電処理を省略すると最大で6割程度のリチウム回収ロスとなる危険性がある。もちろん、放電により電池の解体工程および粉砕工程の安全性が確保できる利点もある。 This discharge operation allows the lithium ions dispersed in the battery to be concentrated inside the positive electrode active material, thereby maximizing the amount of lithium recovered. In addition, the lithium selectivity in the leaching process is maximized by ensuring that lithium is incorporated in a specific crystal structure. When the positive electrode active material is LiCoO2, it is said that Li0.4CoO2 in the fully charged state and LiCoO2 in the fully discharged state, so there is a risk of lithium recovery loss of about 60% at maximum if the discharge treatment is omitted. Of course, there is also an advantage that the safety of the battery disassembly process and the pulverization process can be secured by discharging.
 本実施例においては、電解質を含有する導電性液体として硫酸/γブチロラクトン混合溶液を用いた。この混合溶液中では硫酸が電解質として作用するので硫酸濃度を調節することによって導電率(抵抗値の逆数)を調整することができる。本実施例では、放電槽の右端~左端までの溶液の電気抵抗を実測したところ100kΩであった。溶液の抵抗値が小さすぎると放電が急速に進みすぎて危険であるし、逆に、抵抗値が大きすぎると放電に時間がかかりすぎて実用性が低下する。本実施例では、溶液抵抗が1k~1000kΩ程度の範囲にあることが望ましく、この抵抗値範囲に入るように電解質濃度を調整すると良い。 In this example, a sulfuric acid / γ-butyrolactone mixed solution was used as the conductive liquid containing the electrolyte. In this mixed solution, since sulfuric acid acts as an electrolyte, the conductivity (reciprocal of the resistance value) can be adjusted by adjusting the sulfuric acid concentration. In this example, the electrical resistance of the solution from the right end to the left end of the discharge vessel was measured and found to be 100 kΩ. If the resistance value of the solution is too small, the discharge proceeds too rapidly, which is dangerous. On the other hand, if the resistance value is too large, it takes too much time to reduce the practicality. In this embodiment, the solution resistance is preferably in the range of about 1 k to 1000 kΩ, and the electrolyte concentration may be adjusted so as to fall within this resistance value range.
 ここで、本実施例の廃電池としては、所定の充放電回数の限界に達して充電容量が低下してしまったいわゆる使用済み電池の他に、電池製造工程内での不具合などで発生する半製品、製品仕様変更に伴って発生する旧型式在庫整理品なども含む。 Here, as the waste battery of the present embodiment, in addition to the so-called used battery whose charge capacity has been reduced due to reaching the limit of the predetermined number of times of charge and discharge, half of the battery generated due to problems in the battery manufacturing process, etc. Including old-fashioned inventory items that occur when products and product specifications change.
 S101にて放電処理後の廃電池を解体する。適当な方法を用いて筐体、パッキン・安全弁、回路素子類、スペーサ、集電体、セパレータ、正極および負極の電極活物質などの放電処理後の廃電池の電池構成部材をそれぞれ部材毎に解体分別する。 In S101, disassemble the waste battery after the discharge treatment. Using appropriate methods, disassemble the battery components of the waste battery after discharge, such as casing, packing / safety valves, circuit elements, spacers, current collectors, separators, and positive electrode and negative electrode active materials. Sort.
 なお、廃リチウムイオン電池は内部にガスが充満して加圧状態になっていることが多いので、作業安全上の配慮が必要であることは言うまでも無い。本実施例では、上記の電解質を含有する導電性液体に浸漬した状態で冷却しながら湿式粉砕した。冷却下での湿式粉砕を採用したことにより、電池内部に充満しているガスを大気中に飛散させることなく安全に破砕することができた。 Of course, waste lithium ion batteries are often filled with gas and are in a pressurized state, and needless to say, work safety considerations are necessary. In this example, wet pulverization was performed while cooling in the state of being immersed in a conductive liquid containing the above electrolyte. By adopting wet pulverization under cooling, the gas filled in the battery could be safely crushed without being scattered in the atmosphere.
 また、集電体表面に塗工・成形された正極活物質および負極活物質をそれぞれの集電体表面からの剥離を促進するために、上記電解質を含有する導電性液体の組成を調整することは差し支えない。尚、放電工程に使用する導電性液体では導電性が留意すべき特性であり、湿式粉砕工程に使用する導電性液体では粘度や誘電率が留意すべき特性である。放電工程と湿式粉砕工程では要求仕様が異なるので、工程毎に使用する導電性液体の組成を換えても良いが、その場合には2種類以上の導電性液体を準備する必要がある。本実施例では、簡便化や手間・コストの抑制の観点から、同一の組成とした。 In addition, the composition of the conductive liquid containing the electrolyte is adjusted in order to promote separation of the positive electrode active material and the negative electrode active material coated and molded on the current collector surface from the current collector surfaces. Is fine. In the conductive liquid used in the discharge process, the conductivity should be noted. In the conductive liquid used in the wet grinding process, the viscosity and the dielectric constant should be noted. Since the required specifications differ between the discharge process and the wet pulverization process, the composition of the conductive liquid used for each process may be changed. In that case, it is necessary to prepare two or more kinds of conductive liquids. In this example, the same composition was used from the viewpoint of simplification and reduction of labor and cost.
 本実施例で使用可能な湿式粉砕法としては、例えばボールミルなどの方法があるが、かならずしもこれに限るわけではない。筐体、パッキン・安全弁、回路素子類、スペーサ、集電体、セパレータ、電極活物質などの構成部材のうち、正極の電極活物質(以下正極活物質)と負極の電極活物質(負極活物質)が優先的に破砕する条件で破砕した後に、篩い分け処理を施す。これにより、正極活物質と負極活物質は篩い下、それ以外の部材は篩い上に分別回収される(S102)。 The wet pulverization method that can be used in this embodiment includes, for example, a ball mill method, but is not necessarily limited thereto. Among constituent members such as housings, packing / safety valves, circuit elements, spacers, current collectors, separators, and electrode active materials, a positive electrode active material (hereinafter referred to as positive electrode active material) and a negative electrode active material (negative electrode active material) ) Is preferentially crushed and then sieved. Thereby, the positive electrode active material and the negative electrode active material are separated and recovered on the sieve under the sieve (S102).
