TW501294B - Metal recovery method of wasted lithium ion battery using sulfuric acid - Google Patents

Metal recovery method of wasted lithium ion battery using sulfuric acid Download PDF

Info

Publication number
TW501294B
TW501294B TW90114598A TW90114598A TW501294B TW 501294 B TW501294 B TW 501294B TW 90114598 A TW90114598 A TW 90114598A TW 90114598 A TW90114598 A TW 90114598A TW 501294 B TW501294 B TW 501294B
Authority
TW
Taiwan
Prior art keywords
solution
patent application
metal
electrolysis
lithium
Prior art date
Application number
TW90114598A
Other languages
Chinese (zh)
Inventor
Yi-Lung Jang
Jiun-Ren Lin
Je-Yuan Shiu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW90114598A priority Critical patent/TW501294B/en
Application granted granted Critical
Publication of TW501294B publication Critical patent/TW501294B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

This invention provides a novel technique to recover metals from wasted lithium ion battery, which can recover metals like copper and cobalt with high metal content (> 99%). The treatment process comprises: incinerating wasted lithium ion battery in a high temperature furnace to decompose and remove organic electrolyte, granulating, sieving and separating, using magnetic separation or eddy current separation treatment to separate crushed iron casing, copper foil and aluminum foil, etc. from the material retained by the sieve, using mixed solution of sulfuric acid and hydrogen peroxide to perform dissolution process for material passing the sieve, adjusting pH value of filtrate from filtering the dissolution solution to precipitate iron and aluminum ions, in which metal copper and metal cobalt is electrolytically dissociated by electrolysis, and effectively recovering lithium by adding carbonic ion into the lithium ion rich solution after electrolysis to form lithium carbonate precipitant.

