JP6947832B2 - A method for producing a battery having an electrolytic solution containing alkaline mineral ionized water, an electrolyte active material, and an electrolytic solution for a battery. - Google Patents

A method for producing a battery having an electrolytic solution containing alkaline mineral ionized water, an electrolyte active material, and an electrolytic solution for a battery. Download PDF

Info

Publication number
JP6947832B2
JP6947832B2 JP2019538960A JP2019538960A JP6947832B2 JP 6947832 B2 JP6947832 B2 JP 6947832B2 JP 2019538960 A JP2019538960 A JP 2019538960A JP 2019538960 A JP2019538960 A JP 2019538960A JP 6947832 B2 JP6947832 B2 JP 6947832B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
battery
ion
mineral
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019538960A
Other languages
Japanese (ja)
Other versions
JPWO2019044042A1 (en
Inventor
杉山 修
杉山  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIZUGUCHI Etsuko
MIZUGUCHI Kana
MIZUGUCHI YUKA
Original Assignee
MIZUGUCHI Etsuko
MIZUGUCHI Kana
MIZUGUCHI YUKA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIZUGUCHI Etsuko, MIZUGUCHI Kana, MIZUGUCHI YUKA filed Critical MIZUGUCHI Etsuko
Publication of JPWO2019044042A1 publication Critical patent/JPWO2019044042A1/en
Application granted granted Critical
Publication of JP6947832B2 publication Critical patent/JP6947832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/38Other non-alcoholic beverages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Primary Cells (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Alcoholic Beverages (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Description

本発明は電池に関するものであり、更に詳しくは、特定のミネラルイオンを含有するアルカリ性水溶液を電解液とする電池、電解質活物質、及び、アルカリ性の電池用電解液の製造法に関するものである。 The present invention relates to a battery, and more particularly, to a battery using an alkaline aqueous solution containing a specific mineral ion as an electrolytic solution, an electrolyte active material, and a method for producing an alkaline electrolytic solution for a battery.

一次電池としては、古くからガルバニ電池が有名である。ガルバニ電池には、亜鉛板と銅板を電極として用い、その間の電解液として硫酸を用いたボルタ電池;亜鉛板を硫酸亜鉛水溶液中に浸し、銅板を硫酸銅水溶液中に浸したダニエル電池;等がある。更に、一次電池としては、マンガン乾電池、ふっ化黒鉛リチウム電池、二酸化マンガンリチウム電池、塩化チオニルリチウム電池、二硫化鉄リチウム電池、アルカリマンガン電池、空気亜鉛電池、酸化銀電池等が知られている。 Galvanic cells have long been famous as primary batteries. Galvanic cells include voltaic batteries in which a zinc plate and a copper plate are used as electrodes and sulfuric acid is used as an electrolytic solution between them; a Daniell cell in which a zinc plate is immersed in a zinc sulfate aqueous solution and a copper plate is immersed in a copper sulfate aqueous solution; etc. be. Further, as the primary battery, a manganese dry battery, a vaporized graphite lithium battery, a manganese dioxide lithium battery, a thionyl lithium chloride battery, an iron disulfide lithium battery, an alkali manganese battery, an air zinc battery, a silver oxide battery and the like are known.

特許文献1に係る発明は、浮き等の釣り用の電池構造体の発明であり、そこには、負極として、マグネシウム、アルミニウム、亜鉛等を用い、正極として、塩化銀、塩化鉛、塩化銅、ヨウ化銅、過硫酸カリウム等を用い、その間に吸水性素材を配した電池が記載されている。 The invention according to Patent Document 1 is an invention of a battery structure for fishing such as floating, in which magnesium, aluminum, zinc or the like is used as a negative electrode, and silver chloride, lead chloride, copper chloride, etc. are used as a positive electrode. A battery in which copper iodide, potassium persulfate, etc. are used and a water-absorbent material is arranged between them is described.

特許文献2には、負極を亜鉛、ニッケル、クロム又はアルミニウムとし、正極を金、銀、銅又はステンレスとし、電解液として、凝灰岩から溶出される硫酸イオン物質を含む液体を電気分解して得られる「硫酸イオン含有電解液」を用いた電池が記載されている。 In Patent Document 2, the negative electrode is zinc, nickel, chromium or aluminum, the positive electrode is gold, silver, copper or stainless steel, and the electrolyte is obtained by electrolyzing a liquid containing a sulfate ion substance eluted from tuff. A battery using the "sulfate ion-containing electrolytic solution" is described.

特許文献3には、電極板を構成する金属の組み合わせとして、「二酸化鉛と鉛」又は「銅(合金)とアルミニウム(合金)」とし、正極板と負極板を向かい合わせて並べたハイブリッドバッテリーが記載されており、その電解液として、硫酸等が用いられている。 Patent Document 3 describes a hybrid battery in which "lead dioxide and lead" or "copper (alloy) and aluminum (alloy)" are used as a combination of metals constituting the electrode plate, and the positive electrode plate and the negative electrode plate are arranged facing each other. It is described, and sulfuric acid or the like is used as the electrolytic solution thereof.

しかしながら、アルカリ水溶液を電解液として用いた電池は、ニッケル水素電池、アルカリマンガン電池があるが、電解液は強アルカリ性水酸化カリウムである。水酸化カリウムはイオン化傾向の大きい金属や金属酸化物を酸化又は溶解するため、これらの電解液を使用すると電材の寿命が短命となる。
電池の性能を向上させるためのミネラルイオン水、特定の電解液、又は、これらを含有する電解質活物質は知られていなかった。
However, there are nickel hydrogen batteries and alkaline manganese batteries as batteries using an alkaline aqueous solution as an electrolytic solution, and the electrolytic solution is strongly alkaline potassium hydroxide. Since potassium hydroxide oxidizes or dissolves metals and metal oxides that have a high ionization tendency, the life of the electrical material is shortened when these electrolytes are used.
Mineral ionized water for improving battery performance, specific electrolytes, or electrolyte active materials containing them have not been known.

特開2004−158209号公報Japanese Unexamined Patent Publication No. 2004-158209 特開2010−153206号公報Japanese Unexamined Patent Publication No. 2010-153206 特開2013−247101号公報Japanese Unexamined Patent Publication No. 2013-247101

本発明は上記背景技術に鑑みてなされたものであり、その課題は、長時間にわたり安定して電力を供給する電池を提供することにあり、該電池に用いられる新規な電池用電解液や電解質活物質を提供することにある。 The present invention has been made in view of the above background technology, and an object of the present invention is to provide a battery that stably supplies electric power for a long period of time, and a novel electrolyte or electrolyte for a battery used in the battery. It is to provide active materials.

本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、特定の正極と負極を用い、その間に存在する電解液として、特定の物質(イオン、化合物等)を含有するミネラルイオン水、並びに、好ましくは、「ミネラルイオン水及び灰化ミネラルイオン前駆体を担持して焼成してなる高温焼成炭素群」や、該灰化ミネラルイオン前駆体を含有するペースト状の電解質活物質を用いることによって、長時間にわたり安定して電力を供給でき、電極も汎用の金属で、特に正極は炭素板や炭素繊維等でも、簡易で低コストの電池ができることを見出して本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventor uses a specific positive electrode and a negative electrode, and mineral ionized water containing a specific substance (ion, compound, etc.) as an electrolytic solution existing between them. , And preferably, "a high-temperature calcined carbon group formed by supporting and calcining mineral ion water and an incinerated mineral ion precursor" or a paste-like electrolyte active material containing the incinerated mineral ion precursor is used. As a result, the present invention has been completed by finding that a simple and low-cost battery can be produced by stably supplying electric power for a long period of time and using a general-purpose metal for the electrode, and particularly even if the positive electrode is a carbon plate or carbon fiber. rice field.

すなわち、本発明は、負極として水素よりイオン化傾向の大きい金属体を用い、正極として導電体を用い、該負極と該正極の間に存在する電解液として、アルカリ土類金属イオンを含有するpHが12以上14以下のミネラルイオン水を含有することを特徴とする電池を提供するものである。 That is, in the present invention, a metal body having a higher ionization tendency than hydrogen is used as the negative electrode, a conductor is used as the positive electrode, and the pH containing alkaline earth metal ions is used as the electrolytic solution existing between the negative electrode and the positive electrode. Provided is a battery characterized by containing 12 or more and 14 or less of mineral ionized water.

また、本発明は、上記電池用の電解質活物質であって、上記アルカリ土類金属イオン、及び、上記灰化ミネラルイオン前駆体を含有するペースト状のものであることを特徴とする電解質活物質を提供するものである。 Further, the present invention is an electrolyte active material for a battery, which is in the form of a paste containing the alkaline earth metal ion and the ashed mineral ion precursor. Is to provide.

また、本発明は、負極として水素よりイオン化傾向の大きい金属体を用い、正極として導電体を用い、該負極と該正極の間に存在する電解液としてpHが12以上14以下のミネラルイオン水を用いた電池用電解液の製造方法であって、
少なくとも、マグネシウム若しくはカルシウムの、酸化物、水酸化物、炭酸塩又は炭酸水素塩を水に溶解させてアルカリ土類金属イオンを含有させ、pHを調整し、生物の灰化物の水溶性成分を溶解させることを特徴とする電池用電解液の製造方法を提供するものである。
Further, in the present invention, a metal body having a higher ionization tendency than hydrogen is used as the negative electrode, a conductor is used as the positive electrode, and mineral ion water having a pH of 12 or more and 14 or less is used as the electrolytic solution existing between the negative electrode and the positive electrode. This is the method for producing the electrolytic solution for batteries used.
At a minimum, oxides, hydroxides, carbonates or bicarbonates of magnesium or calcium are dissolved in water to contain alkaline earth metal ions, the pH is adjusted, and the water-soluble components of biological ash are dissolved. The present invention provides a method for producing an electrolytic solution for a battery, which is characterized by the fact that the electrolytic solution for a battery is produced.