 本実施例においては篩い分けを用いたが、もともと湿式にて粉砕しているのであるから、湿式粉砕によって得られたスラリーをそのまま比較的目の粗いフィルターを用いて濾別処理にて分別することもできる。湿式粉砕~濾別の連続処理を導入することにより、回収率が向上する可能性もある。尚、筐体、パッキン・安全弁、集電体(アルミ箔、銅箔)などは、正極活物質(典型的にはLiCoO2)や負極活物質(典型的にはグラファイト)よりも延展性が大きく、従って破断強度も大きい。この特性のために、電極活物質の破砕物はそれ以外の部材から得られる破砕物よりもサイズが小さくなり、その結果として、篩い分けあるいは濾別によって容易に分別回収することができる。 In this example, sieving is used, but since it is originally pulverized in a wet manner, the slurry obtained by the wet pulverization is separated as it is by a filtering process using a relatively coarse filter. You can also. The recovery rate may be improved by introducing a continuous treatment from wet pulverization to filtration. The casing, packing / safety valve, current collector (aluminum foil, copper foil), etc. have a larger extensibility than the positive electrode active material (typically LiCoO2) or the negative electrode active material (typically graphite), Therefore, the breaking strength is also large. Because of this characteristic, the crushed material of the electrode active material has a smaller size than the crushed material obtained from other members, and as a result, it can be easily separated and collected by sieving or filtering.
 上記処理によって得られた篩い下物を弱酸性滲出液にて滲出処理(S103)する。 The sieving material obtained by the above treatment is leached with a weakly acidic effluent (S103).
 本実施例では使用済みデジタルカメラ用リチウムイオン電池を解体した。本実施例で使用した廃電池の正極活物質はLiCoO2を主成分とするリチウム化合物であるが、リン酸鉄やニッケル、マンガンなど他組成の正極活物質を含んでいても構わない。正極活物質を弱酸性浸出液と混合し、室温で1時間攪拌して、リチウムを滲出した。本実施例では、リチウム選択滲出工程の反応温度および反応時間を制御し、正極活物質を全溶解させる前に、具体的には反応率が80%以下となるところで滲出処理を停止させる。実用的な観点から、最も好ましくは、70~75%程度の反応率である。80%を越えるとリチウム選択滲出反応における選択比が劣化する危険性が高まり、70%を下回れば回収率が低下して経済性を損なう。 In this example, a used lithium-ion battery for a digital camera was disassembled. The positive electrode active material of the waste battery used in this example is a lithium compound mainly composed of LiCoO2, but may include a positive electrode active material of another composition such as iron phosphate, nickel, or manganese. The positive electrode active material was mixed with a weakly acidic leachate and stirred at room temperature for 1 hour to exude lithium. In this example, the reaction temperature and reaction time of the lithium selective leaching step are controlled, and before the positive electrode active material is completely dissolved, the leaching process is specifically stopped when the reaction rate becomes 80% or less. From a practical viewpoint, the reaction rate is most preferably about 70 to 75%. If it exceeds 80%, there is an increased risk that the selectivity in the lithium selective leaching reaction will deteriorate, and if it is less than 70%, the recovery rate will decrease and the economy will be impaired.
 本実施例では、上記の滲出処理を終了させるために、滲出液と残渣の分離を行う(S104)。分離方法としては、遠心分離、ろ過などを採用することができる。本実施例では、遠心分離で、室温で、15000rpmで、15分処理することにより分離回収したが、回転数はさらに高い方が滲出液と残渣の分離が容易である。 In this embodiment, in order to end the above exudation process, the exudate and the residue are separated (S104). As a separation method, centrifugation, filtration, or the like can be employed. In this example, the separation and recovery were performed by centrifugation at room temperature and 15000 rpm for 15 minutes. However, the higher the number of revolutions, the easier the separation of the exudate and the residue.
 得られた溶解液のLi/Coモル比を図1に示す。図1に示すように、非特許文献1に記載された方法を用いて、強酸性滲出液を用いて正極活物質を完全に滲出させた場合の、透析前の溶解液のLi/Coモル比は約1であった。pH≦1の強酸性条件で滲出すると、Li/Coモル比はほぼ1.0となるのである。これは、コバルト酸リチウムの組成の全部が溶解するからであり、仮にその溶解を途中で止めたとしても、Li/Coモル比はほとんど変化しない。対して、本実施例では、4≦pH≦7の弱酸性の滲出液を用いると、Li/Coモル比は4以上に向上する。これは、Coに比べてLiが優先的に溶解するからである(詳細な反応機構は不明)。弱酸性の滲出液は、純水に緩衝作用を有する物質を添加した緩衝溶液でもよい。pH=4に調製したフタル酸緩衝溶液(フタル酸及びフタル酸カリウムの混合)の場合のLi/Coモル比は4である。また、弱酸性溶液に酸化還元電位調整剤を添加すると、さらにLi/Co選択比が高まる。過酸化水素水をpH=4の弱酸性に調整してなる処理液を滲出液として用いた場合は、Li/Coモル比は335と大幅に向上する。また、同じくオゾン水に二酸化炭素を添加した場合も、Li/Coモル比は121と高い。 The Li / Co molar ratio of the obtained solution is shown in FIG. As shown in FIG. 1, the Li / Co molar ratio of the solution before dialysis when the positive electrode active material is completely leached using a strongly acidic exudate using the method described in Non-Patent Document 1. Was about 1. When exuded under a strongly acidic condition of pH ≦ 1, the Li / Co molar ratio is approximately 1.0. This is because the entire composition of lithium cobaltate is dissolved, and even if the dissolution is stopped halfway, the Li / Co molar ratio hardly changes. In contrast, in this example, when a weakly acidic exudate with 4 ≦ pH ≦ 7 is used, the Li / Co molar ratio is improved to 4 or more. This is because Li preferentially dissolves over Co (the detailed reaction mechanism is unknown). The weakly acidic exudate may be a buffer solution obtained by adding a substance having a buffering action to pure water. The Li / Co molar ratio in the case of a phthalic acid buffer solution (mixture of phthalic acid and potassium phthalate) prepared at pH = 4 is 4. In addition, when a redox potential adjusting agent is added to the weakly acidic solution, the Li / Co selection ratio is further increased. When a treatment liquid prepared by adjusting the hydrogen peroxide solution to a weakly acidic pH = 4 is used as the exudate, the Li / Co molar ratio is greatly improved to 335. Similarly, when carbon dioxide is added to ozone water, the Li / Co molar ratio is as high as 121.
 本実施例のリチウム選択滲出液には、オゾン、過酸化水素、過酢酸などを溶解した水溶液を用いることができる。これらの溶質は酸化剤として働く。一般的に電池からの有価金属回収において、コバルト酸リチウムの滲出には高濃度の鉱酸を用いて完全溶解させる。本実施例では、高濃度鉱酸を用いず、さらに、滲出温度の上限を30℃とする。30℃を大きく超えるとオゾンや過酸化水素の自然分解が速くなって、正極活物質の溶解に寄与しない溶質が生じ、無駄に溶質が消費される。 For the lithium selective exudate of this example, an aqueous solution in which ozone, hydrogen peroxide, peracetic acid or the like is dissolved can be used. These solutes act as oxidants. In general, when recovering valuable metals from batteries, lithium cobaltate is completely dissolved using a high concentration of mineral acid to exude lithium cobaltate. In this example, high concentration mineral acid is not used, and the upper limit of the leaching temperature is 30 ° C. If it greatly exceeds 30 ° C., natural decomposition of ozone and hydrogen peroxide is accelerated, and a solute that does not contribute to the dissolution of the positive electrode active material is generated, so that the solute is wasted.