Description

501294 A7 B7__ 五、發明說明(1 ) 發明領域 本發明係有關一種從廢鋰離子電池回收金屬之方法, 尤其有關一種從廢鋰離子電池回收銅及鈷金屬、及碳酸鋰 之方法。 發明背景 隨著筆記型電腦、行動電話等各項攜帶式3C家電用品 產業迅速發展及民眾對環保意識之重視,二次電池之使用 量大幅提昇,其中鋰離子電池由於具有高電容量密度、高 工作電壓、循環壽命長及無記憶效應等各項優點,更成爲 二次電池中之主要產品,再加上鋰離子電池於電動汽機車 的潛在應用市場,因此鋰電池的使用量遽增已成爲必然趨 勢。據估計全球小型鋰二次電池需求量將從西元1998年的2 億顆急速成長至2005年的6億顆。然而於鋰電池蓬勃發展之 際,如何處理與日遽增使用過之廢鋰離子電池,避免造成 之公害污染並有效的回收可利用之金屬資源,爲一重要課 題。 與鋰一次電池相較之下,鋰離子二次電池雖然使用安 定性較佳的鋰金屬氧化物當作正極材料,但在反覆的充放 電過程中,仍不免會有鋰金屬析出的情形。另外,一些常 作爲鋰電池電解質的物質(如LiPF6、LiC104、LiS02、LiBF4 等)接觸到空氣或水分時,都會對自然環境產生污染或對個 人安全造成危害。而目前已經商業化量產的二次鋰電池種 類中,正極材料主要是以鋰鈷氧化物爲主,由於鈷於自然 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -----!---------裝--- (請先閱讀背面之注意事項寫本頁) 訂·· .線· 經濟部智慧財產局員工消費合作社印製 501294 A7 B7 五、發明說明(Ί 界的蘊藏量較少,基於資源有限的考量,且因鈷具有軍事 用途上的價値,相當有回收再利用的經濟價値。 然由於鋰二次電池之商業化生產技術於近十年來始達 成熟,因此於近幾年,才有探討如何回收使用過或廢棄之 鋰離子電池之相關專利文獻發表。已知廢鋰離子電池的回 收處鋰流程,包括先以高溫爐焙燒之,以分解電池內有機 物質,再進行破碎篩分,接著進行有價金屬之分離純化。 該等方法可分爲物理分選法及化學溶蝕純化法。 Θ物理分選法 在曰本專利 JP10074539、JP1015875 卜 JP10223264、 經濟部智慧財產局員工消費合作社印製 -------------- i — (請先閱讀背面之注意事項寫本頁) -丨線· JP10330855、JP1 1242967中提出之方法均屬物理分選法。其 特色爲將廢鋰離子電池先粉碎至粒徑5目(或3.36mm)以下 後,再利用篩分、磁選、重力分選或渦電流等單元之交互 搭配,而達到以顆粒大小、磁性、比重與電性等之物理性 質將不同特性之金屬分離。但眾所週知以物理性質進行分 選所得之各金屬品味並不高,除以磁選方式回收鐵可以得 到滿意之結果外,一般來說對於其他回收之金屬仍有其先 天之限制,無法達到如濕法冶金得到高品味之金屬產品, 其中除了導因於許多金屬之物理性質鑑別率並不大(如本 系統之鋁與銅),粉碎粒子之磁性或電性之絕對値與顆粒大 小更是息息相關。 Θ化學溶蝕純化法 本法主要是將含有鋰鈷氧化物之部分進行溶蝕後,主 要以酸鹼値調整方式形成氫氧化物或其他低溶解度之金屬 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 501294 A7 ___B7___ 五、發明說明(、 化合物。在日本專利IP7207349所提之方法乃是將前處理後 之廢鋰離子電池篩分,篩下物再以酸溶蝕之,直接調整酸 鹼度値回收金屬氫氧化物。日本專利JP1 1054159則以硝酸 溶蝕正極材料,並以氫氧化鋰調整酸鹼度値以回收金屬之 氫氧化物。日本專利JP11185834則將廢鋰離子電池之正極 材料以鹽酸溶蝕,再添加草酸根形成草酸鈷沈澱。 經濟部智慧財產局員工消費合作社印製501294 A7 B7__ 5. Description of the invention (1) Field of the invention The present invention relates to a method for recovering metals from waste lithium ion batteries, and more particularly to a method for recovering copper and cobalt metals, and lithium carbonate from waste lithium ion batteries. BACKGROUND OF THE INVENTION With the rapid development of various portable 3C household electrical appliances industries such as notebook computers and mobile phones and the public's emphasis on environmental awareness, the use of secondary batteries has increased significantly. Among them, lithium-ion batteries have high capacity density, high Various advantages such as working voltage, long cycle life, and no memory effect have become the main products in secondary batteries. In addition, the potential application market of lithium-ion batteries in electric vehicles and motorcycles has increased the use of lithium batteries. The inevitable trend. It is estimated that the global demand for small lithium secondary batteries will grow rapidly from 200 million units in 1998 to 600 million units in 2005. However, with the rapid development of lithium batteries, how to deal with the increasing use of used lithium-ion batteries, avoid the pollution caused by pollution, and effectively recover the available metal resources is an important issue. Compared with lithium primary batteries, although lithium ion secondary batteries use lithium metal oxides with better stability as the positive electrode material, lithium metal will inevitably precipitate during repeated charging and discharging processes. In addition, some substances that are often used as electrolytes in lithium batteries (such as LiPF6, LiC104, LiS02, LiBF4, etc.) will cause pollution to the natural environment or harm personal safety when exposed to air or moisture. Among the types of secondary lithium batteries that have been commercialized and mass-produced, the positive electrode material is mainly lithium cobalt oxide. Because cobalt is natural, the paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm). -----! --------- Equipment --- (Please read the notes on the back to write this page) Order ···. · Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs Consumer Cooperatives 501294 A7 B7 V. Description of the invention (The reserves in the world are relatively small, based on the consideration of limited resources, and because of the military value of cobalt, it is quite economical to recycle. However, due to the commercial production technology of lithium secondary batteries, It has reached maturity in the past ten years, so in recent years, there have been published patent documents that discuss how to recycle used or discarded lithium-ion batteries. It is known that the lithium recycling process of waste lithium-ion batteries includes first firing in a high-temperature furnace. In order to decompose the organic substances in the battery, then crush and screen, and then carry out the separation and purification of valuable metals. These methods can be divided into physical separation methods and chemical corrosion purification methods. Θ physical separation method in Japanese patent JP10074539, JP 1015875 JP10223264, printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs -------------- i-(Please read the precautions on the back to write this page)-Line · JP10330855, JP1 1242967 The methods proposed in the above are all physical sorting methods, which are characterized in that the waste lithium ion battery is first crushed to a particle size of 5 mesh (or 3.36mm) or less, and then used in screening, magnetic separation, gravity separation, or eddy current units. Reciprocal matching, to achieve separation of metals with different characteristics based on physical properties such as particle size, magnetic properties, specific gravity, and electrical properties. However, it is well known that the taste of each metal obtained by physical separation is not high. Dividing it by magnetic separation to recover iron can In addition to obtaining satisfactory results, in general, there are still inherent limitations on other recovered metals, which cannot achieve high-quality metal products such as hydrometallurgy, among which the identification rate of physical properties is not large except for many metals ( (Such as aluminum and copper in this system), the absolute magnetic or electrical properties of the pulverized particles are more closely related to the particle size. Θ chemical etching purification method This method is mainly to After the dissolution, the hydroxide or other low-solubility metals are mainly formed by the adjustment of acid and alkali. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 501294 A7 ___B7___ 5. Description of the invention (, Compound. The method mentioned in the Japanese patent IP7207349 is to screen the pre-processed waste lithium ion battery, and the underscreen is etched with acid to directly adjust the pH to recover the metal hydroxide. Japanese patent JP1 1054159 uses nitric acid Dissolve the positive electrode material and adjust the pH with lithium hydroxide to recover the hydroxide of the metal. Japanese patent JP11185834 dissolves the positive electrode material of the waste lithium ion battery with hydrochloric acid and then adds oxalate to form cobalt oxalate precipitate. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs

(請先閱讀背面之注意事項 發明槪述 本發明揭示一種使用硫酸從包含鋰離子電池的廢電池 中回收金屬之方法,其中該廢電池經由焙燒及篩分而產生 一含金屬及金屬氧化物的碳灰,該方法包含下列步驟: a) 以3N-9N硫酸及過氧化氫混合液溶蝕該碳灰; b) 固液分離步驟a)所形成的混合物; c) 調整從步驟a)分離得到之溶液的pH値至2.5-5,使得 其中之三價鐵離子形成Fe(OH)J3沈澱; d) 固液分離步驟c)的混合物; e) 於調整從步驟d)分離得到之溶液的pH値至0.5-1.5 後,進行電解而將溶液中的銅離子還原成銅金屬; f) 將步驟e)電解完畢的溶液的pH値調整至4.5-5.5,使得 其中之鋁離子形成八1(011)3的沈澱; g) 固液分離步驟f)的混合物; h) 將從步驟g)分離得到的溶液電解,使得其中之鈷離子 還原成鈷金屬; i) 對步驟h)電解完畢的溶液加水可溶的碳酸鹽,使得其 -6- 本頁) 裝 · 線- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 〇U1294 A7 B7 五、發明說明(4 ) 中之鋰離子形成碳酸鋰沈澱。 較佳的,本發明方法的步驟C)係對溶液加入氫氧化鈉 至溶液的pH値爲3-4。 較佳的,本發明方法的步驟e)係對溶液加入硫酸至溶 液的pH値爲1.0。 較佳的,本發明方法的步驟e)的電解係使甩1-25 mA/cm2的電流密度,及室溫至8(TC的溫度下進行。更佳的, 本發明方法的步驟e)的電解係使用10-20 mA/cm2的電流密 度及於60°C進行。 較佳的,本發明方法的步驟f)係對溶液加入氫氧化鈉 至溶液的pH値爲5。 較佳的,本發明方法的步驟h)的電解係對溶液加入硼 酸至硼酸濃度爲10-30 g/L,使用1-25 mA/cm2的電流密度, 及室溫至80t的溫度下進行。更佳的,步驟h)的電解係使 用15-20 mA/cm2的電流密度及於60°C進行。 較佳的,本發明方法的步驟U的水可溶的碳酸鹽爲碳酸 鈉。 較佳的,本發明方法的步驟a)係使用過氧化氫調整硫 酸溶蝕液氧化還原電位値至500-700 mV,及於液固比爲5-20的條件對碳灰進行溶蝕。 較佳的,本發明方法的步驟b)、d)及g)的固液分離係採 用過灑。 較佳的,若從本發明方法步驟a)分離得到之溶液中的 鐵離子不高,則可跳過步驟c)及d),而於步驟g)後將溶液的 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ------ - --------裝 i — (請先閱讀背面之注意事項寫本頁) 訂“ -線- 經濟部智慧財產局員工消費合作社印製 501294 Α7 Β7 經濟部智慧財產局員工消費合作社印製 五、發明說明( pH値調整到8,形成三價鐵離子之1^(011)3的沈澱。 習知化學溶蝕純化法所回收者爲金屬化合物,而本發 明方法可回收相當高品味之金屬銅及鈷。另習用之化學溶 蝕純化法在以金屬化合物回收廢鋰離子電池中的金屬時常 無法負擔過多金屬種類之雜質,所能處理之對象通常均簡 化爲電池中之正極材料,因而需要複雜之物理分選單元搭 配。本方法則藉由電解條件與酸鹼度之控制,分離回收各 金屬,於是可直接處理整顆之廢鋰離子電池。 發明之詳細說明 目前商用鋰離子二次電池,依照其應用特性主要可爲 圓筒型與方型兩類,但不論其外觀型態爲何,多是將鋰鈷 氧化物塗佈於鋁箔上當成正極板,而將碳材塗佈於銅箔上 當成負極板,兩板間置入隔離膜,並塡充電解液後再捲曲 壓縮成所需之規格,再接上導電柄、洩壓安全閥及端蓋等 零件後,封上鐵質或鋁質罐體再套上塑膠外殼即成型。因 而在處鋰廢鋰電池時,所面對之金屬種類不外乎鐵、鋁、 銅、鈷及鋰,及非金屬之石墨。 本發明揭示一種從廢鋰離子電池回收金屬之方法,尤 其針對物理分選法後所產生的含金屬及金屬氧化物的碳灰 所採行之化學溶蝕純化法。以下配合圖一的流程圖說明一 合適的物理分選法及本發明方法的一較佳實施例,其中將 廢棄之鋰離子電池(或生產過程中之不良品)(1)置入於一 高溫爐(2)中以500°C〜800°C焙燒5〜60分鐘,電池中之有機物 請 先 閱 讀 背 面 之 注 意 事 項 Η 頁ι 訂 線 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 川 1294 A7 B7 五、發明說明(6 ) 質(3)將因高溫而分解形成二氧化碳或一氧化碳等,部分將 還原電池中之金屬氧化物,亦可能形成焦炭沈積於電池 中。將焙燒完成之廢鋰離子電池原料送入粉碎系統(4),粉 碎系統篩網控制在5目以上,銅箔、鋁箔與鐵/鋁殻因延展 性較佳,於粉碎後其粉碎體顆粒大,至於鋰鈷氧化物及碳 材幾乎都成爲粉末。藉由配置適當篩網網目(以大於50目爲 佳)之震動篩(4)將包括銅箔、鋁箔及鐵殼等金屬碎片與鋰 鈷氧化物及碳材混合物分離,而篩分後可以得到篩上物及 篩下物。篩上物再以磁選及渦電流分選(5)的方式將磁性物 質(鐵)與非磁性物質(銅、鋁)分離。以上屬物理分選法部 份。篩下物被送入溶蝕系統(7),溶蝕之條件爲3〜9N的硫 酸(8),液固比値爲20〜5,再以35%過氧化氫(9)以提高其氧 化還原電位値至500-700 mV,增進系統之溶蝕能力。將所 形成的溶蝕液過濾(10),以濾出不溶雜質與碳材(11)。一般 因雙氧水之存在不利於後續之化學純化處理(如萃取),於 溶蝕完成後需以過錳酸鉀滴定雙氧水殘餘濃度,再以亞硫 酸氫鈉或次亞磷酸鈉等還原劑中和之。然因本發明於後續 之處理係採用電解系統來分離與純化金屬,當帶有雙氧水 之金屬溶液進入電解單元,所施加之電壓便足以分解雙氧 水,所以無須中和雙氧水、可省去檢測與中和雙氧水的程 序。 另外,於雙氧水存在的情況下,可確保鐵離子於溶蝕 液中是以三價狀態存在,因而未進入電解系統前,可藉由 調整酸鹼度値(12)至3將溶蝕液中的鐵離子以氫氧化鐵(1 3) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -I H ϋ I ϋ 1 ·1 I I mMam I tmmm I · n -I (請先閱讀背面之注意事項本頁) 訂· 線· 經濟部智慧財產局員工消費合作社印製 501294 A7 B7 五、發明說明(7 ) 形式沈澱分離至相當低之濃度。本發明方法特以氫氧化鈉 及硫酸來作爲酸鹼値之調整劑,可使其同時產生後續鈷之 電析所需添加之硫酸鈉成分。再調整溶液之酸鹼度値至1 後,進行銅之電解(14),電解條件如表一。待無法再將銅 析出後,再調整電解溶液之酸鹼値至5,以形成氫氧化鋁(1 7) 沈澱,而此時酸鹼度値正適於進行鈷之電析,因而於添加 硼酸之後可直接進行(18)電解,無須進一步調整酸鹼値, 於是電析得到金屬鈷(19)。 經電解後富含鋰離子之溶液,則可逕行添加碳酸鈉(20) 形成之碳酸鋰鹽(22)沈澱而將鋰有效回收。 表一 金屬 電解質組成(g/L) 電流密度 mA/cm2 槽電壓 Volt 操作溫度 °C 電流效率 (%) 銅 硫酸銅(50〜150) 硫酸(150〜250) 10 〜20 0.15-0.30 60 〜95 鈷 硫酸鈷(150〜200) 硫酸鈉(100〜150) 氯化鈉(15〜20) 硼酸(10〜30) 15 〜20 1·5 〜3.0 60 〜80 本發明方法具有下列特點: 1 ·以3〜9N硫酸溶蝕除去鐵殼之廢鋰離子電池,並添加過氧 化氫以增進溶蝕效果。 2.以氫氧化鈉及硫酸進行酸鹼値之調整,調整過程有效產 -10- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ----^---I-----裝 i I (請先閱讀背面之注意事項本頁) 訂- --線· 經濟部智慧財產局員工消費合作社印製 )υΐ294 A7 B7 五、發明說明(8) 生電解所需之添加助劑硫酸鈉。 3. 添加過氧化氫及調整溶液之酸鹼値至3〜4,可將溶蝕液中 鐵離子雜質有效去除。 4. 控制操作電壓及控制酸鹼値於0.5〜1.5進行銅之電解,除 了可分解過氧化氫’可電析獲得品味達99%以上之金屬 銅。 5. 調整溶液之酸鹼度値至4.5〜5.5形成氫氧化鋁沈澱。 6. 將上述溶液直接進行電解,可獲得品妹達99%以上之金 屬鈷。 7. 添加碳酸根離子可形成碳酸鋰,回收殘液中之鋰。 圖式之簡單說明 圖一·爲本發明方法的一較佳實施例的方塊流程圖。 • n n n 1 n n .1 n I n I I · .1 I (請先閱讀背面之注意事項寫本頁) 訂: --線· 經濟部智慧財產局員工消費合作社印製 -11 - 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)(Please read the note on the back first. Description of the invention The present invention discloses a method for recovering metals from waste batteries containing lithium ion batteries using sulfuric acid, wherein the waste batteries are calcined and sieved to produce a metal and metal oxide containing Carbon ash, the method includes the following steps: a) etching the carbon ash with a mixed solution of 3N-9N sulfuric acid and hydrogen peroxide; b) solid-liquid separation step a) the mixture formed; c) adjusting the separation obtained from step a) The pH of the solution is 値 to 2.5-5, so that the trivalent iron ions form Fe (OH) J3 precipitation; d) the mixture in the solid-liquid separation step c); e) adjusting the pH of the solution obtained from step d) After 0.5-1.5, electrolysis is performed to reduce the copper ions in the solution to copper metal; f) the pH of the solution after step e) is adjusted to 4.5-5.5, so that the aluminum ions therein form eight 1 (011) 3) g) the solid-liquid separation step f) mixture; h) electrolyze the solution obtained from step g) to reduce the cobalt ions therein to cobalt metal; i) add water to the solution after step h) electrolysis Dissolved carbonate, making it -6- this page) - This applies China National Standard Paper Scale (CNS) A4 size (210 X 297 mm) 〇U1294 A7 B7 V. invention described lithium ions (4) are formed in the precipitation of lithium carbonate. Preferably, step C) of the method of the present invention is adding sodium hydroxide to the