JP6541230B2 - Method of producing oil-water fusion fuel - Google Patents

Method of producing oil-water fusion fuel Download PDF

Info

Publication number
JP6541230B2
JP6541230B2 JP2016027448A JP2016027448A JP6541230B2 JP 6541230 B2 JP6541230 B2 JP 6541230B2 JP 2016027448 A JP2016027448 A JP 2016027448A JP 2016027448 A JP2016027448 A JP 2016027448A JP 6541230 B2 JP6541230 B2 JP 6541230B2
Authority
JP
Japan
Prior art keywords
water
additive
added
mixing
fuel oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016027448A
Other languages
Japanese (ja)
Other versions
JP2017145310A (en
Inventor
泰弘 山本
泰弘 山本
高橋 剛
剛 高橋
Original Assignee
泰弘 山本
泰弘 山本
高橋 剛
剛 高橋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰弘 山本, 泰弘 山本, 高橋 剛, 剛 高橋 filed Critical 泰弘 山本
Priority to JP2016027448A priority Critical patent/JP6541230B2/en
Priority to PCT/JP2016/076724 priority patent/WO2017141471A1/en
Publication of JP2017145310A publication Critical patent/JP2017145310A/en
Application granted granted Critical
Publication of JP6541230B2 publication Critical patent/JP6541230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions

Description

本発明は、添加剤及び天然又は人工鉱石燃料油に添加剤及び天然又は人工鉱石等により改善された水を加えた油水融合燃料(以下加水燃料と呼ぶ)の製造方法及び装置に関するものである。 The present invention relates to a method and apparatus for producing an oil-water blended fuel (hereinafter referred to as a water-based fuel) in which an additive and water improved by a natural or artificial ore or the like are added to an additive and natural or artificial ore fuel oil.

近年、地球温暖化の阻止は世界の課題となり、特に化石燃料の消費によって排出される二酸化炭素(CO2)の低減を図る技術について、種々提案がされている。 In recent years, the prevention of global warming has become a global issue, and various proposals have been made, in particular, for techniques for reducing carbon dioxide (CO 2 ) emitted by consumption of fossil fuels.

このような中で、化石燃料の特長を生かしつつ環境負荷の低減、コスト低下を期待する方法として、従来からあった燃料油と水と界面活性剤とを混合して生成する加水燃料技術が見直されているが、そのような従来技術としては下記特許文献1に記載されたものがある。 Under these circumstances, we have reconsidered the hydrofuel technology, which is produced by mixing conventional fuel oil, water and surfactant, as a method to expect reduction in environmental impact and cost while making use of the features of fossil fuel. As such prior art, there is one described in Patent Document 1 below.

この、特許文献1の技術は、酵素を添加した油水に天然又は人工鉱石を接触させ、同時に超音波振動を与えながら攪拌・混合し、さらに撹拌混合された燃料油及び水を30℃〜150℃に加熱し、また圧力1.5気圧〜20気圧で加圧するエマルジョン燃料の製造方法である。この製造方法により、加水比率50%以上のエマルジョン燃料の油水分離現象を防止でき、また油水が高度に融合され、エマルジョン状態でも透明にできる上、安定した高カロリーの燃料を実現している。 In this technique of Patent Document 1, a natural or artificial ore is brought into contact with oil water to which an enzyme is added, and at the same time, it is stirred and mixed while giving ultrasonic vibration, and the fuel oil and water stirred and mixed are further heated to 30 ° C to 150 ° C. And a pressure of 1.5 to 20 atm. According to this manufacturing method, the oil-water separation phenomenon of the emulsion fuel having a water content of 50% or more can be prevented, and the oil-water can be highly fused to be transparent even in the emulsion state, and a stable high calorie fuel is realized.

特許第4682287号公報Patent No. 4682287 gazette

しかしながら、上記特許文献1に記載された発明では、油水分離現象を防止できる期間に限度があり、2〜3か月を経過すると油水分離現象が生じる可能性がある。また、加水燃料の透明度合いも油の透明度と比較すると低い値になるという問題点があった。 However, in the invention described in Patent Document 1, there is a limit to the time period in which the oil-water separation phenomenon can be prevented, and the oil-water separation phenomenon may occur after two to three months. In addition, there is a problem that the degree of transparency of the water-mixed fuel is lower than that of the oil.

本発明は、上述したような事情に鑑みてなされたものであり、その目的は、一度合成されたら二度と水と油に分離せず、しかも透明度が高く、通常の油と区別がつかないほどの加水燃料の製造方法を提供することである。 The present invention has been made in view of the above-mentioned circumstances, and the purpose thereof is that it does not separate into water and oil again once synthesized, and it is high in transparency and indistinguishable from ordinary oil. It is an object of the present invention to provide a method for producing a water-mixed fuel.

すなわち本発明の加水燃料の製造方法は、上記目的を達成するため、燃料油と水とを混合して加水燃料を生成する加水燃料の製造方法において、水の分子集合体を細分化してイオン化するイオン化工程と、
望ましくは水に添加剤として、界面活性作用を有する酵素、水酸化ナトリウム、水酸化カリウム、ナトリウム、塩化マグネシム、マグネシウム、過酸化水素水溶液を添加する添加剤投入工程と、
燃料油を撹拌混合タンクに投入し、この燃料油をミキサーにより循環させつつ、前記イオン化され、添加剤投入された水を混合し且つ撹拌する撹拌混合工程と、
撹拌混合された燃料油及び水に対し、40℃〜80℃の温度と1.5〜9Paの気圧を加えた状態で撹拌混合工程を繰り返す融合工程とを備えたことを要旨とする。
That is, in order to achieve the above object, the method for producing a water-mixed fuel according to the present invention comprises fragmenting and ionizing a water molecular assembly in a method for producing a water-mixed fuel by mixing fuel oil and water to form a water-mixed fuel. An ionization process,
Desirably, an additive introducing step of adding an enzyme having surfactant activity, sodium hydroxide, potassium hydroxide, sodium, magnesium chloride, magnesium, an aqueous solution of hydrogen peroxide as an additive to water;
A stirring and mixing step of mixing fuel oil into the mixing tank and mixing and stirring the ionized additive-added water while circulating the fuel oil by the mixer;
The present invention is characterized by including a coalescing step of repeating the stirring and mixing step in a state where a temperature of 40 ° C. to 80 ° C. and an atmospheric pressure of 1.5 to 9 Pa are added to the stirred and mixed fuel oil and water.

この方法において、上記イオン化工程及び添加剤投入工程により水の分子集合体が大幅に改善されるため、燃料油との親和性が向上し、燃料油の増大化を図ることができる。 In this method, the molecular assembly of water is greatly improved by the above-mentioned ionization step and additive addition step, so that the affinity with the fuel oil is improved, and the fuel oil can be increased.

