JP5568977B2 - Method for recovering manganese from batteries - Google Patents

Method for recovering manganese from batteries Download PDF

Info

Publication number
JP5568977B2
JP5568977B2 JP2009286112A JP2009286112A JP5568977B2 JP 5568977 B2 JP5568977 B2 JP 5568977B2 JP 2009286112 A JP2009286112 A JP 2009286112A JP 2009286112 A JP2009286112 A JP 2009286112A JP 5568977 B2 JP5568977 B2 JP 5568977B2
Authority
JP
Japan
Prior art keywords
manganese
liquid phase
solid phase
phase
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009286112A
Other languages
Japanese (ja)
Other versions
JP2011129336A (en
Inventor
健一 高橋
和正 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2009286112A priority Critical patent/JP5568977B2/en
Publication of JP2011129336A publication Critical patent/JP2011129336A/en
Application granted granted Critical
Publication of JP5568977B2 publication Critical patent/JP5568977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Primary Cells (AREA)

Description

本発明は、電池から電解二酸化マンガン製造に利用可能なマンガン化合物の回収方法に関する。   The present invention relates to a method for recovering a manganese compound that can be used for producing electrolytic manganese dioxide from a battery.

環境問題、資源の有効活用の観点から、使用後の電池、特にマンガン乾電池やアルカリマンガン乾電池等のマンガンと亜鉛を含有する一次電池の回収・再利用が求められている。中でも乾電池中のマンガン材料を回収し、電池用電解二酸化マンガンの原料として再利用することが強く求められている。   From the viewpoint of environmental problems and effective utilization of resources, it is required to collect and reuse used batteries, in particular, primary batteries containing manganese and zinc such as manganese dry batteries and alkaline manganese dry batteries. In particular, there is a strong demand to collect manganese material in dry batteries and reuse it as a raw material for electrolytic manganese dioxide for batteries.

廃乾電池中のマンガンを電池用電解二酸化マンガンの原料として利用するためには、マンガンを亜鉛化合物、炭素棒、塩化亜鉛や水酸化カリウム等の電解液、セパレーター、缶体の金属類(鉄、ニッケル、銅)などから分離して回収することが必要であり、特にカリウム濃度をマンガン鉱石と同等以下まで減少させて回収することが必要である。   In order to use manganese in waste dry batteries as a raw material for electrolytic manganese dioxide for batteries, manganese can be used as zinc compounds, carbon rods, electrolytes such as zinc chloride and potassium hydroxide, separators, and can metals (iron, nickel). , Copper) and the like, and it is necessary to recover by reducing the potassium concentration to a level equal to or lower than that of manganese ore.

従来、廃乾電池の再利用は、廃乾電池を加熱煤焼した後、磁選により鉄分を除いた残渣を酸に溶解する有価金属抽出が行われていた。しかしながら、この方法では加熱煤焼処理によってマンガンがカリウムや鉄と反応して難分解性化合物を生成し、この難分解性化合物からはマンガンとカリウムとを分離して回収することができなかった(特許文献1、2)。   Conventionally, the recycling of waste batteries has been performed by extracting valuable metals that dissolve the residue from which iron has been removed by magnetic separation after the waste batteries are heated and calcined. However, in this method, manganese reacts with potassium and iron by heating smoldering to produce a hardly decomposable compound, and manganese and potassium cannot be separated and recovered from this hardly decomposable compound ( Patent Documents 1 and 2).

また、その様な難分解性化合物を形成しない方法として、加熱煤焼処理をせずに硫酸あるいは塩酸に溶解する回収法も検討されている。しかしながら、これらの回収方法ではマンガン電池とアルカリマンガン電池では異なる処理工程を必要とするなどの問題があり(特許文献3、4)、さらには、いずれの方法においてもカリウム除去が十分ではなく、回収物を電解二酸化マンガン用原料として使用することができなかった(特許文献5〜7)。   In addition, as a method not forming such a hard-to-decompose compound, a recovery method in which it is dissolved in sulfuric acid or hydrochloric acid without carrying out a heat smoldering treatment has been studied. However, these recovery methods have problems such as requiring different treatment steps between the manganese battery and the alkaline manganese battery (Patent Documents 3 and 4). Further, in any of these methods, potassium removal is not sufficient, and recovery is performed. The product could not be used as a raw material for electrolytic manganese dioxide (Patent Documents 5 to 7).

また、廃乾電池の内容物を塩酸や硫酸などの酸溶液で処理し、亜鉛やカリウムなどの不純物を溶解分離して、二酸化マンガンと炭素を回収する方法も提案されている(特許文献8)。しかしながら、この方法では溶解性マンガンは回収することができず、かつ、マンガンの回収率を上げると回収物中のカリウムと亜鉛の除去率が低下するものであった。   In addition, a method of recovering manganese dioxide and carbon by treating the contents of a waste dry battery with an acid solution such as hydrochloric acid or sulfuric acid and dissolving and separating impurities such as zinc and potassium has been proposed (Patent Document 8). However, this method cannot recover soluble manganese, and increasing the manganese recovery rate decreases the removal rate of potassium and zinc in the recovered material.

このように、従来の乾電池からのマンガン回収方法では、電解二酸化マンガン用原料として使用可能な低カリウム濃度のマンガン化合物を、高い回収率で回収することはできなかった。   Thus, in the conventional method for recovering manganese from dry batteries, a low potassium concentration manganese compound that can be used as a raw material for electrolytic manganese dioxide cannot be recovered at a high recovery rate.

特開平02−187187号公報Japanese Patent Laid-Open No. 02-187187 特公平03−006208号公報Japanese Patent Publication No. 03-006208 特公平03−031116号公報Japanese Patent Publication No. 03-031116 特開平11−191439号公報Japanese Patent Laid-Open No. 11-191439 特開昭61−281467号公報JP 61-281467 A 特開平04−310280号公報JP 04-310280 A 特開2001−256984JP 2001-256984 A 特開2007−012527JP2007-012527

本発明は、電池の電極部材含有物から、電解二酸化マンガン用原料として使用可能なマンガン化合物を高回収率で回収できる方法を提供する。   The present invention provides a method capable of recovering a manganese compound that can be used as a raw material for electrolytic manganese dioxide from a battery electrode member-containing material at a high recovery rate.