本発明によれば、上記課題を解決し、長期間にわたり連続的に安定して電力(電圧と電流)を供給する電池を極めて簡易に安価に提供することができる。
本発明の電池は、電解液が気化し易い汎用の簡易なラミネート処理においても600時間以上連続して電力を供給できる。このとき、600時間を超え電力が低下したら、電解液を滴下することによって、繰り返し使用が可能である。更なる長寿命設計には機密性の高い封入処理をすれば、電解液が気化しない限り、負極である例えばアルミニウム電極が酸化しない限りいつまでも発電することが可能である。
According to the present invention, it is possible to solve the above problems and to provide a battery that continuously and stably supplies electric power (voltage and current) for a long period of time extremely easily and inexpensively.
The battery of the present invention can continuously supply electric power for 600 hours or more even in a general-purpose simple laminating process in which the electrolytic solution is easily vaporized. At this time, if the electric power drops for more than 600 hours, the electrolytic solution can be dropped to allow repeated use. For a further long-life design, if a highly airtight encapsulation treatment is performed, it is possible to generate electricity indefinitely as long as the electrolytic solution is not vaporized and the negative electrode, for example, the aluminum electrode is not oxidized.

更に、好ましくはこれらの単セル(電池)を多数積層することによって、モバイル機器、車、航空機、ロボット、家電等の電力として簡易的に利用できる。また、二酸化炭素を排出する動力に代わって、本発明の電池からの電力を利用した動力を使用すれば、環境に優しい二酸化炭素フリーの動力が得られる。 Further, preferably, by stacking a large number of these single cells (batteries), it can be easily used as electric power for mobile devices, cars, aircraft, robots, home appliances and the like. Further, if power using power from the battery of the present invention is used instead of power for discharging carbon dioxide, environment-friendly carbon dioxide-free power can be obtained.

例えば、ボルタ電池の電解液は、硫酸、塩酸等の酸性水溶液である。また、食塩水等の塩の水溶液も使用可能であることが知られている。アルカリ性の水溶液を使用したものとしては水酸化カリウム水溶液が知られているが、これは急速にイオン化傾向の大きい金属を侵食・溶解させる。
本発明の電池は、電解液として特定のものを用いるために、pHが12以上14以下であっても金属電極や金属酸化物を酸化し難く、極めて簡易であるにもかかわらず、長期間にわたり連続的に安定して電力を供給できる。
For example, the electrolytic solution of a voltaic battery is an acidic aqueous solution such as sulfuric acid or hydrochloric acid. It is also known that an aqueous solution of a salt such as a saline solution can be used. Potassium hydroxide aqueous solution is known as an aqueous solution using an alkaline aqueous solution, which rapidly erodes and dissolves a metal having a high ionization tendency.
Since the battery of the present invention uses a specific electrolytic solution, it is difficult to oxidize metal electrodes and metal oxides even when the pH is 12 or more and 14 or less, and it is extremely simple, but for a long period of time. Power can be supplied continuously and stably.

また、該電解液の中に、草木灰等の「生物の灰化物」を含有させることによって、その中の微量イオン化したミネラル成分の酸化還元反応が穏やかで有効に働き、電池寿命性能を向上させることができる。 Further, by containing "living ash" such as wood ash in the electrolytic solution, the redox reaction of the trace ionized mineral component in the electrolytic solution works gently and effectively, and the battery life performance is improved. Can be done.

従来、必要とされてきた、オキシ水酸化ニッケル、二酸化マンガン等は、基本的に必須とはされず、「上記ミネラルイオン水及び上記灰化ミネラルイオン前駆体を担持して焼成してなる高温焼成炭素群」を使用することで、更に高性能の電池が得られる。
ただし、従来の活物質を含有させることは本発明からは排除されない。
グラファイト、グラフェン、オキシ水酸化ニッケル、二酸化マンガン、酸化スズ等の電解質活物質を、前記電解液中に分散しペースト状にすることによって、電池性能を向上させることもできる。
Conventionally, nickel oxyhydroxide, manganese dioxide, etc., which have been required, are not basically essential, and are "high-temperature calcination in which the above-mentioned mineral ion water and the above-mentioned ashed mineral ion precursor are supported and fired. By using the "carbon group", a higher performance battery can be obtained.
However, the inclusion of a conventional active material is not excluded from the present invention.
Battery performance can also be improved by dispersing an electrolyte active material such as graphite, graphene, nickel oxyhydroxide, manganese dioxide, and tin oxide in the electrolytic solution to form a paste.

本発明の電池の基本的形態の一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the basic form of the battery of this invention. 本発明の電池の形態の一例を示す概略図である。(a)平面図 (b)縦断面図It is the schematic which shows an example of the form of the battery of this invention. (A) Plan view (b) Vertical sectional view

以下、本発明について説明するが、本発明は、以下の具体的形態に限定されるものではなく、技術的思想の範囲内で任意に変形することができる。 Hereinafter, the present invention will be described, but the present invention is not limited to the following specific forms, and can be arbitrarily modified within the scope of the technical idea.

本発明は、負極として水素よりイオン化傾向の大きい金属体を用い、正極として導電体を用い、該負極と該正極の間に存在する電解液として、アルカリ土類金属イオンを含有するpHが12以上14以下のミネラルイオン水を含有することを特徴とする電池である。
更に、電解質活物質として、「上記ミネラルイオン水及び上記灰化ミネラルイオン前駆体を担持した高温焼成炭素群」を含有することが有効である。ここで、「担持した高温焼成炭素群」とは、担持させてから高温焼成した(してなる)高温焼成炭素群が含まれる。以下、同様である。
In the present invention, a metal body having a higher ionization tendency than hydrogen is used as the negative electrode, a conductor is used as the positive electrode, and the pH of containing alkaline earth metal ions as the electrolytic solution existing between the negative electrode and the positive electrode is 12 or more. It is a battery characterized by containing 14 or less mineral ionized water.
Further, it is effective to contain "the high-temperature calcined carbon group carrying the above-mentioned mineral ion water and the above-mentioned incinerated mineral ion precursor" as the electrolyte active material. Here, the "supported high-temperature calcined carbon group" includes a high-temperature calcined carbon group that is supported and then calcined at a high temperature. The same applies hereinafter.

更に、アルカリ土類金属イオンを含有するペーストや、灰化ミネラルイオン前駆体を含有するペースト、更には電解液を担持させ高温焼成した炭素群との複合した電解質活物質が前記電解液に含有されていることが極めて有効で好適である。「灰化ミネラルイオン前駆体を含有するペースト」は、生物由来品の灰化物のペーストであることが好ましい。 Further, a paste containing alkaline earth metal ions, a paste containing an incinerated mineral ion precursor, and an electrolyte active material complexed with a carbon group on which an electrolytic solution is supported and fired at a high temperature are contained in the electrolytic solution. Is extremely effective and suitable. The "paste containing an ashed mineral ion precursor" is preferably an ashed paste of a biological product.

<電池の形態>
該電池の形態は、負極1と正極2の間に電解液4を有する形態であれば特に限定はなく、汎用の乾電池のように、中心に電極があり筐体に沿って他の電極がある形態でも、平面状のものであってもよいが、図1、図2に示したように、電極が平面状又は縦型セルである形態が特に好ましい。
<Battery form>
The form of the battery is not particularly limited as long as the electrolytic solution 4 is provided between the negative electrode 1 and the positive electrode 2, and like a general-purpose dry battery, there is an electrode in the center and other electrodes along the housing. The form may be flat or flat, but as shown in FIGS. 1 and 2, a form in which the electrodes are flat or vertical cells is particularly preferable.

両電極間に、前記若しくは後記する電解質活物質を有する電解液4がある形態がより好ましい。すなわち、更に、前記若しくは後記の特定のペーストや、「上記ミネラルイオン水及び上記灰化ミネラルイオン前駆体を担持して焼成してなる高温焼成炭素群」を含有することが特に好ましい。
また、該電解液4は吸水性基材3に染みこませて使用してもよい。その場合、「電解液が含浸した部分」を挟んでいる電極の部分が正極、負極として作用する。
A form in which the electrolytic solution 4 having the above-mentioned or later-described electrolyte active material is between the two electrodes is more preferable. That is, it is particularly preferable to further contain the specific paste described above or below, or "a high-temperature calcined carbon group formed by supporting and calcining the mineral ion water and the ashed mineral ion precursor".
Further, the electrolytic solution 4 may be used by impregnating the water-absorbent base material 3. In that case, the portion of the electrode sandwiching the "portion impregnated with the electrolytic solution" acts as a positive electrode and a negative electrode.

図1に示したように、負極1と正極2からは、そこに電気的に接合された導線5を通して電流を取り出す。導線の接合については特に限定はない。 As shown in FIG. 1, a current is taken out from the negative electrode 1 and the positive electrode 2 through a conducting wire 5 electrically bonded thereto. There is no particular limitation on the joining of the conductors.

図2(a)(b)のような形態の場合、電極板の大きさは特に限定はないが、縦若しくは横の長さとして、10mm以上100mm以下が好ましく、20mm以上70mm以下が特に好ましい。また、電極板の厚さは特に限定はないが、0.5mm以上1mm以下が特に好ましい。
また、図2(b)のような形態の場合、すなわち、電極間に吸水性基材3が存在し、該吸水性基材3に電解液4が含浸されていて、その部分が実質的な電池になっている場合、1つの電極(図2では電解液が染みこんでいる円形部分)の大きさは電極より狭く、縦、横若しくは直径の長さとして、1mm以上45mm以下が好ましく、5mm以上40mm以下がより好ましく、8mm以上35mm以下が特に好ましく、長方形でも円形でもない場合は、面積基準で上記値を換算する。
In the case of the form shown in FIGS. 2A and 2B, the size of the electrode plate is not particularly limited, but the length or width is preferably 10 mm or more and 100 mm or less, and 20 mm or more and 70 mm or less is particularly preferable. The thickness of the electrode plate is not particularly limited, but is particularly preferably 0.5 mm or more and 1 mm or less.
Further, in the case of the form shown in FIG. 2B, that is, the water-absorbent base material 3 exists between the electrodes, and the water-absorbent base material 3 is impregnated with the electrolytic solution 4, and the portion thereof is substantially. In the case of a battery, the size of one electrode (the circular portion in which the electrolytic solution is impregnated in FIG. 2) is narrower than that of the electrode, and the length, width or diameter is preferably 1 mm or more and 45 mm or less, preferably 5 mm. More than 40 mm is more preferable, 8 mm or more and 35 mm or less is particularly preferable, and when it is neither rectangular nor circular, the above value is converted on an area basis.