前記イオン化工程においては、水に15kHz〜60kHzの超音波を照射させ、また200kHz以上の超音波を照射させる、二つの照射動作を行うことができる。
また、このイオン化工程においては、水にSPG膜乳化技術等の、多孔質膜乳化技術を加えることにより、水の分子集合体を細分化することもできる。
また、前記添加剤投入工程においては、前記酵素は、燃料油及び水のそれぞれの体積に対して0.004重量%〜2重量%添加してもよく、或いは前記水酸化ナトリウムは、水に対して0.001重量%未満〜0.1重量%添加してもよく、さらには、過酸化水素水溶液は、水に対して0.001重量%未満〜0.1重量%添加してもよい。
In the ionization step, water can be irradiated with ultrasonic waves of 15 kHz to 60 kHz and can be irradiated with ultrasonic waves of 200 kHz or more.
In addition, in this ionization step, the molecular assembly of water can be subdivided by adding porous membrane emulsification technology such as SPG membrane emulsification technology to water.
Further, in the additive injection step, the enzyme may be added in an amount of 0.004% by weight to 2% by weight based on the volume of each of the fuel oil and water, or the sodium hydroxide may be added to the water The amount may be less than 0.001% by weight to 0.1% by weight, and the aqueous hydrogen peroxide solution may be added less than 0.001% by weight to 0.1% by weight with respect to water.

本発明によれば、上記構成により、一度合成されたら二度と水と油に分離せず、しかも透明度が高く、通常の油と区別がつかないほどの加水燃料が実現される。また、本発明の加水燃料は既存の燃料油と単位分量当たりの発熱量が同等又はそれ以上であり、さらに既存の燃料油と比較して、燃焼後の燃焼室、排気管等の劣化や腐食が少ないといった効果がある。また本発明の加水燃料は、完全燃焼性に優れ、一酸化炭素が生成されにくく、また二酸化炭素の排出量も少ないなど、種々の効果がある。 According to the present invention, according to the above-mentioned configuration, once synthesized, it does not separate into water and oil again, and it is possible to realize a water fuel which is high in transparency and indistinguishable from ordinary oil. In addition, the hydrogenated fuel of the present invention has the same or higher calorific value per unit amount as that of the existing fuel oil, and further deterioration or corrosion of the combustion chamber, exhaust pipe, etc. after combustion, as compared with the existing fuel oil. Has the effect of In addition, the water-mixed fuel of the present invention has various effects such as excellent incombustibility, less carbon monoxide production, and low carbon dioxide emissions.

本発明の第1の実施の形態に係る加水燃料の製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the water-containing fuel which concerns on the 1st Embodiment of this invention. 前記実施の形態において用いられる水に膜乳化技術を加えるための装置の構造を示す断面図である。It is sectional drawing which shows the structure of the apparatus for adding the film | membrane emulsification technique to the water used in the said embodiment. 前記実施の形態において用いられるSPGの相対容積を示すグラフ図である。It is a graph which shows the relative volume of SPG used in the said embodiment. 本発明の第2の実施の形態に係る原子状炭素の製造方法を実施するための製造装置を概略的に示す断面図である。It is sectional drawing which shows roughly the manufacturing apparatus for enforcing the manufacturing method of atomic carbon which concerns on the 2nd Embodiment of this invention.

(実施の形態1)
図1は本発明の第1の実施の形態に係る加水燃料の製造方法を説明するフローチャートである。この図に示されるように、本発明の加水燃料の製造方法は、原料となる水の分子集合体を細分化するイオン化工程1と、望ましくは水に添加剤を投入する添加剤投入工程2と、水と燃料油(以下、単に油という)を混合して撹拌する撹拌混合工程3と、撹拌された水と油を融合させる融合工程4とを有する。
Embodiment 1
FIG. 1 is a flow chart for explaining a method of producing a water-based fuel according to a first embodiment of the present invention. As shown in this figure, the method for producing a water-mixed fuel according to the present invention comprises an ionization step 1 for fragmenting water molecular assemblies, and an additive addition step 2 for charging an additive into water. A stirring and mixing step 3 in which water and fuel oil (hereinafter simply referred to as oil) are mixed and stirred; and a coalescing step 4 in which the water and oil are mixed.

イオン化工程
イオン化工程1では、種々の方法で原料となる水の分子集合体を細分化する。第1の方法としては、水に超音波を照射させることにより、水の分子集合体を細分化する方法がある。この方法では、多孔質イオン化物質、天然又は人工鉱石、イオン発生材料を水の中に入れ水の対流に合わせて上記材料に水を接触させるようにする。その後、超音波を照射させることにより天然又は人工鉱石とイオンの発生を活性させる。この超音波を照射して得られる水の酸化還元電位ORP(mV)は、100mV〜−900mVが好ましい。ちなみに、通常の水道水の酸化還元電位ORP(mV)は500mV〜600mVが一般的である。超音波を照射させる工程では、10kHz〜60kHzの超音波を照射させる工程と200kHz以上の超音波を照射させる工程の二つの照射動作を行う。そして、この超音波を照射した時に酸素が放出されて含有水素比率は向上することになる。
上記天然又は人工鉱石としては、黄鉄鉱、白鉄鉱、辰砂、方鉛鉱、斑銅鉱、ハロゲン化鉱物、蛍石、氷晶石、トルマリン、黒曜石、マグネシウム、方解石、ウレキサイト(テレビ石)、コールマン石、硼砂、ハウライト、石膏、重晶石、天青石、燐灰ウラン石、カルノー石、錦石、黒砂金石、麦飯石、石英等を挙げることができる。
上記天然又は人工鉱石の粒径は、各種素材の充分な機能を得られる大きさに応じて適宜決定することができ、また取扱いのし易さ等を加味して、1〜5mm、5〜10mm、10〜20mm、20〜40mm、30〜50mm等の範囲から選択することが望ましい。
加えて、この水に添加剤として、界面活性作用を有する酵素、水酸化ナトリウム、水酸化カリウム、ナトリウム、塩化マグネシム、マグネシウム、過酸化水素水溶液を添加する添加剤投入することにより、水の酸化還元電位(ORP)はマイナス000mV〜−900mVになることが望ましい。
上記界面活性作用を有する酵素としては、アミラーゼ、カタラーゼ、グルコアミラーゼ、セルラーゼ等を好適に使用することができる。
また添加剤として天然鉱石、例えば花崗岩などから注出するミネラルが使用可能である。この場合の添加ミネラル成分及び添加する個体の物質として以下を使用することができる。
例を挙げると、カルシウム、リン、ケイ素、マグネシウム、ナトリウム、セレン、亜鉛、バナジウム、ゲルマニウム、ニッケル、マンガン、モリブデン、銅、タングステン、コバルト、リチウム、バリウム、鉄、カリウム、アルミニウム、ルビジウム、チタン等である。
Ionization Step In the ionization step 1, the molecular assembly of water serving as a raw material is subdivided by various methods. The first method is to fragment water molecular assemblies by irradiating water with ultrasonic waves. In this method, a porous ionizable substance, a natural or artificial ore, and an ion generating material are put in water, and the material is brought into contact with water in accordance with the convection of water. Thereafter, the generation of natural or artificial ore and ions is activated by irradiating ultrasonic waves. The redox potential ORP (mV) of water obtained by irradiation with this ultrasonic wave is preferably 100 mV to -900 mV. By the way, the redox potential ORP (mV) of normal tap water is generally 500 mV to 600 mV. In the step of irradiating ultrasonic waves, two irradiation operations of a step of irradiating ultrasonic waves of 10 kHz to 60 kHz and a step of irradiating ultrasonic waves of 200 kHz or more are performed. And when this ultrasonic wave is irradiated, oxygen is released and the hydrogen content ratio is improved.
Examples of the above natural or artificial ore include pyrite, marcasite, borax, galena, marcasite, halogenated minerals, fluorite, cryolite, tourmaline, obsidian, magnesium, calcite, urexite (televite), colemanite, There can be mentioned borax, howlite, gypsum, barite, celestite, phosphoash uranite, carnotite, vermiculite, black sand gold stone, barley stone, quartz and the like.
The particle size of the above natural or artificial ore can be appropriately determined according to the size at which sufficient functions of various materials can be obtained, and it is 1 to 5 mm, 5 to 10 mm, taking account of ease of handling, etc. It is desirable to select from the range of 10 to 20 mm, 20 to 40 mm, 30 to 50 mm and the like.
In addition, the addition of an enzyme having surface activity, sodium hydroxide, potassium hydroxide, sodium, magnesium chloride, magnesium, an aqueous solution of hydrogen peroxide as an additive to this water, the oxidation reduction of water The potential (ORP) is preferably in the range of minus 000 mV to -900 mV.
As the above-mentioned enzyme having a surfactant activity, amylase, catalase, glucoamylase, cellulase and the like can be suitably used.
As additives, natural ore, for example, minerals poured out from granite etc. can be used. The following may be used as the added mineral component in this case and the individual substance to be added.
For example, calcium, phosphorus, silicon, magnesium, sodium, selenium, zinc, vanadium, germanium, nickel, manganese, molybdenum, copper, tungsten, cobalt, lithium, barium, iron, potassium, aluminum, rubidium, titanium, etc. is there.

