JPH0982371A - Valuable material recovering method from waste nickel-hydrogen secondary battery - Google Patents

Valuable material recovering method from waste nickel-hydrogen secondary battery

Info

Publication number
JPH0982371A
JPH0982371A JP26197195A JP26197195A JPH0982371A JP H0982371 A JPH0982371 A JP H0982371A JP 26197195 A JP26197195 A JP 26197195A JP 26197195 A JP26197195 A JP 26197195A JP H0982371 A JPH0982371 A JP H0982371A
Authority
JP
Japan
Prior art keywords
nickel
cobalt
solution
secondary battery
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26197195A
Other languages
Japanese (ja)
Inventor
Takuji Yoshida
卓司 吉田
Hironori Tateiwa
宏則 立岩
Hiroshi Ono
小野  浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP26197195A priority Critical patent/JPH0982371A/en
Publication of JPH0982371A publication Critical patent/JPH0982371A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently recover a valuable material such as nickel, cobalt and rare earth metal even when impurity such as copper and iron is mixed in from a waste nickel.hydrogen secondary battery by a small quantity of industrial chemical to be used without practically causing a problem of corrosion of a device. SOLUTION: A used nickel.hydrogen secondary battery is crushed, cracked and sieved, and is separated into a coarse grain part containing plastic, iron, foaming nickel or the like and a fine grain part containing a nickel hydroxide and hydrogen storage alloy. After plastic and paper are removed from the coarse grain part after being sieved by magnetic separation, an organic substance such as remaining carbon is completely removed by combustion, and iron is removed by pulverization and sieving, and foaming nickel is recovered. Nickel and cobalt are melted from the fine grain part after being sieved by a sulfuric acid solution containing alkaline metal such as sodium and potassium, and rare earth metal such as cerium and lanthanum is separated as a deposit of sulfuric acid double salt with alkaline metal, and the rare earth metal is recovered. A sulfuric acid solution of cobalt is electrolyzed by adjusting pH of a cathode part to 4 or more, and nickel and cobalt are recovered as metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、使用済みのニッケル・
水素二次電池(廃ニッケル・水素二次電池)からニッケ
ル、コバルト、レアアース元素を回収する方法に関する
ものである。
BACKGROUND OF THE INVENTION The present invention relates to a used nickel
The present invention relates to a method of recovering nickel, cobalt and rare earth elements from a hydrogen secondary battery (waste nickel / hydrogen secondary battery).

【0002】[0002]

【従来技術】廃ニッケル・水素二次電池から有価物であ
るニッケル、コバルト、レアアース元素の回収方法とし
て、特開平6−340930号に示されるように、レア
アース、ニッケル等有価物を鉱酸で溶解し、レアアース
はフッ化物として分離回収し、レアアースを除去した液
からニッケルを水酸化物沈殿として回収する方法が提案
されている。しかしながら廃ニッケル・水素二次電池は
銅、鉄等雑多の不純物が混入していることが多く、これ
らの不純物は溶液中にフッ素が存在するとフッ素と錯イ
オンを形成し、レアアースとの分離が困難になる。
2. Description of the Related Art As a method of recovering valuable nickel, cobalt, and rare earth elements from a waste nickel-hydrogen secondary battery, as shown in JP-A-6-340930, valuable materials such as rare earth and nickel are dissolved with a mineral acid. However, a method has been proposed in which rare earth is separated and recovered as a fluoride, and nickel is recovered as a hydroxide precipitate from the liquid from which the rare earth is removed. However, waste nickel-hydrogen secondary batteries often contain miscellaneous impurities such as copper and iron, and these impurities form complex ions with fluorine when fluorine is present in the solution, making it difficult to separate them from rare earths. become.

【0003】また、液中のフッ素は腐食性が強く、特別
に耐蝕性を高めた装置が必要となる。さらに、レアアー
ス、ニッケル等有価物の溶解に用いる鉱酸および液の中
和に使用するアルカリは繰り返して再利用することは困
難であることから、これらの薬剤は全量廃水処理工程で
廃棄されるものと考えられ、経済性及び省資源の観点か
ら、大量処理には難点がある。
Further, the fluorine in the liquid is highly corrosive, so that an apparatus having specially improved corrosion resistance is required. Furthermore, since it is difficult to repeatedly reuse the mineral acid used to dissolve valuable substances such as rare earth and nickel and the alkali used to neutralize the liquid, all of these chemicals are discarded in the wastewater treatment process. It is considered that there is a difficulty in mass processing from the viewpoint of economy and resource saving.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、廃ニ
ッケル・水素二次廃電池からのニッケル、コバルト、レ
アアース元素の回収に関して、銅、鉄等不純物が混入し
た場合にも適用可能で、装置的腐食の問題が少なく、か
つ少ない薬品使用量でニッケル、コバルト、レアアース
元素を回収することを目的とする。
The object of the present invention is applicable to the recovery of nickel, cobalt, and rare earth elements from waste nickel-hydrogen secondary waste batteries even when impurities such as copper and iron are mixed, The objective is to recover nickel, cobalt, and rare earth elements with a small amount of chemicals and less problems of equipment corrosion.