solution to a pH of the solution of 3-4. Preferably, step e) of the method of the present invention is adding sulfuric acid to the solution until the pH of the solution is 1.0. Preferably, the electrolytic system in step e) of the method of the present invention is performed at a current density of 1-25 mA / cm2 and at room temperature to 8 (TC. More preferably, step e) of the method of the present invention Electrolysis was performed at a current density of 10-20 mA / cm2 and at 60 ° C. Preferably, step f) of the method of the present invention is adding sodium hydroxide to the solution to a pH of the solution of 5. Preferably, the electrolytic system in step h) of the method of the present invention adds boric acid to the solution to a boric acid concentration of 10-30 g / L, using a current density of 1-25 mA / cm2, and a temperature of room temperature to 80t. More preferably, the electrolytic system of step h) is performed at a current density of 15-20 mA / cm2 and at 60 ° C. Preferably, the water-soluble carbonate in step U of the method of the present invention is sodium carbonate. Preferably, step a) of the method of the present invention uses hydrogen peroxide to adjust the redox potential of the sulfuric acid etching solution to 500-700 mV, and dissolves the carbon ash under the conditions of a liquid-solid ratio of 5-20. Preferably, the solid-liquid separation system in steps b), d) and g) of the method of the present invention is oversprayed. Preferably, if the iron ions in the solution separated from step a) of the method of the present invention are not high, then steps c) and d) may be skipped, and after the step g), the paper size of the solution is applied to the Chinese national standard (CNS) A4 specification (210 X 297 mm) --------------- install i — (Please read the precautions on the back first to write this page) Order "-line-Ministry of Economy Wisdom Printed by the Consumer Cooperative of the Property Bureau 501294 Α7 Β7 Printed by the Consumer Cooperative of the Intellectual Property Office of the Ministry of Economic Affairs 5. The description of the invention (pH 値 adjusted to 8 to form a precipitate of 1 ^ (011) 3 of ferric ions. Known chemical dissolution The metal compound is recovered by the purification method, and the method of the present invention can recover quite high-grade copper and cobalt. In addition, the conventional chemical etching purification method cannot recover the metal in the waste lithium ion battery with the metal compound. Impurities, the objects that can be processed are usually simplified as the positive electrode material in the battery, so complex physical sorting units are required. This method separates and recovers each metal through the control of electrolytic conditions and pH, so the whole can be directly processed. Of Lithium-ion battery. Detailed description of the invention At present, commercial lithium-ion secondary batteries can be classified into cylindrical and square types according to their application characteristics, but regardless of their appearance, lithium-cobalt oxide is mostly coated on The aluminum foil is used as the positive electrode plate, and the carbon material is coated on the copper foil as the negative electrode plate. An insulation film is placed between the two plates, and the electrolyte is charged and then curled and compressed to the required specifications. After pressing the safety valve and end cap, etc., the iron or aluminum can body is sealed and then the plastic shell is molded. Therefore, when dealing with lithium waste lithium batteries, the type of metal facing is nothing more than iron, aluminum, and copper. , Cobalt, lithium, and non-metallic graphite. The present invention discloses a method for recovering metal from waste lithium ion batteries, especially for the chemical dissolution of carbon ash containing metal and metal oxides produced after physical sorting. Purification method. A suitable physical sorting method and a preferred embodiment of the method of the present invention will be described below with reference to the flowchart of FIG. 1, in which an abandoned lithium ion battery (or a defective product in the production process) (1) is placed in In a high temperature furnace ( 2) Baking at 500 ° C ~ 800 ° C for 5 ~ 60 minutes. Please read the precautions on the back of the organic matter in the battery first. Ι Threading The paper size is applicable to China National Standard (CNS) A4 (210 X 297) Chuan 1294 A7 B7 5. Description of the invention (6) Quality (3) will decompose due to high temperature to form carbon dioxide or carbon monoxide, etc. Part of the metal oxide in the battery will be reduced, and coke may also be formed in the battery. The firing will be completed The waste lithium ion battery raw materials are sent to the crushing system (4). The screen of the crushing system is controlled to 5 mesh or more. Copper foil, aluminum foil, and iron / aluminum shell have better ductility. After crushing, the particles of the crushed body are large. Almost all cobalt oxides and carbon materials become powder. A vibrating screen (4) equipped with an appropriate screen mesh (preferably larger than 50 mesh) is used to separate metal fragments including copper foil, aluminum foil and iron shell from lithium cobalt oxide and carbon material mixture, and can be obtained after screening Above and below sieve. The material on the sieve then separates the magnetic substance (iron) from the non-magnetic substance (copper, aluminum) by magnetic separation and eddy current separation (5). The above is part of the physical sorting method. The underscreen is sent to the dissolution system (7). The conditions of dissolution are 3 ~ 9N sulfuric acid (8), the liquid-solid ratio 値 is 20 ~ 5, and then 35% hydrogen peroxide (9) is used to increase its redox potential.