水の分子集合体を細分化する第2の方法としては、水にSPG(ShirasuPorousGlass:シラス多孔質ガラス)膜乳化技術等の、多孔質膜乳化技術を加える方法がある。なお、この明細書では、多孔質膜乳化技術に用いる材料として上記SPGを用いた例を説明するが、同等の性質を持つ他の多孔質材料を用いることもできる。SPG膜乳化とは、SPG膜を介して、分散相液をある一定圧力で押し出すことにより、押し出される側をゆっくり流れている連続相液中に、均一な粒子として次々に分散させる乳化法である。この方法は、SPG膜モジュールを使用しての細分化工程を水の超音波照射工程の前後に実行する。 As a second method of fragmenting the molecular assembly of water, there is a method of adding a porous membrane emulsification technology such as SPG (Shirasu Porous Glass) membrane emulsification technology to water. In addition, although this example demonstrates the example which used said SPG as a material used for a porous membrane emulsification technique, the other porous material which has an equivalent property can also be used. The SPG membrane emulsification is an emulsification method in which the dispersed phase liquid is extruded at a constant pressure through the SPG membrane to sequentially disperse as continuous particles in the continuous phase liquid slowly flowing on the extruded side. . The method performs a fragmentation step using an SPG membrane module before and after the water sonication step.

図2は水を膜乳化させるための装置の構造を示す断面図である。この膜乳化装置10は、ハウジングを形成する装置本体11と、装置本体11の中に配置されたSPG膜12と、装置本体11の一端(図2中の左端)に着脱自在に取り付けられるキャップ13と、キャップ13に装着されたスリーブ14と、装置本体11の他端(図2中の右端)に着脱自在に取り付けられるキャップ15と、キャップ15に装着されたスリーブ16とから成る。装置本体11は、全体として両端が開放された円筒構造を有し、SPG膜12はこの円筒内部に長手方向に延び、且つ円筒内壁との間に隙間17を形成して設置される。また、SPG膜12の両端部分には、Oリング18,19がそれぞれ取り付けられており、キャップ13,15を装置本体11に取り付けたとき、Oリング18,19がそれぞれ装置本体11の内部端面に圧着して円筒内部を気密に保つようにしている。図2において、左側のキャップ13は装置本体11から外れた状態で示され、右側のキャップ15は装置本体11にねじ込み等の方法で締結された状態で示されている。スリーブ14,16は雌ネジ構造を有しており、他の部材とネジ結合するようになっている。装置本体11の両端付近には横穴20と横穴21とがそれぞれ設けられ装置本体11の円筒内部と外部とを連通している。この膜乳化装置10は、SPG膜乳化、SPG膜バブリングなどあらゆるシーンで利用することができる。 FIG. 2 is a cross-sectional view showing the structure of an apparatus for emulsifying water. The membrane emulsification apparatus 10 includes an apparatus main body 11 forming a housing, an SPG film 12 disposed in the apparatus main body 11, and a cap 13 detachably attached to one end (left end in FIG. 2) of the apparatus main body 11. A sleeve 14 attached to the cap 13, a cap 15 detachably attached to the other end (right end in FIG. 2) of the apparatus main body 11, and a sleeve 16 attached to the cap 15. The device body 11 has a cylindrical structure with both ends open as a whole, and the SPG film 12 extends longitudinally inside the cylinder and is installed with a gap 17 between it and the inner wall of the cylinder. Further, O-rings 18 and 19 are respectively attached to both end portions of the SPG film 12, and when the caps 13 and 15 are attached to the device body 11, the O-rings 18 and 19 are respectively attached to the inner end face of the device body 11. It is crimped to keep the inside of the cylinder airtight. In FIG. 2, the left cap 13 is shown disengaging from the apparatus main body 11, and the right cap 15 is shown screwed to the apparatus main body 11 or the like. The sleeves 14 and 16 have a female screw structure and are screwed to other members. A lateral hole 20 and a lateral hole 21 are respectively provided near both ends of the device main body 11, and the cylinder inside and the outside of the device main body 11 are communicated with each other. This film emulsification apparatus 10 can be used in any scenes such as SPG film emulsification and SPG film bubbling.