【0005】[0005]

【課題を解決するための手段】本発明は、使用済のニッ
ケル・水素二次電池用を破砕・解砕・篩分し、プラスチ
ックス、鉄、発泡ニッケル等を含む粗粒部と水酸化ニッ
ケル及び水素吸蔵合金を含む細粒部に分離し、粗粒部か
らは磁力選別によるプラスチックス、紙の除去、燃焼に
よるカーボン等の有機物の除去、粉砕・篩分による鉄の
除去を行い、発泡ニッケルを回収する。一方、細粒部か
らはナトリウム、カリウム等のアルカリ金属を含んだ硫
酸溶液でニッケル、コバルトを溶解し、レアアース元素
は硫酸複塩の沈殿物として回収する。
The present invention is directed to crushing, crushing and sieving a used nickel-hydrogen secondary battery, and a coarse particle portion containing plastics, iron, foamed nickel and the like and nickel hydroxide. And fine particles containing hydrogen-absorbing alloy, and from the coarse particles, plastics and paper are removed by magnetic selection, organic substances such as carbon are removed by combustion, iron is removed by crushing and sieving, and nickel foam is used. Collect. On the other hand, nickel and cobalt are dissolved from the fine grain portion with a sulfuric acid solution containing an alkali metal such as sodium and potassium, and the rare earth element is recovered as a sulfate double salt precipitate.

【0006】ニッケル、コバルトの硫酸溶解液は電解を
行いニッケル、コバルトを金属として回収する。ニッケ
ル、コバルトを金属として回収した後の電解液(電解尾
液)は再度廃ニッケル・水素二次電池の溶解に使用する
ことができる。電解尾液を廃ニッケル・水素二次電池の
溶解に用いる場合は、レアアースとアルカリ金属との硫
酸複塩を生じる当量の硫酸及びアルカリ金属を補充す
る。また、ニッケル、コバルトの溶解液に銅、カドミウ
ムが混入する場合は、硫化アルカリ(硫化ナトリウム、
硫化カリウム、硫化アンモニウム)もしくは硫化水素を
溶解液に添加することにより、銅及びカドミウムを除去
し、鉄が混入する場合は過マンガン酸カリウム等の酸化
剤を添加し、3価の鉄に酸化した後、pHを4以上に調
整することにより除去される。
The sulfuric acid solution of nickel and cobalt is electrolyzed to recover nickel and cobalt as metals. The electrolytic solution (electrolytic tail solution) after recovering nickel and cobalt as metals can be used again for dissolving the waste nickel-hydrogen secondary battery. When the electrolytic tail solution is used to dissolve a waste nickel-hydrogen secondary battery, it is replenished with an equivalent amount of sulfuric acid and alkali metal that produces a sulfuric acid double salt of rare earth and alkali metal. When copper or cadmium is mixed in the solution of nickel or cobalt, alkali sulfide (sodium sulfide,
Copper and cadmium were removed by adding potassium sulfide, ammonium sulfide) or hydrogen sulfide to the solution, and when iron was mixed, an oxidizing agent such as potassium permanganate was added to oxidize it to trivalent iron. After that, it is removed by adjusting the pH to 4 or more.

【0007】[0007]

【実施例】以下、実施例に基づいて本発明を具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on examples.