値 to 500-700 mV to improve the corrosion ability of the system. The formed etching solution is filtered (10) to filter out insoluble impurities and the carbon material (11). Generally, the presence of hydrogen peroxide is not conducive to subsequent chemical purification processes (such as extraction). After the dissolution is complete, the residual concentration of hydrogen peroxide must be titrated with potassium permanganate, and then neutralized with reducing agents such as sodium hydrogen sulfite or sodium hypophosphite. However, since the present invention uses an electrolytic system to separate and purify the metal in the subsequent processing, when the metal solution with hydrogen peroxide enters the electrolytic unit, the applied voltage is sufficient to decompose the hydrogen peroxide, so there is no need to neutralize the hydrogen peroxide, and the detection and neutralization can be omitted. And hydrogen peroxide program. In addition, in the presence of hydrogen peroxide, it can ensure that iron ions exist in the trivalent state in the solution, so before entering the electrolytic system, the iron ions in the solution can be adjusted by adjusting the pH 値 (12) to 3 Iron hydroxide (1 3) This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) -IH ϋ I ϋ 1 · 1 II mMam I tmmm I · n -I (Please read the note on the back first Matters on this page) Order · Line · Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 501294 A7 B7 V. Description of the invention (7) Form precipitation and separation to a relatively low concentration. In the method of the present invention, sodium hydroxide and sulfuric acid are used as regulators of acid-base rhenium, which can simultaneously produce sodium sulfate components required for subsequent electrolysis of cobalt. After adjusting the pH of the solution to 1, the electrolysis of copper is performed (14). The electrolysis conditions are shown in Table 1. After the copper can no longer be precipitated, adjust the pH value of the electrolytic solution to 5 to form aluminum hydroxide (1 7) precipitation. At this time, the pH value is suitable for electrolysis of cobalt. Therefore, after adding boric acid, The electrolysis of (18) is performed directly without further adjusting the acid-base rhenium, so that the metal cobalt (19) is obtained by electrolysis. After the electrolytic solution is rich in lithium ions, lithium carbonate (22) formed by adding sodium carbonate (20) can be precipitated to effectively recover lithium. Table 1 Composition of metal electrolyte (g / L) Current density mA / cm2 Tank voltage Volt Operating temperature ° C Current efficiency (%) Copper copper sulfate (50 ~ 150) Sulfuric acid (150 ~ 250) 10 ~ 20 0.15-0.30 60 ~ 95 Cobalt cobalt sulfate (150 ~ 200) sodium sulfate (100 ~ 150) sodium chloride (15 ~ 20) boric acid (10 ~ 30) 15 ~ 20 1 · 5 ~ 3.0 60 ~ 80 The method of the present invention has the following characteristics: 1 3 ~ 9N sulfuric acid dissolves to remove the waste lithium ion battery of the iron case, and adds hydrogen peroxide to improve the dissolution effect. 2. Sodium hydroxide and sulfuric acid are used to adjust the acid and alkali, and the adjustment process is effective. -10- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) ---- ^ --- I ----- Install i I (Please read the note on the back page first) Order ----- Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs υΐ294 A7 B7 V. Description of the invention (8) Required for electrolysis The additive is sodium sulfate. 3. Add hydrogen peroxide and adjust the pH of the solution to 3 ~ 4, which can effectively remove the iron ion impurities in the etching solution. 4. Control the operating voltage and control the acid and alkali to perform electrolysis of copper at 0.5 ~ 1.5, except for the decomposable hydrogen peroxide, it can be electrolyzed to obtain metallic copper with a taste of more than 99%. 5. Adjust the pH of the solution to 4.5 ~ 5.5 to form aluminum hydroxide precipitate. 6. Directly electrolyze the above solution to obtain more than 99% metal cobalt from Pinmei. 7. Add carbonate ions to form lithium carbonate, and recover the lithium in the residual liquid. Brief Description of the Drawings Figure 1 is a block flow diagram of a preferred embodiment of the method of the present invention. • nnn 1 nn .1 n I n II · .1 I (please read the notes on the back to write this page) Order: --line Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs -11-This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