SPG膜乳化装置10の仕様の一例を示すと下記のものがある。
型番MD10L125(またはMD05L125):spgテクノ株式会社製
装置外形寸法(胴径×長さmm)φ25×L160φ25×L160
SPG膜の仕様(外径×長さmm)φ10×L125φ05×L125
材質SUS303
An example of the specifications of the SPG membrane emulsification apparatus 10 is as follows.
Model number MD10L125 (or MD05L125): Device manufactured by spg Techno Co., Ltd. External dimensions (body diameter x length mm) φ 25 x L 160 φ 25 x L 160
Specification of SPG film (outside diameter × length mm) φ 10 × L 125 φ 05 × L 125
Material SUS303

SPGは、ミクロンサイズの均一な細孔を無数に有し、その細孔径をナノ単位からミクロン単位の広い範囲で設計することができることから、機能性ガラスとして応用できる。このSPGの製造方法としては、シラス石灰やホウ酸を添加して1350℃前後の温度でSPGの基礎ガラスを合成し形成する。これを加熱するとガラスの繊細組織に「相分離」という現象が生じる。CaO・B23は酸にとけやすい成分であるから、塩酸などで処理すると溶け出して、酸に溶解しないAl23・SiO2系ガラスを骨格とするガラス多孔体ができ、これがSPGである。SPGは分離膜や吸着剤、抗がん剤など医薬品、食品、化粧品などの分野へ応用可能である。 SPG can be applied as a functional glass because it has countless uniform pores of micron size and its pore size can be designed in a wide range from nano unit to micron unit. As a method of producing this SPG, silas lime and boric acid are added, and a base glass of SPG is synthesized and formed at a temperature of around 1350 ° C. When this is heated, a phenomenon called "phase separation" occurs in the delicate structure of the glass. Since CaO · B 2 O 3 is a component which is easily dissolved in acid, it becomes a glass porous body having Al 2 O 3 · SiO 2 based glass as a skeleton which dissolves when treated with hydrochloric acid or the like and does not dissolve in acid. It is. SPG can be applied to the fields of separation membranes, adsorbents, anticancer agents such as pharmaceuticals, foods, cosmetics and the like.

SPGの特徴としては、例えば下記のものがある。
●精密に制御された無数の貫通細孔が存在する。
●細孔の大きさを1ミリの10万分の5の微細孔(0.05μm)から50分の1(20μm)の比較的マクロな細孔に至る幅広い範囲で孔径設計ができる。
●表面化学修飾により表面を親水化ないしは疎水化したり、種々の有機官能基を導入することが可能である。
●多孔質にもかかわらず機械的強度が非常に高く、耐熱性と断熱性にも優れている。
●強アルカリとフッ酸を除く大部分の試薬に侵されない。
●かびや細菌に侵されない。
Examples of features of SPG include the following.
● There are innumerable precisely controlled through pores.
The pore size can be designed in a wide range from 1 to 100,000 micro holes (0.05 μm) to 1/50 (20 μm) relatively macro pores.
Surface chemical modification makes it possible to hydrophilize or hydrophobize the surface and introduce various organic functional groups.
● Despite being porous, mechanical strength is very high, and heat resistance and heat insulation are excellent.
● Not affected by most reagents except strong alkali and hydrofluoric acid.
● Not affected by mold and bacteria.

図3は、一例として細孔径1.45μm、気孔率56%のSPGの相対容積(単位はvol%)を示すグラフ図である。この図から、SPGは相対容積がほぼ100%であることが分かる。 FIG. 3 is a graph showing the relative volume (unit: vol%) of SPG having a pore diameter of 1.45 μm and a porosity of 56% as an example. From this figure it can be seen that SPG has a relative volume of approximately 100%.

SPG膜乳化操作は、SPG膜12を介して、分散相液(本実施の形態では水)を上記膜乳化装置10の横穴20から横穴21へかけて(或いはその逆向きへ)、ある一定圧力で押し出すことにより行う。この操作により、押し出される側をゆっくり流れている連続相液中に、均一な粒子として次々に分散させる乳化法である。特にこの方法は「直接膜乳化法」と呼ばれ、SPG細孔径の3〜4倍の粒子径を生成することができる。なお、事前に分散相/連続相の粗混合液を、粒子径をある程度揃える目的で、SPG膜12に一気に透過させる乳化方法(透過膜乳化法)も利用可能である。上記の膜乳化装置10を使用することにより、イオン化と水細分化の促進をする。 In the SPG film emulsification operation, the dispersed phase liquid (water in the present embodiment) is applied from the side hole 20 to the side hole 21 of the film emulsification device 10 (or in the opposite direction) through the SPG film 12 Do by pushing out. This operation is an emulsification method in which uniform particles are dispersed one after another in the continuous phase liquid slowly flowing on the side to be extruded. In particular, this method is called "direct membrane emulsification" and can produce a particle size 3 to 4 times the SPG pore size. It is also possible to use an emulsification method (permeable membrane emulsification method) in which the coarse mixture liquid of the dispersed phase / continuous phase is permeated through the SPG membrane 12 at once in order to make the particle diameter uniform to some extent. By using the above-described membrane emulsification device 10, ionization and water fragmentation are promoted.

添加剤投入工程
次に添加剤投入工程について説明する。この添加剤投入工程では、複数の添加剤が上記イオン化された水に投入(添加)される。第1の添加剤としては酵素を添加する。酵素の添加は、水に対して0.004〜0.1重量%の添加量で添加剤としての役目を十分に発揮するが、それよりも大きな比率でもよく、最大1.0%程度が適当である。酵素は水又は油、或いはこれらの両方に添加してもよい。
Additive Loading Step Next, the additive loading step will be described. In the additive charging step, a plurality of additives are charged (added) to the ionized water. An enzyme is added as a first additive. The addition of an enzyme can fully function as an additive at an addition amount of 0.004 to 0.1% by weight with respect to water, but a larger ratio may be sufficient, and a maximum of about 1.0% is appropriate It is. The enzyme may be added to water or oil, or both.

第2の添加剤としては水にNaOH(水酸化ナトリウム)を添加する。水酸化ナトリウムの添加は、水に対して0.001重量%未満〜0.1重量%の添加量で添加剤としての役目を十分に発揮する。
第3の添加剤としては水に過酸化水素水溶液を添加する。過酸化水素水溶液の添加は、水に対して0.001重量%未満〜0.1重量%の添加量で添加剤としての役目を十分に発揮する。それぞれの添加剤の添加方法は、上述のようにイオン化及び水細分化が行われたイオン化工程の次に撹拌のできる容器又はタンクに添加剤を投入し撹拌混合操作することにより実行する。
As a second additive, NaOH (sodium hydroxide) is added to water. The addition of sodium hydroxide sufficiently functions as an additive at an addition amount of less than 0.001 wt% to 0.1 wt% with respect to water.
As a third additive, an aqueous hydrogen peroxide solution is added to water. The addition of the hydrogen peroxide aqueous solution sufficiently functions as an additive at an addition amount of less than 0.001 wt% to 0.1 wt% with respect to water. The method of adding each additive is carried out by charging the additive into a container or tank capable of being stirred after the ionization step in which the ionization and water fragmentation have been performed as described above, and performing the stirring and mixing operation.

撹拌混合工程
次に撹拌混合工程について説明する。この撹拌混合工程では、上述のようにイオン化され添加剤投入後の水と、油とを混合する。その操作は次のようにして行う。先ず、油のみを撹拌混合タンクに投入し、この油を撹拌混合タンクOHRミキサーを通し循環させる。そこへ、前記イオン化され、添加剤投入された水を少量ずつ添加混合し融合させていく。その時のOHRミキサーへの圧力は3気圧以上が必要である。OHRミキサーの温度は15℃〜80℃に設定する。
Stirring and mixing step Next, the stirring and mixing step will be described. In this stirring and mixing step, the water is mixed with the oil after the addition of the ionized ion as described above. The operation is performed as follows. First, only the oil is charged into the stirred mixing tank and this oil is circulated through the stirred mixing tank OHR mixer. The ionized, additive-added water is added and mixed little by little and fused there. The pressure to the OHR mixer at that time needs 3 atmospheres or more. The temperature of the OHR mixer is set at 15 ° C to 80 ° C.

融合工程
次に融合工程について説明する。この融合工程では、上述のように撹拌混合後の水と油を融合する。その操作は次のようにして行う。すなわち、加温(40℃〜80℃)、加圧(1.5Pa以上20Pa以下)を加えたまま、混合されている油と水に対し撹拌混合工程を繰り返し行う。これにより得られた加水燃料は二度と水と油に分離せず、液体燃料としての機能を発揮する。
Fusion Process Next, the fusion process will be described. In this fusion step, the water and oil after agitation and mixing are fused as described above. The operation is performed as follows. That is, while heating (40 ° C. to 80 ° C.) and pressurization (1.5 Pa or more and 20 Pa or less) are added, the stirring and mixing process is repeatedly performed on the mixed oil and water. The hydrous fuel thus obtained is never separated into water and oil, and functions as a liquid fuel.

(実施の形態2)
上記第1の実施の形態におけるイオン化工程1とは別の方法として、原料となる水に、天然鉱石より抽出した、凝縮ミネラルを添加する。複数の微細成分が含有する鉱石ミネラルを添加することで、イオン化の促進と水の微細化も行われる。この鉱石ミネラルには水の微細化、イオン化、発熱量を設けるための酸素欠乏効果を促す作用が存在することから、水のイオン化の有効手段の一つとして選択し得る。なお、上述のようにして生成された水は、通常水は通電しないのに対して、鉱石ミネラルの添加により通電性を有する。
そして、原料となる水に、天然鉱石より抽出した凝縮ミネラルを添加することにより、超音波を照射しなくても水のイオン化を十分に促進させることが出来る場合は、超音波の照射によるイオン化工程を省くことが出来る。
Second Embodiment
As a method different from the ionization step 1 in the first embodiment, condensed mineral extracted from natural ore is added to water as a raw material. The addition of ore minerals containing a plurality of fine components also promotes the ionization and makes the water finer. This ore mineral can be selected as one of the effective means of ionizing water, since it has an action to promote the effect of oxygen deprivation to provide water refinement, ionization, and calorific value. In addition, the water produced | generated as mentioned above has electroconductivity by addition of an ore mineral, although water does not usually carry out electricity.
Then, by adding condensed minerals extracted from natural ore to water as a raw material, it is possible to sufficiently promote the ionization of water without irradiating the ultrasonic wave, the ionization process by the irradiation of the ultrasonic wave Can be omitted.

(実施の形態3)
次に本発明の第3の実施の形態に係る加水燃料の製造方法を説明する。この実施の形態に係る加水燃料の製造方法も図1のフローチャートに表された手順で実施される。ただし、第3の実施の形態においては、原料となる水として原子状炭素により生成されたマイナスイオン水を使用する。このマイナスイオン水は、それ自体がイオン化された状態であるから、第1及び第2の実施の形態におけるイオン化工程を省略することができ、加水燃料の製造効率を上げることができる。マイナスイオン水は、原子状炭素の粉末と水とを混合して撹拌し、その後濾過工程を経て生成される。したがって、この作業工程を本発明のイオン化工程と考えることもでき、このようにして生成したマイナスイオン水を、別に用意した原料となる水に混合させてもよい。また、通常の水では通電しないが、マイナスイオン水は通電することが出来るという性質を持つ。
Third Embodiment
Next, a method for producing a water-based fuel according to a third embodiment of the present invention will be described. The method for producing a water-mixed fuel according to this embodiment is also implemented in the procedure shown in the flowchart of FIG. However, in the third embodiment, negative ion water generated by atomic carbon is used as water to be a raw material. Since this negative ion water is in an ionized state itself, the ionization step in the first and second embodiments can be omitted, and the production efficiency of the water fuel can be improved. Negative ion water mixes and stirs the powder of atomic carbon, and water, and is produced | generated through a filtration process after that. Therefore, this operation process can be considered as the ionization process of the present invention, and thus the negative ion water generated in this way may be mixed with water as a separately prepared raw material. Moreover, although it does not supply with normal water, it has the property that negative ion water can be supplied with current.

ここで、本実施の形態においてマイナスイオン水の生成に用いられる原子状炭素の製造方法及び装置について添付の図面を参照して説明する。図4は本実施の形態に係る原子状炭素の製造方法を実施するための製造装置の一例を概略的に示す断面図である。この製造装置は、空気の入らない気密室29と窒素注入開閉弁22と熱分解ガス排出開閉弁23を持った管路を備えている。製造装置の内部には所定の温度まで上昇させるためのヒーター24が組み込まれている。さらに気密室29と同じ雰囲気(窒素雰囲気)を持つ炭素取り出し用のカートリッジ25と有機材料及び台26から構成されているものである。カートリッジ25は気密室29に着脱可能になっている。なお、図4において、27は気密室29の有機材料及び台26の出入り口に設けられたシャッターであり、閉鎖されたときは気密室29を気密或いは窒素雰囲気に保つ。28はカートリッジ25に設けられた蓋或いは開閉扉であり、閉鎖されたときはカートリッジ25を気密或いは窒素雰囲気に保つ。 Here, a method and apparatus for producing atomic carbon used to generate negative ion water in the present embodiment will be described with reference to the attached drawings. FIG. 4: is sectional drawing which shows roughly an example of the manufacturing apparatus for enforcing the manufacturing method of atomic carbon which concerns on this Embodiment. This manufacturing apparatus is provided with an air tight chamber 29 which does not enter air, and a pipeline having a nitrogen injection on-off valve 22 and a pyrolysis gas discharge on-off valve 23. A heater 24 for raising the temperature to a predetermined temperature is incorporated inside the manufacturing apparatus. Furthermore, it comprises a cartridge 25 for taking out carbon having the same atmosphere (nitrogen atmosphere) as the airtight chamber 29, an organic material, and a table 26. The cartridge 25 is removable from the airtight chamber 29. In FIG. 4, reference numeral 27 denotes an organic material of the hermetic chamber 29 and a shutter provided at the entrance of the table 26. When closed, the hermetic chamber 29 is kept airtight or in a nitrogen atmosphere. Reference numeral 28 denotes a lid or an open / close door provided on the cartridge 25. When closed, the cartridge 25 is kept airtight or in a nitrogen atmosphere.