【0008】実施例1 ニッケル・水素二次電池を剪断破砕機(Alpine
A.G.Germany製のRotoplex Cut
ting Mill)を用いて、960rpm、200
V、3.7KW、排出径12mmΦ(1/2”)の条件
で乾式で破砕を行った。次に、解砕機(Attrict
ion Machine)を用いて、4枚羽、5段の条
件で湿式で解砕を行い、その後28meshの篩で分級
した。篩上の粗粒部(+28mesh)を2,000〜
3,000Gaussの磁力で磁力選別してプラスチッ
クス、紙等の非着磁物を除去した後、微量のプラスチッ
クス、紙を燃焼除去した。
Example 1 A nickel-hydrogen secondary battery was sheared by a shear crusher (Alpine).
A. G. Rotoplex Cut made in Germany
toning Mill), 960 rpm, 200
V, 3.7 kW, and discharge diameter 12 mmΦ (1/2 ") were used for dry crushing. Next, a crusher (Attract)
Ion Machine) was used for wet crushing under the condition of 4 blades and 5 stages, and then classified with a 28 mesh sieve. The coarse particle part (+28 mesh) on the sieve is 2,000-
After magnetically screening with a magnetic force of 3,000 Gauss to remove non-magnetized substances such as plastics and paper, a small amount of plastics and paper were burned and removed.

【0009】燃焼後の残渣を振動ミル(川崎重工業社製
のT−100型)を用いて925rpm、100V、
0.8KWの条件で粉砕し、24meshの篩で分級す
ることにより、金属鉄と発泡ニッケルが分離され、発泡
ニッケルが,−24meshの細粒部に濃縮・回収され
た。一方、解砕機(Attriction Machi
ne)で湿式解砕・分級されて得られた−28mesh
の細粒部には、電池の活物質であるニッケル・水素及び
水酸化ニッケル等の有価物が濃縮されている。表1に、
4種類の廃ニッケル・水素二次電池(A〜D)に上記の
処理を行い、得られた細粒部の分析結果を示す。
The residue after combustion was 925 rpm, 100 V, using a vibration mill (T-100 type manufactured by Kawasaki Heavy Industries, Ltd.).
By pulverizing under a condition of 0.8 KW and classifying with a sieve of 24 mesh, metallic iron and nickel foam were separated, and nickel foam was concentrated and recovered in a fine particle portion of -24 mesh. On the other hand, a crusher (Attraction Machine)
-28mesh obtained by wet crushing and classification with ne)
Valuable materials such as nickel / hydrogen and nickel hydroxide, which are the active materials of the battery, are concentrated in the fine-grained portion. In Table 1,
The above-mentioned treatment was carried out on four kinds of waste nickel-hydrogen secondary batteries (A to D), and the analysis results of the fine grained parts obtained are shown.

【0010】[0010]

【表1】 [Table 1]

【0011】表1のNo.Aの100gを硫酸濃度3.
5mol/l、ナトリウム濃度1.0mol/lに調整
した液1リットルで80℃、6時間で溶解したところ、
ニッケル、コバルトは100%溶解したが、セリウム、
ランタン、ネオジウムはほとんど溶解しなかった。残っ
た溶解残渣をX線回折分析を行ったところ、これらレア
アース元素は難溶性のナトリウムとの硫酸複塩であるこ
とを確認した。このニッケル、コバルトの硫酸液に苛性
ソーダを添加してpHを5に調整した後に隔膜電解を行
い、ニッケルとコバルトの金属を得た。
No. 1 in Table 1 100 g of A was added to a sulfuric acid concentration of 3.
When dissolved in 1 liter of a liquid adjusted to 5 mol / l and a sodium concentration of 1.0 mol / l at 80 ° C. for 6 hours,
Nickel and cobalt were 100% dissolved, but cerium,
Lanthanum and neodymium were hardly dissolved. When the remaining dissolution residue was subjected to X-ray diffraction analysis, it was confirmed that these rare earth elements were sulfuric acid double salts with poorly soluble sodium. Caustic soda was added to the sulfuric acid solution of nickel and cobalt to adjust the pH to 5, and diaphragm electrolysis was performed to obtain nickel and cobalt metals.

【0012】実施例2 実施例1で得られた表1のNo.Aを10g、硫酸濃度
1.0mol/l、ナトリウム濃度1.5mol/lに
調整した液1リットルで80℃、6時間溶解したとこ
ろ、ニッケルは83%、コバルトは92%溶解したが、
セリウム、ランタン、ネオジウムはほとんど溶解しなか
った。このニッケル、コバルト溶解液に苛性ソーダを添
加してpH5に調整した後で隔膜電解を行い、ニッケル
とコバルトの金属を得た。電解後の電解尾液で残渣を再
度、80℃、6時間の溶解を行ったところニッケル、コ
バルトは全量溶解した。電解尾液での再溶解液にもセリ
ウム、ランタン、ネオジウムはほとんど溶解しなかっ
た。
Example 2 No. 1 in Table 1 obtained in Example 1 When 10 g of A, a sulfuric acid concentration of 1.0 mol / l and a sodium concentration of 1.5 mol / l were dissolved in 1 liter of liquid at 80 ° C. for 6 hours, nickel was dissolved by 83% and cobalt was dissolved by 92%.
Cerium, lanthanum and neodymium were hardly dissolved. Caustic soda was added to the solution of nickel and cobalt to adjust the pH to 5, and then diaphragm electrolysis was performed to obtain nickel and cobalt metals. When the residue was dissolved again at 80 ° C. for 6 hours with an electrolytic tail solution after electrolysis, all nickel and cobalt were dissolved. Cerium, lanthanum, and neodymium were hardly dissolved in the redissolved solution in the electrolytic tail solution.

【0013】実施例3 実施例1で得られた表1のNo.Bを100g、硫酸濃
度3.5mol/l、ナトリウム濃度1.0mol/l
に調整した液1リットルで80℃、6時間溶解したとこ
ろ、ニッケル、コバルト、銅は100%溶解したが、セ
リウム、ランタン、ネオジウムはほとんど溶解しなかっ
た。溶解液に硫化ナトリウム10g添加し、30℃、6
時間放置し、濾過したところ、銅は100%除去され
た。ニッケルは5%、コバルトは7%沈殿としてロスし
た。銅を除去した後のニッケル、コバルト液に苛性ソー
ダを添加してpHを5に調整した後で、隔膜電解を行
い、ニッケルとコバルトの金属を得た。また硫化ナトリ
ウムを添加して生じた沈殿を電解尾液で洗浄することに
より、銅と一緒に沈殿していたニッケル、コバルトを全
量溶解・回収することができた。
Example 3 No. 1 in Table 1 obtained in Example 1 B 100 g, sulfuric acid concentration 3.5 mol / l, sodium concentration 1.0 mol / l
When dissolved in 1 liter of the liquid prepared in Step 6, at 80 ° C. for 6 hours, nickel, cobalt and copper were dissolved 100%, but cerium, lanthanum and neodymium were hardly dissolved. Sodium sulfide (10 g) was added to the solution, and the temperature was 30 ° C
After standing for a while and filtering, 100% of copper was removed. Nickel was lost as 5% and cobalt was lost as 7%. After removing the copper, caustic soda was added to the nickel and cobalt solution to adjust the pH to 5, and then diaphragm electrolysis was performed to obtain nickel and cobalt metals. Further, by washing the precipitate generated by adding sodium sulfide with an electrolytic tail solution, all nickel and cobalt precipitated together with copper could be dissolved and recovered.

【0014】実施例4 実施例1で得られた表1のNo.Cを100g、硫酸濃
度3.5mol/l、ナトリウム濃度1.0mol/l
に調整した液1リットルで80℃、6時間溶解したとこ
ろ、ニッケル、コバルト、鉄は100%溶解したが、セ
リウム、ランタン、ネオジウムはほとんど溶解しなかっ
た。溶解液に過マンガン酸カリウム10g添加し、苛性
ソーダを添加してpHを4に調整して、生成した沈殿を
濾過した。鉄は98%が沈殿として除去された。ニッケ
ルは4%、コバルトは1%が沈殿としてロスした。鉄を
除去したニッケル、コバルト液に苛性ソーダを添加して
pHを5に調整して、隔膜電解を行い、ニッケルとコバ
ルトの金属を得た。
Example 4 No. 1 in Table 1 obtained in Example 1 C 100 g, sulfuric acid concentration 3.5 mol / l, sodium concentration 1.0 mol / l
When 1 liter of the liquid prepared in Example 1 was dissolved at 80 ° C. for 6 hours, 100% of nickel, cobalt and iron were dissolved, but cerium, lanthanum and neodymium were hardly dissolved. 10 g of potassium permanganate was added to the solution, caustic soda was added to adjust the pH to 4, and the generated precipitate was filtered. 98% of iron was removed as a precipitate. 4% of nickel and 1% of cobalt were lost as precipitates. Caustic soda was added to the nickel-cobalt solution from which iron was removed to adjust the pH to 5, and diaphragm electrolysis was performed to obtain nickel and cobalt metals.