 pH4~7、酸化還元電位0.3~0.4ボルトの滲出液を用いると高いLi/Coモル比を得る傾向にある。pH値がpH=4よりも小さくなると、正極活物質の溶解速度が速くなり、Liの溶解速度が増えて回収率が高くなり易いものの、Coの溶解速度も増加してしまい、その結果として、Li/Coモル比は低下しやすい傾向がある。図3に示す本実施例の過酸化水素濃度の範囲において、過酸化水素水濃度15%より高いところでコバルトの滲出が増加し始める。過酸化水素水濃度20%より低い領域において高いLi/Coモル比であった。本実施例では、過酸化水素水濃度=15%の時に酸化還元電位=0.3ボルト、過酸化水素水濃度=20%の時に酸化還元電位=0.4ボルトであったので、酸化還元電位が0.3~0.4ボルトの範囲で高いLi/Coモル比が得られることが判った。 When an exudate having a pH of 4 to 7 and a redox potential of 0.3 to 0.4 volts is used, a high Li / Co molar ratio tends to be obtained. When the pH value is smaller than pH = 4, the dissolution rate of the positive electrode active material is increased, and the dissolution rate of Li is increased and the recovery rate is likely to be increased, but the dissolution rate of Co is also increased. The Li / Co molar ratio tends to decrease. In the range of the hydrogen peroxide concentration of the present embodiment shown in FIG. 3, cobalt exudation begins to increase when the hydrogen peroxide concentration is higher than 15%. The Li / Co molar ratio was high in the region where the hydrogen peroxide concentration was lower than 20%. In this example, the oxidation-reduction potential was 0.3 volts when the hydrogen peroxide solution concentration was 15%, and the oxidation-reduction potential was 0.4 volts when the hydrogen peroxide solution concentration was 20%. It was found that a high Li / Co molar ratio can be obtained in the range of 0.3 to 0.4 volts.
 上記の選択滲出によって得られる回収液(A)には、リチウムが選択滲出され、滲出液で用いた溶質(具体的には過酸化水素やオゾン)は自然消滅する。自然消滅とは、中和や分解を促進するために化学物質を添加しなくても、特定有効成分の初期濃度の約半分以下となることである。例えば、過酸化水素であれば、水分子と酸素分子に自然分解し、オゾンであれば酸素分子に自然分解する。発生した酸素分子は、その多くが溶液の外へ排出される。また、二酸化炭素であれば、気化して溶液の外へ排出されることである。従って、自然消滅により溶液が中性になるので、従来の酸滲出後に行っていた中和処理が不要となる(S105)。 In the recovery liquid (A) obtained by the above selective leaching, lithium is selectively leached, and the solute (specifically hydrogen peroxide and ozone) used in the exudate spontaneously disappears. Natural extinction means that the concentration of a specific active ingredient is about half or less of the initial concentration without adding chemicals to promote neutralization and decomposition. For example, hydrogen peroxide spontaneously decomposes into water and oxygen molecules, and ozone naturally decomposes into oxygen molecules. Most of the generated oxygen molecules are discharged out of the solution. Carbon dioxide is vaporized and discharged out of the solution. Accordingly, since the solution becomes neutral due to spontaneous disappearance, the neutralization treatment performed after the conventional acid leaching is not required (S105).
 続いての操作は、非特許文献1に提案されている方法においては浸出処理後に得られた有価金属溶液は強酸の高濃度溶液であるため、炭酸リチウムとしてリチウムを回収するに先立って大量のアルカリを混合するいわゆるpH調整が不可避となる。しかしながら、本実施例で用いたオゾン水、過酸化水素水は自然消滅性の溶液であり、コバルト酸リチウム滲出処理後の回収液(A)の液性はpH9~11程の弱アルカリ性となる。このようにして得られた回収液(A)に、このままpH調整など中和処理をせずに炭酸カルシウムなどのアルカリ金属フリーの炭酸塩あるいは二酸化炭素ガスを混合するなど処理すれば、アルカリ金属フリーの炭酸リチウムとして沈殿回収できる(S106)。 In the subsequent operation, in the method proposed in Non-Patent Document 1, since the valuable metal solution obtained after the leaching treatment is a high-concentration solution of strong acid, a large amount of alkali is recovered prior to recovering lithium as lithium carbonate. So-called pH adjustment to mix the inevitably becomes inevitable. However, the ozone water and the hydrogen peroxide solution used in this example are naturally extinguisher solutions, and the liquidity of the recovered liquid (A) after the lithium cobaltate exudation treatment is weakly alkaline with a pH of 9 to 11. If the recovered liquid (A) thus obtained is treated as it is, such as mixing with an alkali metal-free carbonate such as calcium carbonate or carbon dioxide gas without neutralization such as pH adjustment, the alkali-free The precipitate can be recovered as lithium carbonate (S106).
 中和処理が不要なだけでなく、オゾンや過酸化水素、炭酸ガスなどは自然消滅するためリチウム回収後の残った液は水となるので、再び過酸化水素水、オゾン水に利用することができ、結果として、廃液フリーの金属回収方法を構築できる。 Not only is neutralization not necessary, but ozone, hydrogen peroxide, carbon dioxide, etc. will naturally disappear, so the remaining liquid after lithium recovery will be water, so it can be used again for hydrogen peroxide water and ozone water. As a result, a waste-free metal recovery method can be constructed.
 S104のLi/遷移金属分離において得られた残渣(B)からは、遷移金属成分を回収する(S107)。本実施例ではコバルト酸リチウムを主成分とする正極活物質を処理したので、ここまでの処理で得られた残渣(B)は、少量の未滲出リチウムとコバルトを含んでいる。これらを高純度で分離する場合や、コバルト以外の遷移金属を含んでいる場合などで、それぞれの金属種類別に分別回収するためには、この残渣(B)を溶解した後に、それぞれの金属元素の水酸化物の溶解特性差を利用する処理、基本的にはpH調整→沈殿回収の繰り返しによって遷移金属元素種類毎に分別回収できる(S108)。正極活物質がLiCoO2以外のリチウム化合物を含有する場合、例えば、LiNiO2、LiMnO2,Li(Ni1/3Co1/3Mn1/3)O2,LiCoPO4、LiFePO4、LiCoPO4F、LiFePO4F等のオリビン系正極活物質などの場合も液のpH調整によってCo、Ni、Mn、Feを水酸化物として分別して沈殿回収できる。 The transition metal component is recovered from the residue (B) obtained in the Li / transition metal separation in S104 (S107). In this example, since the positive electrode active material mainly composed of lithium cobaltate was treated, the residue (B) obtained by the treatment so far contains a small amount of unexuded lithium and cobalt. In order to separate and collect these by metal type, such as when separating them with high purity or when containing transition metals other than cobalt, after dissolving this residue (B), Separation and recovery can be carried out for each type of transition metal element by treatment using the difference in solubility characteristics of hydroxide, basically pH adjustment → precipitation recovery (S108). When the positive electrode active material contains a lithium compound other than LiCoO2, for example, in the case of an olivine-based positive electrode active material such as LiNiO2, LiMnO2, Li (Ni1 / 3Co1 / 3Mn1 / 3) O2, LiCoPO4, LiFePO4, LiCoPO4F, LiFePO4F, etc. By adjusting the pH of the liquid, Co, Ni, Mn, and Fe can be separated as hydroxides and recovered by precipitation.