次に本実施の形態に係る原子状炭素を製造するには最初に台26に原料(木材、竹などの有機物)を入れ、ヒーター24が組み込まれている気密室29に装填する(押し込む)。次に窒素注入開閉弁22より窒素を注入し、同時に熱分解ガス排出開閉弁23より内部の空気を排出し気密室29とカートリッジ25の内部を窒素雰囲気にし、ヒーター24により加熱するものである。第1段階として原料は水分を含むものであるから、100℃〜150℃に温度を保ち(150℃に近い温度が好ましい)、水分を充分に気化させ、気化した水分を気密室29外に排出する。これと同時に同量の窒素を窒素注入開閉弁22より注入し、常に気密室29内を原料である有機材料が酸化しない状態、すなわち、気密な窒素雰囲気にしておくことが望ましい。更にヒーター24を用いて完全乾燥状態になった原料を加熱し、350℃〜450℃まで順次上昇させ原料に含まれる成分の熱分解を行うものである。450℃に至るまで発生した原料成分はすべて気密室外に排出し、その都度窒素が注入され不活性雰囲気を保つことが必要である。すると原料中の炭素と結合している成分が炭素を残して遊離し、450℃で気化しない本実施の形態に係る原子状炭素が残存する。ここで炭素の持つ特性として、有機物状態の炭素と結晶化し無機質となる同素体結合、すなわちグラファイト化する励起エネルギーは450℃以上の高温が必要である。従って本実施の形態の原子状炭素はグラファイトが形成されない450℃以下とすることが必要である。その後ヒーター24を停止して、窒素注入開閉弁22より低温の窒素を注入し、同時に熱分解ガス排出開閉弁23より内部の高温の窒素ガスを排出させて気密室29とカートリッジ25の内部を50℃〜100℃程度まで冷却した後、原子状炭素を台26とともに気密室29からカートリッジ25へ移動させ、カートリッジ25の蓋28を閉鎖して、このカートリッジ25の内部を窒素雰囲気に保ったまま気密室29から離脱させる。気密室29についても、シャッター27を閉鎖して、次の動作に備える。 Next, in order to produce atomic carbon according to the present embodiment, first, raw materials (wood, organic matter such as bamboo) are placed in the base 26 and loaded (pushed) into the airtight chamber 29 in which the heater 24 is incorporated. Next, nitrogen is injected from the nitrogen injection on-off valve 22. At the same time, the air inside is discharged from the pyrolysis gas discharge on-off valve 23 to make the inside of the airtight chamber 29 and the cartridge 25 nitrogen atmosphere and heated by the heater 24. In the first stage, since the raw material contains water, the temperature is maintained at 100 ° C. to 150 ° C. (temperature close to 150 ° C. is preferable), the water is sufficiently vaporized, and the vaporized water is discharged out of the airtight chamber 29. At the same time, it is desirable that the same amount of nitrogen be injected from the nitrogen injection on-off valve 22 so that the inside of the airtight chamber 29 is always in a state where the organic material as the raw material is not oxidized, ie, an airtight nitrogen atmosphere. Furthermore, the raw material in a completely dried state is heated using the heater 24 and sequentially raised to 350 ° C. to 450 ° C. to thermally decompose the components contained in the raw material. It is necessary that all raw material components generated up to 450 ° C. be discharged out of the airtight room, and nitrogen is injected each time to keep an inert atmosphere. Then, the component bonded to carbon in the raw material is released leaving carbon, and atomic carbon according to the present embodiment which does not vaporize at 450 ° C. remains. Here, as a characteristic of carbon, an allotrope that is crystallized with inorganic carbon and becomes inorganic, that is, an excitation energy to be graphitized requires a high temperature of 450 ° C. or more. Therefore, it is necessary to set the atomic carbon in the present embodiment to 450 ° C. or less at which graphite is not formed. After that, the heater 24 is stopped and low temperature nitrogen is injected from the nitrogen injection on-off valve 22. At the same time, the high-temperature nitrogen gas inside is released from the pyrolysis gas discharge on-off valve 23 to make the inside of the airtight chamber 29 and the cartridge 25 50 After cooling to about 100 ° C. to 100 ° C., atomic carbon is moved from the airtight chamber 29 to the cartridge 25 together with the base 26, and the lid 28 of the cartridge 25 is closed to keep the inside of the cartridge 25 in nitrogen atmosphere. Leave the closed room 29. The shutter 27 is closed also for the airtight chamber 29 to prepare for the next operation.

残存した炭素は炭素原子が1個(つまり単体)あるいは炭素原子が2乃至5個から10個程度の鎖状に結合した状態の極微粒子からなり、この極微粒子が原子間引力により互いに不規則に集合した非結晶な原子状炭素を得ることができる。さらに原子状炭素は各工程を終了した後、材料として使用能力を最大限発揮するため、カートリッジ25は炭素を酸化させることのない窒素雰囲気を保ったまま密閉し保管する必要がある。カートリッジ25に保管された原子状炭素は空気に触れることがないので、酸素や他の物質と化合しない。そして、酸素や他の物質と化合しない原子状炭素は必要に応じて粉砕されたりして、粒子、或いは極微粒子となる。原子状炭素の粉砕は、当該原子状炭素が得られた後ならどの製造工程において行ってもよいが、例えばカートリッジ26に密封状態で収容する前の工程で気密室29の中で450℃以下の不活性雰囲気において極微粒径に粉砕することができる。或いは50℃〜100℃程度まで冷却した後に気密室1の中で不活性雰囲気において極微粒径に粉砕してもよい。さらに、上記冷却後、カートリッジ26に密封状態で収容して運搬し、粉砕機により粉砕加工してもよい。上記原子状炭素はそれ自体が炭素原子1個、或いは数個から成り原子状であり、酸素や他の物質と化合していないため、水に混入したときは反応性の富んだ高マイナスイオン水(pHは11或いはそれ以上)になる。 The remaining carbon consists of ultrafine particles in a state in which one carbon atom (ie, simple substance) or carbon atoms are linked in a chain form of 2 to 5 to 10 or so, and these ultrafine particles irregularly mutually Aggregated non-crystalline atomic carbon can be obtained. Furthermore, after atomic carbon completes each process, it is necessary to seal and store the cartridge 25 while maintaining the nitrogen atmosphere which does not oxidize carbon, in order to maximize the use ability as a material. Since atomic carbon stored in the cartridge 25 does not come in contact with air, it does not combine with oxygen or other substances. Then, atomic carbon which does not combine with oxygen or other substances is pulverized as necessary to form particles or ultrafine particles. Pulverization of atomic carbon may be performed in any manufacturing process after the atomic carbon is obtained, for example, in a process before being housed in a sealed state in the cartridge 26 in the airtight chamber 29 at 450 ° C. or less It can be ground to very fine particle sizes in an inert atmosphere. Alternatively, after cooling to about 50 ° C. to 100 ° C., it may be crushed to an extremely fine particle size in the inert atmosphere in the airtight chamber 1. Furthermore, after the above-mentioned cooling, the cartridge 26 may be housed and transported in a sealed state, and may be crushed by a grinder. The above-mentioned atomic carbon itself is an atomic form consisting of one or several carbon atoms and is not combined with oxygen or other substances, so when mixed with water, it is highly reactive with highly negative ion water (PH is 11 or more).