【0015】実施例5 実施例1で得られた表1のNo.Dを100g、硫酸濃
度3.5mol/l、ナトリウム濃度1.0mol/l
に調整した液1リットルで80℃、6時間溶解したとこ
ろ、ニッケル、コバルト、銅は100%溶解したが、セ
リウム、ランタン、ネオジウムはほとんど溶解しなかっ
た。この溶解液に硫化ナトリウム10g添加し、30
℃、6時間放置し、濾過したところ、銅は100%除去
された。ニッケルは5%、コバルトは7%沈殿としてロ
スした。銅を除去した後のニッケル、コバルト溶液に苛
性ソーダを添加してpHを5に調整した後で、隔膜電解
を行い、ニッケルとコバルトの金属を得た。また、硫化
ナトリウムを添加して生じた沈殿を電解尾液で洗浄する
ことにより、銅と一緒に沈殿していたニッケル、コバル
トは全量溶解、回収することができた。
Example 5 No. 1 in Table 1 obtained in Example 1 100 g of D, sulfuric acid concentration 3.5 mol / l, sodium concentration 1.0 mol / l
When dissolved in 1 liter of the liquid prepared in Step 6, at 80 ° C. for 6 hours, nickel, cobalt and copper were dissolved 100%, but cerium, lanthanum and neodymium were hardly dissolved. To this solution, add 10 g of sodium sulfide,
When left at 6 ° C. for 6 hours and filtered, 100% of copper was removed. Nickel was lost as 5% and cobalt was lost as 7%. After removing the copper, caustic soda was added to the nickel and cobalt solution to adjust the pH to 5, and then diaphragm electrolysis was performed to obtain nickel and cobalt metals. Further, by washing the precipitate generated by adding sodium sulfide with an electrolytic tail solution, all the nickel and cobalt precipitated together with copper could be dissolved and recovered.

【0016】[0016]