Claims (1)

501294 A8 B8 C8 D8 ____ 六、申請專利範圍 1. 一種使用硫酸從包含鋰離子電池的廢電池中回收 金屬之方法,其中該廢電池,經由焙燒及篩分而產生一含金 屬及金屬氧化物的碳灰,該方法包含下列步驟: a) 以3N-9N硫酸及過氧化氫混合液溶鈾該碳灰; b) 固液分離步驟a)所形成的混合物; c) 調整從步驟a)分離得到之溶液的pH値至2.5-5,使得 其中之三價鐵離子形成?以011)3的沈澱; d) 固液分離步驟c)的混合物; e) 於調整從步驟d)分離得到之溶液的pH値至0.5-1.5 後,進行電解而將溶液中的銅離子還原成銅金屬; f) 將步驟e)電解完畢的溶液的pH値調整至4.5-5.5,使得 其中之鋁離子形成八1(€^)3的沈澱; g) 固液分離步驟0的混合物; h) 將從步驟g)分離得到的溶液電解,使得其中之銘離子 還原成鈷金屬; i) 對步驟h)電解完畢的溶液加水可溶的碳酸鹽,使得其 中之鋰離子形成碳酸鋰沈澱。 2. 如申請專利範圍第1項的方法,其中步驟c)係對溶液 加入氫氧化鈉至溶液的pH値爲3-4。 3·如申請專利範圍第1項的方法,其中步驟e)係對溶液 加入硫酸至溶液的pH値爲1.0。 -12- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公羡) (請先閱讀背面之注意事項再ip本頁) 裝 、1J 經濟部智慧財產局員工消費合作社印製 501294 ABCD 六、申請專利範圍 4·如申請專利範圍第1項的方法,其中步驟e)的電解係 使用1-25 mA/cm2的電流密度,及室溫至80°C的溫度下進 行。 5·如申請專利範圍第4項的方法,其中步驟e)的電解係 使用10-20 mA/cm2的電流密度及於60°C進行。 6·如申請專利範圍第1項的方法,其中步驟f)係對溶液 加入氫氧化鈉至溶液的pH値爲5。 7·如申請專利範圍第1項的方法,其中步驟h)的電解 係對溶液加入硼酸至硼酸濃度爲10-30 g/L,使用1-25 mA/cm2的電流密度,及室溫至8〇°C的溫度下進行。 8.如申請專利範圍第7項的方法,其中該步驟h)的電 解係使用15-20 mA/cm2的電流密度及於60°C進行。 9 ·如申§靑專利範圍第1項的方法,其中步驟丨)的水可溶 的碳酸鹽爲碳酸鈉。 10·如申請專利範圍第1項的方法,其中步驟a)係使用 過氧化氫調整該混合液的氧化還原電位値至500-700 mV, 及於液固比爲5-20的條件對碳灰進行溶蝕。 -13- 本紙張尺度適用中國國家榇準(CNS ) A4^#(21GX297公釐) (請先聞讀背面之注意事項再頁) -裝· 線 經濟部智慧財產局員工消費合作社印製 501294 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8々、申請專利範圍 11 ·如申請專利範圍第1項的方法,其中步驟b)、d)及 g)的固液分離係採用過濾。 12. —種使用硫酸從包含鋰離子電池的廢電池中回收 金屬之方法,其中該廢電池經由焙燒及篩分而產生一含金 屬及金屬氧化物的碳灰,該方法包含下列步驟: a) 以3N-9N硫酸及過氧化氫混合液溶蝕該碳灰; b) 固液分離步驟a)所形成的混合物; c) 於調整從步驟a)分離得到之溶液的pH値至0.5-1.5 後,進行電解而將溶液中的銅離子還原成銅金屬; d) 將步驟c)電解完畢的溶液的pH値調整至4.5-5.5,使得 其中之鋁離子形成众1(011)3的沈澱; e) 固液分離步驟d)的混合物; f) 調整從步驟e)分離得到之溶液的pH値至8,使得其中 之三價鐵離子形成Fe(OH)3的沈澱; g) 固液分離步驟0的混合物; h) 將從步驟g)分離得到的溶液電解,使得其中之鈷離子 還原成鈷金屬; i) 對步驟h)電解完畢的溶液加水可溶的碳酸鹽’使得其 中之鋰離子形成碳酸鋰沈澱。 (請先聞讀背面之注意事項再本頁) .裝· •i訂 線 -14- 本紙張尺度適用中國國家標準(CNSyA4規格(210X297公釐)501294 A8 B8 C8 D8 ____ 6. Application for Patent Scope 1. A method for recovering metals from waste batteries containing lithium ion batteries using sulfuric acid, wherein the waste batteries are roasted and sieved to produce a metal and metal oxide containing Carbon ash, the method comprises the following steps: a) dissolving the carbon ash with a mixed liquid of 3N-9N sulfuric acid and hydrogen peroxide; b) solid-liquid separation step a) the mixture formed; c) adjusting the separation obtained from step a) The pH of the solution is 値 2.5-5, so that trivalent iron ions are formed? Precipitation with 011) 3; d) the mixture of solid-liquid separation step c); e) after adjusting the pH of the solution separated from step d) to 0.5-1.5, electrolysis is performed to reduce the copper ions in the solution to Copper metal; f) adjusting the pH of the solution after step e) electrolysis to 4.5-5.5, so that aluminum ions thereof form a precipitate of eight 1 (€ ^) 3; g) the mixture of solid-liquid separation step 0; h) The solution separated from step g) is electrolyzed to reduce the ions therein to cobalt metal; i) the water-soluble carbonate is added to the solution after step h) electrolysis, so that lithium ions therein form lithium carbonate precipitates. 2. The method according to item 1 of the patent application scope, wherein step c) is adding sodium hydroxide to the solution until the pH of the solution is 3-4. 3. The method according to item 1 of the patent application range, wherein step e) is adding sulfuric acid to the solution to a pH of the solution of 1.0. -12- This paper size applies Chinese National Standard (CNS) A4 specification (210X297) (Please read the precautions on the back before ip this page), 1J printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Consumption Cooperative 501294 ABCD Patent application range 4. The method according to item 1 of the patent application range, wherein the electrolytic system of step e) is performed at a current density of 1-25 mA / cm2 and at a temperature from room temperature to 80 ° C. 5. The method according to item 4 of the scope of patent application, wherein the electrolytic system of step e) is performed at a current density of 10-20 mA / cm2 and at 60 ° C. 6. The method according to item 1 of the patent application range, wherein step f) is adding sodium hydroxide to the solution until the pH of the solution is 5. 