 本実施例の有価金属回収方法の概略について説明する。本実施例の有価金属回収方法は基本的に実施例1と同じである。本実施例で実施例1と異なる点は、図2のS103の滲出処理において、弱酸性の滲出液として、自然消滅する酸化剤と、酸化剤が自然消滅する速度を抑制する緩衝溶液とを用いる点である。これによって、リチウムの滲出反応において、高いLi/Coモル比と高いLi回収率の両立が可能となる。 The outline of the valuable metal recovery method of this example will be described. The valuable metal recovery method of this example is basically the same as that of Example 1. In the present embodiment, the difference from the first embodiment is that, in the leaching process in S103 of FIG. 2, an oxidant that spontaneously disappears and a buffer solution that suppresses the rate at which the oxidant spontaneously disappears are used as the weakly acidic exudate. Is a point. This makes it possible to achieve both a high Li / Co molar ratio and a high Li recovery rate in the lithium leaching reaction.
 本実施例の滲出液は、例えば、自然消滅する酸化剤として溶存オゾン濃度150ppmのオゾン水、カルボン酸及びその塩からなる緩衝溶液として酢酸緩衝溶液(0.1M、pH4.7)やフタル酸緩衝溶液(0.1M、pH4.0)を混合したものを用いることができるが、酸化剤の種類、カルボン酸の種類、及びこれらの濃度はこれに限定されるものではない。このオゾン水と緩衝溶液の混合溶液に正極活物質を添加して、20分程度攪拌しリチウムを滲出する(S103)。 The exudate of this example is, for example, an acetic acid buffer solution (0.1 M, pH 4.7) or a phthalate buffer as a buffer solution composed of ozone water having a dissolved ozone concentration of 150 ppm as an oxidizing agent that spontaneously disappears, carboxylic acid, and salts thereof. A mixed solution (0.1 M, pH 4.0) can be used, but the type of oxidizing agent, the type of carboxylic acid, and the concentration thereof are not limited thereto. A positive electrode active material is added to the mixed solution of ozone water and a buffer solution, and the mixture is stirred for about 20 minutes to exude lithium (S103).
 本実施例では、上記の滲出処理を終了させるために、滲出液と残渣の分離を行う(S104)。分離方法としては、遠心分離、ろ過などを採用することができるが、例えば遠心分離では、室温で、10000rpmで、30秒処理することにより分離回収が可能である。 In this embodiment, in order to end the above exudation process, the exudate and the residue are separated (S104). As a separation method, centrifugation, filtration, and the like can be adopted. For example, in centrifugation, separation and recovery can be performed by treating at 10,000 rpm for 30 seconds at room temperature.
 上記の選択滲出によって得られる回収液(A)には、リチウム濃縮液として得られ(S105)、滲出液で用いた酸化剤(オゾン)は自然消滅する。本実施例で得られた回収液(A)のLi/Coモル比は、酢酸緩衝溶液の場合には4243であり、実施例1と同様に高いLi/Coモル比が得られた。さらに、図4に示すように、リチウム回収率は、滲出液としてオゾン水のみを用いた場合には18%であるのに対して、オゾン水とフタル酸緩衝溶液を用いた場合は28%に向上し、さらにオゾン水と酢酸緩衝溶液を混合したものを用いると98%と高い値を得た。このように、オゾン水と緩衝溶液を用いることで、リチウムの高回収率、高Li/Coモル比のリチウム回収方法を確立することができた。 The recovered liquid (A) obtained by the above selective leaching is obtained as a lithium concentrate (S105), and the oxidizing agent (ozone) used in the leaching liquid is naturally extinguished. The Li / Co molar ratio of the recovered liquid (A) obtained in this example was 4243 in the case of the acetate buffer solution, and a high Li / Co molar ratio was obtained as in Example 1. Furthermore, as shown in FIG. 4, the lithium recovery rate is 18% when only ozone water is used as the exudate, whereas it is 28% when ozone water and a phthalate buffer solution are used. In addition, when a mixture of ozone water and an acetate buffer solution was used, a high value of 98% was obtained. Thus, by using ozone water and a buffer solution, a lithium recovery method with a high lithium recovery rate and a high Li / Co molar ratio could be established.
 リチウムの回収においては、リチウムの回収率と、回収した成分中のLi/Coモル比のいずれも高いほど望ましく、前者は100%に近いことが望ましい。高いリチウム回収率が、自然消滅する酸化剤と緩衝溶液によって実現できた理由について、以下に詳細に述べる。 In the recovery of lithium, it is desirable that both the lithium recovery rate and the Li / Co molar ratio in the recovered components are higher, and the former is preferably close to 100%. The reason why the high lithium recovery rate can be realized by the oxidant and the buffer solution that disappear spontaneously will be described in detail below.
 フタル酸は、水溶液中では以下に示す化1及び化2に従って解離している。化1の酸解離指数(解離定数の逆数の対数値)pKaは2.94であり、化2のpKaは5.41である。実施例1に記載した好適なpH範囲の4<pH<7において、化1の平衡はほぼ完全に右辺側に偏っており、化2はpHによって左辺側に偏っていたり右辺側に偏っていたり、或いは両辺の成分とも有意量存在していたりする。フタル酸緩衝溶液を用いた場合には、このpHに依存する平衡反応により、pHが好適な範囲に保たれ、オゾンの分解が抑制されることで、リチウム回収率が18%から28%に向上した。 Phthalic acid is dissociated in aqueous solution according to the following chemical formulas 1 and 2. The acid dissociation index (logarithm of the reciprocal of the dissociation constant) pKa of Chemical Formula 1 is 2.94, and the pKa of Chemical Formula 2 is 5.41. In the preferred pH range of 4 <pH <7 described in Example 1, the equilibrium of chemical formula 1 is almost completely biased to the right side, and chemical formula 2 is biased to the left side or to the right side depending on the pH. Alternatively, there are significant amounts of components on both sides. When a phthalate buffer solution is used, this pH-dependent equilibrium reaction keeps the pH within a suitable range and suppresses the decomposition of ozone, improving the lithium recovery rate from 18% to 28%. did.
 (化1) C6H4(COOH)2 ⇔ C6H4(COOH)COO + H
 (化2) C6H4(COOH)COO ⇔ C6H4(COO)2 + H
 ここで、緩衝溶液として酢酸緩衝溶液を用いた場合、リチウム回収率が飛躍的に向上する。その理由を以下に述べる。
(Chemical formula 1) C6H4 (COOH) 2 ⇔ C6H4 (COOH) COO + H +
(Chemical Formula 2) C6H4 (COOH) COO ⇔ C6H4 (COO ) 2 + H +
Here, when an acetate buffer solution is used as the buffer solution, the lithium recovery rate is dramatically improved. The reason is described below.