【発明の効果】以上説明したように、本発明の方法によ
れば、装置の腐食の問題が少なく、少ない工業薬品使用
量で、廃ニッケル・水素二次電池から、銅、鉄等の不純
物が混入した場合でも、効率的にニッケル、コバルト、
レアアース等の有価物が回収できる。
As described above, according to the method of the present invention, there are few problems of equipment corrosion, a small amount of industrial chemicals is used, and impurities such as copper and iron are removed from a spent nickel-hydrogen secondary battery. Even if mixed, nickel, cobalt,
Valuable materials such as rare earth can be collected.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 使用済みのニッケル・水素二次電池を破
砕・解砕・篩分し、プラスチックス、鉄、発泡ニッケル
等を含む粗粒部と水酸化ニッケル及び水素吸蔵合金を含
む細粒部に分離する工程、篩分後の粗粒部から磁力選別
によりプラスチックス、紙を除去した後、燃焼により残
存するカーボン等の有機物を完全に除去し、粉砕・篩分
により鉄の除去を行い発泡ニッケルを回収する工程、篩
分後の細粒部からナトリウム、カリウム等のアルカリ金
属を含んだ硫酸溶液でニッケル、コバルトを溶解し、セ
リウム、ランタン等のレアアースをアルカリ金属との硫
酸複塩の沈殿物として分離し、レアアースを回収する工
程、ニッケル、コバルトの硫酸溶液をカソード部のpH
を4以上に調整して電解することにより、ニッケル、コ
バルトを金属として回収する工程とからなることを特徴
とする廃ニッケル・水素二次電池からの有価物回収方
法。
1. A crushed, crushed, and sieved used nickel-hydrogen secondary battery, and a coarse-grained portion containing plastics, iron, nickel foam, etc. and a fine-grained portion containing nickel hydroxide and a hydrogen storage alloy. After removing the plastics and paper from the coarse particles after sieving by magnetic separation, the organic substances such as carbon remaining after combustion are completely removed, and iron is removed by crushing and sieving to foam. Nickel and cobalt are dissolved with a sulfuric acid solution containing an alkali metal such as sodium and potassium from the step of recovering nickel and fine particles after sieving, and rare earths such as cerium and lanthanum are precipitated as a sulfate double salt with an alkali metal. Process of separating rare earths as rare earth, sulfuric acid solution of nickel and cobalt, pH of cathode part
And a value of 4 or more for electrolysis, and a step of recovering nickel and cobalt as metals, a method for recovering valuable materials from a waste nickel-hydrogen secondary battery.
【請求項2】 ニッケル、コバルトを溶解する溶液とし
て、ニッケル、コバルトを電解回収した後の電解液を使
用することを特徴とする請求項1記載の廃ニッケル・水
素二次電池からの有価物回収方法。
2. A valuable material recovery from a waste nickel-hydrogen secondary battery according to claim 1, wherein an electrolytic solution after electrolytic recovery of nickel and cobalt is used as a solution for dissolving nickel and cobalt. Method.
【請求項3】 前記レアアースを回収する工程に引き続
き、ニッケル、コバルト溶解液に硫化アルカリもしくは
硫化水素を添加して、溶液中の銅、カドミウムを硫化物
として除去することを特徴とする請求項1または請求項
2記載の廃ニッケル・水素二次電池からの有価物回収方
法。
3. Following the step of recovering the rare earth, an alkali sulfide or hydrogen sulfide is added to a solution of nickel and cobalt to remove copper and cadmium in the solution as sulfides. Alternatively, the method for recovering valuable materials from the waste nickel-hydrogen secondary battery according to claim 2.
【請求項4】 前記レアアースを回収する工程に引き続
き、ニッケル、コバルト溶解液に過マンガン酸カリウム
等の酸化剤を添加して溶液中に溶けている鉄を三価に酸
化した後、pHを4もしくは5に調整して、溶液中の鉄
を水酸化物沈殿として除去することを特徴とする請求項
1または請求項2記載の廃ニッケル・水素二次電池から
の有価物回収方法。
4. After the step of recovering the rare earth, an oxidizing agent such as potassium permanganate is added to a solution of nickel and cobalt to oxidize the iron dissolved in the solution to trivalent, and then the pH is adjusted to 4 Alternatively, the value of 5 is adjusted to remove iron in the solution as a hydroxide precipitate, and the valuable material recovery method from the spent nickel-hydrogen secondary battery according to claim 1 or claim 2.
【請求項5】 前記レアアースを回収する工程に引き続
き、ニッケル、コバルト溶解液に硫化アルカリもしくは
硫化水素を添加して、溶液中の銅、カドミウムを硫化物
として除去した後、該除去液に過マンガン酸カリウム等
の酸化剤を添加して溶液中に溶けている鉄を三価に酸化
した後、pHを4もしくは5に調整して、溶液中の鉄を
水酸化物沈殿として除去することを特徴とする請求項1
または請求項2記載の廃ニッケル・水素二次電池からの
有価物回収方法。
5. Subsequent to the step of recovering the rare earth, alkali sulfide or hydrogen sulfide is added to a solution of nickel and cobalt to remove copper and cadmium in the solution as sulfides, and then the solution of permanganese is removed. Characterized by adding an oxidizing agent such as potassium acid to oxidize the iron dissolved in the solution to trivalent, and then adjusting the pH to 4 or 5 to remove the iron in the solution as a hydroxide precipitate. Claim 1
Alternatively, the method for recovering valuable materials from the waste nickel-hydrogen secondary battery according to claim 2.
JP26197195A 1995-09-18 1995-09-18 Valuable material recovering method from waste nickel-hydrogen secondary battery Pending JPH0982371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26197195A JPH0982371A (en) 1995-09-18 1995-09-18 Valuable material recovering method from waste nickel-hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26197195A JPH0982371A (en) 1995-09-18 1995-09-18 Valuable material recovering method from waste nickel-hydrogen secondary battery

Publications (1)