7. The method according to item 1 of the scope of patent application, wherein the electrolytic system in step h) adds boric acid to the solution to a boric acid concentration of 10-30 g / L, using a current density of 1-25 mA / cm2, and room temperature to 8 0 ° C. 8. The method according to item 7 of the patent application scope, wherein the electrolysis of step h) is performed at a current density of 15-20 mA / cm2 and at 60 ° C. 9. The method of claim 1 in the scope of patent application, wherein the water-soluble carbonate in step 丨) is sodium carbonate. 10. The method according to item 1 of the scope of patent application, wherein step a) is to adjust the redox potential of the mixed solution to 500-700 mV using hydrogen peroxide, and to the carbon ash under the condition that the liquid-solid ratio is 5-20. Carry out dissolution. -13- This paper size is applicable to China National Standards (CNS) A4 ^ # (21GX297mm) (Please read the notes on the back first and then the page)-Installed · Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and printed by the Consumer Cooperative 501294 Economy A8 B8 C8 D8 员工 printed by the employee's consumer cooperative of the Ministry of Intellectual Property Bureau, patent application scope 11 · For the method of patent application scope item 1, in which the solid-liquid separation of steps b), d) and g) uses filtration. 12. A method for recovering metal from a waste battery containing a lithium ion battery using sulfuric acid, wherein the waste battery is calcined and sieved to produce a carbon ash containing a metal and a metal oxide, the method comprising the following steps: a) 3N-9N sulfuric acid and hydrogen peroxide mixed solution was used to dissolve the carbon ash; b) the mixture formed in the solid-liquid separation step a); c) after adjusting the pH of the solution separated from step a) to 0.5-1.5, Performing electrolysis to reduce copper ions in the solution to copper metal; d) adjusting the pH of the electrolytic solution in step c) to 4.5-5.5, so that aluminum ions therein form a precipitate of 1 (011) 3; e) The mixture in step d) of solid-liquid separation; f) adjusting the pH of the solution obtained in step e) to 8 to make trivalent iron ions form a precipitate of Fe (OH) 3; g) in step 0 of solid-liquid separation Mixture; h) electrolyzing the solution separated from step g) to reduce cobalt ions therein to cobalt metal; i) adding water-soluble carbonate to the solution after step h) electrolysis to make lithium ions therein to form lithium carbonate precipitation. (Please read the precautions on the back first, then this page.) · Installation • i Thread -14- This paper size applies to the Chinese national standard (CNSyA4 specification (210X297 mm)
TW90114598A 2001-06-15 2001-06-15 Metal recovery method of wasted lithium ion battery using sulfuric acid TW501294B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90114598A TW501294B (en) 2001-06-15 2001-06-15 Metal recovery method of wasted lithium ion battery using sulfuric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90114598A TW501294B (en) 2001-06-15 2001-06-15 Metal recovery method of wasted lithium ion battery using sulfuric acid