 前記の好適なpH範囲において、フタル酸は解離している成分が多い。フタル酸は解離して、C6H4(COOH)COOとなると、カルボキシル基上の電子密度が高くなる。カルボキシイオンは電子供与基なので、結果として芳香環の電子密度が増加する。また、フタル酸は分子構造内に、弱い電子吸引基である芳香環をもつので、電子密度を増加しやすい。芳香環上の電子密度が高いと、酸化剤によって電子を奪われ易い。このため、解離したフタル酸イオンと酸化剤であるオゾンが共存すると、オゾンがフタル酸イオンの一部を酸化してしまうことがある。このとき、フタル酸を酸化したオゾンはLiCoO2と反応することなく消費されてしまう。また、酸化されたフタル酸は中性のラジカルとなるが、このラジカルは、化1および化2の反応に寄与することができないため、緩衝溶液を構成する実効的なイオン濃度が低下し、溶液の緩衝作用が低下する。緩衝作用が低下した状態において、LiCoO2の滲出反応が進行すると、OH-が生成するため反応液の液性がアルカリ側へとシフトする。反応液がアルカリ性となることで、オゾンの一部はLiCoO2と反応することなく分解される。 In the preferable pH range, phthalic acid has many dissociated components. When phthalic acid is dissociated into C6H4 (COOH) COO 2 , the electron density on the carboxyl group increases. Since the carboxy ion is an electron donating group, the electron density of the aromatic ring is increased as a result. In addition, since phthalic acid has an aromatic ring which is a weak electron-withdrawing group in the molecular structure, it tends to increase the electron density. When the electron density on the aromatic ring is high, electrons are easily taken away by the oxidizing agent. For this reason, when dissociated phthalate ions coexist with ozone as an oxidizing agent, ozone may oxidize part of the phthalate ions. At this time, ozone obtained by oxidizing phthalic acid is consumed without reacting with LiCoO2. In addition, oxidized phthalic acid becomes a neutral radical, but since this radical cannot contribute to the reaction of Chemical Formula 1 and Chemical Formula 2, the effective ion concentration constituting the buffer solution decreases, and the solution The buffering action is reduced. When the leaching reaction of LiCoO2 proceeds in a state where the buffering action is lowered, OH- is generated and the liquidity of the reaction solution is shifted to the alkali side. Since the reaction solution becomes alkaline, a part of ozone is decomposed without reacting with LiCoO2.
 以上の結果として、LiCoO2の滲出反応が進まなくなる。同様の効果をもたらす緩衝溶液としては、例えば安息香酸がある。 As a result of the above, the leaching reaction of LiCoO2 does not proceed. An example of a buffer solution that provides the same effect is benzoic acid.
 一方、酢酸はフタル酸と比較して、その分子構造内に芳香環のような電子密度が局所的に高くなり得る部位がないことから、酸化剤によって電子が奪われにくいので、酸化剤のオゾンが共存しても酢酸はより酸化され難い。すなわち酢酸は分解され難いため、反応液中の緩衝作用を長い時間にわたって維持することができる。 On the other hand, since acetic acid has no site in the molecular structure where electron density such as an aromatic ring can be locally increased in comparison with phthalic acid, electrons are not easily taken away by the oxidizing agent. Acetic acid is more difficult to oxidize even if coexists. That is, since acetic acid is hardly decomposed, the buffering action in the reaction solution can be maintained for a long time.
 また、酢酸緩衝溶液は反応液中の緩衝作用を維持することができるので、正極活物質の溶解反応が起きても反応液の液性がアルカリ性にならないために、pHが上昇することによるオゾンの自然消滅を抑制することができ、その結果オゾンはLiCoO2の滲出反応に有効に利用され、高いリチウム回収率を実現することができる。 In addition, since the acetate buffer solution can maintain the buffering action in the reaction solution, even if a dissolution reaction of the positive electrode active material occurs, the liquidity of the reaction solution does not become alkaline. Natural extinction can be suppressed, and as a result, ozone is effectively used for the leaching reaction of LiCoO 2 and a high lithium recovery rate can be realized.
 実際に、LiCoO2の滲出反応中の溶存オゾン濃度の変化を測定した結果を、図5に示す。図5より、オゾン水のみで正極活物質を溶解した場合、初めの数分で溶存オゾン濃度が急激に低下し、滲出時間10分のとき、溶存オゾン濃度は5ppm程度まで低くなる。一方、オゾン水に酢酸緩衝溶液を添加した場合は、同時刻の溶存オゾン濃度は50ppmとなり、溶存オゾン濃度の低下が抑えられていることがわかる。すなわち、正極活物質を滲出する際、酢酸緩衝溶液をオゾン水に添加することで溶存オゾン濃度の低下を抑制して濃度を維持することができる。そして、溶存オゾン濃度を長時間にわたって高く維持することで、正極活物質からのリチウムの滲出反応を効率よく行うことが可能である。 Actually, the result of measuring the change in the dissolved ozone concentration during the leaching reaction of LiCoO 2 is shown in FIG. From FIG. 5, when the positive electrode active material is dissolved only with ozone water, the dissolved ozone concentration rapidly decreases in the first few minutes, and when the leaching time is 10 minutes, the dissolved ozone concentration decreases to about 5 ppm. On the other hand, when the acetic acid buffer solution is added to the ozone water, the dissolved ozone concentration at the same time is 50 ppm, which indicates that the decrease in the dissolved ozone concentration is suppressed. That is, when the positive electrode active material is leached, the concentration can be maintained by suppressing the decrease in the dissolved ozone concentration by adding an acetic acid buffer solution to the ozone water. And it is possible to perform the leaching reaction of lithium from a positive electrode active material efficiently by maintaining the dissolved ozone concentration high over a long period of time.
 酢酸のこのような作用は、以上の考察から明らかなように、酢酸に限定されるものではなく、芳香環を含まないカルボキシル基をもつカルボン酸であれば良いことがわかる。 As is apparent from the above discussion, it is understood that the action of acetic acid is not limited to acetic acid, and any carboxylic acid having a carboxyl group that does not contain an aromatic ring may be used.
 本実施例では酢酸緩衝溶液での結果を示したが、発明者らの検討の結果、プロピオン酸、ブタン酸、ペンタン酸の脂肪族モノカルボン酸を用いることができる。炭素鎖を構成する炭素原子数がこれ以上大きいと、水への溶解度が低くなるため、実用上適さない。緩衝液の濃度は、一般的には0.1mol/L前後のものが用いられており、最低でも0.001mol/L以上であることが望ましい。炭素数が小さい物質の溶解度(20℃の値。水100gに溶ける溶質質量と、そのときのモル濃度を記載)はそれぞれ、プロピオン酸が37g/100g水(0.005mol/L)、ブタン酸が5.6g/100g水(0.032mol/L)、ペンタン酸が2.4g/100g水(0.075mol/L)である。なお、脂肪族モノカルボン酸の酸化分解速度は、ブタン酸>プロピオン酸>酢酸となっており、炭化水素数が少ないほど酸化分解速度が低く、高いLi/遷移金属分離と高いリチウム回収率の両立する性能は炭素数が小さいほど優れている。ただし、カルボキシル基以外の炭素数が0の場合は適さない。例えば、ギ酸の場合は、アルデヒド基をもつ。アルデヒド基は、酸化剤により酸化されるので、酸化剤が緩衝液の酸化反応に消費されてしまうので適さない。シュウ酸の場合は、pKaが1.25と低いために強酸に分類され、適さない。脂肪族多価カルボン酸については、pKaと溶解度を考慮すると、シュウ酸、コハク酸、酒石酸、クエン酸、リンゴ酸、マロン酸を用いることができる。また、緩衝溶液として一般的なグリシンを用いることも可能である。 