本発明者は、廃乾電池から電解二酸化マンガン用原料として利用可能なマンガン化合物として回収する方法について鋭意検討を行った結果、マンガン電池やアルカリマンガン電池等の電池の電極部材含有物を、特定の溶解・再析出条件で制御して処理することで、電解二酸化マンガン用原料として使用可能なマンガン化合物が高い回収率で得られる方法を見出し、本発明を完成するに至った。   As a result of earnest studies on a method of recovering from a dry battery as a manganese compound that can be used as a raw material for electrolytic manganese dioxide, the inventor has specifically dissolved an electrode member content of a battery such as a manganese battery or an alkaline manganese battery. -The process which controls the reprecipitation conditions and can obtain the manganese compound which can be used as a raw material for electrolytic manganese dioxide at a high recovery rate has been found, and the present invention has been completed.

すなわち、本発明は、電池の電極部材含有物を2≦pH≦4で処理して固相(固相1)と液相(液相1)に分離する第一工程、得られた液相(液相1)を7≦pH≦9で処理してさらに固相(固相2)と液相(液相2)に分離する第二工程、さらに得られた液相(液相2)をpH≧10で処理する第三工程により固相(固相3)とし、固相1及び/又は固相3を回収する電池からのマンガン回収方法である。   That is, the present invention is a first step in which a battery electrode member-containing material is treated at 2 ≦ pH ≦ 4 and separated into a solid phase (solid phase 1) and a liquid phase (liquid phase 1), and the obtained liquid phase ( The second step of treating liquid phase 1) with 7 ≦ pH ≦ 9 and further separating it into a solid phase (solid phase 2) and a liquid phase (liquid phase 2), and the resulting liquid phase (liquid phase 2) to pH This is a method for recovering manganese from a battery in which solid phase 1 and / or solid phase 3 is recovered by a third step of treatment at ≧ 10.

以下、本発明の回収方法を詳細に説明する。   Hereinafter, the recovery method of the present invention will be described in detail.

本発明の方法では、電池の電極部材含有物を2≦pH≦4で処理して固相(固相1)と液相(液相1)に分離する第一工程を有する。   The method of the present invention includes a first step of treating a battery electrode member-containing material at 2 ≦ pH ≦ 4 to separate it into a solid phase (solid phase 1) and a liquid phase (liquid phase 1).

本発明において、電池とは、主に放電後の一次電池、マンガン乾電池、アルカリマンガン乾電池、およびこれらの混合物であり、正極合剤に二酸化マンガン等のマンガン酸化物、負極に金属亜鉛等の亜鉛酸化物、電解液に塩化亜鉛水溶液もしくは水酸化カリウム水溶液を主成分とした溶液を含んでいるものである。また、これらのマンガン回収に供する電池(使用済み電池)は、全てが完全に放電した状態である必要はなく、個々に異なる放電状態であってもよい。さらに、使用済み電池には、未放電もしくはそれに近い放電状態の電池が含まれていてもよい。   In the present invention, the battery is mainly a primary battery after discharge, a manganese dry battery, an alkaline manganese dry battery, and a mixture thereof, manganese oxide such as manganese dioxide as a positive electrode mixture, and zinc oxidation such as metallic zinc as a negative electrode. And the electrolytic solution contains a solution mainly composed of an aqueous zinc chloride solution or an aqueous potassium hydroxide solution. Further, these batteries used for manganese recovery (used batteries) do not have to be completely discharged, and may be in different discharge states. Further, the used battery may include a battery that is not discharged or is in a discharged state.

電池は正極,負極,電解液およびこれらの混合化合物以外の部材を有するが、本発明の方法でマンガンの回収に用いる電池の電極部材含有物は、電極部材ではない電池のジャケット、鉄・ニッケルなどの外装缶、外部端子、プラスチック類などの外装部品、集電体、およびセパレーター等のプラスチック、紙類などの外装部材等は除去して用いることが好ましい。   The battery has members other than the positive electrode, the negative electrode, the electrolytic solution, and a mixed compound thereof, but the battery electrode member-containing material used for the recovery of manganese by the method of the present invention includes a battery jacket, iron / nickel, etc. that are not electrode members It is preferable to remove the outer cans, external terminals, outer parts such as plastics, current collectors, plastics such as separators, and outer members such as papers.

電池から外装部材等を除去した後の電極部材含有物は主に正極,負極,電解液およびこれらの混合物からなり、主にマンガン化合物,亜鉛化合物,カリウム化合物、および正極合剤に含まれる副資成分(導電材であるカーボンやアセチレンブラック等の炭素分(以下、単に「炭素分」とする)および正極添加剤など)を含む混合物である。   The electrode member-containing material after the exterior member is removed from the battery is mainly composed of a positive electrode, a negative electrode, an electrolytic solution and a mixture thereof, and is mainly a secondary compound contained in a manganese compound, a zinc compound, a potassium compound, and a positive electrode mixture. It is a mixture containing components (carbon components such as carbon and acetylene black which are conductive materials (hereinafter simply referred to as “carbon components”) and positive electrode additives).

本発明の方法で処理する電極部材含有物は、個々に異なる放電度合いの使用済み電池から得られるため、電極部材含有物に含有される化合物は様々な状態のものが含まれている。従って、本発明の方法で処理する電極部材含有物中のマンガン化合物や亜鉛化合物は、様々な還元・酸化状態であってもよく、さらに、これらの混合化合物の状態であってもよい。特にマンガン化合物は異なる量の亜鉛イオンやカリウムイオンを含んだ状態のものが混在していてもよい。そのため、電極部材含有物は使用済み電池から得られればよく、マンガン電池とアルカリマンガン電池との分別、電池形状による分別、放電度合いによる分別など、電池の種類を更に分別する必要はない。   Since the electrode member-containing materials to be treated by the method of the present invention are obtained from used batteries having different discharge degrees, the compounds contained in the electrode member-containing materials include those in various states. Therefore, the manganese compound and the zinc compound in the electrode member-containing material to be treated by the method of the present invention may be in various reduced / oxidized states, or may be in a mixed compound state. In particular, manganese compounds may be present in a state containing different amounts of zinc ions and potassium ions. Therefore, it is sufficient that the electrode member-containing material is obtained from a used battery, and it is not necessary to further classify the type of battery, such as separation between a manganese battery and an alkaline manganese battery, separation by battery shape, and separation by discharge degree.

本発明において電極部材含有物を得る方法は、使用済み電池を粉砕し、得られた粉砕物を磁選・風選して外装部材を除去する方法などが例示できる。一方、焼成・煤焼等の加熱工程によって処理するとマンガンがカリウムと難溶性化合物を形成する。そのため、電極部材含有物を得る際には加熱処理は行わないことが好ましい。   Examples of the method for obtaining the electrode member-containing material in the present invention include a method in which a used battery is pulverized, and the obtained pulverized material is subjected to magnetic separation and wind separation to remove an exterior member. On the other hand, when it is processed by a heating process such as firing or sinter, manganese forms a hardly soluble compound with potassium. Therefore, it is preferable not to perform heat treatment when obtaining the electrode member-containing material.

本発明の第一工程の処理pHは2≦pH≦4であり、2.5≦pH≦3.5であることが好ましい。処理pHをこの範囲にすることで、カリウムや亜鉛などの成分を液相(液相1)に分離することができる。pHが2未満、もしくは4を超える場合、固相(固相1)にカリウムや亜鉛を含有する不溶性明礬が取込まれ、固相(固相1)中のマンガン化合物中のカリウム含有量が増加する。   The treatment pH in the first step of the present invention is 2 ≦ pH ≦ 4, and preferably 2.5 ≦ pH ≦ 3.5. By setting the treatment pH within this range, components such as potassium and zinc can be separated into the liquid phase (liquid phase 1). When the pH is less than 2 or more than 4, insoluble alum containing potassium and zinc is incorporated into the solid phase (solid phase 1), and the potassium content in the manganese compound in the solid phase (solid phase 1) increases. To do.

電極部材含有物の2≦pH≦4での処理は酸水溶液を使用して行えば特に制限はないが、酸溶液には硫酸水溶液を使用することが好ましい。電解二酸化マンガンは硫酸−硫酸マンガン浴から製造されるため、回収されたマンガンが硫酸根を含有していても、電解二酸化マンガン用原料と使用するに際しては悪影響がない。一方、硫酸以外の酸水溶液、例えば塩酸水溶液を用いた場合、塩素ガスの問題が生じる場合や、塩素イオンの混入により、後述する第二工程で亜鉛化合物が溶出して、回収されるマンガン化合物中の亜鉛濃度が高くなりやすい。   The treatment of the electrode member-containing material at 2 ≦ pH ≦ 4 is not particularly limited as long as it is performed using an aqueous acid solution, but an aqueous sulfuric acid solution is preferably used for the acid solution. Since electrolytic manganese dioxide is produced from a sulfuric acid-manganese sulfate bath, even if the recovered manganese contains sulfate radicals, there is no adverse effect when used as a raw material for electrolytic manganese dioxide. On the other hand, when an acid aqueous solution other than sulfuric acid, for example, a hydrochloric acid aqueous solution is used, a problem of chlorine gas occurs, or the zinc compound is eluted in the second step to be described later due to the mixing of chlorine ions, and the manganese compound is recovered. The zinc concentration tends to be high.

酸水溶液中の酸濃度は特に制限されないが、濃度が高すぎると処理中に発熱するなど、処理装置等へ負荷がかかりやすい。そのため、後述する第一工程における最終的な酸水溶液の酸濃度として15mol%以下が例示できる。   The acid concentration in the acid aqueous solution is not particularly limited, but if the concentration is too high, a load is easily applied to the processing apparatus such as heat generation during the processing. Therefore, 15 mol% or less can be illustrated as acid concentration of the final acid aqueous solution in the 1st process mentioned later.

第一工程では、電極部材含有物を2≦pH≦4で処理した後に固相(固相1)と液相(液相1)を分離し、固相(固相1)を回収する。これにより、非溶解性のマンガン化合物と炭素分を固相(固相1)、カリウムおよび亜鉛を液相(液相1)として分離して回収することができる。   In the first step, after the electrode member-containing material is treated at 2 ≦ pH ≦ 4, the solid phase (solid phase 1) and the liquid phase (liquid phase 1) are separated, and the solid phase (solid phase 1) is recovered. Thereby, an insoluble manganese compound and a carbon component can be separated and recovered as a solid phase (solid phase 1) and potassium and zinc as a liquid phase (liquid phase 1).

本発明の第一工程において電極部材含有物を処理する際は、酸水溶液を添加する前に、残渣混合物に水を添加してスラリーとしておくことが好ましい。電極部材含有物に酸水溶液を直接添加すると、急激かつ局所的なpH低下が生じるため、電極部材含有物中のマンガンがカリウムと難分解性化合物を形成しやすい。電極部材含有物に添加する水は、実質的に金属不純物を含有していなければ特に制限はない。電極部材含有物スラリーの濃度は、電極部材含有物が分散すれば特に制限されないが、水を添加した後の電極部材含有物スラリー濃度として550g/L以下を例示することができる。   When the electrode member-containing material is treated in the first step of the present invention, it is preferable to add water to the residue mixture to make a slurry before adding the aqueous acid solution. When an acid aqueous solution is directly added to the electrode member-containing material, a rapid and local pH drop occurs, and thus manganese in the electrode member-containing material easily forms a hardly decomposable compound with potassium. Water added to the electrode member-containing material is not particularly limited as long as it does not substantially contain metal impurities. Although the density | concentration of an electrode member containing material slurry will not be restrict | limited especially if an electrode member containing material disperse | distributes, 550 g / L or less can be illustrated as an electrode member containing material slurry density | concentration after adding water.

本発明の第一工程において、pH調整は、酸水溶液の量及び酸濃度で調整することにより行うことが好ましい。酸水溶液でpH調整をすることで、pH調整剤由来の不純物の混入を防ぐことができる。   In the first step of the present invention, the pH is preferably adjusted by adjusting the amount of the acid aqueous solution and the acid concentration. By adjusting the pH with an acid aqueous solution, it is possible to prevent contamination from impurities derived from the pH adjuster.

本発明の第一工程における電極部材含有物の処理量に制限はないが、pH調製後のスラリー中の電極部材含有物濃度として、100〜500g/Lを例示することができる。電極部材含有物濃度が100g/L未満だと回収効率が著しく低下しやすく、500g/Lを超えると処理時間が長くなりやすい。   Although there is no restriction | limiting in the processing amount of the electrode member containing material in the 1st process of this invention, 100-500 g / L can be illustrated as an electrode member containing material density | concentration in the slurry after pH adjustment. When the concentration of the electrode member-containing material is less than 100 g / L, the recovery efficiency tends to be remarkably lowered, and when it exceeds 500 g / L, the treatment time tends to be long.

本発明の第一工程の処理温度は、電極部材含有物中の亜鉛化合物、カリウムが溶出すれば特に制限はないが、例えば20〜60℃が好ましく、特に40〜60℃が好ましい。また、処理時間として0.5〜5時間を挙げることができる。   The treatment temperature in the first step of the present invention is not particularly limited as long as the zinc compound and potassium in the electrode member-containing material are eluted, but for example, 20 to 60 ° C is preferable, and 40 to 60 ° C is particularly preferable. Moreover, 0.5 to 5 hours can be mentioned as processing time.

本発明の第一工程における固相の分離、回収方法は、処理pHを2≦pH≦4で十分に処理した後に固相と液相に分離できれば制限はなく、通常の濾過方法により濾過残渣(固相1)、濾液(液相1)に分離して回収することが例示できる。   The separation and recovery method of the solid phase in the first step of the present invention is not limited as long as the treatment pH can be separated into a solid phase and a liquid phase after sufficient treatment at 2 ≦ pH ≦ 4. It can be exemplified that the solid phase 1) and the filtrate (liquid phase 1) are separated and recovered.

第一工程で得られた液相1は溶解性のマンガン化合物、亜鉛、カリウムが混合しているため、以下の処理を経ることによって、さらにマンガンを分離して回収することができる。   Since the liquid phase 1 obtained in the first step contains a soluble manganese compound, zinc, and potassium, manganese can be further separated and recovered by the following treatment.

本発明では、第一工程で得られた液相(液相1)をさらに7≦pH≦9で処理する第二工程によりさらに液相1中の亜鉛等とマンガンとを分離する。   In the present invention, zinc and the like in the liquid phase 1 and manganese are further separated by a second step in which the liquid phase (liquid phase 1) obtained in the first step is further treated at 7 ≦ pH ≦ 9.

本発明の第二工程の処理pHは、7≦pH≦9であり、好ましくは8≦pH≦9である。処理pHをこの範囲にすることで、マンガンとカリウムを液相2に、亜鉛を不溶性化合物として固相2に分離することができる。   The treatment pH in the second step of the present invention is 7 ≦ pH ≦ 9, preferably 8 ≦ pH ≦ 9. By setting the treatment pH within this range, manganese and potassium can be separated into the liquid phase 2 and zinc can be separated into the solid phase 2 as an insoluble compound.

本発明の第二工程においてpHを調整する方法は、カルシウム等のアルカリ土類金属及びカリウムを含まない溶液、例えば、アンモニア水、水酸化ナトリウム水溶液、炭酸ナトリウム水溶液等を使用してpHを調整することが好ましい。特にアンモニア水を使用してpH調整をすることが金属カチオンの混入がないため好ましい。pH調整にアルカリ土類金属を含む溶液、例えば、水酸化カルシウム水溶液、炭酸カルシウム水溶液や水酸化カリウム水溶液などを使用すると、アルカリ土類金属やカリウムが液相に混入しやすく、マンガンとの分離が困難となりやすい。   The method for adjusting the pH in the second step of the present invention is to adjust the pH using a solution containing no alkaline earth metal such as calcium and potassium, such as aqueous ammonia, aqueous sodium hydroxide, aqueous sodium carbonate, etc. It is preferable. In particular, it is preferable to adjust the pH using aqueous ammonia because there is no contamination of metal cations. When a solution containing an alkaline earth metal is used for pH adjustment, such as a calcium hydroxide aqueous solution, a calcium carbonate aqueous solution or a potassium hydroxide aqueous solution, the alkaline earth metal or potassium is likely to be mixed into the liquid phase, and separation from manganese is possible. It tends to be difficult.

本発明の第二工程の処理温度は、亜鉛の固相への析出が進行する条件であれば特に制限はなく、例えば20〜60℃が好ましく、特に40〜60℃が好ましい。また、処理時間として0.5〜5時間を挙げることができる。   The treatment temperature in the second step of the present invention is not particularly limited as long as the precipitation of zinc into the solid phase proceeds, and for example, 20 to 60 ° C is preferable, and 40 to 60 ° C is particularly preferable. Moreover, 0.5 to 5 hours can be mentioned as processing time.

本発明の第二工程における液相の分離、回収方法は、処理pHを7≦pH≦9で十分に処理した後に固相(固相2)と液相(液相2)に分離できれば制限はなく、通常の濾過方法により濾液を液相2として分離、回収することが例示できる。   The method for separating and recovering the liquid phase in the second step of the present invention is not limited as long as it can be separated into a solid phase (solid phase 2) and a liquid phase (liquid phase 2) after sufficiently treating the treatment pH at 7 ≦ pH ≦ 9. Without separation, the filtrate can be separated and recovered as the liquid phase 2 by a normal filtration method.

本発明の第三工程は、第二工程で得られた液相2をpH≧10で処理した後に固相(固相3)を回収する。これにより、第二工程で得られた液相2に含まれるマンガンをカリウムと分離して回収することができる。   In the third step of the present invention, the liquid phase 2 obtained in the second step is treated at pH ≧ 10, and then the solid phase (solid phase 3) is recovered. Thereby, manganese contained in the liquid phase 2 obtained in the second step can be separated and recovered from potassium.

本発明では第二工程で得られた液相2をpH≧10で処理し、マンガンを有する固相3を得る第三工程を行う。第三工程における処理pHがpH<10である場合、マンガンが液相(液相3)に残存しやすく、固相(固相3)へのマンガンの回収率が低下する。   In the present invention, the liquid phase 2 obtained in the second step is treated at pH ≧ 10 to perform the third step to obtain the solid phase 3 having manganese. When the treatment pH in the third step is pH <10, manganese tends to remain in the liquid phase (liquid phase 3), and the recovery rate of manganese to the solid phase (solid phase 3) decreases.

本発明の第三工程においてpH調整をする方法は、カルシウム等のアルカリ土類金属やカリウムを含まない水溶液、例えば、アンモニア水、水酸化ナトリウム、炭酸ナトリウム等でpH調整することが好ましく、特に金属カチオンを含有しないアンモニア水でpH調整をすることが好ましい。pH調整でアルカリ土類金属やカリウムを含む溶液、例えば水酸化カルシウム水溶液、炭酸カルシウム水溶液、水酸化カリウム水溶液などを使用すると、これらが固相3に混入しやすくなる。   The method of adjusting the pH in the third step of the present invention is preferably adjusted with an aqueous solution containing no alkaline earth metal such as calcium or potassium, such as aqueous ammonia, sodium hydroxide, sodium carbonate, etc. It is preferable to adjust the pH with aqueous ammonia containing no cation. When a solution containing an alkaline earth metal or potassium, for example, an aqueous calcium hydroxide solution, an aqueous calcium carbonate solution, or an aqueous potassium hydroxide solution is used for pH adjustment, these are likely to be mixed into the solid phase 3.

本発明の第三工程の処理温度は、マンガンの固相への析出が進行する条件であれば特に制限はなく、例えば20〜60℃が好ましく、特に好ましくは40〜60℃である。また、処理時間として0.5〜5時間を挙げることができる。   The treatment temperature in the third step of the present invention is not particularly limited as long as the precipitation of manganese into the solid phase proceeds. For example, 20 to 60 ° C is preferable, and 40 to 60 ° C is particularly preferable. Moreover, 0.5 to 5 hours can be mentioned as processing time.

本発明の第三工程においては、酸化剤を添加して処理することが好ましい。酸化剤を添加することで、マンガンの固相3への析出が促進され、マンガンの回収率を上げることができる。使用する酸化剤は、マンガン以外の金属元素を含まない酸化剤であれば特に制限はないが、酸化剤自体も固相中に回収できるためマンガン酸化物が特に好ましく、さらには二酸化マンガンであることが好ましい。なお、第一工程および第二工程で酸化剤を添加すると亜鉛がマンガンに取込まれやすくなる。そのため、第三工程以外では酸化剤を添加しないことが好ましい。   In the third step of the present invention, it is preferable to perform the treatment by adding an oxidizing agent. By adding an oxidizing agent, precipitation of manganese on the solid phase 3 is promoted, and the recovery rate of manganese can be increased. The oxidizing agent to be used is not particularly limited as long as it does not contain any metal element other than manganese. However, since the oxidizing agent itself can be recovered in the solid phase, manganese oxide is particularly preferable, and further manganese dioxide. Is preferred. In addition, when an oxidizing agent is added in the first step and the second step, zinc is easily taken into manganese. Therefore, it is preferable not to add an oxidizing agent except in the third step.

本発明の第三工程における液相(液相3)と固相(固相3)の分離は、処理pHをpH≧10で十分に処理した後に固相3と液相3に分離し、固相3が回収できれば制限はなく、通常の濾過方法により濾過残渣を固相3として分離、回収することが例示できる。   In the third step of the present invention, the liquid phase (liquid phase 3) and the solid phase (solid phase 3) are separated into the solid phase 3 and the liquid phase 3 after sufficiently treating with a treatment pH of pH ≧ 10. There is no limitation as long as phase 3 can be recovered, and the filtration residue can be separated and recovered as solid phase 3 by a normal filtration method.

本発明の方法では、第一工程および第三工程で得られた固相1及び/又は固相3を回収する。回収後の固相1及び/又は固相3は、適宜乾燥し、電解二酸化マンガン用原料として再利用することができる。   In the method of the present invention, the solid phase 1 and / or the solid phase 3 obtained in the first step and the third step are recovered. The recovered solid phase 1 and / or solid phase 3 can be appropriately dried and reused as a raw material for electrolytic manganese dioxide.

本発明の方法では、マンガン回収率が高く、かつ、亜鉛、カリウムの除去率が高い。そのため、電極部材含有物が含有するマンガンの90%以上、好ましくは95%以上を回収することができる。また、電極部材含有物が含有する亜鉛およびカリウムを、それぞれ90%以上、好ましくは95%以上除去することができる。   In the method of the present invention, the manganese recovery rate is high, and the removal rate of zinc and potassium is high. Therefore, 90% or more, preferably 95% or more of manganese contained in the electrode member-containing material can be recovered. Moreover, 90% or more, preferably 95% or more of zinc and potassium contained in the electrode member-containing material can be removed.

本発明の方法ではマンガンに加えて炭素分を回収することができる。炭素分の回収率は、電極部材含有物が含有する炭素分の90%以上、特に95%以上であることが好ましい。回収された炭素分はマンガン化合物に含有され、電解二酸化マンガン用原料としてマンガン鉱石と同様な処理をする際に還元剤として利用することができる。   In the method of the present invention, carbon can be recovered in addition to manganese. The carbon recovery rate is preferably 90% or more, particularly 95% or more of the carbon content of the electrode member-containing material. The recovered carbon content is contained in a manganese compound, and can be used as a reducing agent when the same treatment as manganese ore is performed as a raw material for electrolytic manganese dioxide.

本発明の方法で回収されるマンガン化合物は、カリウム濃度がマンガン化合物中の金属元素に対して1重量%以下、好ましくは0.8重量%以下である。マンガン化合物中のカリウム濃度が1重量%を超えると、マンガン鉱石(鉱石中の全金属元素に対するカリウム濃度:1.2重量%〜2.0重量%)と同時に使用して電解二酸化マンガンを製造することが困難になる。   The manganese compound recovered by the method of the present invention has a potassium concentration of 1% by weight or less, preferably 0.8% by weight or less, based on the metal element in the manganese compound. When the potassium concentration in the manganese compound exceeds 1% by weight, it is used simultaneously with manganese ore (potassium concentration with respect to all metal elements in the ore: 1.2% by weight to 2.0% by weight) to produce electrolytic manganese dioxide. It becomes difficult.

本発明の方法で回収されるマンガン化合物は、カリウム及び亜鉛の合計含有量が、マンガン化合物中の全金属元素量に対して5重量%以下であることが好ましく、4重量%以下であることが特に好ましい。カリウム及び亜鉛の合計含有量が5重量%以下であれば、それ以上の不純物処理操作、例えば硫化水素による亜鉛除去などを行わなくても、マンガン鉱石とともに電解二酸化マンガン原料として使用することができる。   The manganese compound recovered by the method of the present invention preferably has a total content of potassium and zinc of 5% by weight or less, preferably 4% by weight or less, based on the total amount of metal elements in the manganese compound. Particularly preferred. If the total content of potassium and zinc is 5% by weight or less, it can be used as an electrolytic manganese dioxide raw material together with manganese ore without further impurity treatment operations such as zinc removal with hydrogen sulfide.

本発明の方法で回収されるマンガン化合物は、マンガン以外の重金属元素が含まれていても、通常の電解二酸化マンガン製造工程におけるマンガン鉱石の処理時に除去することが出来る。そのため、回収されるマンガン化合物が、鉄、ニッケル、チタンなどの重金属元素を含んでいても問題はないが、その含有量は1重量%以下であることが好ましい。   Even if a heavy metal element other than manganese is contained, the manganese compound recovered by the method of the present invention can be removed during the treatment of manganese ore in the usual electrolytic manganese dioxide production process. Therefore, there is no problem even if the recovered manganese compound contains heavy metal elements such as iron, nickel and titanium, but the content is preferably 1% by weight or less.

本発明の方法で回収されるマンガン化合物は、不純物含有量、特にカリウム含有量が低く、かつ、含有されるカリウムがマンガンと難分解性化合物を生成していない。そのため、本発明の方法で回収されるマンガン化合物は、電解二酸化マンガン用の原料としてマンガン鉱石と同様な処理をすることができ、従来の電解二酸化マンガンの製造工程にそのまま適用できる。また、回収されるマンガン化合物は、単体で使用する以外にもマンガン鉱石と混合して電解二酸化マンガン用原料とすることができる。   The manganese compound recovered by the method of the present invention has a low impurity content, particularly a potassium content, and the contained potassium does not produce manganese and a hardly decomposable compound. Therefore, the manganese compound recovered by the method of the present invention can be treated in the same manner as manganese ore as a raw material for electrolytic manganese dioxide, and can be applied as it is to conventional electrolytic manganese dioxide production processes. Further, the recovered manganese compound can be mixed with manganese ore as a raw material for electrolytic manganese dioxide, in addition to being used alone.

本発明の方法により、使用済み電池から高い回収率でカリウム濃度が1重量%以下のマンガン化合物を回収することができる。   By the method of the present invention, a manganese compound having a potassium concentration of 1% by weight or less can be recovered from a used battery at a high recovery rate.

本発明のマンガン回収方法の概略図Schematic of the manganese recovery method of the present invention

以下、実施例に基づき本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

なお、実施例および比較例においては、使用済みマンガン乾電池及びアルカリマンガン乾電池等の電池を粉砕し、外装部材等を除去した電極部材含有物を使用した。実施例および比較例で使用した電極部材含有物の組成を表1に示した。なお、表1に示した以外の金属成分は検出限界以下であった。   In Examples and Comparative Examples, the electrode member-containing material obtained by pulverizing batteries such as used manganese dry batteries and alkaline manganese dry batteries and removing the exterior members and the like was used. Table 1 shows the compositions of the electrode member-containing materials used in the examples and comparative examples. In addition, metal components other than those shown in Table 1 were below the detection limit.

Figure 0005568977
Figure 0005568977

(カリウム、マンガン、亜鉛の定量)
各処理工程で得られた固相を2mol%硫酸水溶液に過酸化水素を10%加えた溶液で溶解した後、濾過して濾液を回収した。回収した濾液は原子吸光法を用いて各元素の定量化学分析をした。各処理工程で得られた液相はそのまま原子吸光法を用いて各元素の定量化学分析をした。
(カーボンの定量)
第一工程で得られた固相を2mol%硫酸水溶液に過酸化水素を10%加えた溶液で溶解した後、濾過して濾過残渣を回収した。回収した濾過残渣の重量を測定してカーボン量を定量した。
(Quantitative determination of potassium, manganese and zinc)
The solid phase obtained in each treatment step was dissolved in a solution of 10% hydrogen peroxide in a 2 mol% aqueous sulfuric acid solution, and then filtered to collect the filtrate. The collected filtrate was subjected to quantitative chemical analysis of each element using an atomic absorption method. The liquid phase obtained in each treatment step was directly subjected to quantitative chemical analysis of each element using an atomic absorption method.
(Quantitative carbon)
The solid phase obtained in the first step was dissolved in a solution of 10% hydrogen peroxide in a 2 mol% sulfuric acid aqueous solution, and then filtered to collect the filtration residue. The amount of carbon was quantified by measuring the weight of the collected filtration residue.

実施例1
(第一工程)
電極部材含有物100gを300mlの純水中に分散し電極部材含有物のスラリーとした。当該スラリーは攪拌しながら40℃に加温し、温度を維持したまま10mol%硫酸水溶液を加えてpH=4とした。温度40℃、pH=4を維持したまま、1時間攪拌を行い処理した。処理後、5Cのろ紙を用いてろ過を行なって硫酸水溶液(液相1)と濾過残渣(固相1)に分別した。結果を表2に示した。得られた固相1は主にマンガン化合物とカーボンからなる混合物であった。
Example 1
(First step)
100 g of the electrode member-containing material was dispersed in 300 ml of pure water to obtain a slurry of the electrode member-containing material. The slurry was heated to 40 ° C. with stirring, and a 10 mol% sulfuric acid aqueous solution was added to maintain pH = 4 while maintaining the temperature. While maintaining the temperature at 40 ° C. and pH = 4, the mixture was stirred for 1 hour and treated. After the treatment, filtration was performed using 5C filter paper to separate into a sulfuric acid aqueous solution (liquid phase 1) and a filtration residue (solid phase 1). The results are shown in Table 2. The obtained solid phase 1 was a mixture mainly composed of a manganese compound and carbon.

(第二工程)
第一工程で得られた硫酸水溶液(液相1)をさらに40℃に加温維持して、アンモニア水を滴下してpH=7にした。pH=7を維持したまま、1時間攪拌した。その後、生じた沈殿物を5Cのろ紙でろ過し、硫酸水溶液(液相2)と濾過残渣(固相2)を分離した。結果を表3に示した。得られた固相2には主に第一工程で得られた液相1の亜鉛を含有しており、液相2には主に第一工程で得られた液相1中のマンガン、カリウムを含有していた。
(Second step)
The sulfuric acid aqueous solution (liquid phase 1) obtained in the first step was further heated and maintained at 40 ° C., and ammonia water was added dropwise until pH = 7. The mixture was stirred for 1 hour while maintaining pH = 7. Thereafter, the resulting precipitate was filtered with 5C filter paper to separate an aqueous sulfuric acid solution (liquid phase 2) and a filtration residue (solid phase 2). The results are shown in Table 3. The obtained solid phase 2 mainly contains zinc of the liquid phase 1 obtained in the first step, and the liquid phase 2 mainly contains manganese and potassium in the liquid phase 1 obtained in the first step. Contained.

(第三工程)
第二工程で得られた硫酸水溶液(液相2)にアンモニア水を、pH=10を維持するように添加し、40℃で1時間攪拌して処理した。処理後、生じた沈澱物を5Cのろ紙でろ過し、硫酸水溶液(液相3)と濾過残渣(固相3)に分離した。結果を表4に示した。得られた固相3は第二工程で得られた液相2中のマンガンを含有していた。
(Third process)
Aqueous ammonia was added to the aqueous sulfuric acid solution (liquid phase 2) obtained in the second step so as to maintain pH = 10, and the mixture was stirred at 40 ° C. for 1 hour for treatment. After the treatment, the resulting precipitate was filtered through 5C filter paper, and separated into a sulfuric acid aqueous solution (liquid phase 3) and a filtration residue (solid phase 3). The results are shown in Table 4. The obtained solid phase 3 contained manganese in the liquid phase 2 obtained in the second step.

第一工程で得られた濾過残渣(固相1)と第三工程で得られた濾過残渣(固相3)を合せて回収し、マンガン化合物を得た。結果を表5に示した。本発明の方法により、カリウム濃度の低いマンガン化合物が高回収率で回収できることが確認された。   The filtration residue (solid phase 1) obtained in the first step and the filtration residue (solid phase 3) obtained in the third step were combined and recovered to obtain a manganese compound. The results are shown in Table 5. It was confirmed that the manganese compound having a low potassium concentration can be recovered at a high recovery rate by the method of the present invention.

実施例2
第一工程の処理pHをpH=2、第二工程の処理pHをpH=9、第三工程の処理pHをpH=11とした以外は実施例1と同様の方法で処理してマンガン回収を行った。結果を表2〜5に示した。
Example 2
Manganese recovery was carried out in the same manner as in Example 1 except that the treatment pH of the first step was pH = 2, the treatment pH of the second step was pH = 9, and the treatment pH of the third step was pH = 11. went. The results are shown in Tables 2-5.

実施例3
第一工程の処理pHをpH=3、温度60℃、第二工程の処理pHをpH=8、温度60℃、第三工程の処理pHをpH=10、温度60℃とした以外は実施例1と同様の方法で処理してマンガン回収を行った。結果を表2〜表5に示した。
Example 3
Example except that the treatment pH of the first step was pH = 3, the temperature was 60 ° C., the treatment pH of the second step was pH = 8, the temperature was 60 ° C., the treatment pH of the third step was pH = 10, and the temperature was 60 ° C. Manganese recovery was carried out in the same manner as in No. 1. The results are shown in Tables 2-5.

実施例4
第三工程において、酸化剤として二酸化マンガン5g(Mn含有量:3.01g,Zn含有量:0g,K含有量:0.02g)を第二工程で得られた濾液に加えた以外は実施例1と同様の方法で処理してマンガン回収を行った。結果を表2〜5に示した。
Example 4
Example 3 except that 5 g of manganese dioxide (Mn content: 3.01 g, Zn content: 0 g, K content: 0.02 g) was added as an oxidizing agent to the filtrate obtained in the second step in the third step. Manganese recovery was carried out in the same manner as in No. 1. The results are shown in Tables 2-5.

比較例1
第一工程の処理pHをpH=6、第二工程の処理pHをpH=6.5、第三工程の処理pHをpH=9とした以外は、実施例1と同様の方法で処理してマンガン回収を行った。結果を表2〜5に示した。
Comparative Example 1
The treatment was performed in the same manner as in Example 1 except that the treatment pH of the first step was pH = 6, the treatment pH of the second step was pH = 6.5, and the treatment pH of the third step was pH = 9. Manganese recovery was performed. The results are shown in Tables 2-5.

比較例2
第一工程の処理pHをpH=1、温度60℃、第二工程の処理pHをpH=9、温度60℃、第三工程の処理pHをpH=11、温度60℃とした以外は実施例1と同様の方法で処理してマンガン回収を行った。結果を表2〜5に示した。
Comparative Example 2
Example 1 except that the treatment pH in the first step was pH = 1, the temperature was 60 ° C., the treatment pH in the second step was pH = 9, the temperature was 60 ° C., the treatment pH in the third step was pH = 11, and the temperature was 60 ° C. Manganese recovery was carried out in the same manner as in No. 1. The results are shown in Tables 2-5.

比較例3
第一工程の処理pHをpH=5、温度60℃、第二工程の処理pHをpH=6、温度60℃、第三工程の処理pHをpH=9、温度60℃とした以外は実施例1と同様の方法で処理してマンガン回収を行った。結果を表2〜5に示した。
Comparative Example 3
Example except that the treatment pH of the first step was pH = 5, the temperature was 60 ° C., the treatment pH of the second step was pH = 6, the temperature was 60 ° C., the treatment pH of the third step was pH = 9, and the temperature was 60 ° C. Manganese recovery was carried out in the same manner as in No. 1. The results are shown in Tables 2-5.

Figure 0005568977
Figure 0005568977

Figure 0005568977
Figure 0005568977

Figure 0005568977
Figure 0005568977

Figure 0005568977
Figure 0005568977

本発明の方法により、使用済み電池中のマンガン成分をカリウム、亜鉛等と分離し、かつ、高い回収率で回収することができる。回収されるマンガン化合物は、電解二酸化マンガン用の原料として、単独、もしくは、マンガン鉱石と混合して用いることができ、さらに、既存の処理設備にそのまま適用することができる。   By the method of the present invention, the manganese component in the used battery can be separated from potassium, zinc and the like and recovered at a high recovery rate. The recovered manganese compound can be used alone or as a mixture with manganese ore as a raw material for electrolytic manganese dioxide, and can be directly applied to existing processing equipment.

Claims (4)