Publications (1)

Publication Number Publication Date
TW501294B true TW501294B (en) 2002-09-01

Family

ID=21678558

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90114598A TW501294B (en) 2001-06-15 2001-06-15 Metal recovery method of wasted lithium ion battery using sulfuric acid

Country Status (1)

Country Link
TW (1) TW501294B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2868603A1 (en) * 2004-04-06 2005-10-07 Recupyl Sa Sa METHOD FOR RECYCLING BATTERY MIXTURES AND BATTERIES BASED ON LITHIUM ANODE
ITRM20100590A1 (en) * 2010-11-08 2012-05-09 Eco Recycling S R L RECOVERY OF METALS FROM ELECTRODE OF EXHAUSTED ACCUMULATORS LITHIUM ION AND INSTALLATION OF A MOBILE SYSTEM FOR THEIR TREATMENT
WO2016012941A1 (en) 2014-07-22 2016-01-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for recycling the electrolyte of a li-ion battery and method for recycling li-ion batteries
WO2016012943A1 (en) 2014-07-22 2016-01-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for recycling the electrolyte of a li-ion battery and method for recycling li-ion batteries
CN107326181A (en) * 2017-05-26 2017-11-07 金川集团股份有限公司 Waste and old lithium ion battery, which is peeled off, leaches the recovery method that a step is completed
CN110144461A (en) * 2019-05-08 2019-08-20 株洲冶炼集团股份有限公司 A kind of comprehensive recovering process of waste lithium cell positive plate
CN112151903A (en) * 2020-11-26 2020-12-29 清华四川能源互联网研究院 Impurity removal and treatment method in lithium battery scrapped positive electrode material recovery process
CN112400029A (en) * 2018-07-10 2021-02-23 巴斯夫欧洲公司 Method for recycling spent lithium ion battery cells

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2868603A1 (en) * 2004-04-06 2005-10-07 Recupyl Sa Sa METHOD FOR RECYCLING BATTERY MIXTURES AND BATTERIES BASED ON LITHIUM ANODE
WO2005101564A1 (en) * 2004-04-06 2005-10-27 Recupyl Method for the mixed recycling of lithium-based anode batteries and cells
US7820317B2 (en) 2004-04-06 2010-10-26 Recupyl Method for the mixed recycling of lithium-based anode batteries and cells
ITRM20100590A1 (en) * 2010-11-08 2012-05-09 Eco Recycling S R L RECOVERY OF METALS FROM ELECTRODE OF EXHAUSTED ACCUMULATORS LITHIUM ION AND INSTALLATION OF A MOBILE SYSTEM FOR THEIR TREATMENT
WO2016012941A1 (en) 2014-07-22 2016-01-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for recycling the electrolyte of a li-ion battery and method for recycling li-ion batteries
WO2016012943A1 (en) 2014-07-22 2016-01-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for recycling the electrolyte of a li-ion battery and method for recycling li-ion batteries
CN107326181A (en) * 2017-05-26 2017-11-07 金川集团股份有限公司 Waste and old lithium ion battery, which is peeled off, leaches the recovery method that a step is completed
CN112400029A (en) * 2018-07-10 2021-02-23 巴斯夫欧洲公司 Method for recycling spent lithium ion battery cells
CN110144461A (en) * 2019-05-08 2019-08-20 株洲冶炼集团股份有限公司 A kind of comprehensive recovering process of waste lithium cell positive plate
CN112151903A (en) * 2020-11-26 2020-12-29 清华四川能源互联网研究院 Impurity removal and treatment method in lithium battery scrapped positive electrode material recovery process
CN112151903B (en) * 2020-11-26 2021-03-09 清华四川能源互联网研究院 Impurity removal and treatment method in lithium battery scrapped positive electrode material recovery process

Similar Documents

Publication Publication Date Title
TW511306B (en) Clean process of recovering metals from waste lithium ion batteries
CN107196004B (en) Method for recovering valuable metals from waste lithium ion power batteries
TWI231063B (en) Process of recovering valuable metals from waste secondary batteries
CN106756084B (en) Method for extracting noble metal by taking iron-based material as trapping agent
Al-Thyabat et al. Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: Critical review
TW201809296A (en) Process for recovery of pure cobalt oxide from spent lithium ion batteries with high manganese content
CN1172404C (en) Method for recovering metal from used Li ion cell
CN107653378A (en) The recovery method of valuable metal in a kind of waste and old nickel cobalt manganese lithium ion battery
Chandran et al. Comprehensive review on recycling of spent lithium-ion batteries
JP2000015216A (en) Method for recycling positive electrode active material from lithium ion secondary battery
JP3918041B2 (en) Method for recovering metals from used nickel-metal hydride batteries
CN112680598A (en) Method for low-cost clean treatment of waste lithium ion battery anode material
CN111534697A (en) Selection-smelting combined comprehensive recovery method and device for waste lithium ion batteries
JP5071700B2 (en) Indium recovery method
TW201737548A (en) Process for recovering metal values from spent lithium ion batteries with high manganese content
CN107623152B (en) Applying waste lithium ionic power battery resource recycle method
CN110783658A (en) Ex-service power ternary lithium battery recovery demonstration process method
CN111945002B (en) Method for removing copper from waste lithium batteries by recovery wet process
CN106654205B (en) Method for preparing ternary positive electrode material precursor by using waste lithium battery material
JP4217292B2 (en) Lithium recovery method
JP2008231522A (en) Method for recovering precious metal from battery slag containing cobalt, nickel and manganese
WO2015162902A1 (en) Method and equipment for recovering valuable components from waste dry batteries
JP7040196B2 (en) How to separate cobalt and aluminum
CN101673829A (en) Recovery processing method of waste zinc-manganese battery
CN110034350B (en) Method for comprehensively recycling waste lithium batteries through low-oxygen cracking

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent