WO2018062345A1 - Method for producing hydrocarbon-based synthetic fuel by adding water to hydrocarbon-based fuel oil - Google Patents

Method for producing hydrocarbon-based synthetic fuel by adding water to hydrocarbon-based fuel oil Download PDF

Info

Publication number
WO2018062345A1
WO2018062345A1 PCT/JP2017/035109 JP2017035109W WO2018062345A1 WO 2018062345 A1 WO2018062345 A1 WO 2018062345A1 JP 2017035109 W JP2017035109 W JP 2017035109W WO 2018062345 A1 WO2018062345 A1 WO 2018062345A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
hydrocarbon
water
oil
base oil
Prior art date
Application number
PCT/JP2017/035109
Other languages
French (fr)
Japanese (ja)
Inventor
青木 文男
Original Assignee
株式会社Tristarhco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tristarhco filed Critical 株式会社Tristarhco
Priority to US16/337,824 priority Critical patent/US20200032153A1/en
Priority to JP2018542825A priority patent/JP6995373B2/en
Publication of WO2018062345A1 publication Critical patent/WO2018062345A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/328Oil emulsions containing water or any other hydrophilic phase
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0295Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2250/00Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
    • C10L2250/06Particle, bubble or droplet size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/14Injection, e.g. in a reactor or a fuel stream during fuel production
    • C10L2290/146Injection, e.g. in a reactor or a fuel stream during fuel production of water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/34Applying ultrasonic energy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/36Applying radiation such as microwave, IR, UV

Definitions

  • the present invention relates to a method for producing a hydrocarbon-based synthetic fuel equivalent to the base oil by adding water to the hydrocarbon-based fuel base oil.
  • Patent Document 1 proposes a method for producing a hydrolyzed fuel that increases the transparency of an emulsion state of a mixed solution by contacting with metal, stirring, and mixing. More specifically, Patent Document 1 describes a mixture of fuel oil and water to which catalase has been added while agitating and mixing natural ore or metal in a vibration wave excitation state in contact with the mixture, and further mixing the fuel oil and water that have been agitated and mixed.
  • a method is disclosed in which the liquid is heated to 30 ° C. to 150 ° C. and pressurized at 3 to 10 atm to fuse the fuel and water to increase the transparency of the mixture in the emulsion state.
  • fuel oil and water to which catalase is added are brought into contact with natural minerals or metals excited by vibration waves to subdivide the molecular aggregate of fuel oil and water, and then fuel oil and water. It is described that the fuel oil and water that have been stirred and mixed can be mixed by heating and pressurizing to increase the transparency of the emulsion state of the hydrolyzed fuel.
  • Patent Document 1 describes two examples, Example 1 and Example 2. In any of these Examples, water and fuel oil are mixed in equal amounts and undergo a fusion process. Shows that a transparent fuel oil was obtained.
  • Patent Document 1 states that this manufacturing method can prevent an oil-water separation phenomenon in an emulsion fuel having a hydrolysis rate of 50% or more.
  • Patent Document 1 The manufacturing method described in Patent Document 1 is based on the premise that hydrocarbons that are the source of combustion calories are reduced by adding water to fuel oil.
  • the hydrogen content of fuel oil is increased to compensate. That is, it is possible to increase the ratio of hydrogen contained by catalase by decomposing hydrogen peroxide into hydrogen and oxygen, releasing oxygen into the atmosphere as gas, and leaving hydrogen in the fuel oil.
  • the teaching there is a limit to compensate for the decrease in the hydrocarbon ratio due to water addition only by increasing the hydrogen content ratio, and the method taught in Patent Document 1 cannot be expected to significantly increase the amount of fuel.
  • Patent Document 2 discloses an emulsion fuel having the same quality and calorific value as a raw fuel oil without using a surfactant and without separating fuel oil and water over a long period of time.
  • a method by which can be produced is disclosed. In this method, water is made to come into contact with tourmaline irradiated with far-infrared ray microwaves or ultrasonic waves, and fuel oil is made to come into contact with titanium oxide balls to which an electromagnetic wave-responsive catalyst is applied. It consists of mixing water and fuel oil and applying heat and pressure while circulating the mixture.
  • This Patent Document 2 also describes that the hydrogen content is increased by the addition of catalase.
  • Patent Document 2 does not include technical teaching beyond Patent Document 1.
  • Non-Patent Document 1 A paper titled “An efficient way of producing fuel hydrocarbon from CO 2 and activated water” by Tadayuki Imanaka et al. Published on the web on August 29, 2015 by J-STAGE (Non-Patent Document 1) In the presence of a titanium dioxide catalyst, UV light and black light (wavelength 350 nm to 400 nm) are irradiated to generate activated water, and this activated water is mixed with light oil to make it stronger.
  • a method for producing synthetic oil by stirring is disclosed. In the method described in this paper, active water is mixed with light oil by a special mixer serving as a reaction layer, the mixed solution collides with the wall of the mixer, and the mixed solution is circulated so that the collision is repeated.
  • Tadayuki Imanaka et al. “An efficient way of producing fuel hydrocarbon from CO2 and activated water” J-STAGE August 29, 2015 on the web “Chemical application of cavitation; Application of Cavitation, Induced by Ultrasound” Shinobu Koda, IEICE Journal A Vol. J89-ANo.
  • An object of the present invention is to provide a method for producing a hydrocarbon-based synthetic fuel.
  • Another object of the present invention is that the composition and physical characteristics are substantially the same as or close to those of the fuel base oil that is the fuel before water addition, from the viewpoint of oil-water separation.
  • a method according to the present invention comprises adding hydrocarbon to a hydrocarbon-based fuel base oil to produce a hydrocarbon-based synthetic fuel oil having a volume larger than the volume of the hydrocarbon-based fuel base oil.