電極板や電解液部分の大きさが小さくても十分な電流値を得ることができ、電解液4の量が少なくても補水できる限り寿命が長くなる。この効果は、ミネラルイオン水としての特別な効果であり、pHが12〜14においても極めて穏やかで電極を長期間侵さない。
一方、電極板や電解液部分が大き過ぎると、構造上均一な電極間距離が保ち難い場合があり、直列につないでセルで重ねれば足りるので電極面積が広くなり電流が迷走する。また、コストアップや重量が重くなる等の問題が生じる場合がある。
A sufficient current value can be obtained even if the size of the electrode plate and the electrolytic solution portion is small, and the life is extended as long as the water can be replenished even if the amount of the electrolytic solution 4 is small. This effect is a special effect as mineral ionized water, which is extremely mild even at a pH of 12 to 14 and does not damage the electrodes for a long period of time.
On the other hand, if the electrode plate or the electrolyte portion is too large, it may be difficult to maintain a uniform distance between the electrodes due to the structure, and it is sufficient to connect them in series and stack them in a cell, so that the electrode area becomes wide and the current strays. In addition, problems such as increased cost and heavy weight may occur.

電極間の距離は、良好に電力が供給できれば特に限定はないが、0.03mm以上8mm以下が好ましく、0.05mm以上3mm以下がより好ましく、0.1mm以上2mm以下が特に好ましい。電極間距離が小さ過ぎる場合は短絡するおそれがある。
両電極間の隙間接触界面周囲に絶縁体を施工することが好ましい。
The distance between the electrodes is not particularly limited as long as power can be supplied satisfactorily, but is preferably 0.03 mm or more and 8 mm or less, more preferably 0.05 mm or more and 3 mm or less, and particularly preferably 0.1 mm or more and 2 mm or less. If the distance between the electrodes is too small, a short circuit may occur.
It is preferable to install an insulator around the gap contact interface between the two electrodes.

<負極>
本発明の電池では、負極1において、負極1を構成する金属体から、金属陽イオンが電解液4中に放出され、電子が負極1に取り残されるために電圧・電流が発生する。従って、負極1として用いられる金属は、「水素よりイオン化傾向の大きい金属」であれば特に限定はないが、具体的には、アルミニウム、亜鉛、マグネシウム、リチウム、鉄、ニッケル、錫、鉛等が挙げられる。
中でも、アルミニウム又は亜鉛であることが、起電力、安定性、価格等の点から特に好ましい。合金は排除されないが、単体金属であることが電解液4の組成を変化させない等のために好ましい。また、アルミニウム線、亜鉛線等の金属線(特に好ましくはアルミニウム線)を負極に用いることで、小型化(極小セルに)することができるので好ましい。
<Negative electrode>
In the battery of the present invention, in the negative electrode 1, metal cations are emitted into the electrolytic solution 4 from the metal body constituting the negative electrode 1, and electrons are left behind in the negative electrode 1, so that voltage and current are generated. Therefore, the metal used as the negative electrode 1 is not particularly limited as long as it is a "metal having a higher ionization tendency than hydrogen", but specifically, aluminum, zinc, magnesium, lithium, iron, nickel, tin, lead and the like are used. Can be mentioned.
Of these, aluminum or zinc is particularly preferable from the viewpoint of electromotive force, stability, price and the like. Although the alloy is not excluded, it is preferable that it is a simple substance metal because it does not change the composition of the electrolytic solution 4. Further, it is preferable to use a metal wire such as an aluminum wire or a zinc wire (particularly preferably an aluminum wire) for the negative electrode because the size can be reduced (to a very small cell).

<正極>
本発明の電池の正極2は、導電体であれば特に限定はないが、該導電体を形成する導電性物質は、銅、銀、パラジウム、金若しくは白金、又は、それらの合金が好ましい。また、グラファイト(石墨)、高温焼成炭素、炭素繊維等の炭素質であってもよい。また、これらの導電性物質の微粒子が分散された若しくはプレス圧縮された導電性の構造体であってもよく、表面に薄い酸化膜があるものでもよい。
該金属は、より好ましくは、起電力、安定性、価格(コスト)等の点から、銅若しくは銀又はその合金であり、特に好ましくはコストの理由から銅である。該炭素質は、より好ましくは、軽量、経時安定性、価格(コスト)等の点から炭素繊維である。正極に炭素繊維を用いることで、小型化(極小セルに)することができるので好ましい。
<Positive electrode>
The positive electrode 2 of the battery of the present invention is not particularly limited as long as it is a conductor, but the conductive substance forming the conductor is preferably copper, silver, palladium, gold or platinum, or an alloy thereof. Further, it may be a carbonaceous material such as graphite (graphite), high-temperature calcined carbon, or carbon fiber. Further, it may be a conductive structure in which fine particles of these conductive substances are dispersed or press-compressed, or a structure having a thin oxide film on the surface.
The metal is more preferably copper or silver or an alloy thereof from the viewpoint of electromotive force, stability, price (cost) and the like, and particularly preferably copper from the viewpoint of cost. The carbon material is more preferably a carbon fiber in terms of light weight, stability over time, price (cost), and the like. It is preferable to use carbon fiber for the positive electrode because it can be miniaturized (in a very small cell).

<電解液の構成、物性>
<<電解液のpH>>
本発明の電池の電解液4は、アルカリ土類金属イオンを含有するpHが12以上14以下のミネラルイオン水を含有することを特徴とする。pHは13以上14以下が特に好ましい。
このような電解液4にすると、金属を溶解する水酸化カリウム液等と異なり、安定した電力で長寿命の電池ができる。作用原理は限定されないが、電解液4をアルカリ性の「ミネラルイオン水」にすることで、更にはpHを特定範囲に調整することで、電極(表面)が安定化されると考えられる。特に、負極1の酸化還元反応による化学反応がミネラルイオンで抑制され極めて徐々には酸化還元するが溶解せず、正極2(表面)は酸化せずと考察する。
<Composition and physical characteristics of electrolyte>
<< pH of electrolyte >>
The electrolytic solution 4 of the battery of the present invention is characterized by containing mineral ion water having a pH of 12 or more and 14 or less, which contains alkaline earth metal ions. The pH is particularly preferably 13 or more and 14 or less.
When such an electrolytic solution 4 is used, unlike a potassium hydroxide solution that dissolves a metal, a battery having a long life can be produced with stable electric power. Although the principle of action is not limited, it is considered that the electrode (surface) is stabilized by changing the electrolytic solution 4 to alkaline "mineral ionized water" and further adjusting the pH to a specific range. In particular, it is considered that the chemical reaction due to the redox reaction of the negative electrode 1 is suppressed by mineral ions and the redox is oxidized and reduced very gradually, but the positive electrode 2 (surface) is not oxidized.

pHは、後述する「水に溶解してアルカリ土類金属イオンを与える化合物」を用いて調整することもできるし、それとは別に、「水中でアルカリ性を示す化合物」を加えて調整することも可能である。好ましくは、後述する「水に溶解してアルカリ土類金属イオンを与える化合物」、又は、「生物の灰化物よりなる灰化ミネラルイオン前駆体」で、pHを調整することが好ましい。 The pH can be adjusted by using a "compound that dissolves in water to give alkaline earth metal ions", which will be described later, or can be adjusted by adding a "compound that exhibits alkalinity in water". Is. It is preferable to adjust the pH with "a compound that dissolves in water to give alkaline earth metal ions" or "an ashed mineral ion precursor composed of biological ash", which will be described later.

該pH(範囲)は、電池供給時等の初期の電解液4のpHのことを言うが、使用時の(使用開始から使用終了までの)pHが常に上記範囲に入っているような電解液4が望ましい。 The pH (range) refers to the pH of the initial electrolytic solution 4 at the time of battery supply, etc., but the electrolytic solution such that the pH at the time of use (from the start of use to the end of use) is always within the above range. 4 is desirable.

<<電解液中のアルカリ土類金属イオン>>
アルカリ土類金属イオン(第2族元素のイオン)としては、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等が好ましいものとして挙げられる。
より好ましくは、安定した電力で長寿命の電池ができること、該イオンを含む化合物が安価である、該イオンを含む化合物が物から得られ易い、石灰岩;サンゴ石、卵の殻又は貝殻等の生物由来品から得られ易い点から、マグネシウムイオン(Mg2+)又はカルシウムイオン(Ca2+)であり、特に好ましくは、カルシウムイオン(Ca2+)である。これらのイオンは、単独で含んでいても、2種以上含んでいてもよい。
<< Alkaline earth metal ions in electrolyte >>
As the alkaline earth metal ion (ion of Group 2 element), magnesium ion, calcium ion, strontium ion, barium ion and the like are preferable.
More preferably, a long-life battery can be produced with stable power, the compound containing the ion is inexpensive, the compound containing the ion can be easily obtained from a substance, limestone; organisms such as coral stone, egg shell or shell. Magnesium ion (Mg 2+ ) or calcium ion (Ca 2+ ), particularly preferably calcium ion (Ca 2+ ), from the viewpoint of being easily obtained from the derived product. These ions may be contained alone or in combination of two or more.

マグネシウムイオン(Mg2+)と、カルシウムイオン(Ca2+)とを含む場合は、その混合比は、Ca2+リッチなモル比がコストパフォーマンス的にも好ましく、Ca2+/Mg2+=15/15〜19/1(モル比)が特に好ましい。When magnesium ion (Mg 2+ ) and calcium ion (Ca 2+ ) are contained, a Ca 2+ rich molar ratio is preferable in terms of cost performance, and Ca 2+ / Mg 2+ = 15/15 to 19 1/1 (molar ratio) is particularly preferable.

上記「水に溶解してアルカリ土類金属イオンを与える化合物」(以下、カッコ内を「アルカリ土類金属イオン供給化合物」と略記する。)としては、該アルカリ土類金属の酸化物、水酸化物、炭酸塩、炭酸水素塩等が挙げられる。より好ましくは、マグネシウム若しくはカルシウムの、酸化物、水酸化物、炭酸塩、炭酸水素塩等であり、更に好ましくは、カルシウムの、酸化物、水酸化物、炭酸塩、炭酸水素塩等であり、特に好ましくは、水酸化カルシウム(消石灰)である。また、上記を含む所謂「石灰質」と言われているものも好ましい。 The above-mentioned "compound that dissolves in water and gives alkaline earth metal ions" (hereinafter, the parentheses are abbreviated as "alkaline earth metal ion supply compound") includes oxides and hydroxides of the alkaline earth metals. Examples include compounds, carbonates, hydrogen carbonates, and the like. More preferably, it is an oxide, hydroxide, carbonate, hydrogen carbonate or the like of magnesium or calcium, and more preferably, it is an oxide, hydroxide, carbonate, hydrogen carbonate or the like of calcium. Particularly preferred is calcium hydroxide (slaked lime). Moreover, what is so-called "calcareous" including the above is also preferable.

電解液4中のアルカリ土類金属イオンや、電解液調製に用いるアルカリ土類金属イオン供給化合物の量は、最終的に得られた電解液4が前記pH範囲になるような量の範囲であることが好ましい。
アルカリ土類金属イオン供給化合物は、水に投入して(好ましくは空気を遮断した状態で溶解熟成させ)、要すれば熟成後濾過を行って、所望の電解液4を得ることができる。これらの化合物は、単独で用いても、2種以上を併用してもよい。
このときの「一部溶解したアルカリ土類金属イオンペースト」を、後述の電解質活物質として又は電解質活物質の原料としても使用することが好ましい。
なお、「水に溶解してアルカリ土類金属イオンを与える化合物」のみでpHを調整し前記範囲に収めることが好ましいが、適宜、他の「水中でアルカリ性を示すイオン化合物」を加えてpHを調整することもできる。
The amount of the alkaline earth metal ion in the electrolytic solution 4 and the alkaline earth metal ion supply compound used for preparing the electrolytic solution is in the range of the amount so that the finally obtained electrolytic solution 4 is in the pH range. Is preferable.
The alkaline earth metal ion supply compound can be put into water (preferably dissolved and aged in a state where air is blocked), and if necessary, filtered after aging to obtain a desired electrolytic solution 4. These compounds may be used alone or in combination of two or more.
At this time, it is preferable to use the "partially dissolved alkaline earth metal ion paste" as an electrolyte active material, which will be described later, or as a raw material for the electrolyte active material.
It is preferable to adjust the pH with only the "compound that dissolves in water and gives alkaline earth metal ions" and keep it within the above range, but if appropriate, add another "ionic compound that exhibits alkalinity in water" to adjust the pH. It can also be adjusted.

上記アルカリ土類金属イオン供給化合物として、生物由来品を用いることが、コスト的に有利である、人体・自然に優しい等の点から好ましい。
該生物由来品としては、安価に入手できること、廃棄物として入手可能であること等から、サンゴ石;卵の殻;牡蠣殻等の貝殻;等も好ましい。
It is preferable to use a biological product as the alkaline earth metal ion supply compound from the viewpoints of cost advantage, human body and nature friendliness, and the like.
As the biological product, coral stones; egg shells; shells such as oyster shells; and the like are also preferable because they can be obtained at low cost and as waste.

<<電解液中の生物の灰化物>>
本発明における電解液は、前記したものの他に、更に「生物の灰化物よりなる灰化ミネラルイオン前駆体」を含有することが好ましい。これらを含有すると酸化が抑制されて電極(表面)や電材活物質が安定になり、一定の安定した電力供給で長寿命の電池ができる。
なお、作用原理は限定されないが、これを含有することで、生物中の微量元素を含む化合物若しくはイオンが、電極(表面)を安定化すると考えられる。特に、負極1の過度の酸化が抑制されて徐々には酸化するが溶解せず、正極2(表面)の化学反応が抑制されると考えられた。生物中の微量元素としては、ナトリウム、カリウム、マグネシウム、カルシウム、リン、亜鉛、マンガン、セレン、鉄等が挙げられる。このうち、「ミネラルイオン水」に既に含有されていた金属イオン以外の金属イオンが、更に電池性能を向上させると考えられる。
<< Biological ashes in electrolyte >>
The electrolytic solution in the present invention preferably further contains "an ashed mineral ion precursor composed of a biological ash" in addition to the above-mentioned one. When these are contained, oxidation is suppressed, the electrode (surface) and the active material of the electric material become stable, and a long-life battery can be obtained with a constant and stable power supply.
Although the principle of action is not limited, it is considered that the inclusion of this stabilizes the electrode (surface) by a compound or ion containing a trace element in an organism. In particular, it was considered that the excessive oxidation of the negative electrode 1 was suppressed and the negative electrode 1 was gradually oxidized but not dissolved, and the chemical reaction of the positive electrode 2 (surface) was suppressed. Examples of trace elements in living organisms include sodium, potassium, magnesium, calcium, phosphorus, zinc, manganese, selenium, iron and the like. Of these, metal ions other than the metal ions already contained in the "mineral ion water" are considered to further improve the battery performance.

特に、上記生物がミネラル成分を多く含む原生生物又は植物であることがより好ましい。該原生生物としては、藻類、原生動物類等が挙げられ、該植物としては、種子植物等が挙げられる。
該藻類としては海藻等が好ましく、中でも、緑藻;モズク、コンブ、ワカメ、ホンダワラ、ヒジキ等の褐藻;紅藻;珪藻等がより好ましい。
該種子植物としては、チャノキ等が好ましく、中でも、それらの葉、茎、根等がより好ましい。
本発明における電解液は、生物の灰化物よりなる灰化ミネラルイオン前駆体を含有することが好ましいが、上記生物としては、草木又は海藻であることが特に好ましい。
In particular, it is more preferable that the organism is a protist or a plant containing a large amount of mineral components. Examples of the protist include algae, protozoa and the like, and examples of the plant include seed plants and the like.
Seaweeds and the like are preferable as the algae, and among them, green algae; brown algae such as mozuku, kombui, wakame seaweed, sargassum, and hijiki; red algae; diatomaceae and the like are more preferable.
As the seed plant, tea plant and the like are preferable, and among them, their leaves, stems, roots and the like are more preferable.
The electrolytic solution in the present invention preferably contains an ashed mineral ion precursor composed of an ashed product of an organism, and the organism is particularly preferably a plant or seaweed.

また、上記生物又は上記生物の一部を含む廃棄物から、上記「生物」(生物の加工品、生物由来物を含む)を得ることも好ましい。
そのような廃棄物としては、茶の出し殻、根菜類加工残渣、雑草類等の種子植物由来品;褐藻等の海藻(脱塩処理がされていることが好ましい);ホンダワラ等が挙げられる。また、該廃棄物としては、菌床残渣等も挙げられる。
It is also preferable to obtain the above-mentioned "organism" (including processed biological products and biological products) from the above-mentioned organism or waste containing a part of the above-mentioned organism.
Examples of such wastes include tea husks, root vegetable processing residues, seed plant-derived products such as weeds; seaweeds such as brown algae (preferably desalted); sargassum and the like. Moreover, as the waste, the fungus bed residue and the like can also be mentioned.

上記「生物」若しくは上記「生物」の一部や、上記「生物(の一部)を含む廃棄物」は、焼成して炭素になるので、本発明では、これらを、「炭素前駆体」、「生物由来の炭素前駆体」等と言う場合がある。 Since the above-mentioned "organism" or a part of the above-mentioned "organism" and the above-mentioned "waste containing (a part of) the organism" are calcined to become carbon, in the present invention, these are referred to as "carbon precursor". It may be referred to as "biological carbon precursor" or the like.

「生物の灰化物」は、上記生物を灰化したものであり、草木灰として入手できるものも好適に使用できる。
本発明における電解液には、「生物の灰化物の水溶性ミネラル成分」を含有することが好ましいが、該水溶性成分は、該灰化物から別途分離しておいて電解液4中に含有させてもよいが、電解液4を構成する水に投入し、熟成後に濾過して、水溶性イオン成分だけを電解液4に含有させるようにしてもよい。
The "ashed organism" is an ashes of the above-mentioned organism, and those available as wood ash can also be preferably used.
The electrolytic solution in the present invention preferably contains "water-soluble mineral component of biological ash", but the water-soluble component is separately separated from the ash and contained in the electrolytic solution 4. However, it may be added to the water constituting the electrolytic solution 4 and filtered after aging so that only the water-soluble ionic component is contained in the electrolytic solution 4.

<<電解液中の電解質活物質>>
上記電解液は、上記ミネラルイオン水を含有すると共に、更に電解質活物質を含有し、該電解質活物質が、上記電解液を担持した「生物由来の炭素前駆体」を焼成してなるものであることが好ましい。
上記電解液は、更に、電解質活物質として、(好ましくは「生物由来の炭素前駆体」に)、「上記ミネラルイオン水及び上記灰化ミネラルイオン前駆体を担持して焼成してなる高温焼成炭素群」を含有することが好ましい。
そして、上記高温焼成炭素群は、(上記電解液等を担持した)「生物由来の炭素前駆体」をマイクロ波励起で高温プラズマ焼成したものであることが特に好ましい。
ここで、該「担持させる電解液」としては前記したものが挙げられるが、「焼成して得られる該高温焼成炭素群」をそこに含有させて実際に電池に使用される電解液と全く同一の組成を有する電解液である必要はない。
該電解質活物質は、ミネラルイオン水を「生物由来の炭素前駆体」に担持させた状態で、高温焼成してなる高温焼成炭素群であることが更に好ましい。強アルカリ性を示す高温焼成炭素群であることが特に好ましい。ここで、「生物由来の炭素前駆体」には、茶、海藻等の生物自体も含まれるので、それら生物が高温焼成中に炭素になって(炭化して)、「高温焼成炭素群」となる形態が含まれる。上記「生物」は、「廃棄物」と読み換えることもできる。
<< Electrolyte active material in electrolyte >>
The electrolytic solution contains the mineral ionized water and further contains an electrolyte active material, and the electrolyte active material is obtained by firing a "biological carbon precursor" carrying the electrolytic solution. Is preferable.
The electrolytic solution further comprises, as an electrolyte active material (preferably in a "biologically-derived carbon precursor"), "high-temperature calcined carbon obtained by supporting and calcining the mineral ion water and the incinerated mineral ion precursor". It is preferable to contain "group".
The high-temperature calcined carbon group is particularly preferably one in which a "biological carbon precursor" (carrying the above-mentioned electrolytic solution or the like) is calcined by high-temperature plasma by microwave excitation.
Here, the above-mentioned one is mentioned as the "supporting electrolytic solution", and the electrolytic solution actually used for the battery is exactly the same as the electrolytic solution actually used for the battery by containing the "high temperature calcined carbon group obtained by firing". It does not have to be an electrolytic solution having the composition of.
The electrolyte active material is more preferably a high-temperature calcined carbon group formed by high-temperature calcining in a state where mineral ionized water is supported on a "biologically-derived carbon precursor". It is particularly preferable that it is a high-temperature calcined carbon group exhibiting strong alkalinity. Here, since the "biologically-derived carbon precursor" includes organisms such as tea and seaweed, these organisms become carbon (carbonized) during high-temperature firing, and are referred to as "high-temperature calcined carbon group". The form is included. The above "organism" can also be read as "waste".

本発明における電解液4は、通常の「アルカリ土類金属イオンを含有するpHが12以上14以下のミネラルイオン水」以外に、新たな電解質活物質として、「前記のミネラルイオン水を含むアルカリ土類金属イオンペースト」や、「『灰化ミネラルイオン前駆体を含有するペースト』、好ましくは『生物由来品の灰化物のペースト』、特に好ましくは『草木灰のペースト』」や、「前記の電解液を担持し高温焼成した炭素群」を含有することが極めて好適である。上記高温焼成した炭素群は、前記した電解液やミネラルイオン水を、前記「生物由来の炭素前駆体」に担持させた状態で高温焼成して炭素化してなるものであることが好ましい。 The electrolytic solution 4 in the present invention is, in addition to the usual "mineral ionized water containing alkaline earth metal ions and having a pH of 12 or more and 14 or less", as a new electrolyte active material, "alkaline soil containing the above-mentioned mineral ionized water". "Metallic ion paste", "" paste containing ashed mineral ion precursor ", preferably" ashed paste of biological product ", particularly preferably" vegetation ash paste "", "the above-mentioned electrolyte solution" It is extremely preferable to contain "a carbon group that is supported and fired at a high temperature". The high-temperature calcined carbon group is preferably carbonized by high-temperature calcining in a state where the above-mentioned electrolytic solution or mineral ionized water is supported on the "biologically-derived carbon precursor".

従来の活物質である、グラファイト、グラフェン等の電解液中に含有することも好ましく、また、必須ではないが、オキシ水酸化ニッケル、二酸化マンガン等の電解質活物質を含有することも好ましい。
上記電解液は、更に、上記ミネラルイオン水によってグラファイトを層間剥離したグラフェンを含有することが特に好ましい。
It is also preferable to contain it in an electrolytic solution such as graphite or graphene, which is a conventional active material, and it is also preferable to contain an electrolyte active material such as nickel oxyhydroxide or manganese dioxide, although it is not essential.
It is particularly preferable that the electrolytic solution further contains graphene in which graphite is delaminated with the mineral ionized water.

グラファイトは、グラフェンの構造が積層してなるものを言う。「グラファイト」としては、何層か積み重なって、粉末状になったものも含まれる。
グラファイト、グラフェン、オキシ水酸化ニッケル、二酸化マンガン等の電解質活物質の電解液4中の形状は粉体状であることが好ましい。
これらの電解質活物質が含有されていると、電解液4の電導性を良化させ、電極が安定化され、電池寿命が延び、電圧、電流値が長期間安定する等の効果がある。
Graphite refers to a laminated structure of graphene. "Graphite" also includes those that are in the form of powder by stacking several layers.
The shape of the electrolyte active material such as graphite, graphene, nickel oxyhydroxide, and manganese dioxide in the electrolytic solution 4 is preferably powdery.
When these electrolyte active materials are contained, there are effects such as improving the conductivity of the electrolytic solution 4, stabilizing the electrodes, extending the battery life, and stabilizing the voltage and current values for a long period of time.

該電解質活物質は、含有されなくてもよいが、含有される場合は、電解液全体に対して、30質量%以上70質量%以下が好ましく、60質量%以上80質量%以下がより好ましく、85質量%以上90質量%以下が特に好ましい。 The electrolyte active material may not be contained, but when it is contained, it is preferably 30% by mass or more and 70% by mass or less, more preferably 60% by mass or more and 80% by mass or less, based on the entire electrolytic solution. It is particularly preferably 85% by mass or more and 90% by mass or less.

該電解質活物質は、その粉体を上記ミネラルイオン水電解液で混練して電解液4中に含有させたり、電極に塗布したり、スクリーン印刷したりして使用することが好ましい。 The electrolyte active material is preferably used by kneading the powder with the above-mentioned mineral ion water electrolytic solution and containing it in the electrolytic solution 4, applying it to an electrode, or performing screen printing.

<<電解液中の増粘剤、その他物質>>
本発明の電解液には、増粘剤を加えて増粘することも好ましい。該増粘剤としては、特に限定はないが、天然由来物が好ましく、電解液で加熱抽出し、高分子を低分子として濃厚に析出させたフコイダン、キサンタンガム等の天然多糖類が特に好ましい。
既存のカルボキシメチルセルロース(CMC)等は、通電阻害を引き起こす場合がある。
また、本発明の電解液には、電池性能を悪化させない範囲で、上記物質以外の「その他物質」を含有させることができる。
<< Thickeners in electrolytes and other substances >>
It is also preferable to add a thickener to the electrolytic solution of the present invention to thicken it. The thickener is not particularly limited, but a naturally derived product is preferable, and a natural polysaccharide such as fucoidan or xanthan gum, which is heat-extracted with an electrolytic solution and concentratedly precipitated as a low molecular weight polymer, is particularly preferable.
Existing carboxymethyl cellulose (CMC) and the like may cause conduction inhibition.
Further, the electrolytic solution of the present invention may contain "other substances" other than the above substances as long as the battery performance is not deteriorated.

<吸水性基材>
本発明の電池は、図2(b)に概略断面図を示したように、電解液4が吸水性基材3に含浸されて負極1と正極2に挟まれていてもよい。
該吸水性基材3としては、綿、不織布、フェルト、織布、紙、貫通気泡体等が挙げられる。
該吸水性基材3の大きさは、前記した電極板や電極の大きさの範囲内であることが好ましく、吸水性基材3の厚さは、前記した電極間の距離の範囲内であることが好ましい。また、両電極間に挟まれた状態が好ましい。
<Water-absorbent base material>
As shown in the schematic cross-sectional view of FIG. 2B, the battery of the present invention may be impregnated with the water-absorbent base material 3 and sandwiched between the negative electrode 1 and the positive electrode 2.
Examples of the water-absorbent base material 3 include cotton, non-woven fabric, felt, woven fabric, paper, and through-cell cells.
The size of the water-absorbent base material 3 is preferably within the range of the sizes of the electrode plates and electrodes described above, and the thickness of the water-absorbent base material 3 is within the range of the distance between the electrodes described above. Is preferable. Further, it is preferable that the electrode is sandwiched between the two electrodes.

<電池用電解液>
本発明は、上記した電池用に用いられる、上記した組成を有する電池用電解液でもある。本発明の電池用電解液は、本発明の上記した電池用として好適である。
<Battery electrolyte>
The present invention is also an electrolytic solution for a battery having the above-mentioned composition, which is used for the above-mentioned battery. The electrolytic solution for a battery of the present invention is suitable for the above-mentioned battery of the present invention.

<電池用電解液の製造方法>
本発明は、上記電池の上記した製造方法でもある。すなわち、負極1として水素よりイオン化傾向の大きい金属体を用い、正極2として導電体を用い、該負極1と該正極2の間に存在する電解液4としてpHが12以上14以下のアルカリ水を用いた電池用電解液の製造方法であって、少なくとも、マグネシウム若しくはカルシウムの、酸化物、水酸化物、炭酸塩又は炭酸水素塩を水に溶解させてアルカリ土類金属イオンを含有させ、pHを調整し、生物の灰化物の水溶性成分を溶解させることを特徴とする電池用電解液の製造方法でもある。
なお、限定はされないが、溶解は空気を遮断した状態で行うことが好ましい。
<Manufacturing method of electrolyte for batteries>
The present invention is also the above-mentioned manufacturing method of the above-mentioned battery. That is, a metal body having a higher ionization tendency than hydrogen is used as the negative electrode 1, a conductor is used as the positive electrode 2, and alkaline water having a pH of 12 or more and 14 or less is used as the electrolytic solution 4 existing between the negative electrode 1 and the positive electrode 2. The method for producing an electrolytic solution for a battery used, which comprises dissolving at least an oxide, hydroxide, carbonate or bicarbonate of magnesium or calcium in water to contain alkaline earth metal ions, and adjusting the pH. It is also a method for producing an electrolytic solution for a battery, which is characterized by adjusting and dissolving a water-soluble component of a biological ash.
Although not limited, it is preferable that the dissolution is performed in a state where the air is shut off.

製造方法の好ましい範囲は、前記した通りである。また、pHの調整は、「アルカリ土類金属イオン供給化合物」に水を投入して、好ましくは空気を遮断した状態で、好ましくは12時間以上熟成(静置)し、「アルカリ土類金属イオン供給化合物」の一部又は表面層又は全部を、ミネラルイオン(アルカリ土類金属イオン)として溶解させて、pHが所望の範囲に入ったならば、それでpH調整終了とする(それでpHを調整したとみなす)ことができる。
途中及び/最後に、濾過をして電池用電解液を製造することが好ましい。
The preferred range of the production method is as described above. To adjust the pH, water is added to the "alkaline earth metal ion supply compound", and the mixture is preferably aged (standing) for 12 hours or more in a state where the air is blocked, and then "alkaline earth metal ion" is adjusted. Part or all of the "supply compound" is dissolved as mineral ions (alkaline earth metal ions), and when the pH is within the desired range, the pH adjustment is completed (the pH is adjusted accordingly). Can be regarded as).
It is preferable to produce an electrolytic solution for a battery by filtering in the middle and / at the end.

<電池の製造方法>
限定はされないが、電極間に吸水性基材3を挟み、そこに電解液4を染みこませ、電解液4の水分が気化しないように、ラミネート処理によって封入することが好ましい。寒冷地仕様では、ラミネート封入後、断熱構造にすることがより好ましい。
電解液4を再注水すれば、発電機能を繰り返すことができる。
<Battery manufacturing method>
Although not limited, it is preferable that the water-absorbent base material 3 is sandwiched between the electrodes, the electrolytic solution 4 is impregnated therein, and the electrolytic solution 4 is sealed by a laminating treatment so as not to vaporize the water content. In cold climate specifications, it is more preferable to have a heat insulating structure after encapsulating the laminate.
If the electrolytic solution 4 is reinjected, the power generation function can be repeated.

以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples as long as the gist thereof is not exceeded.

実施例1
脱塩水に消石灰(水酸化カルシウム)を、液のpHが13.5以上14.0以下になるように加え、空気を遮断した状態で12時間以上熟成した後に濾過して、ミネラルイオン水よりなる電解液を得た。
Example 1
Slaked lime (calcium hydroxide) is added to demineralized water so that the pH of the solution is 13.5 or more and 14.0 or less, and after aging for 12 hours or more with the air shut off, it is filtered to consist of mineral ion water. An electrolyte was obtained.

図2に示したような形態の電池を作製した。負極1としてアルミニウム板(20mm×20mm×厚さ0.3mm)を用い、正極2として銅板(25mm×20mm×厚さ0.3mm)を用い、電極間には、綿フェルト(厚さ0.3mm)を挟んだ。すなわち、電極間距離を0.3mmとした。なお、電極として、0.03mm程度のアルミ箔と銅箔の電池も作製した。
上記電解液を、上記綿フェルトに染みこませ、図2に示したような電池を作製した。
A battery having the form shown in FIG. 2 was produced. An aluminum plate (20 mm × 20 mm × thickness 0.3 mm) is used as the negative electrode 1, a copper plate (25 mm × 20 mm × thickness 0.3 mm) is used as the positive electrode 2, and cotton felt (thickness 0.3 mm) is used between the electrodes. ) Was sandwiched. That is, the distance between the electrodes was set to 0.3 mm. In addition, as an electrode, a battery of about 0.03 mm of aluminum foil and copper foil was also manufactured.
The cotton felt was impregnated with the electrolytic solution to prepare a battery as shown in FIG.

負極1のアルミニウム板と正極2の銅板の間の電圧を測定したところ、0.605V電流値が0.35mAとなった。すなわち、ミネラルイオン水のみでも発電することが確認された。
このときの電極サイズは、僅かに、アルミ電極15mm×20mm、銅電極15mm×17mmであり綿フェルトのサイズは12mm×15mmと極めて小さかった。
When the voltage between the aluminum plate of the negative electrode 1 and the copper plate of the positive electrode 2 was measured, the current value of 0.605V was 0.35 mA. That is, it was confirmed that only mineral ionized water could generate electricity.
At this time, the electrode size was slightly 15 mm × 20 mm for the aluminum electrode and 15 mm × 17 mm for the copper electrode, and the size of the cotton felt was extremely small at 12 mm × 15 mm.

ラミネート処理をせずに放置しても98時間程度、そのままの状態の電圧・電流値で通電し続けたが、その後、解放状態のために電解水が気化すると徐々に電圧・電流値が低下してきた。
しかし、その間隙部位に電解液を僅かに滴下すると、直ぐにその電圧・電流値が元の状態に復帰した。
Even if it was left without laminating, it continued to be energized with the voltage and current values as it was for about 98 hours, but after that, when the electrolyzed water vaporized due to the released state, the voltage and current values gradually decreased. rice field.
However, when the electrolytic solution was slightly dropped in the gap portion, the voltage / current value immediately returned to the original state.

実施例2
実施例1において、消石灰(水酸化カルシウム)単独に代えて、消石灰(水酸化カルシウム)と酸化マグネシウムの混合物(Ca2+/Mg2+=20/0.3(モル比))に代えて、更にpHを14にした以外は、実施例1と同様にミネラルイオン水を調製し、同様に電池を作製した。
Example 2
In Example 1, instead of slaked lime (calcium hydroxide) alone, a mixture of slaked lime (calcium hydroxide) and magnesium oxide (Ca 2+ / Mg 2+ = 20 / 0.3 (molar ratio)) is further replaced with pH. Mineral ionized water was prepared in the same manner as in Example 1 except that the value was set to 14, and a battery was prepared in the same manner.

負極1のアルミニウム板と正極2の銅板の間の電圧を測定したところ、0.803Vであった。電流値が0.8mAと向上した。
その結果、前記同様な条件下で約108時間、そのままの状態で通電し続けた。
The voltage between the aluminum plate of the negative electrode 1 and the copper plate of the positive electrode 2 was measured and found to be 0.803V. The current value improved to 0.8 mA.
As a result, energization was continued as it was for about 108 hours under the same conditions as described above.

実施例3
実施例1において、消石灰(水酸化カルシウム)単独に代えて、消石灰(水酸化カルシウム)と生石灰(酸化カルシウム)の比を「10/1(カルシウムイオンのモル比)」とし、pHを14にした以外は、実施例1と同様に電池を作製した。
Example 3
In Example 1, instead of slaked lime (calcium hydroxide) alone, the ratio of slaked lime (calcium hydroxide) and quicklime (calcium oxide) was set to "10/1 (molar ratio of calcium ions)" and the pH was set to 14. Except for the above, a battery was produced in the same manner as in Example 1.

電極間の電圧を測定したところ、電圧0.85V、電流値0.89mAであった。
生石灰は不純物として鉄イオンも含むから、その分、電圧・電流値が向上したと考えられた。
その結果、前記同様な条件下において、約98時間、そのままの状態で通電し続けたが気温が高くその環境下において電解液が早めに気化した。完全な機密性の高い封入処理に変えたところ、上記電圧・電流で、実施例1と同じ時間、連続した電力が得られた。
When the voltage between the electrodes was measured, the voltage was 0.85 V and the current value was 0.89 mA.
Since quicklime also contains iron ions as impurities, it is considered that the voltage and current values have improved accordingly.
As a result, under the same conditions as described above, energization was continued for about 98 hours as it was, but the temperature was high and the electrolytic solution vaporized early in that environment. When the encapsulation process was changed to a completely highly airtight encapsulation process, continuous electric power was obtained at the above voltage and current for the same time as in Example 1.

実施例4
実施例1で調製した「ミネラルイオン水からなる電解液」に、更に「生物の灰化物」として、草木灰(茶殻の灰化物、又は、ホンダワラの灰化物)を加えて12時間熟成後、濾過して不溶物を濾別した。これによって、電解液に「生物の灰化物の水溶性のナトリウム、カリウム、カルシウム、リン、亜鉛、マンガン、セレン、鉄分等の複数のイオン成分」を溶解させ、pHを12.5に調整して電解液とした。すなわち、電解液に、「生物の灰化物よりなる灰化ミネラルイオン前駆体」を含有させた。
Example 4
To the "electrolyte solution consisting of mineral ionized water" prepared in Example 1, wood ash (ashed from tea leaves or ashed from Sargassum) is further added as "biological ash", and after aging for 12 hours, the mixture is filtered. The insoluble material was filtered off. As a result, "a plurality of ionic components such as water-soluble sodium, potassium, calcium, phosphorus, zinc, manganese, selenium, iron, etc. of biological ashes" are dissolved in the electrolytic solution, and the pH is adjusted to 12.5. It was used as an electrolytic solution. That is, the electrolytic solution contained "an ashed mineral ion precursor composed of biological ash".

電極間の電圧を測定したところ、茶殻の灰化物もホンダワラの灰化物も何れも、電圧1.2V、電流値が0.92mAであった。
その結果、前記同様な条件下において、113時間そのままの状態で通電し続けた。
When the voltage between the electrodes was measured, both the ashes of tea leaves and the ashes of Sargassum had a voltage of 1.2 V and a current value of 0.92 mA.
As a result, under the same conditions as described above, energization was continued for 113 hours as it was.

実施例5
実施例1で調製した「ミネラルイオン水からなる電解液」に、「生物の灰化物」として、草木灰(茶殻の灰化物)を加えて、pHは少量の消石灰(水酸化カルシウム)を用いて、PH12.0に調整し、電解液を調製した。すなわち、電解液に、「生物の灰化物よりなる灰化ミネラルイオン前駆体」を含有させた。該電解液には、主にカルシウムイオン(Ca2+)とマグネシウムイオン(Mg2+)、その他カリウムイオン(K)が含有されていた。
Example 5
To the "electrolyte solution consisting of mineral ionized water" prepared in Example 1, wood ash (ashed tea leaves) was added as "animal ash", and a small amount of slaked lime (calcium hydroxide) was used at pH. The pH was adjusted to 12.0, and an electrolytic solution was prepared. That is, the electrolytic solution contained "an ashed mineral ion precursor composed of biological ash". The electrolytic solution mainly contained calcium ion (Ca 2+ ), magnesium ion (Mg 2+ ), and other potassium ion (K + ).

電極間の電圧を測定したところ、電圧0.56V、電流値が1.13mAであった。
その結果、前記同様な条件下において、122時間、そのままの状態で通電し続けた。
When the voltage between the electrodes was measured, the voltage was 0.56 V and the current value was 1.13 mA.
As a result, under the same conditions as described above, energization was continued as it was for 122 hours.

実施例6
実施例1で調製した電解液98質量部に、高温焼成炭素群を2質量部加えて電解液を調製した。pHは14であった。
Example 6
An electrolytic solution was prepared by adding 2 parts by mass of a high-temperature calcined carbon group to 98 parts by mass of the electrolytic solution prepared in Example 1. The pH was 14.

上記高温焼成炭素群は、例えば、以下のようにして得たが、具体的にはこれには限定されない。
すなわち、煎茶出し殻(「生物由来の炭素前駆体」に該当)を乾燥状態とし、乾燥質量1kgを、実施例1ないし実施例5の各実施例で調製した電解液(ミネラルイオン水を含有する)で十分に湿らせ、2時間放置後に再び乾燥させて耐熱容器に入れた。
一方、「紙素材に電解液を浸み込ませ乾燥させた乾燥物」10gをガス火で一部炭化させた。
その後、その「一部炭化させた紙」と「前記炭素前駆体である茶殻」を共に軽く混合し、マイクロ波を照射した。まず、炭化した部位から高温熱プラズマが発生すると共に、その約1000℃の熱伝導で、茶殻も炭化しながら徐々に煙を出して燃えた。煙が収まると共に茶殻自体も高温赤熱した。その赤熱状態が約2分間経過した時点で、不定形炭素である高温焼成炭素群が得られた。熱が冷めた時点で、乳鉢にて微細化して、高温焼成炭素群よりなる電解質活物質を得た。実施例1ないし実施例5の各実施例で調製した電解液で十分に湿らせたことに対応して、5種類の電解質活物質を得た。
The high-temperature calcined carbon group was obtained, for example, as follows, but is not specifically limited thereto.
That is, the sencha husks (corresponding to "biological carbon precursor") are put into a dry state, and the dry mass of 1 kg is contained in the electrolytic solution (containing mineral ionized water) prepared in each of Examples 1 to 5. ) Was sufficiently moistened, left for 2 hours, dried again, and placed in a heat-resistant container.
On the other hand, 10 g of "a dried product obtained by impregnating a paper material with an electrolytic solution and drying it" was partially carbonized by a gas fire.
Then, the "partially carbonized paper" and the "tea husk which is the carbon precursor" were lightly mixed together and irradiated with microwaves. First, high-temperature thermal plasma was generated from the carbonized part, and the heat conduction at about 1000 ° C. gradually emitted smoke while carbonizing the tea leaves and burned them. As the smoke subsided, the tea leaves themselves became hot and red hot. When the red-hot state passed for about 2 minutes, a high-temperature calcined carbon group, which is an amorphous carbon, was obtained. When the heat cooled, it was refined in a mortar to obtain an electrolyte active material consisting of high-temperature calcined carbon groups. Five kinds of electrolyte active materials were obtained corresponding to sufficient moistening with the electrolytic solution prepared in each of Examples 1 to 5.