正極合剤にマンガン酸化物、負極に亜鉛酸化物、電解液に塩化亜鉛水溶液もしくは水酸化カリウム水溶液を主成分とした溶液を含んでいる電池の電極部材含有物を、水中に分散し電極部材含有物のスラリーとし、40〜60℃に加温し、硫酸水溶液を加え、2≦pH≦4で処理して固相(固相1)と液相(液相1)に分離する第一工程、得られた液相(液相1)を、40〜60℃に維持し、液相1にアンモニア水を添加し、7≦pH≦9で処理してさらに固相(固相2)と液相(液相2)に分離する第二工程、さらに得られた液相(液相2)を、40〜60℃に維持し、液相2にアンモニア水を添加し、pH≧10で処理することによるマンガン化合物からなる固相(固相3)とする第三工程からなり、固相1及び/又は固相3を回収する電池からのマンガン回収方法。 Manganese oxide in the positive electrode mixture, zinc oxide in the negative electrode, and battery electrode member content containing a solution containing zinc chloride aqueous solution or potassium hydroxide aqueous solution as the main component in the electrolyte A first step of heating to 40 to 60 ° C., adding an aqueous sulfuric acid solution, and treating with 2 ≦ pH ≦ 4 to separate into a solid phase (solid phase 1) and a liquid phase (liquid phase 1), The obtained liquid phase (liquid phase 1) is maintained at 40 to 60 ° C., ammonia water is added to liquid phase 1 and treated with 7 ≦ pH ≦ 9, and further solid phase (solid phase 2) and liquid phase The second step of separating into (Liquid Phase 2), and further maintaining the obtained liquid phase (Liquid Phase 2) at 40-60 ° C., adding ammonia water to Liquid Phase 2, and treating with pH ≧ 10 The solid phase 1 and / or the solid phase 3 is recovered by the third step of making a solid phase (solid phase 3) comprising a manganese compound by Manganese method for recovering from the pond. pH≧10で処理した後に固相(固相3)を回収する工程において、酸化剤を添加して処理することを特徴とする請求項1に記載の方法。 In recovering the solid (solid phase 3) after treatment with pH ≧ 10, The method of claim 1, characterized in that treating with an oxidizing agent added. 酸化剤が二酸化マンガンであることを特徴とする請求項に記載の方法。 The method of claim 2 , wherein the oxidizing agent is manganese dioxide. マンガン化合物のカリウム濃度が1重量%以下であることを特徴とする請求項1乃至のいずれかに記載の回収方法。 The recovery method according to any one of claims 1 to 3 , wherein the manganese compound has a potassium concentration of 1% by weight or less.
JP2009286112A 2009-12-17 2009-12-17 Method for recovering manganese from batteries Active JP5568977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009286112A JP5568977B2 (en) 2009-12-17 2009-12-17 Method for recovering manganese from batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009286112A JP5568977B2 (en) 2009-12-17 2009-12-17 Method for recovering manganese from batteries

Publications (2)

Publication Number Publication Date
JP2011129336A JP2011129336A (en) 2011-06-30
JP5568977B2 true JP5568977B2 (en) 2014-08-13

Family

ID=44291717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286112A Active JP5568977B2 (en) 2009-12-17 2009-12-17 Method for recovering manganese from batteries

Country Status (1)

Country Link
JP (1) JP5568977B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715847B2 (en) * 2011-02-16 2015-05-13 Fdkエナジー株式会社 Lithium battery
PE20160236A1 (en) * 2013-09-11 2016-04-30 Panasonic Ip Man Co Ltd METHOD TO PRODUCE A POSITIVE ELECTRODE FOR A DRY MANGANESE BATTERY, A POSITIVE ELECTRODE FOR A DRY MANGANESE BATTERY, AND METHOD TO PRODUCE A DRY MANGANESE BATTERY
JP6648674B2 (en) * 2016-11-29 2020-02-14 Jfeスチール株式会社 Method for producing metallic manganese
JP6947832B2 (en) * 2017-08-28 2021-10-13 杉山 修 A method for producing a battery having an electrolytic solution containing alkaline mineral ionized water, an electrolyte active material, and an electrolytic solution for a battery.
CN112792086A (en) * 2019-11-14 2021-05-14 西南科技大学 Method for harmless treatment of electric field reinforced electrolytic manganese slag
CN114804669B (en) * 2022-06-07 2023-07-07 湖南省和清环境科技有限公司 Harmless treatment method of electrolytic manganese slag

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281467A (en) * 1985-06-06 1986-12-11 Kiresuto Giken:Kk Recovery process for manganese dry battery
JPH0517832A (en) * 1991-07-10 1993-01-26 Daito Kagaku Kk Method for recovering lithium from waste lithium battery
US5279743A (en) * 1992-12-07 1994-01-18 Olin Corporation Process of using chloric acid to separate zinc oxide and manganese oxide
JP3286003B2 (en) * 1993-03-04 2002-05-27 ティーディーケイ株式会社 Ferrite manufacturing method
JP2001256984A (en) * 2000-03-10 2001-09-21 Tc:Kk Method for recovering manganese from waste manganese dry batteries
JP3914814B2 (en) * 2002-04-26 2007-05-16 太平洋セメント株式会社 Method for treating fly ash containing calcium
JP5288778B2 (en) * 2007-11-28 2013-09-11 太平洋セメント株式会社 Method for processing heavy metal-containing powder

Also Published As

Publication number Publication date
JP2011129336A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5151072B2 (en) Method for recovering metal constituting electrode from lithium battery
JP5568977B2 (en) Method for recovering manganese from batteries
JP6070898B2 (en) Method and facility for recovering valuable components from waste dry batteries
KR20200065503A (en) Method of recovery of valuable metals from scrap containing cathode materials of lithium ion battery
JP2009193778A (en) Valuable metal recovery method from lithium battery slag containing co, nickel, and mn
JP2008231522A (en) Method for recovering precious metal from battery slag containing cobalt, nickel and manganese
JPH09217133A (en) Method for recovering useful element from rear earth-nickel alloy
KR20200059191A (en) Methods for the production of cobalt and related oxides from various feed materials
JP2021521327A (en) Method of recovering lithium and transition metals using heat
CN111471864A (en) Method for recovering copper, aluminum and iron from waste lithium ion battery leachate
JP2022504864A (en) Battery recycling by electrolysis of leachate to remove copper impurities
JP5760954B2 (en) Method for recovering copper from sulfide minerals containing copper and iron
CN103781923A (en) Process for purifying zinc oxide
JP6996723B1 (en) Metal recovery method from lithium-ion batteries
JP4215547B2 (en) Cobalt recovery method
JP4801372B2 (en) Method for removing manganese from cobalt sulfate solution
JP6314730B2 (en) Method for recovering valuable metals from waste nickel metal hydride batteries
JP2020029586A (en) Method for separating copper, nickel and cobalt
KR102496184B1 (en) Method for recovering nickel hydroxide and nickel sulfate from multilayer ceramic capacitor sludge
CN115152078A (en) Method for selectively removing aluminum from waste electrode and method for recovering metal component from waste electrode using the same
JP5673471B2 (en) Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel
JP2004182533A (en) Method of recovering cobalt
JP3532640B2 (en) Method for recovering positive electrode material from nickel-hydrogen secondary battery and method for recovering raw material for recovering effective metal from negative electrode
JP7423104B1 (en) Method for recovering metals from lithium ion batteries
JP2015081371A (en) Method of exuding nickel and cobalt from mixed sulfide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R151 Written notification of patent or utility model registration

Ref document number: 5568977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151