  • the hydrocarbon-based synthetic fuel oil produced by the production method is used as a fuel base oil in the production of the next hydrocarbon-based synthetic fuel oil, and the same steps are sequentially repeated a plurality of times.
  • a hydrocarbon-based synthetic fuel having a high water addition ratio is produced.
  • the method for producing a hydrocarbon-based synthetic fuel oil includes: a) An activated water generating step of performing an activation treatment on water to generate activated activated water; b) an agitation and mixing step of adding the activated water to a hydrocarbon-based fuel base oil that is initially used as a fuel base oil, and stirring and mixing for a predetermined time under a reactive environment; c) a fusion step of fusing the hydrocarbon fuel base oil and the activated water that have undergone the stirring and mixing step under a reactive environment; d) a primary produced hydrocarbon fuel oil collecting step for collecting a hydrocarbon produced fuel obtained from the mixture obtained through the fusion step as a primary produced hydrocarbon fuel oil; And then The primary product hydrocarbon fuel oil is used as a secondary fuel base oil, and the steps b), c) and d) are performed to collect the secondary product hydrocarbon fuel oil.
  • System fuel oil is sequentially used as the fuel base oil, and the process of steps b), c) and d) is repeated a plurality of times, so that water (H 2 O) having a volume larger than that of the initial fuel base oil is obtained. It does not substantially contain, but includes producing a multi-generation hydrocarbon-based synthetic fuel oil composed of a hydrocarbon-based fuel oil having a composition that is substantially equivalent to or close to that of the corresponding initial fuel base oil. .
  • a method for producing a hydrocarbon-based synthetic fuel oil includes: a) An activated water generating step of performing an activation treatment on water to generate activated activated water; b) an agitation and mixing step of adding the activated water to a hydrocarbon-based fuel base oil that is initially used as a fuel base oil, and stirring and mixing for a predetermined time under a reactive environment; c) a fusion step of fusing the hydrocarbon fuel base oil and the activated water that have undergone the stirring and mixing step under a reactive environment; d) A hydrocarbon system having a composition that is not substantially contained in water (H 2 O) and is substantially equivalent to or close to the initial fuel base oil by allowing the mixed solution that has undergone the fusion step to stand.
  • the stirring and mixing step and the fusion step are the steps of the hydrocarbon-based fuel base oil in which the volume of the primary-generated hydrocarbon fuel oil obtained by the primary-generation hydrocarbon-based fuel oil collecting step is used as the initial fuel base oil.
  • a multi-generation hydrocarbon-based synthetic fuel comprising a hydrocarbon-based fuel oil having a composition substantially free of water (H 2 O) and substantially equivalent to or close to the original fuel base oil Including producing oil.
  • the activated water preferably contains microbubble hot spots.
  • generation process is performed by irradiating an ultrasonic wave to this water in the state which heated up water to the temperature of the range of 35 to 45 degreeC, and applied the voltage.
  • the voltage is preferably applied by irradiating tourmaline immersed in water with ultrasonic waves to bring the tourmaline into an excited state.
  • a substance effective to retain the microbubble hot spots is added to the activated water.
  • the generation of hot spots of microbubbles is performed by irradiating water with ultrasonic waves having a frequency different from the frequency of ultrasonic waves irradiated to tourmaline.
  • the reactive environment in the stirring and mixing step can be formed by stirring water while irradiating water to which catalase has been added. Stirring is preferably performed so as to generate a strong wave at the liquid level of the mixture of water and fuel base oil.
  • the reactive environment in the stirring and mixing step can be formed by adding a photocatalyst to water and stirring while irradiating with ultraviolet light.
  • the fuel oil produced by the method of the present invention is a hydrocarbon-based synthetic fuel oil that is substantially free of water (H 2 O) and is substantially the same as or close to the fuel base oil. It has a composition and a physical characteristic to do.
  • the fuel base oil is a light oil used as a diesel fuel
  • a surprising result is obtained that the resultant synthetic fuel oil is a light oil equivalent to the light oil that is the base oil. Since the light oil produced by the present invention does not substantially contain water (H 2 O), it has been confirmed that oil-water separation does not occur even when stored for a long period of time.
  • the fuel base oil is A heavy oil, it is possible to produce heavy oil that is substantially equivalent to or close to the A heavy oil.
  • the synthetic fuel is substantially free of water (H 2 O) and is substantially the same as or close to the fuel base oil.
  • H 2 O water
  • carbon dioxide in ambient air is taken in from the liquid level of the mixture of the fuel base oil and water, and the carbon dioxide is decomposed and used for the reaction for generating the synthetic fuel. It is conceivable to obtain at least the majority of the carbon required.
  • the agitation and mixing step is performed in an open space to the atmosphere, the mixture is circulated in the agitation and mixing step so as to generate a strong wave at the liquid level of the mixture of fuel base oil and water.
  • the surrounding area where the stirring and mixing process is performed is a closed space, the amount of carbon dioxide taken in from the ambient air is insufficient, but under such circumstances, carbon is added to the fuel base oil and water mixture. It was confirmed that the intended synthetic fuel can be obtained by addition.
  • carbon to be added charcoal obtained by carbonizing wood can be used.
  • powdered carbon used for industrial applications can also be used advantageously.
  • carbon monoxide gas or carbon dioxide gas may be added and decomposed in the same manner as in the case of carbon dioxide taken from the air, and used for the production of synthetic fuel.
  • the amount of water added to the fuel base oil is not particularly limited, but if the amount of water added to the fuel base oil is too large, the reaction time required to produce a synthetic fuel having the desired composition will be excessive. There is a concern that it will become impractical.