In this example, the results with an acetic acid buffer solution were shown. However, as a result of investigations by the inventors, aliphatic monocarboxylic acids such as propionic acid, butanoic acid and pentanoic acid can be used. If the number of carbon atoms constituting the carbon chain is larger than this, the solubility in water will be low, which is not suitable for practical use. The buffer concentration is generally about 0.1 mol / L, and is preferably at least 0.001 mol / L. The solubility of the substance having a small carbon number (value at 20 ° C .; the solute mass soluble in 100 g of water and the molar concentration at that time) is 37 g / 100 g water (0.005 mol / L) for propionic acid and 0.005 mol / L for butanoic acid, respectively. 5.6 g / 100 g water (0.032 mol / L) and pentanoic acid are 2.4 g / 100 g water (0.075 mol / L). The oxidative decomposition rate of the aliphatic monocarboxylic acid is butanoic acid> propionic acid> acetic acid. The smaller the number of hydrocarbons, the lower the oxidative decomposition rate, and both high Li / transition metal separation and high lithium recovery are achieved. The smaller the carbon number, the better. However, it is not suitable when the number of carbon atoms other than the carboxyl group is 0. For example, formic acid has an aldehyde group. Since the aldehyde group is oxidized by the oxidizing agent, the oxidizing agent is consumed in the oxidation reaction of the buffer solution, which is not suitable. Oxalic acid is not suitable because it has a low pKa of 1.25 and is classified as a strong acid. As for the aliphatic polyvalent carboxylic acid, oxalic acid, succinic acid, tartaric acid, citric acid, malic acid, and malonic acid can be used in consideration of pKa and solubility. Moreover, general glycine can also be used as a buffer solution.
 以上より、好適な緩衝溶液は、溶解度の観点から炭素数(カルボキシル基の炭素は含まない)は1~4かつ、酸解離指数が4<pH<7である物質からなる緩衝溶液が望ましい。 From the above, a preferable buffer solution is preferably a buffer solution made of a substance having a carbon number of 1 to 4 (excluding carboxyl group carbon) and an acid dissociation index of 4 <pH <7 from the viewpoint of solubility.
 以上の緩衝液を用いれば、高いLi/遷移金属分離に加えて高いLi回収率の両立を達成することができる。 If the above buffer solution is used, it is possible to achieve both high Li / transition metal separation and high Li recovery rate.
 なお、特許文献2にはクエン酸、コハク酸、リンゴ酸等の有機酸を正極活物質の滲出液に用いてリチウムおよびコバルトを回収する方法が開示されている。しかし、緩衝液を用いていないためpHは低く、例えば特許文献2の実施例1に記載されているクエン酸の濃度1.25mol/Lの溶液のpHは1以下である。このため、LiCoO2は全て溶解し、回収されるリチウムおよびコバルトは低純度であり、リチウムのみを回収するためには分離操作が必要となる。一方、本実施例では、発明者らが検討した結果、滲出液は弱酸性が適しており、また、弱酸性で滲出することで、正極活物質からリチウムだけを選択的に滲出し、滲出残渣中にコバルトのみを残すことで、得られる金属を高純度化することができる。 Note that Patent Document 2 discloses a method for recovering lithium and cobalt using an organic acid such as citric acid, succinic acid, malic acid or the like as an exudate of the positive electrode active material. However, since no buffer solution is used, the pH is low. For example, the pH of a solution having a concentration of 1.25 mol / L of citric acid described in Example 1 of Patent Document 2 is 1 or less. For this reason, all LiCoO2 dissolves, and the recovered lithium and cobalt are of low purity, and a separation operation is required to recover only lithium. On the other hand, in the present example, as a result of examination by the inventors, the exudate is suitable for weak acidity, and by exuding with weak acidity, only lithium is selectively exuded from the positive electrode active material, and the exudation residue By leaving only cobalt therein, the resulting metal can be highly purified.
 また、緩衝溶液としては、カルボン酸のみならず、酸性(4<pH<7)を示す緩衝溶液ならば、他の緩衝溶液を使用することができる。カルボン酸以外の緩衝溶液としては、例えばリン酸とその塩の緩衝溶液を用いることができる。例えば、リン酸二水素ナトリウムとリン酸水素二ナトリウムからなる緩衝液があるが、この塩に限らず他の組成を用いることもできる。この場合、Liを選択溶解させた酸性溶液からLiを回収した後に、リンを回収すれば、リンを緩衝溶液の溶質として再利用することができる。リンの分離回収方法としては、透析膜分離、アシッドリタデーション、イオン交換樹脂などの分離操作がある。 As the buffer solution, other buffer solutions can be used as long as they are not only carboxylic acids but also buffer solutions exhibiting acidity (4 <pH <7). As a buffer solution other than carboxylic acid, for example, a buffer solution of phosphoric acid and its salt can be used. For example, there is a buffer solution composed of sodium dihydrogen phosphate and disodium hydrogen phosphate. However, the composition is not limited to this salt, and other compositions can be used. In this case, if phosphorus is recovered after recovering Li from the acidic solution in which Li is selectively dissolved, phosphorus can be reused as the solute of the buffer solution. As a method for separating and recovering phosphorus, there are separation operations such as dialysis membrane separation, acid retardation and ion exchange resin.
 また、本実施例では、自然消失する酸化剤としてオゾンを用いたが、これに代えて過酸化水素水を用いることもできる。 In this embodiment, ozone is used as an oxidant that spontaneously disappears, but hydrogen peroxide can be used instead.
 本実施例では、正極活物質としてLiCoO2を用いたが、LiCoO2以外のリチウム化合物を含有する場合、例えば、LiNiO2、LiMnO2,Li(NiCoMn)O2,LiCoPO4、LiFePO4、LiCoPO4F、LiFePO4F等のオリビン系正極活物質などの場合も、液のpH調整によってCo、Ni、Mn、Feを水酸化物として分別して沈殿回収できる。この遷移金属の回収操作については、実施例1のS107,S108と同様に処理し、その方法は実施例1と同様である。 In this example, LiCoO2 was used as the positive electrode active material. However, when a lithium compound other than LiCoO2 is contained, for example, olivine-based positive electrode actives such as LiNiO2, LiMnO2, Li (NiCoMn) O2, LiCoPO4, LiFePO4, LiCoPO4F, and LiFePO4F are used. Even in the case of substances, precipitation can be recovered by separating Co, Ni, Mn, and Fe as hydroxides by adjusting the pH of the liquid. The transition metal recovery operation is performed in the same manner as S107 and S108 in the first embodiment, and the method is the same as in the first embodiment.
 以上より、酸化剤と酸化剤が自然消滅する速度を抑制してリチウムの選択的な滲出効果をもつ緩衝溶液を組み合わせて用いることで、高いLi/遷移金属分離と高いリチウム回収率の両立する金属回収方法を提供できた。 As described above, a metal that achieves both high Li / transition metal separation and high lithium recovery rate by using a combination of a buffer solution having a selective leaching effect of lithium by suppressing the rate at which the oxidant and the oxidant spontaneously disappear. A recovery method could be provided.