Publication Number Publication Date
JPH0982371A true JPH0982371A (en) 1997-03-28

Family

ID=17369210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26197195A Pending JPH0982371A (en) 1995-09-18 1995-09-18 Valuable material recovering method from waste nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JPH0982371A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025382A1 (en) * 1998-10-27 2000-05-04 Mitsui Mining & Smelting Co., Ltd. Method and system for recovering valuable metal from waste storage battery
US6180278B1 (en) 1998-07-21 2001-01-30 Eveready Battery Company, Inc. Reclamation of active material from metal hydride electrochemical cells
JP2003036894A (en) * 2001-07-19 2003-02-07 Sumitomo Metal Mining Co Ltd Method of recovering valuable metal from used-up nickel hydrogen secondary battery
JP2003041326A (en) * 2001-07-27 2003-02-13 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from scrap of nickel metal hydride secondary battery
JP2007323868A (en) * 2006-05-31 2007-12-13 Toyota Motor Corp Method of recovering electrode-constituting metal from lithium battery
WO2010106618A1 (en) * 2009-03-16 2010-09-23 トヨタ自動車株式会社 Method for treating battery member
WO2012011205A1 (en) * 2010-07-21 2012-01-26 住友金属鉱山株式会社 Method for separating nikel and cobalt from active materials contained in spent nickel-hydrogen battery
WO2013073376A1 (en) 2011-11-14 2013-05-23 住友金属鉱山株式会社 Method for recovering rare earth element
US20130269484A1 (en) * 2011-01-27 2013-10-17 Sumitomo Metal Mining Co., Ltd. Valuable metal leaching method, and valuable metal collection method employing the leaching method
JP2016044319A (en) * 2014-08-21 2016-04-04 住友金属鉱山株式会社 Method for recovering valuable metal from waste nickel hydrogen battery
CN106252774A (en) * 2016-08-25 2016-12-21 株洲鼎端装备股份有限公司 A kind of recovery and treatment method of waste and old Ni-MH power cell
JP2017008385A (en) * 2015-06-24 2017-01-12 住友金属鉱山株式会社 Recovery method of raw material for manufacturing nca from waste nickel hydrogen battery and recovery device thereof
CN106834702A (en) * 2017-02-20 2017-06-13 山东科技大学 The method that nickel salt is produced using waste nickel catalyst
KR101952608B1 (en) * 2018-06-14 2019-02-27 주식회사 지엠텍 Recovery method of cadmium using trash nickel-cadmium battery
CN111065752A (en) * 2017-10-23 2020-04-24 住友金属矿山株式会社 Method for separating copper from nickel and cobalt
CN111183236A (en) * 2017-09-29 2020-05-19 住友金属矿山株式会社 Method for separating copper from nickel and cobalt
EP3730637A4 (en) * 2017-12-18 2021-08-25 Sumitomo Metal Mining Co., Ltd. Method for separating copper, and nickel and cobalt

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180278B1 (en) 1998-07-21 2001-01-30 Eveready Battery Company, Inc. Reclamation of active material from metal hydride electrochemical cells
WO2000025382A1 (en) * 1998-10-27 2000-05-04 Mitsui Mining & Smelting Co., Ltd. Method and system for recovering valuable metal from waste storage battery
JP2003036894A (en) * 2001-07-19 2003-02-07 Sumitomo Metal Mining Co Ltd Method of recovering valuable metal from used-up nickel hydrogen secondary battery
JP2003041326A (en) * 2001-07-27 2003-02-13 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from scrap of nickel metal hydride secondary battery
JP4654548B2 (en) * 2001-07-27 2011-03-23 住友金属鉱山株式会社 Valuable metal recovery method from nickel metal hydride secondary battery scrap
JP2007323868A (en) * 2006-05-31 2007-12-13 Toyota Motor Corp Method of recovering electrode-constituting metal from lithium battery
JP5062262B2 (en) * 2009-03-16 2012-10-31 トヨタ自動車株式会社 Battery member processing method
WO2010106618A1 (en) * 2009-03-16 2010-09-23 トヨタ自動車株式会社 Method for treating battery member
CN101919107A (en) * 2009-03-16 2010-12-15 丰田自动车株式会社 Method for treating battery member
US8557412B2 (en) 2009-03-16 2013-10-15 Toyota Jidosha Kabushiki Kaisha Method for processing battery member comprising lithium-containing electrode and electrolyte materials and a process solution
US8888892B2 (en) 2010-07-21 2014-11-18 Sumitomo Metal Mining Co., Ltd. Method for separating nickel and cobalt from active material contained in spent nickel-metal hydride battery
JP2012025992A (en) * 2010-07-21 2012-02-09 Sumitomo Metal Mining Co Ltd Method for separating nickel and cobalt from active material contained in spent nickel-hydrogen battery
WO2012011205A1 (en) * 2010-07-21 2012-01-26 住友金属鉱山株式会社 Method for separating nikel and cobalt from active materials contained in spent nickel-hydrogen battery
US20130269484A1 (en) * 2011-01-27 2013-10-17 Sumitomo Metal Mining Co., Ltd. Valuable metal leaching method, and valuable metal collection method employing the leaching method
US9068242B2 (en) * 2011-01-27 2015-06-30 Sumitomo Metal Mining Co., Ltd. Valuable metal leaching method, and valuable metal collection method employing the leaching method
WO2013073376A1 (en) 2011-11-14 2013-05-23 住友金属鉱山株式会社 Method for recovering rare earth element
US9347115B2 (en) 2011-11-14 2016-05-24 Sumitomo Metal Mining Co., Ltd. Method for recovering rare earth element
JP2016044319A (en) * 2014-08-21 2016-04-04 住友金属鉱山株式会社 Method for recovering valuable metal from waste nickel hydrogen battery
JP2017008385A (en) * 2015-06-24 2017-01-12 住友金属鉱山株式会社 Recovery method of raw material for manufacturing nca from waste nickel hydrogen battery and recovery device thereof
CN106252774A (en) * 2016-08-25 2016-12-21 株洲鼎端装备股份有限公司 A kind of recovery and treatment method of waste and old Ni-MH power cell
CN106834702A (en) * 2017-02-20 2017-06-13 山东科技大学 The method that nickel salt is produced using waste nickel catalyst
CN111183236A (en) * 2017-09-29 2020-05-19 住友金属矿山株式会社 Method for separating copper from nickel and cobalt
US11959151B2 (en) 2017-09-29 2024-04-16 Sumitomo Metal Mining Co., Ltd. Method for separating copper from nickel and cobalt
CN111065752A (en) * 2017-10-23 2020-04-24 住友金属矿山株式会社 Method for separating copper from nickel and cobalt
EP3702481A4 (en) * 2017-10-23 2021-07-14 Sumitomo Metal Mining Co., Ltd. Method for separating copper from nickel and cobalt
US12000018B2 (en) 2017-10-23 2024-06-04 Sumitomo Metal Mining Co., Ltd. Method for separating copper from nickel and cobalt
EP3730637A4 (en) * 2017-12-18 2021-08-25 Sumitomo Metal Mining Co., Ltd. Method for separating copper, and nickel and cobalt
US11718894B2 (en) 2017-12-18 2023-08-08 Sumitomo Metal Mining Co., Ltd. Method for separating copper, and nickel and cobalt
KR101952608B1 (en) * 2018-06-14 2019-02-27 주식회사 지엠텍 Recovery method of cadmium using trash nickel-cadmium battery