  • the inventor of the present invention has confirmed that a desired synthetic fuel can be produced in a sufficiently short time even when water is mixed at a ratio of about 1 to the fuel base oil 1 by volume ratio. When the amount of water added is less than this, the desired result can be obtained in a shorter time. Therefore, in the present invention, the mixing ratio of the fuel base oil and water is preferably about 1 or less with respect to the fuel base oil 1 in terms of volume ratio.
  • the agitation and mixing step first, only the fuel base oil is charged into the agitation and mixing tank, and the water after the water activation step and the additive addition step is added and mixed in predetermined amounts while stirring. Is preferred. In this case, it is preferable to vigorously stir so as to generate a strong wave on the liquid surface in order to take carbon dioxide in the air into the liquid.
  • an apparatus having a stirring and mixing tank having a cylindrical portion, and at least one injection pipe for introducing water that has undergone a water activation step and an additive addition step into the tank by a method such as injection. It is preferable that the water jet direction of the jet pipe has a predetermined angle with respect to the diameter line of the cylindrical portion.
  • the predetermined angle is about 40 degrees to about 50 degrees, in particular about 45 degrees.
  • the predetermined angle in all the spray tubes is a specific angle in the range of about 40 degrees to about 50 degrees, for example, about 45 degrees. It is preferable to do so.
  • the discharge port of the injection pipe is positioned at least 8 cm, preferably 10 cm or more above the liquid level, and activated water is used as a high-speed jet. Is preferably sprayed onto the liquid surface.
  • the injection pipe has a projecting portion that projects into the stirring and mixing tank tank.
  • the length of the protrusion is preferably about 10 cm.
  • catalase in the additive addition step, it is preferable to add catalase in a weight ratio of 0.04 to 0.05% with respect to water.
  • the water activated in the water activation step described above has an ORP of 160 mV to ⁇ 200 mV.
  • the water activation step maintains the tourmaline or copper ion generating material in contact with water, and the water or the tourmaline or copper ion generating material is 10 KHz to 60 KHz. Until then, two frequency ultrasonic waves of 200 KHz or higher are alternately irradiated, and water is activated by electrical energy radiated from the tourmaline or copper ions radiated from the copper ion generating material.
  • the pressure applied in the fusion step is 0.3 MPa or more, and the heating temperature is in the range from 40 ° C to 80 ° C.
  • an OHR mixer can be used in the stirring and mixing step.
  • the present invention by the above-described method, it is possible to obtain a hydrocarbon-based synthetic fuel oil that is difficult to be separated into water and oil after being synthesized, or hardly separated. Further, by using the obtained synthetic fuel oil as a base oil, adding water thereto, and further repeating the same steps, a hydrocarbon-based synthetic fuel oil having a high water content can be efficiently produced.
  • the synthetic fuel oil produced by the method of the present invention is substantially free of water (H 2 O) and is substantially the same as or close to the fuel base oil. It will have composition and physical properties.
  • the hydrocarbon-based synthetic fuel oil of the present invention has a calorific value per unit amount equal to or higher than that of the existing fuel oil, and compared with the existing fuel oil, the combustion chamber and exhaust after combustion. There is an effect that there is little deterioration and corrosion of a pipe etc. Furthermore, the synthetic fuel oil of the present invention is excellent in complete combustibility, and it is difficult to produce carbon monoxide, and the effects such as low carbon monoxide emission are achieved.
  • FIG. 4 is a chart showing the results of GC-MS analysis of light oil used as base oil in one example of the present invention. It is a chart which shows the result of the GC-MS analysis about the other synthetic fuel obtained by using A heavy oil as a base oil by the method which concerns on the other Example of this invention.
  • FIG. 9 is a chart showing GC-MS analysis results for A heavy oil used as base oil in the example shown in FIG. 8.
  • FIG. 1 is a flow diagram of a method according to an embodiment of the present invention performed using a manufacturing apparatus according to the present invention.
  • FIG. 2 is an overall configuration diagram of a manufacturing apparatus used in the synthetic fuel manufacturing method according to the present invention
  • FIG. 3 is a structural diagram of an injection pipe for performing water injection into a reaction tank of the manufacturing apparatus according to the present invention. It is.
  • the synthetic fuel production apparatus 1 includes a base oil improvement tank 2, a purified water tank 3, a reaction accelerator injection unit 4, a reaction tank 5, a stationary tank 6, and a product receiving tank. 7 is composed. The outline of the apparatus 1 will be described.
  • the fuel base oil is pretreated in the base oil improvement tank 2, the water is activated in the purified water tank 3, and the additive is supplied from the reaction accelerator injection unit 4 to a predetermined tank. throw into. Further, the fuel tank oil and water are stirred and mixed and fused in the reaction tank 5, and unnecessary residues such as scum are removed in the stationary tank 6. If necessary, the oil phase and the water phase are phase-separated. Then, hydrocarbon synthetic fuel oil as a product is introduced from the stationary tank 6 to the product receiving tank 7.
  • the base oil improvement tank 2 is a tank that performs a process before the fuel oil is mixed.
  • the fuel base oil is supplied from another base oil tank 201.
  • This base oil improvement tank is intended to make the temperature of the oil suitable for mixing.
  • the fuel base oil is supplied from the base oil tank 201 to the base oil improvement tank 2, it is heated by the heater 8 provided in the base oil improvement tank 2, and is managed at a predetermined temperature by the thermocouple (T).
  • T thermocouple
  • the fuel base oil in the base oil improvement tank 2 is circulated by being taken out of the base oil improvement tank 2 by the pump 11 and reintroducing into the tank through the header pipe 202. May be. Further, oil molecules may be subdivided as a pretreatment using a catalyst.
  • the purified water tank 3 performs a water activation process.