Claims (17)

  1.  リチウム及び遷移金属元素を含むリチウムイオン電池の正極活物質から金属を回収する金属回収方法において、
     前記正極活物質に含まれる有価金属を、酸性溶液に滲出させる工程と、
     前記有価金属が滲出した酸性溶液から、リチウムを回収する工程とを含み、
     前記酸性溶液は、そのpHが4~7であることを特徴とする金属回収方法。
    In a metal recovery method for recovering a metal from a positive electrode active material of a lithium ion battery containing lithium and a transition metal element,
    Leaching the valuable metal contained in the positive electrode active material into an acidic solution;
    Recovering lithium from the acidic solution from which the valuable metal has leached,
    The acid recovery method according to claim 1, wherein the acidic solution has a pH of 4 to 7.
  2.  請求項1において、
     前記酸性溶液は、酸化還元電位調節剤を有することを特徴とする金属回収方法。
    In claim 1,
    The said acid solution has a redox potential regulator, The metal recovery method characterized by the above-mentioned.
  3.  請求項2において、
     前記酸性溶液は、さらにpH調整剤を有することを特徴とする金属回収方法。
    In claim 2,
    The acid solution further comprises a pH adjuster, and the metal recovery method.
  4.  請求項2または請求項3において、
     前記酸化還元電位調整剤は、過酸化水素であることを特徴とする金属回収方法。
    In claim 2 or claim 3,
    The metal recovery method, wherein the redox potential regulator is hydrogen peroxide.
  5.  請求項2または請求項3において、
     前記酸化還元電位調整剤は、オゾンであることを特徴とする金属回収方法。
    In claim 2 or claim 3,
    The metal recovery method, wherein the redox potential regulator is ozone.
  6.  請求項3において、
     前記pH調整剤は、二酸化炭素であることを特徴とする金属回収方法。
    In claim 3,
    The metal recovery method, wherein the pH adjuster is carbon dioxide.
  7.  請求項1乃至6のいずれかにおいて、
     前記酸性溶液の溶質、前記酸化還元電位調整剤、または前記pH調整剤のいずれかは、前記溶液中から自然消滅する物質であることを特徴とする金属回収方法。
    In any one of Claims 1 thru | or 6.
    Any one of the solute of the acidic solution, the oxidation-reduction potential adjusting agent, or the pH adjusting agent is a substance that spontaneously disappears from the solution.
  8.  リチウム及び遷移金属元素を含むリチウムイオン電池の正極活物質から金属を滲出させる金属滲出液において、
     そのpHが4~7であり、その溶質は自然消滅する溶質であることを特徴とする金属滲出液。
    In a metal exudate that exudes metal from the positive electrode active material of a lithium ion battery containing lithium and a transition metal element,
    A metal exudate having a pH of 4 to 7 and a solute that spontaneously disappears.
  9.  リチウム及び遷移金属元素を含むリチウムイオン電池の正極活物質から金属を回収する金属回収方法において、
     前記正極活物質に含まれるリチウムを、自然消滅する酸化剤と緩衝溶液とを含む酸性溶液に滲出させる工程と、
     前記リチウムが滲出した酸性溶液から、リチウムを回収する工程とを含む金属回収方法。
    In a metal recovery method for recovering a metal from a positive electrode active material of a lithium ion battery containing lithium and a transition metal element,
    Leaching lithium contained in the positive electrode active material into an acidic solution containing an oxidant and a buffer solution that spontaneously disappear;
    A step of recovering lithium from the acidic solution from which the lithium has exuded.
  10.  請求項9において、
     前記緩衝溶液は、カルボン酸とその塩とを溶質として含むことを特徴とする金属回収方法。
    In claim 9,
    The said buffer solution contains carboxylic acid and its salt as a solute, The metal recovery method characterized by the above-mentioned.
  11.  請求項10において、
     前記カルボン酸は、芳香環を含まないカルボキシル基を有する脂肪族カルボン酸であることを特徴とする金属回収方法。
    In claim 10,
    The metal recovery method, wherein the carboxylic acid is an aliphatic carboxylic acid having a carboxyl group not containing an aromatic ring.
  12.  請求項11において、
     前記カルボン酸は、その炭素数(カルボキシル基を除く)が、1~4であることを特徴とする金属回収方法。
    In claim 11,
    The metal recovery method, wherein the carboxylic acid has 1 to 4 carbon atoms (excluding carboxyl groups).
  13.  請求項10において、
     前記カルボン酸は、有機酸またはグリシンであることを特徴とする金属回収方法。
    In claim 10,
    The metal recovery method, wherein the carboxylic acid is an organic acid or glycine.
  14.  請求項9において、
     前記緩衝溶液は、リン酸とその塩とを溶質として含むことを特徴とする金属回収方法。
    In claim 9,
    The said buffer solution contains phosphoric acid and its salt as a solute, The metal recovery method characterized by the above-mentioned.
  15.  請求項9乃至14のいずれかにおいて、
     前記自然消滅する酸化剤は、オゾンまたは過酸化水素水であることを特徴とする金属回収方法。
    In any of claims 9 to 14,
    The metal recovery method according to claim 1, wherein the oxidant that spontaneously disappears is ozone or hydrogen peroxide solution.
  16.  請求項9乃至15のいずれかにおいて、
     前記滲出する工程の酸性溶液は、pHが4~7であることを特徴とする金属回収方法。
    In any of claims 9 to 15,
    The acidic solution in the leaching step has a pH of 4 to 7, wherein the metal is recovered.
  17.  リチウム及び遷移金属元素を含むリチウムイオン電池の正極活物質から金属を滲出させる金属滲出液において、
     自然消滅する酸化剤と、緩衝溶液とを有し、そのpHが4~7であることを特徴とする金属滲出液。
    In a metal exudate that exudes metal from the positive electrode active material of a lithium ion battery containing lithium and a transition metal element,
    A metal exudate having an oxidizing agent that spontaneously disappears and a buffer solution, and having a pH of 4 to 7.
PCT/JP2011/006308 2010-11-25 2011-11-11 Leaching solution and metal collection method WO2012070193A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/989,476 US20130287654A1 (en) 2010-11-25 2011-11-11 Leaching solution and metal recovery method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010261905 2010-11-25
JP2010-261905 2010-11-25
JP2011-128806 2011-06-09
JP2011128806A JP5618913B2 (en) 2010-11-25 2011-06-09 Exudate and metal recovery method