Similar Documents

Publication Publication Date Title
KR100930453B1 (en) How to Recover Metals from Battery Residues
JPH0982371A (en) Valuable material recovering method from waste nickel-hydrogen secondary battery
JP3918041B2 (en) Method for recovering metals from used nickel-metal hydride batteries
TWI726033B (en) Process for recovering metal values from spent lithium ion batteries with high manganese content
TWI392745B (en) A method for recovering a valuable metal from a lithium battery residue containing Co, Ni, and Mn
US6110433A (en) Process for the recovery of metals from used nickel/metal/rare earth hydride storage batteries
EP2444507B1 (en) Recovery of rare earth metals from waste material by leaching in non-oxidizing acid and by precipitating using sulphates
TWI231063B (en) Process of recovering valuable metals from waste secondary batteries
JP3014452B2 (en) A method of recovering raw materials from used substances that have been sorted and collected in advance
JP5151072B2 (en) Method for recovering metal constituting electrode from lithium battery
JP2017115179A (en) Recovery method of valuable substance
US5478664A (en) Method of recovering reusable metals from nickel-hydrogen rechargeable battery
CN1287481C (en) Method for recovering valuable metal from waste secondary cell
JP4099057B2 (en) Cobalt recovery method and cobalt recovery system in lithium ion battery
JP5568977B2 (en) Method for recovering manganese from batteries
JP4654548B2 (en) Valuable metal recovery method from nickel metal hydride secondary battery scrap
EP4200927A1 (en) Process for removing impurities in the recycling of lithium-ion batteries
TW501294B (en) Metal recovery method of wasted lithium ion battery using sulfuric acid
JP4872168B2 (en) Method for recovering valuable metals from used nickel metal hydride secondary batteries
JP2002226923A (en) Method for recovering valuable metal from nickel- hydrogen secondary battery scrap
JP3532640B2 (en) Method for recovering positive electrode material from nickel-hydrogen secondary battery and method for recovering raw material for recovering effective metal from negative electrode
JP2002239553A (en) Method for electrochemical recovery of heavy metal from fly ash
Bankole et al. Effects of Different pH Values on Dissolution and Recovery of Zinc and Manganese from Spent Zinc–Carbon Batteries Using Ascorbic Acids
CN115398013A (en) Method for extracting lithium from a material comprising lithium and at least another metal
JP2002173790A (en) Electrochemical recovering method of metals in flying ash

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051018