  • the water used in the method of the present invention is preferably soft water, and therefore water is preferably supplied from the water softening device 301.
  • the purpose of the purified water tank 3 is to maintain the temperature of the water at a temperature suitable for mixing, and to subdivide the water molecules to an active level to obtain activated water containing microbubble spots.
  • the water supplied to the purified water tank 3 is heated by a heater 8 provided in the purified water tank 3 and is controlled at a predetermined temperature by a thermocouple (T).
  • T thermocouple
  • the degree of activation can be measured by an ORP (oxidation / reduction potential) meter.
  • An ultrasonic generator 10 is provided at the bottom of the purified water tank 3, and the water molecular aggregate can be subdivided by irradiating the ultrasonic wave from the ultrasonic generator 10.
  • the catalyst 9 in the purified water tank 3, it is preferable to use tourmaline or a copper ion generating material as the catalyst 9.
  • the efficiency of activation can be improved by bringing the catalyst 9 into contact with water by the electric energy radiated from the catalyst 9.
  • the action of the catalyst can be promoted by irradiating the catalyst 9 such as tourmaline or copper ion generating material immersed in the purified water tank 3 with ultrasonic waves.
  • the water may be circulated by taking out the water in the tank to the header 302 by the pump 11 and returning it again from the header 302 into the purified water tank 3 so that the activation is performed uniformly.
  • water is drawn from the bottom of the tank, pressure is applied by the pump 11, and water is re-injected from the top of the tank through the header pipe 302.
  • the activation of water can also be performed by plasma arc treatment of water configured to generate a discharge between electrodes connected to a high-voltage transformer and dissociate and ionize water by this discharge.
  • the treatment can be performed by installing a plasma arc treatment apparatus between the purified water tank 3 and the pump 11 in the water circulation path.
  • aluminum can be used suitably as the catalyst 9.
  • electrical stimulation the above-described application of electrical energy and plasma arc treatment of water are collectively referred to as “electrical stimulation”.
  • the reaction accelerator injecting section 4 is for introducing an additive into the purified water tank 3 or the reaction tank 5 as a reaction accelerator.
  • the additive is a substance that achieves the action of decomposing hydrogen peroxide into hydrogen and oxygen and releasing the oxygen into the atmosphere as a gas. By this action, the hydrogen content ratio of the produced fuel oil can be increased to prevent the calorific value from decreasing.
  • catalase, sodium hydroxide, aqueous hydrogen peroxide solution or the like can be used. It is necessary to finely adjust the amount of additive added.
  • the amount of catalase added is preferably 0.04% to 0.05% by weight with respect to water. If the amount of catalase added is less than 0.04% by weight, the effect is weak, and if it exceeds 0.05%, it will not dissolve sufficiently and will increase the scum, which will lower the quality of the fuel oil produced. .
  • the reaction vessel 5 is for performing a stirring and mixing step and a fusion step.
  • the fuel base oil is supplied from the base oil improvement tank 2 to the upper part of the reaction tank container 13.
  • Water is supplied from the purified water tank 3 to the side surface of the container 13 of the reaction tank 5 through the injection pipe 14.
  • the mixed liquid of oil and water is taken out from the discharge port 15 of the container 13 of the reaction tank 5 by the pump 11, and in a pressurized state, passes through the OHR mixer 12 and reacts through the header pipe 502 and the injection pipe 14. It is circulated inside the container 13 of the tank 5.
  • the OHR mixer 12 is for efficiently mixing a plurality of substances.
  • this reaction tank 5 acts on a pressure of about 3 to 9 atm when used in the fusion process, it needs to have a structure that can withstand a higher pressure than other tanks.
  • the stationary tank 6 is a tank that temporarily stores the product solution after the fusion process. In this tank 6, scum generated by additives and the like is precipitated.
  • the synthetic fuel oil in which the oil and water are completely integrated and the impurities are separated by being left in the stationary tank 6, and the synthetic fuel oil as a supernatant is supplied to the product receiving tank 7.
  • the impurities include additives, and these impurities are returned to the reaction vessel 5.
  • the residence time in the stationary tank 6 is preferably about 1 hour.
  • the product receiving tank 7 is a tank for storing synthetic fuel oil produced as a product.
  • the produced synthetic fuel oil is supplied from the product receiving tank 7 to the product storage tank 701 at a stage where it is gathered to some extent.
  • the process for treating water includes a water activation process and an additive charging process.
  • the process of processing the fuel base oil includes a base oil improving process and an additive charging process.
  • the activated water that has undergone the water activation process and additive feeding process and the fuel base oil that has undergone the base oil improvement process and additive feeding process are agitated and mixed in the agitation and mixing process, and the primary production synthetic oil is produced through the fusion process. Is done. If necessary, a filtration step is performed before removal of the primary synthetic oil.
  • the activation process is performed in the purified water tank 3.
  • the water molecule aggregate is subdivided to the active level.
  • the affinity with the fuel base oil molecules is improved, and more water can be used for the production of synthetic fuel.
  • Water is put into the purified water tank 3, and ultrasonic waves are irradiated to the water by the ultrasonic wave generation unit 10, and the water is vibrated at a high frequency, thereby promoting the fragmentation of water molecules.
  • Ultrasonic irradiation can promote subdivision of water by alternately irradiating ultrasonic waves having two different frequencies.
  • the frequency of the ultrasonic waves can be further subdivided by using two types of frequencies of 10 KHz to 60 KHz and 200 KHz or more.
  • the ultrasonic wave generation part 10 when using the ultrasonic wave generation part 10, it is effective to give an electrical stimulus to water using a substance such as tourmaline or a copper ion generating material as a catalyst.
  • a substance such as tourmaline or a copper ion generating material as a catalyst.
  • electrical stimulation is given to the water, and microbubble hot spots are formed in the water.