Publications (1)

Publication Number Publication Date
WO2012070193A1 true WO2012070193A1 (en) 2012-05-31

Family

ID=46145565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006308 WO2012070193A1 (en) 2010-11-25 2011-11-11 Leaching solution and metal collection method

Country Status (3)

Country Link
US (1) US20130287654A1 (en)
JP (1) JP5618913B2 (en)
WO (1) WO2012070193A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075407A (en) * 2016-05-20 2018-12-21 魁北克电力公司 The method for recycling electrode material of lithium battery
CN109346741A (en) * 2018-11-30 2019-02-15 成都尤尼瑞克科技有限公司 A kind of method that the waste and old positive electrode of lithium battery recycles
CN109585962A (en) * 2018-11-30 2019-04-05 成都尤尼瑞克科技有限公司 A kind of method of the waste and old positive electrode of resource utilization lithium battery
WO2021077922A1 (en) * 2019-10-21 2021-04-29 西南科技大学 Method for extracting copper from waste printed circuit board using glycine solution

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438272B1 (en) 2012-08-14 2014-09-15 주식회사 포스코 Method for recovering metal from electrode material
DK2975686T3 (en) * 2014-07-15 2019-04-01 Lars Walch Gmbh & Co Kg recirculating
KR102512604B1 (en) * 2014-10-31 2023-03-21 알베마를 저머니 게엠베하 Method for recovering lithium from lithium-sulfur accumulators
JP6334450B2 (en) * 2015-03-27 2018-05-30 Jx金属株式会社 Method for recovering metals from recycled lithium-ion battery materials
JP6352846B2 (en) * 2015-03-27 2018-07-04 Jx金属株式会社 Method for recovering metals from recycled lithium-ion battery materials
CN104946897A (en) * 2015-06-08 2015-09-30 江苏大学 Method for treating steel plant zinc-containing smoke dust through wet process to realize enrichment of zinc sulfide concentrate
AR102820A1 (en) * 2015-10-14 2017-03-29 Consejo Nac De Investig Científicas Y Técnicas (Conicet) METHOD FOR THE DISSOLUTION OF LiCoO₂ CONTENT IN ION-LITHIUM BATTERIES SOLD OUT WITH ACID
JP6000490B1 (en) * 2015-12-02 2016-09-28 健司 木山 Bath additive
US10205200B2 (en) * 2016-07-07 2019-02-12 Grst International Limited Method for recycling lithium-ion battery
EP3488486B1 (en) * 2016-07-22 2021-03-17 Hydro-Québec Process for recycling graphene from an electrode material
IT201700058654A1 (en) * 2017-05-30 2018-11-30 Fortom Chimica S R L PROCEDURE FOR THE RECOVERY OF METALS FROM MATERIALS ARISING FROM BATTERIES, CELLS AND / OR BATTERIES TO LITHIUM IONS AND USE OF SUCH RECOVERED METALS
CN111540974B (en) * 2020-05-26 2021-11-09 四川省有色冶金研究院有限公司 Method for recycling lithium ion battery anode material
CN112259754B (en) * 2020-10-22 2022-08-05 上海交通大学 Method for recycling manganese from waste zinc-manganese dry battery positive electrode material and application
CN115611250B (en) * 2021-07-16 2024-04-02 中国科学院过程工程研究所 Method for recycling high-purity ferric phosphate from waste lithium iron phosphate positive electrode powder
DE102021123151A1 (en) 2021-09-07 2023-03-09 Aurubis Ag Process and plant for the recovery of metals from black mass

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207349A (en) * 1994-01-20 1995-08-08 Sumitomo Metal Mining Co Ltd Method for recovering vacuum from used lithium secondary battery
JPH10287864A (en) * 1997-04-14 1998-10-27 Nippon Chem Ind Co Ltd Recovery of valuable metal from active material of positive electrode for lithium ion secondary battery
JPH1154159A (en) * 1997-06-04 1999-02-26 Japan Energy Corp Method to recover and reproduce cobalt, nickel or manganese and lithium from battery positive electrode scrap material and material for battery positive electrode
JPH11292533A (en) * 1998-04-14 1999-10-26 Hiroyuki Nakazawa Method for extracting lithium from lithium cobaltate
JP2000015216A (en) * 1998-06-30 2000-01-18 Toshiba Corp Method for recycling positive electrode active material from lithium ion secondary battery
JP2005327482A (en) * 2004-05-12 2005-11-24 Sumitomo Metal Mining Co Ltd Method of separating and collecting lithium ion secondary battery cathode activator
JP2006057142A (en) * 2004-08-20 2006-03-02 Sumitomo Metal Mining Co Ltd Method for recovering lithium
JP2010040458A (en) * 2008-08-07 2010-02-18 Idemitsu Kosan Co Ltd Lithium recovery method and metal-recovering method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101280357B (en) * 2008-01-16 2010-10-13 中南大学 Environment-friendly acid leaching-extraction process in waste lithium battery recovery
CN102101701A (en) * 2010-12-31 2011-06-22 湖南邦普循环科技有限公司 Method for recovering cobalt and lithium from waste lithium cobaltite and preparing lithium cobaltite

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207349A (en) * 1994-01-20 1995-08-08 Sumitomo Metal Mining Co Ltd Method for recovering vacuum from used lithium secondary battery
JPH10287864A (en) * 1997-04-14 1998-10-27 Nippon Chem Ind Co Ltd Recovery of valuable metal from active material of positive electrode for lithium ion secondary battery
JPH1154159A (en) * 1997-06-04 1999-02-26 Japan Energy Corp Method to recover and reproduce cobalt, nickel or manganese and lithium from battery positive electrode scrap material and material for battery positive electrode
JPH11292533A (en) * 1998-04-14 1999-10-26 Hiroyuki Nakazawa Method for extracting lithium from lithium cobaltate
JP2000015216A (en) * 1998-06-30 2000-01-18 Toshiba Corp Method for recycling positive electrode active material from lithium ion secondary battery
JP2005327482A (en) * 2004-05-12 2005-11-24 Sumitomo Metal Mining Co Ltd Method of separating and collecting lithium ion secondary battery cathode activator
JP2006057142A (en) * 2004-08-20 2006-03-02 Sumitomo Metal Mining Co Ltd Method for recovering lithium
JP2010040458A (en) * 2008-08-07 2010-02-18 Idemitsu Kosan Co Ltd Lithium recovery method and metal-recovering method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075407A (en) * 2016-05-20 2018-12-21 魁北克电力公司 The method for recycling electrode material of lithium battery
CN109346741A (en) * 2018-11-30 2019-02-15 成都尤尼瑞克科技有限公司 A kind of method that the waste and old positive electrode of lithium battery recycles
CN109585962A (en) * 2018-11-30 2019-04-05 成都尤尼瑞克科技有限公司 A kind of method of the waste and old positive electrode of resource utilization lithium battery
CN109346741B (en) * 2018-11-30 2020-08-11 成都尤尼瑞克科技有限公司 Method for recycling waste positive electrode material of lithium battery
WO2021077922A1 (en) * 2019-10-21 2021-04-29 西南科技大学 Method for extracting copper from waste printed circuit board using glycine solution

Also Published As

Publication number Publication date
US20130287654A1 (en) 2013-10-31
JP5618913B2 (en) 2014-11-05
JP2012126988A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5618913B2 (en) Exudate and metal recovery method
JP5501180B2 (en) Lithium extraction method and metal recovery method
CN108886181B (en) Re-lithiation under oxidizing conditions
CN110676533B (en) Method for treating positive electrode material of lithium ion battery
KR101497041B1 (en) Method for recovering valuable metals from cathodic active material of used lithium battery
KR101497921B1 (en) Recycling methdo of ncm type cathode active material from waste lithium ion battery and ncm type cathode active material recycled by the same
JP5568414B2 (en) Metal recovery method and metal recovery apparatus
JP2021512215A (en) How to Recycle Lithium Batteries
US20210324495A1 (en) Process for the recycling of spent lithium ion cells
US9702024B2 (en) Method for the hydrometallurgical recovery of lithium, nickel and cobalt from the lithium transition metal oxide-containing fraction of used galvanic cells
CN111270072B (en) Recycling method of waste lithium iron phosphate battery positive electrode material
KR101325176B1 (en) Method of manufacturing chemical manganese dioxide from trivalent cathode active material, the chemical manganese dioxide manufactured by the method and secondary battery including the chemical manganese dioxide
CN116529913A (en) Method for recovering metal ions from battery
JP2013001951A (en) Dialysis promotor and metal recovery method
JP2012246519A (en) Metal leaching method
JP2022542637A (en) Relithiation under oxidizing conditions
JP2020029613A (en) Lithium recovery method
JP6400014B2 (en) Method for recovering lithium by lithium metallurgical process from lithium manganese oxide-containing part of used galvanic cell
KR20220079922A (en) How to Recycle Li-ion Batteries
JP2023516663A (en) Disposal method of lithium iron phosphate battery
TW202330946A (en) Oxidative and reductive leaching methods
KR102367354B1 (en) Method for purifying waste lithium phosphate and method for manufacturing lithium iron phosphate comprising the same
Ding et al. Advances in recycling LiFePO4 from spent lithium batteries: a critical review
KR20220089925A (en) Lithium oxide recovery method from lithium manganese oxide(LMO)
CN116715209A (en) Method for recycling and preparing ferromanganese phosphate from waste lithium iron phosphate battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13989476

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11843814

Country of ref document: EP

Kind code of ref document: A1