電極間の電圧を測定したところ、何れも1.29Vであった。電流値は何れも3.1mAであった。
その結果、前記同様な条件下において約115時間、そのままの状態で通電し続けた。
When the voltage between the electrodes was measured, it was 1.29V in each case. The current value was 3.1 mA in each case.
As a result, under the same conditions as described above, energization was continued as it was for about 115 hours.

実施例7
実施例1で調製した電解液97質量部に、「実施例6で用いた高温焼成炭素群」3質量部を加えて電解液を調製した。pHは14であった。
Example 7
An electrolytic solution was prepared by adding 3 parts by mass of "high-temperature calcined carbon group used in Example 6" to 97 parts by mass of the electrolytic solution prepared in Example 1. The pH was 14.

電極間の電圧を測定したところ、1.83Vであった。電流値は5.1mAであった。
その結果、前記同様な条件下において約108時間、そのままの状態で通電し続けた。
The voltage between the electrodes was measured and found to be 1.83V. The current value was 5.1 mA.
As a result, the power was continued to be energized as it was for about 108 hours under the same conditions as described above.

実施例8
実施例1で調製した電解液95質量部に、実施例6で用いた「実施例4で調製した電解液(ミネラルイオン水を含有する)で十分に湿らせて乾燥後炭化させて得た高温焼成炭素よりなる電解質活物質」5質量部を加えて電解液を調製した。
Example 8
95 parts by mass of the electrolytic solution prepared in Example 1 was sufficiently moistened with the electrolytic solution prepared in Example 4 (containing mineral ion water) used in Example 6, dried, and then carbonized to obtain a high temperature. An electrolytic solution was prepared by adding 5 parts by mass of "electrolyte active material composed of calcined carbon".

電極間の電圧を測定したところ、初期電圧は何れも3.6V、安定電圧は何れも1.287V、電流値は何れも8.05mAであった。
その結果、実施例1と同様の条件下において、111時間、そのままの状態で通電し続けた。
When the voltage between the electrodes was measured, the initial voltage was 3.6V, the stable voltage was 1.287V, and the current value was 8.05mA.
As a result, under the same conditions as in Example 1, energization was continued as it was for 111 hours.

実施例9
実施例8において、「実施例6で用いた実施例4の電解液に代えて、実施例6で用いた実施例5の電解液を用いて得た電解質活物質」を用いた以外は、実施例8と同様に電池を作製し、同様に評価した。pHは14であった。
Example 9
In Example 8, except that "an electrolyte active material obtained by using the electrolytic solution of Example 5 used in Example 6 instead of the electrolytic solution of Example 4 used in Example 6" was used. A battery was prepared in the same manner as in Example 8 and evaluated in the same manner. The pH was 14.

電極間の電圧、電流値を測定したところ、1.13V、11.07mAであった。
その結果、実施例1と同様の条件下において、118時間、そのままの状態で通電し続けた。
When the voltage and current values between the electrodes were measured, it was 1.13V and 11.07mA.
As a result, under the same conditions as in Example 1, energization was continued for 118 hours as it was.

実施例10
茶殻の草木灰53.3質量部、消石灰24.4質量部、及び、実施例6と同じ「高温焼成炭素群」22.3質量部、実施例1のミネラルイオン水を適量添加し、撹拌混合して練り込み電解液を調製した。
Example 10
Add an appropriate amount of 53.3 parts by mass of wood ash and 24.4 parts by mass of slaked lime, 22.3 parts by mass of the same "high temperature calcined carbon group" as in Example 6, and mineral ion water of Example 1 and stir and mix. The kneaded electrolyte was prepared.

一方、縦30mm×横35mm×厚さ0.3mmの銅板とアルミニウム板をそれぞれ1枚ずつ用意した。
該銅板の上に、上記電解液4を平均的に直径18mm、塗布厚さ1.2mmとなるよう(電極間距離1.2mm)、塗布し更に薄い綿フェルトをのせて、その中央部に電解液を滴下しその上にアルミニウム板をのせて、電解液と綿フェルトを挟み込みした状態で、両電極間をマスキングテープで止めた。
On the other hand, one copper plate and one aluminum plate having a length of 30 mm, a width of 35 mm, and a thickness of 0.3 mm were prepared.
The electrolyte 4 is applied onto the copper plate so that the average diameter is 18 mm and the coating thickness is 1.2 mm (distance between electrodes 1.2 mm), and a thin cotton felt is placed on the copper plate, and electrolysis is performed in the center thereof. The liquid was dropped, an aluminum plate was placed on the aluminum plate, and the electrolyte and cotton felt were sandwiched between them, and the space between the two electrodes was fixed with masking tape.

電極間の電圧を測定したところ、電圧3.58V、電流値24.74mAであった。
その結果、前記同様な条件下において約88時間、そのままの状態で通電し続けた。
When the voltage between the electrodes was measured, the voltage was 3.58 V and the current value was 24.74 mA.
As a result, the power was continued to be energized as it was for about 88 hours under the same conditions as described above.

<結果>
実施例の全ての電池が安定的に電力を供給できた。なお、実施例1〜8の電解液はペースト状ではなく低粘度液体であったが、実施例9、10の電解液はペースト状であった。
<Result>
All the batteries of the examples were able to supply electric power stably. The electrolytic solutions of Examples 1 to 8 were not paste-like but low-viscosity liquids, but the electrolytic solutions of Examples 9 and 10 were paste-like.

草木灰(生物の灰化物)の含有されていないミネラルイオン水のみからなる電解液は、pHが高いために、高電圧と高電流が得られるが、電極を侵さなかった。
草木灰(生物の灰化物)の含有されている電解液も、「ミネラルイオン水と草木灰(生物の灰化物)(灰化ミネラルイオン前駆体)とが複合された電解質活物質」を含有する電解液も、「それら電解液と高温焼成炭素群とが複合された電解液」も、pHが12以上14以下であれば(pHが14近傍でも)、高電圧と高い電流値が得られた上に電極を侵さなかった。
草木灰(生物の灰化物)の含有されている電解液は、pH12近傍でも、極めて穏やかであり、草木灰(生物の灰化物)は、過度に電極を酸化溶解させない抑制材としても機能した。
これらの基本的な機能を効果的に可変することで、要望される電池性能が確保可能である。
The electrolytic solution consisting only of mineral ionized water containing no wood ash (animal ash) obtained high voltage and high current due to its high pH, but did not invade the electrodes.
The electrolytic solution containing vegetation ash (biological ash) also contains an "electrolyte active substance in which mineral ion water and vegetation ash (biological ash) (ashed mineral ion precursor) are combined". In addition, if the pH of the "electrolyte solution in which these electrolytes and the high-temperature calcined carbon group are combined" is 12 or more and 14 or less (even if the pH is around 14), a high voltage and a high current value can be obtained. It did not attack the electrodes.
The electrolytic solution containing vegetation ash (biological ash) was extremely mild even at around pH 12, and vegetation ash (biological ash) also functioned as an inhibitor that did not excessively oxidize and dissolve the electrodes.
By effectively varying these basic functions, the required battery performance can be ensured.

更に、電解液の水分が気化しない封入ラミネート処理によって、更に長寿命化が可能となった。また、電解液が経時で乾燥しても、ミネラルイオン水を再注水すれば、直ぐに発電機能を繰り返すことができた。 Furthermore, the life of the electrolytic solution can be further extended by the encapsulation laminating treatment in which the water content of the electrolytic solution is not vaporized. In addition, even if the electrolyte was dried over time, the power generation function could be repeated immediately by re-injecting mineral ion water.

本発明の特定の電解液4を用いた電池は、簡便で長寿命であり、コストもかからないため、電池を製造又は使用する分野に広く利用されるものである。 The battery using the specific electrolytic solution 4 of the present invention is simple, has a long life, and is inexpensive, and is therefore widely used in the field of manufacturing or using the battery.

1 負極
2 正極
3 吸水性基材
4 電解液
5 導線
1 Negative electrode 2 Positive electrode 3 Water-absorbent base material 4 Electrolyte 5 Conductor

Claims (12)