  • the degree of conversion can be increased.
  • the degree of activation by irradiating with ultrasonic waves can be confirmed by measuring ORP (redox potential) (mv).
  • the ORP of water obtained by irradiating with ultrasonic waves is preferably 160 mV to -790 mV, more preferably 30 mV to -600 mV.
  • the normal tap water ORP is 700 mV to 500 mV.
  • oxygen is released from water, and the hydrogen content ratio of water is improved.
  • the reaction time is suitably about 1 hour, but the effect can be obtained even from 20 minutes to 1 day.
  • the additive charging step is to increase the hydrogen content ratio of water by adding the additive stored in the reaction accelerator injecting unit 4 to the purified water tank 3 or the reaction tank 5.
  • the additive one or more of catalase, sodium hydroxide, and hydrogen peroxide aqueous solution are used. It is necessary to finely adjust the amount of additive added.
  • the amount of catalase added is preferably 0.04% to 0.05% by weight with respect to water. If it is less than 0.04%, the effect is weak, and if it is more than 0.05%, it does not dissolve sufficiently, so that the scum is increased and the quality of the fuel is lowered.
  • Sodium hydroxide is sufficiently effective as an additive when added in an amount of 0.001 to 0.1% by weight based on water.
  • aqueous hydrogen peroxide solution the addition of 0.001% to 0.1% by weight with respect to water can sufficiently exhibit the effect as an additive.
  • the stirring and mixing step the water after being activated in the purified water tank 3 and charged with the additive is mixed with the fuel base oil.
  • the fuel base oil is charged into the reaction tank 5.
  • This base fuel oil is circulated through the OHR mixer 12 in the reaction vessel 5.
  • the molecules of the fuel base oil are made uniform and are easily fused with water.
  • the activated water is poured from the purified water tank 3 into the reaction tank 5 little by little. This is because water is dispersed as uniformly as possible in the fuel base oil.
  • the activated water supplied from the purified water tank 3 is pressurized by the pump 11 of the purified water tank 3, mixed with the fuel base oil taken out from the discharge port 15 of the reaction tank 5, and pressurized by the pump 11 of the reaction tank 5. And mixed by the OHR mixer 12.
  • the pressure of the OHR mixer 12 is preferably 3 atm (0.3 MPa) or more, and the temperature is preferably 40 ° C. to 80 ° C. Therefore, the pressure of the pump 11 of the purified water tank 3 and the reaction tank 5 is set to a pressure corresponding to that, and the heating of the heater 8 of the purified water tank 3 and the reaction tank 5 is also set to the pressure.
  • the activated water and the fuel base oil mixed in the OHR mixer 12 are reintroduced into the reaction tank 5 from the injection pipe 14 through the header pipe 502.
  • the efficiency and quality of mixing change.
  • the mixture of the activated water and fuel base oil is circulated through a pipe having a pipe size of 15 A to 50 A at a flow rate of 20 L / min to 50 L / min. It is preferable to make it.
  • the mixing time can be about 5 minutes to 1 hour.
  • the fusion process In the fusion process, the input of the activated water from the purified water tank 3 to the reaction tank 5 is completed, and the fusion process is performed by circulating the mixture of the activated water and the fuel base oil through the OHR mixer 12. Is done.
  • the pressure is preferably 3 atm (0.3 MPa) or more, which is the same as in the stirring and mixing step, and the temperature is preferably 40 ° C to 80 ° C.
  • the mixture of activated water and fuel base oil is passed through the OHR mixer 12 for a sufficient period of time, so that the activated water and the oil are fused and the hydrocarbon-based synthetic fuel oil that is not likely to be separated. Can be obtained.
  • the pressure applied to the mixed liquid is 0.3 MPa (3 atm) or more.
  • the temperature may be 70 ° C. or lower. It is most effective that the pressure applied in the fusion process is 0.9 MPa and the temperature is 50 ° C.
  • the reaction time is suitably 20 to 60 minutes after reaching the pressure and temperature.
  • the filtration step is a step of separating the scum-like product from the coagulation of the components of the enzyme and other components when the enzyme is used at the time of production from the completely produced synthetic fuel.
  • the method using the stationary tank 6 is a method in which the product is allowed to stand and the specific gravity is separated. Scum, which has a relatively high specific gravity, accumulates at the bottom, and synthetic fuel collects in the upper layer because of its low specific gravity. By sending the upper layer synthetic fuel to the product receiving tank 7, a hydrocarbon-based synthetic fuel oil as a product can be obtained.
  • the mixed liquid residence time in the stationary tank 6 is desirably 1 hour or longer.
  • synthetic fuel and scum can also be separated by passing through a filtration filter.
  • a filtration filter having a size of about 10 ⁇ m to 30 ⁇ m is used.
  • the temperature for passing through the filtration filter is preferably 40 ° C. or less, and the passage time is preferably about 20 L / min to 50 L / min when passing through a pipe having a pipe size of 20 A to 50 A, but the speed is more moderate. desirable.
  • the number of passes through the filtration filter can be one or more.
  • FIG. 3 is a view showing the structure of a liquid injection pipe to the reaction vessel 5 that can be used in the production apparatus according to the present invention.
  • FIG. 3A is a view seen from above for showing the positional relationship between the reaction vessel 5 and the injection pipe 14.
  • FIG. 3B is a side view of the reaction vessel 5.
  • the inventor of the present invention examined the relationship between the injection tube 14 for recharging the mixture into the reaction vessel 5 and the reaction vessel 5.
  • the reaction vessel 5 has a cylindrical body at the top and a cone at the bottom.
  • Four injection pipes 14 are arranged on the upper side surface, and the oil / water mixture can be injected into the reaction tank 5 from four directions as shown in FIG.