本発明において、油と改善された水を混合して得られた加水燃料は、一度合成されたら二度と水と油に分離せず、しかも透明度が高く、通常の油と区別がつかないほどの特性を持ち、化石燃料の有効利用の上で有用である。 In the present invention, the hydrous fuel obtained by mixing the oil and the improved water, once synthesized, never separates into water and oil, and has high transparency and characteristics that are indistinguishable from ordinary oils. It is useful on the effective use of fossil fuels.

1 イオン化工程
2 添加剤投入工程
3 撹拌混合工程
4 融合工程
10 膜乳化装置
11 装置本体
12 SPG膜
13,15 キャップ
14,16 スリーブ
17 隙間
18,19 Oリング
20,21 横穴
22 窒素注入開閉弁
23 熱分解ガス排出開閉弁
24 ヒーター
25 カートリッジ
26 台
27 シャッター
28 蓋
29 気密室
DESCRIPTION OF SYMBOLS 1 ionization process 2 additive injection process 3 stirring mixing process 4 fusion process 10 film emulsification apparatus 11 apparatus main body 12 SPG film 13, 15 cap 14, 16 sleeve 17 gap 18, 19 O ring 20, 21 side hole 22 nitrogen injection on-off valve 23 Pyrolysis gas exhaust on-off valve 24 heater 25 cartridge 26 stand 27 shutter 28 lid 29 airtight chamber

Claims (9)

燃料油と水とを混合して加水燃料を生成する加水燃料の製造方法において、水の分子集合体を細分化してイオン化するイオン化工程と、
燃料油を撹拌混合タンクに投入し、この燃料油をミキサーにより循環させつつ、前記イオン化され、下記添加剤投入された水を混合し且つ撹拌する撹拌混合工程と、
撹拌混合された燃料油及び水に対し、40℃〜80℃の温度と1.5Pa〜20Paの気圧を加えた状態で撹拌混合工程を繰り返す融合工程とを備えたことを特徴とする加水燃料の製造方法。
第1の添加剤
酵素添加量:水に対して0.004〜0.1重量%
第2の添加剤
NaOH(水酸化ナトリウム)添加量:水に対して0.001重量%未満〜0.1重量%
第3の添加剤
過酸化水素水溶液添加量:水に対して0.001重量%未満〜0.1重量%
In a method of producing a water-mixed fuel, wherein fuel oil and water are mixed to produce water-mixed fuel, an ionization step of fragmenting and ionizing a molecular assembly of water;
The fuel oil was poured into a stirred mixing tank, while circulating the fuel oil in a mixer, the ionized, and stirring and mixing step of stirring and mixing the introduced water below additive,
And a coalescing step of repeating the stirring and mixing step in a state where a temperature of 40 ° C. to 80 ° C. and an atmospheric pressure of 1.5 Pa to 20 Pa are added to the stirred and mixed fuel oil and water. Production method.
First additive Enzyme loading: 0.004 to 0.1% by weight to water
Second additive NaOH (sodium hydroxide) added amount: less than 0.001% by weight to 0.1% by weight to water
Third additive hydrogen peroxide aqueous solution addition amount: less than 0.001% by weight to 0.1% by weight to water
燃料油と水とを混合して加水燃料を生成する加水燃料の製造方法において、水の分子集合体を細分化してイオン化するイオン化工程と、
水に添加剤として酵素、水酸化ナトリウム、水酸化カリウム、塩化マグネシム、ナトリウム、マグネシウム、過酸化水素水溶液を添加する添加剤投入工程と、
燃料油を撹拌混合タンクに投入し、この燃料油をミキサーにより循環させつつ、前記イオン化され、添加剤投入された水を混合し且つ撹拌する撹拌混合工程と、
撹拌混合された燃料油及び水に対し、40℃〜80℃の温度と3Paの気圧を加えた状態で撹拌混合工程を繰り返す融合工程とを備えたことを特徴とする加水燃料の製造方法。
In a method of producing a water-mixed fuel, wherein fuel oil and water are mixed to produce water-mixed fuel, an ionization step of fragmenting and ionizing a molecular assembly of water;
Additive feeding step of adding an enzyme, sodium hydroxide, potassium hydroxide, magnesium chloride, sodium chloride, magnesium, hydrogen peroxide aqueous solution as an additive to water;
A stirring and mixing step of mixing fuel oil into the mixing tank and mixing and stirring the ionized additive-added water while circulating the fuel oil by the mixer;
A method for producing a water-mixed fuel comprising: a coalescing step of repeating a stirring and mixing step in a state where a temperature of 40 ° C. to 80 ° C. and an atmospheric pressure of 3 Pa are added to the stirred and mixed fuel oil and water.
前記イオン化工程においては、原料となる水に10kHz〜60kHzの超音波を照射させ、また200kHz以上の超音波を照射させる、二つの照射動作を行うことにより、水の分子集合体を細分化することを特徴とする請求項1または2記載の加水燃料の製造方法。 In the ionization step, water as the raw material is irradiated with ultrasonic waves of 10 kHz to 60 kHz, and the ultrasonic waves of 200 kHz or more are irradiated, and the molecular assembly of water is subdivided by performing two irradiation operations. The method for producing a water-mixed fuel according to claim 1 or 2, characterized in that 前記イオン化工程においては、原料となる水にSPG膜乳化技術を加えることにより、水の分子集合体を細分化することを特徴とする請求項1ないし3のいずれかに記載の加水燃料の製造方法。 The method for producing a water-mixed fuel according to any one of claims 1 to 3, wherein in the ionization step, a molecular assembly of water is subdivided by adding an SPG film emulsification technique to water as a raw material. . 前記イオン化工程においては、原料となる水に天然鉱石より抽出した、凝縮ミネラルを添加することを特徴とする請求項1ないし4のいずれかに記載の加水燃料の製造方法。 The method for producing a water-mixed fuel according to any one of claims 1 to 4, wherein in the ionization step, condensed minerals extracted from natural ore are added to water as a raw material. 前記イオン化工程においては、原子状炭素の粉末と水とを混合して生成されたマイナスイオン水を、原料として用いるか、または原料となる水に添加することを特徴とする請求項1ないし5のいずれかに記載の加水燃料の製造方法。 6. The negative ion water produced by mixing atomic carbon powder and water in the ionization step is used as a raw material or added to water as a raw material. The manufacturing method of the water-mixed fuel as described in any. 前記添加剤投入工程において、前記酵素は、燃料油及び水のそれぞれの体積に対して0.004重量%〜2重量%添加することを特徴とする請求項2記載の加水燃料の製造方法。 The method according to claim 2, wherein the enzyme is added in an amount of 0.004% by weight to 2% by weight based on the volume of the fuel oil and water in the additive addition step. 前記添加剤投入工程において、前記水酸化ナトリウムは、水に対して0.001重量%未満〜0.1重量%添加することを特徴とする請求項2記載の加水燃料の製造方法。 The method according to claim 2, wherein the sodium hydroxide is added in an amount of less than 0.001 wt% to 0.1 wt% with respect to water in the additive injection step. 前記添加剤投入工程において、前記過酸化水素水溶液は、水に対して0.001重量%未満〜0.1重量%添加することを特徴とする請求項2記載の加水燃料の製造方法。 The method according to claim 2, wherein the aqueous hydrogen peroxide solution is added in an amount of less than 0.001 wt% to 0.1 wt% with respect to water in the additive injection step.
JP2016027448A 2016-02-16 2016-02-16 Method of producing oil-water fusion fuel Active JP6541230B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016027448A JP6541230B2 (en) 2016-02-16 2016-02-16 Method of producing oil-water fusion fuel
PCT/JP2016/076724 WO2017141471A1 (en) 2016-02-16 2016-09-10 Method for producing oil-water blended fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016027448A JP6541230B2 (en) 2016-02-16 2016-02-16 Method of producing oil-water fusion fuel