負極として水素よりイオン化傾向の大きい金属体を用い、正極として導電体を用い、該負極と該正極の間に存在する電解液として、アルカリ土類金属イオンを含有するpHが12以上14以下のミネラルイオン水を含有することを特徴とする電池。 A metal body having a higher ionization tendency than hydrogen is used as the negative electrode, a conductor is used as the positive electrode, and an alkaline earth metal ion-containing mineral having a pH of 12 or more and 14 or less is used as the electrolytic solution existing between the negative electrode and the positive electrode. A battery characterized by containing ionized water. 上記電解液が含有するアルカリ土類金属イオンが、マグネシウムイオン又はカルシウムイオンである請求項1に記載の電池。 The battery according to claim 1, wherein the alkaline earth metal ion contained in the electrolytic solution is magnesium ion or calcium ion. 上記電解液が、更に、生物の灰化物よりなる灰化ミネラルイオン前駆体を含有する請求項1又は請求項2に記載の電池。 The battery according to claim 1 or 2, wherein the electrolytic solution further contains an ashed mineral ion precursor composed of an ashed product of an organism. 上記生物が、草木又は海藻である請求項3に記載の電池。 The battery according to claim 3, wherein the organism is a plant or seaweed. 上記電解液が、上記ミネラルイオン水を含有すると共に、更に電解質活物質を含有し、該電解質活物質が、上記電解液を担持した「生物由来の炭素前駆体」を焼成してなるものである請求項1ないし請求項4の何れかの請求項に記載の電池。 The electrolytic solution contains the mineral ionized water and further contains an electrolyte active material, and the electrolyte active material is formed by firing a "biological carbon precursor" carrying the electrolytic solution. The battery according to any one of claims 1 to 4. 上記電解液が、更に、電解質活物質として、「生物由来の炭素前駆体に、上記ミネラルイオン水及び上記灰化ミネラルイオン前駆体を担持して焼成してなる高温焼成炭素群」を含有する請求項3又は請求項4に記載の電池。 A claim that the electrolytic solution further contains, as an electrolyte active material, "a high-temperature calcined carbon group formed by supporting and calcining the mineral ion water and the incinerated mineral ion precursor on a carbon precursor derived from a living body". The battery according to item 3 or claim 4. 上記高温焼成炭素群が、上記「生物由来の炭素前駆体」をマイクロ波励起で高温プラズマ焼成したものである請求項6に記載の電池。 The high temperature firing carbon group, battery according to the "biobased carbon precursor" in der Ru請Motomeko 6 that high temperature plasma sintering with microwave excitation. 上記電解液が、更に、上記ミネラルイオン水によってグラファイトを層間剥離したグラフェンを含有する請求項1ないし請求項7の何れかの請求項に記載の電池。 The battery according to any one of claims 1 to 7, wherein the electrolytic solution further contains graphene obtained by delaminating graphite with the mineral ionized water. 請求項3ないし請求項8の何れかの請求項に記載の電池用の電解質活物質であって、上記アルカリ土類金属イオン、及び、上記灰化ミネラルイオン前駆体を含有するペースト状のものであることを特徴とする電解質活物質。 The electrolyte active material for a battery according to any one of claims 3 to 8, which is a paste containing the alkaline earth metal ion and the ashed mineral ion precursor. An electrolyte active material characterized by being present. 負極として水素よりイオン化傾向の大きい金属体を用い、正極として導電体を用い、該負極と該正極の間に存在する電解液としてpHが12以上14以下のミネラルイオン水を用いた電池用電解液の製造方法であって、
少なくとも、マグネシウム若しくはカルシウムの、酸化物、水酸化物、炭酸塩又は炭酸水素塩を水に溶解させてアルカリ土類金属イオンを含有させ、pHを調整し、生物の灰化物の水溶性成分を溶解させることを特徴とする電池用電解液の製造方法。
A battery electrolyte solution using a metal body having a higher ionization tendency than hydrogen as the negative electrode, a conductor as the positive electrode, and mineral ion water having a pH of 12 or more and 14 or less as the electrolytic solution existing between the negative electrode and the positive electrode. It is a manufacturing method of
At a minimum, oxides, hydroxides, carbonates or bicarbonates of magnesium or calcium are dissolved in water to contain alkaline earth metal ions, the pH is adjusted, and the water-soluble components of biological ash are dissolved. A method for producing an electrolytic solution for a battery, which is characterized by allowing the mixture to be used.
上記「マグネシウム若しくはカルシウムの、酸化物、水酸化物、炭酸塩又は炭酸水素塩」として、生物由来品を用いる請求項10に記載の電池用電解液の製造方法。 The method for producing an electrolytic solution for a battery according to claim 10, wherein a biological product is used as the above-mentioned "oxide, hydroxide, carbonate or hydrogen carbonate of magnesium or calcium". 上記生物由来品が、サンゴ石、卵の殻、又は、貝殻である請求項11に記載の電池用電解液の製造方法。 The method for producing an electrolytic solution for a battery according to claim 11, wherein the biological product is a coral stone, an egg shell, or a shell.
JP2019538960A 2017-08-28 2018-05-09 A method for producing a battery having an electrolytic solution containing alkaline mineral ionized water, an electrolyte active material, and an electrolytic solution for a battery. Active JP6947832B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017163435 2017-08-28
JP2017163435 2017-08-28
PCT/JP2018/017866 WO2019044042A1 (en) 2017-08-28 2018-05-09 Battery having electrolytic solution containing alkaline mineral ionized water, electrolyte active material, and method for producing battery electrolytic solution

Publications (2)

Publication Number Publication Date
JPWO2019044042A1 JPWO2019044042A1 (en) 2020-09-24
JP6947832B2 true JP6947832B2 (en) 2021-10-13

Family

ID=65525302

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019538960A Active JP6947832B2 (en) 2017-08-28 2018-05-09 A method for producing a battery having an electrolytic solution containing alkaline mineral ionized water, an electrolyte active material, and an electrolytic solution for a battery.
JP2019538984A Ceased JPWO2019044092A1 (en) 2017-08-28 2018-06-04 A method for producing mineral ionized water and a method for producing a liquid or gel using the same.

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019538984A Ceased JPWO2019044092A1 (en) 2017-08-28 2018-06-04 A method for producing mineral ionized water and a method for producing a liquid or gel using the same.

Country Status (2)

Country Link
JP (2) JP6947832B2 (en)
WO (2) WO2019044042A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465902B2 (en) * 2017-09-08 2022-10-11 Osamu Sugiyama Method for producing hydrogen gas
CN112019091B (en) 2019-05-30 2021-08-31 清华大学 Device for generating electrical energy
CN112019093B (en) 2019-05-30 2022-04-22 清华大学 Device for generating electrical energy
CN112019092B (en) * 2019-05-30 2021-12-28 清华大学 Method for generating electric energy
CN112019090B (en) 2019-05-30 2021-08-31 清华大学 Decorative ring

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122166B1 (en) * 1968-08-20 1976-07-08
JPS51140130A (en) * 1975-05-28 1976-12-02 Setsu Sasaki Method of making filler for dry batteries
JPS51140131A (en) * 1975-05-29 1976-12-02 Setsu Sasaki Rechargeable dry battery
JPS60175368A (en) * 1984-02-20 1985-09-09 Matsushita Electric Ind Co Ltd Zinc-alkaline primary cell
JPH0732690B2 (en) * 1990-08-29 1995-04-12 森下仁丹株式会社 Low-salt food
JPH07313099A (en) * 1994-05-20 1995-12-05 Tokiwa Kanpou Seiyaku:Kk Plant mineral composition, its production and health food containing the same
JPH09320614A (en) * 1996-05-23 1997-12-12 Hamada Keinosuke Development of non-lead type battery based on new battery theory and utilization thereof
JPH10229850A (en) * 1997-02-18 1998-09-02 Tokiwa Kanpo Seiyaku:Kk High ca phytogenic mineral reinforcing diet food
JP3588010B2 (en) * 1998-11-06 2004-11-10 株式会社やつか Biological mineral hold material
JP2003027964A (en) * 2001-07-11 2003-01-29 Komosu:Kk Gas turbine combustion system
DE10355400A1 (en) * 2003-11-25 2005-07-07 Noack, Andreas, Dr. Multicomponent mineral preparations and method for the preparation of multi-component mineral preparations
JP4759337B2 (en) * 2005-07-20 2011-08-31 栄基 中山 Plant mineral extract and method for producing the same
JP5568977B2 (en) * 2009-12-17 2014-08-13 東ソー株式会社 Method for recovering manganese from batteries
JP2011171132A (en) * 2010-02-19 2011-09-01 Aqumo Co Ltd Battery
JP5528153B2 (en) * 2010-02-22 2014-06-25 エコシステムリサイクリング株式会社 Method for producing high-concentration lithium solution from lithium-containing liquid and method for producing lithium carbonate
JP2013000003A (en) * 2011-06-12 2013-01-07 Yoshiro Nagado Ashed brown rice product and brown rice mineral beverage, and production method thereof
JP5847741B2 (en) * 2013-02-18 2016-01-27 Jx日鉱日石金属株式会社 Waste cathode material and method for recovering metal from waste battery
CN105594056B (en) * 2013-09-30 2018-07-06 三菱综合材料株式会社 The processing method of fluorine-containing electrolyte
JP6381906B2 (en) * 2013-12-25 2018-08-29 キリンビバレッジ株式会社 New textured container-packed beverage and method for producing the same
JP2016036343A (en) * 2014-08-07 2016-03-22 三栄源エフ・エフ・アイ株式会社 Gelatinous food and drink and method for producing gelatinous food and drink
JP6541230B2 (en) * 2016-02-16 2019-07-10 泰弘 山本 Method of producing oil-water fusion fuel

Also Published As

Publication number Publication date
JPWO2019044092A1 (en) 2020-10-22
WO2019044092A1 (en) 2019-03-07
JPWO2019044042A1 (en) 2020-09-24
WO2019044042A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6947832B2 (en) A method for producing a battery having an electrolytic solution containing alkaline mineral ionized water, an electrolyte active material, and an electrolytic solution for a battery.
JP6143945B2 (en) Zinc ion secondary battery and manufacturing method thereof
JP5927372B2 (en) Alkaline secondary battery and method for producing alkaline secondary battery
Xiao et al. Pulse electrodeposition of manganese oxide for high-rate capability supercapacitors
ES2710074T3 (en) Secondary zinc / air battery, and air electrode
JP6570545B2 (en) Air electrode, metal-air battery and air electrode material
KR101267317B1 (en) Transition metal oxide/graphene composites by using microwave-polyol process and synthesizing method thereof
JP2011511429A5 (en)
JP2017010914A (en) Air electrode, metal-air battery, air electrode material, and method for producing air electrode material
CN107579219A (en) For graphene/zinc oxide negative material of secondary zinc base battery and its preparation
WO2016163899A1 (en) Activated carbons with a high nitrogen content and a high electric conduction and the method of manufacturing activated carbons, in particular the method of manufacturing electrodes
EP2818583A1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
JP2019019014A (en) Conductive carbon mixture, electrode using the mixture, and power storage device equipped with the electrode
CN102760893A (en) Liquid activated magnesium manganese paper battery and preparation method thereof
JP2009094034A (en) Aqueous lithium secondary battery
Zhou et al. A flame-retardant polyimide interlayer with polysulfide lithium traps and fast redox conversion towards safety and high sulfur utilization Li–S batteries
Son et al. Seawater battery desalination with sodium-intercalation cathode for hypersaline water treatment
JP2019021420A (en) Conductive carbon mixture, electrode arranged by use of the mixture, and power storage device having the electrode
KR20190017097A (en) A low-temperature synthesis method of cathode material for metal-air battery and a metal-air battery fabricated thereby
WO2021160239A1 (en) Method and apparatus for the extraction of lithium from aqueous lithium sources
JP5499281B2 (en) Positive electrode active material, magnesium secondary battery, and method for producing positive electrode active material
US1139213A (en) Negative-pole plate for alkaline storage batteries.
Milošević et al. High performance of solvothermally prepared VO2 (B) as anode for aqueous rechargeable lithium batteries
JP2013165161A (en) Capacitor
Chen et al. Porous carbon derived from petals of Yulan magnolia doped with Ni and NiO as anodes for lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210916

R150 Certificate of patent or registration of utility model

Ref document number: 6947832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150