  • FIG. 3 (c) the angle in the length direction of the injection tube 14 with respect to the diameter line connecting the central axis of the cylindrical portion of the reaction vessel 5 and the attachment point where the injection tube 14 is attached to the reaction vessel 5, The mounting angle or the injection direction of the injection pipe 14 was determined.
  • the mounting angle of the injection tube 14 is preferably in the range of about 40 degrees to about 50 degrees with respect to the above-described diameter line.
  • the amount of protrusion of the injection tube 14 into the reaction vessel 5 having a diameter of 60 cm, the time required for fusion, and the quality of the generated synthetic fuel oil were examined.
  • the protrusion amount when the protrusion amount is 0, it is the injection pipe 14b1.
  • the amount of protrusion was increased to 14b2, 14b3, 14b4.
  • the amount of protrusion was examined by changing by 10 cm. As a result, it was found that when the protrusion amount was 10 cm, the time required for fusion was the shortest and the quality of the produced synthetic fuel oil was good.
  • the mixture is injected into the reaction vessel 5 through the injection tube 14 at an angle of 45 degrees with respect to the diameter line of the cylinder.
  • the reaction of the injection tube 14 is performed. It may be considered that 10 cm is optimal for the amount of protrusion into the tank 5.
  • a natural vortex can be created in the vessel. Therefore, mixing can be performed efficiently.
  • the injection tube 14 is disposed so as to be located at least 8 cm, preferably at least 10 cm above the liquid level in the reaction vessel 5, and the mixture is injected from the injection tube 14 at a high speed.
  • FIG. 4 is a schematic diagram showing an example of a plasma arc processing apparatus that can be used as an activation apparatus of a manufacturing apparatus according to the present invention.
  • the plasma arc processing apparatus 20 is arranged so as to surround the center electrode and an electrode 21 (shown by a hexagon in the figure) each connected to a high voltage transformer (not shown).
  • a plurality of (in the figure, 12) electrodes 22 are provided. By supplying power to the electrodes, arc discharge occurs between the electrodes.
  • a plasma arc treatment apparatus 20 is installed between the purified water tank 3 and the pump 11, and water from the purified water tank is passed through the plasma arc treatment apparatus 20.
  • water can be activated by plasma arc treatment.
  • a plasma arc processing apparatus for example, a plasma arc processing apparatus used for Ultra U-MAN manufactured by Nippon Risuiken Co., Ltd. can be preferably used.
  • 3 kg of tourmaline is immersed in 20 liters of water at room temperature, and ultrasonic waves with a frequency of 30 kHz to 40 kHz are irradiated to tourmaline, and ultrasonic waves with a frequency of 200 kHz to 600 kHz are irradiated to water for 20 minutes.
  • the frequency of ultrasonic waves irradiated to tourmaline was 35 kHz
  • the frequency of ultrasonic waves irradiated to water was 400 kHz.
  • the ultrasonic irradiation was continued, and the temperature was raised to a water temperature of 43 ° C. using a heater while circulating water with a pump.
  • microbubbles mean microbubbles generated by local pressure fluctuation when water is irradiated with ultrasonic waves. Shinobu Koda from the graduate School of Engineering, Nagoya University J89-ANo. 9 (2006), a paper titled “Chemical application of cavitation: Application of cavitation Induced by Ultrasound,” published by Kanto Chemical Co., Ltd.
  • a primary synthetic fuel oil using A heavy oil as a base oil was produced by the following method. First, a tourmaline container with a volume of 25 liters equipped with a part for accommodating tourmaline, an ultrasonic generator (35 kHz ultrasonic transducer), and a thermometer and connected with a circulation pump (24 liters / minute ⁇ 0.5 Mpa). 3kg and 20 liters of tap water were added (a small-sized tourmaline ore imported from New Wave Co., Ltd.) To this water, 20 ml of catalase (Leonet F-35 manufactured by Nagase ChemteX Corporation) was added.
  • the ultrasonic vibrator was actuated, and water circulation was started by a circulation pump while irradiating tourmaline and water under the conditions described in “Formation example 1 of activated water”.
  • the set temperature of the 3 kW line heater provided in the water circulation path was set to 40 ° C., and the circulation was continued for 1 hour from the time when it was confirmed that the temperature of the water in the container became 40 ° C. or higher. After 1 hour, when the redox potential of water in the container was measured with an ORP meter, it was 12 mV, and it was confirmed that the water was activated.
  • a heavy oil (Type 1 No. 1 A heavy oil purchased from Fujikosan Co., Ltd.) was placed in a 25 liter container equipped with a thermometer and connected to a circulation pump, as in the above container. Circulation of heavy oil A was started by a circulation pump. The set temperature of the 3 kW line heater provided in the circulation path of A heavy oil was set to 40 ° C., and the circulation was continued for 1 hour from the time when it was confirmed that the temperature of the A heavy oil in the container became 40 ° C. or higher.
  • the activated water and A heavy oil thus obtained were mixed and stirred as follows, and then the mixed solution was heated and applied with pressure to be fused. That is, in addition to a thermometer, a 1 kW heating heater and a rotary vane type stirrer were provided, and an open system container having a volume of 25 liters opened to the atmosphere, and 10 liters of activated water was obtained. 10 liters of heavy oil was added.
  • the container had a configuration in which a circulation pump and a mixing mixer (OHR mixer manufactured by OHR Fluid Engineering Laboratory Co., Ltd.) were connected. In the container containing the activated water and A heavy oil, the heating heater was turned on so that the temperature of the liquid in the container was maintained at 40 ° C.
  • a synthetic fuel oil was produced in the same manner as in Production Example 1 except that a commercial diesel oil (No. 2 diesel oil purchased from JX Energy Co., Ltd. (ENEOS)) was used as the base oil instead of A heavy oil. Therefore, a sample was taken. The amount of sample collected was 20 liters.