Publications (2)

Publication Number Publication Date
JP2017145310A JP2017145310A (en) 2017-08-24
JP6541230B2 true JP6541230B2 (en) 2019-07-10

Family

ID=59625787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016027448A Active JP6541230B2 (en) 2016-02-16 2016-02-16 Method of producing oil-water fusion fuel

Country Status (2)

Country Link
JP (1) JP6541230B2 (en)
WO (1) WO2017141471A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6867646B2 (en) 2017-07-27 2021-05-12 三菱重工業株式会社 Adaptive optics system and adaptive optics method
JP6947832B2 (en) * 2017-08-28 2021-10-13 杉山 修 A method for producing a battery having an electrolytic solution containing alkaline mineral ionized water, an electrolyte active material, and an electrolytic solution for a battery.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355969A (en) * 1980-05-29 1982-10-26 Fnd Company Electrically charged, emulsified carrier-fuel particle combustion
JP3423698B2 (en) * 1995-08-01 2003-07-07 松尾 至晃 Alkaline electrolyzed water containing vitamin C
JP2006182890A (en) * 2004-12-27 2006-07-13 Spg Techno Kk Method for producing emulsion fuel and apparatus for producing the same and apparatus for modifying fuel
JP2008045022A (en) * 2006-08-15 2008-02-28 Nobuaki Ando Emulsion fuel
JP4682287B1 (en) * 2010-06-11 2011-05-11 佳右 長尾 Hydrolyzed fuel production method and production apparatus
JP2014159538A (en) * 2013-02-19 2014-09-04 Gtr:Kk Innovative miniaturized emulsion fuel device
WO2015037678A1 (en) * 2013-09-12 2015-03-19 Hattori Mitsuharu Production method for compatible transparent water-containing oil and production device for compatible transparent water-containing oil
JP2016003297A (en) * 2014-06-18 2016-01-12 合同会社ネクストエナジー Method for producing water-added fuel and water-added fuel

Also Published As

Publication number Publication date
JP2017145310A (en) 2017-08-24
WO2017141471A1 (en) 2017-08-24

Similar Documents

Publication Publication Date Title
Jamsaz et al. Magnetically driven superhydrophobic/superoleophilic graphene-based polyurethane sponge for highly efficient oil/water separation and demulsification
Ascensao et al. Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability
Sharma et al. Fly ash for the removal of Mn (II) from aqueous solutions and wastewaters
JP4921333B2 (en) Method for producing carbon dioxide nanobubble water
JP6541230B2 (en) Method of producing oil-water fusion fuel
CN113372895B (en) Crude oil expansion oil displacement agent and preparation method and application thereof
Yu et al. Eco-friendly magneto-photothermal sponge for the fast recovery of highly viscous crude oil spill
Rameshkumar et al. Generation and characterization of nanobubbles by ionization method for wastewater treatment
JP2008045022A (en) Emulsion fuel
JP2016003297A (en) Method for producing water-added fuel and water-added fuel
CN104961188B (en) A kind of method for effectively removing tetrabromobisphenol A in water removal
KR20080078900A (en) Methods of producing hydrogen using hanotubes and articles thereof
TWI621705B (en) Method and device for manufacturing water-added fuel
Mansurov et al. Mechanochemical synthesis of composite materials
JP5232939B1 (en) Hydrogen plasma generation method and generator
Agi et al. Designed mesoporous silica nanoparticles to mitigate against reservoir fines migration
WO2018062345A1 (en) Method for producing hydrocarbon-based synthetic fuel by adding water to hydrocarbon-based fuel oil
KR102260733B1 (en) Method of preparing calcium peroxide originated from oyster shell powder
WO2000029518A1 (en) Water/oil mixed fuel and process for producing the same
JP5232932B1 (en) Emulsification method and emulsion apparatus
JPH11140470A (en) Water-fossil fuel mixed emulsion
JP6434465B2 (en) Method for producing fuel diluted with water
JP2004182574A (en) Particulate ceramics and method of manufacturing the same
Bulychev Application of optical spectroscopy for investigation of synthesis of hydrogen and nanoparticles in electric discharge in liquid-phase media
JP2022096032A (en) Emulsion fuel formation system, emulsion fuel formation method, and formation method of modified data of emulsion fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180905

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180905

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190419

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190607

R150 Certificate of patent or registration of utility model

Ref document number: 6541230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250