  • ENEOS JX Energy Co., Ltd.
  • Table 1 shows the component analysis results of the synthetic fuel oil produced in the primary synthetic fuel oil production examples 1 and 2 of the present invention. It is a mixture of water and oil, mixed one-on-one. For comparison, the same component analysis was performed on the A heavy oil and light oil used as the base oil. First, looking at the total calorific value and the true calorific value, it can be seen that both Example 1 and Example 2 exceed the base oil, and the effect of the present invention is obtained. Next, when looking at the item of moisture, it can be seen that in both Production Example 1 and Production Example 2, the volume% of moisture in the synthetic fuel oil is 0.00% and substantially does not contain water. Since fuel oil and water are mixed one-to-one and fused, if sufficient fusion is not achieved, the amount of water should be detected.
  • the volume% of water being 0.00% indicates that the fuel base oil and water are completely fused and not analyzed as a water component.
  • the fuel base oil and water can be completely fused to produce a high-quality hydrocarbon-based synthetic fuel oil.
  • a synthetic fuel was produced using an apparatus as shown in FIGS. 2 and 3 and using light oil as the base oil.
  • 150 liters of tap water was injected into a purified water tank filled with the same tourmaline as used in Production Example 1 in a portion containing tourmaline.
  • the heater installed in the purified water tank was turned on, and the temperature was set to 40 ° C.
  • 150 ml of the same catalase used in Production Example 1 was added.
  • the circulating pump connected to the purified water tank is operated (discharge pressure 0.5 MPa), the ultrasonic generator installed in the purified water tank is operated, and the temperature of the water reaches 40 ° C. for 60 minutes, 40 ° C.
  • ultrasonic waves (frequency: 40 kHz) were irradiated to tourmaline and water for another 60 minutes.
  • the flow velocity at the tip of the injection tube was 3.3 m / s. It was 20 mV when the oxidation reduction potential of the water obtained by the ORP meter was measured. In this way, activated water was obtained.
  • the activated water and light oil thus obtained were mixed in a reaction vessel and stirred. Further, the activated water and light oil were heated and fused by applying pressure. More specifically, 75 liters of base oil from the base oil improvement tank and 55 liters of activated water from the purified water tank were transferred to the reaction tank (hydration rate of about 42%). 65 ml of the same catalase used in Production Example 1 was added to the reaction vessel. Next, the heater was turned on so that the temperature of the liquid in the container was 40 ° C. After the liquid temperature reached 40 ° C., the circulation pump was operated, and the supply pressure to the mixing mixer was adjusted to be about 0.5 MPa, and the mixed liquid was circulated for 60 minutes.
  • the injection tube was not submerged in the mixed solution in the reaction vessel. Specifically, the injection tube was positioned about 8 cm above the liquid level of the mixed liquid in the reaction tank. A sample of synthetic fuel oil for analysis was taken from the resulting liquid. The amount of sample collected was 114 liters.
  • the temperature of the refined water tank, the base oil improvement tank, and the reaction tank is higher than that in Production Example 3, and is set to 42 ° C, 41 ° C, and 44 ° C, respectively, and the circulation time in the refined water tank and the base oil improvement tank
  • a synthetic fuel oil was produced by carrying out the same steps as in Production Example 3 except that it was half of that in Production Example 3 (that is, 60 minutes). In addition, it was 26 mV when the oxidation reduction potential of the water obtained with the ORP meter in the purified water tank was measured.
  • a sample of synthetic fuel oil for analysis was taken from the liquid obtained in the reaction vessel. The amount of sample collected was 114 liters.
  • a heavy oil (type 1 No. 1 A heavy oil purchased from Fujikosan Co., Ltd.) is used as the base oil, the reaction tank temperature is set to 36 ° C., and the circulation time in the refined water tank and the base oil improvement tank is both 90 minutes.
  • a synthetic fuel was produced in the same manner as in Production Example 3, except that the amounts of catalase added to the purified water tank and the reaction tank were 230 ml and 130 ml, respectively. In addition, it was 18 mV when the redox potential of the water obtained in the purified water tank was measured with the ORP meter.
  • a sample of synthetic fuel oil for analysis was taken from the liquid obtained in the reaction vessel. The amount of sample collected was 114 liters.
  • Table 2 shows the component analysis results of the hydrocarbon-based synthetic fuel oil produced in Production Examples 4 and 5 of the present invention.
  • FIG. (A) is a TIC chromatogram
  • (b) is a mass spectrum of a peak around 18.4 minutes.
  • the same qualitative analysis was performed on the synthetic fuel sample obtained in Production Example 4.
  • the results are shown in FIG.
  • the same qualitative analysis was performed on light oil used as the fuel base oil.
  • the results are shown in FIG.
  • FIG. 5 and FIG. 6 are compared with FIG. 7, the hydrocarbons obtained in Production Examples 3 and 4 have a tendency to reduce the components having a large number of carbon atoms (those larger than C19) compared to the base oil. It was confirmed that the component composition of the system synthetic fuel oil is in good agreement with the base oil.
  • oxidation stability test of primary production synthetic fuel oil An oxidation stability test (test method: ASTM D2274) was performed on samples of the primary production synthetic fuel oil obtained by the method of the present invention using light oil as the base oil in Production Examples 3 and 4. For comparison, the same oxidative stability test was performed on light oil used as the base oil. The measured amount of sludge was below the measurement limit of 0.1 mg / 100 ml for any sample.
  • the primary production synthetic fuel oil obtained by the method of the present invention using light oil as the fuel base oil in Production Example 3 was subjected to a JC08 mode running test (vehicle used: Nissan Motor NV350 model LDF-VW2E26 weight 1840 kg). For comparison, a similar running test was performed on a commercially available light oil (JIS No. 2). The results are shown in Table 4. For reference, emission control values are also shown. From Table 4, it is noted that the primary produced synthetic fuel oil obtained by the method of the present invention has a lower CO 2 emission than that of commercially available light oil.
  • the primary production synthetic fuel oil obtained in Production Example 3 is 42% by volume derived from water.
  • Example 1 As an example of the present invention, the synthetic fuel oil produced in the primary fuel oil production example 6 was used as a base oil to produce a secondary synthetic fuel oil. Specifically, 10 liters of the synthetic fuel oil produced in the primary fuel oil production example 6 was adjusted through the base oil improvement tank 2 and then charged into the reaction tank 5. At the same time, 5 liters of activated water formed by the procedure described in “Formation of activated water” was charged into the reaction vessel 5 and the mixing, stirring, and fusion steps were performed under the same conditions as in Production Example 2. . Then, the produced
  • the oil present in the upper oil phase was taken out as a secondary generated synthetic fuel oil.
  • the amount of the secondary production synthetic fuel oil taken out was 11 liters.
  • the amount of water remaining in the aqueous phase was 4 liters.
  • the secondary synthetic fuel oil was increased by 10% compared to the primary synthetic fuel oil used as the base oil.
  • the secondary synthetic fuel oil obtained by the above process was used as a base oil to produce a tertiary synthetic fuel oil.
  • 10 liters of the secondary synthetic fuel oil produced in the above process was adjusted through the base oil improvement tank 2 and then charged into the reaction tank 5.
  • 5 liters of activated water formed by the procedure described in “Formation of activated water” was charged into the reaction vessel 5 and the mixing, stirring, and fusion steps were performed under the same conditions as in Production Example 2. .
  • generated liquid mixture was moved to the stationary tank 6, and left still for 1 hour. As a result, the mixed solution was phase-separated into an upper oil phase and a lower aqueous phase.
  • the oil present in the upper oil phase was taken out as the tertiary production synthetic fuel oil.
  • the amount of the tertiary production synthetic fuel oil taken out was 11 liters.
  • the amount of water remaining in the aqueous phase was 4 liters.
  • the amount of the tertiary generated synthetic fuel oil is increased by 10% compared to the secondary generated synthetic fuel oil used as the base oil.
  • the calorific value measurement and component analysis of the primary product synthetic fuel oil produced in the primary fuel oil production example 6 and the secondary product synthetic fuel oil produced in Example 1 were performed.
  • the results are shown in Table 5 in comparison with the commercially available diesel oil used as the base oil in the primary fuel oil production example 6.
  • the first embodiment is an example in which the primary production synthetic fuel oil produced in the primary fuel oil production example 6 is used as the base oil, but the primary production synthetic fuel oil produced in the primary fuel oil production examples 1 to 5 is used as the base oil.
  • a synthetic fuel oil can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

Provided is a method for producing a hydrocarbon-based synthetic fuel by adding water to a source oil, wherein the proportion of synthetic fuel to the hydrocarbon-based fuel that serves as the source oil is dramatically increased in comparison with conventional methods. A method for producing a hydrocarbon-based synthetic fuel oil, the method comprising adding water to a hydrocarbon-based fuel source oil and producing a hydrocarbon-based synthetic fuel oil of a volume greater than the volume of the hydrocarbon-based fuel source oil, wherein the hydrocarbon-based synthetic fuel oil produced by said production method is used as fuel source oil in the next production of hydrocarbon-based synthetic fuel oil, and a hydrocarbon-based synthetic fuel having a high proportion of added water is produced by repeating the same step several times in succession.

Description

炭化水素系燃料油に水を添加して炭化水素系合成燃料を製造する方法Method for producing hydrocarbon-based synthetic fuel by adding water to hydrocarbon-based fuel oil
 本発明は、炭化水素系燃料元油に水を加えて元油と同等な炭化水素系合成燃料を製造する方法に関する。 The present invention relates to a method for producing a hydrocarbon-based synthetic fuel equivalent to the base oil by adding water to the hydrocarbon-based fuel base oil.
 世界的に環境問題が重要課題となって久しい近年、対応案として、太陽光や風力発電などの技術開発が盛んに進められている。しかし、このような再生可能エネルギへ完全に移行できるようになるまでの間、枯渇化の問題を含む従来の化石燃料を大切に使用し、エネルギ損失が少ない内燃機関及び燃焼施設などの開発、更には発熱並びに燃焼特性の優れた化石燃料を得るように化石燃料自体を改善するなど、多方面からの技術開発を並行して進める必要があり、その一つとして、燃料油に水を混合することにより燃料油を増量する方法の開発が試みられている。 In recent years, environmental problems have become an important issue globally, and technological developments such as solar power and wind power generation have been actively promoted as countermeasures. However, until it becomes possible to completely shift to such renewable energy, the conventional fossil fuel including the problem of depletion is carefully used, and the development of internal combustion engines and combustion facilities with little energy loss, In order to obtain fossil fuel with excellent heat generation and combustion characteristics, fossil fuel itself needs to be improved in parallel, such as improving fossil fuel itself. One of these is to mix water with fuel oil. Attempts have been made to develop a method for increasing the amount of fuel oil.
 燃料油に水を混合する従来の手法は、該手法を採用することにより、使用燃料が大幅に削減され、燃料が削減された分だけCO2(二酸化炭素)の排出量が削減されるので環境負荷を軽減できる燃料と考えられる。また、この手法によれば、燃料油の完全燃焼が期待されるので、燃焼に使用される空気量が相当量削減でき、それに伴い、窒素酸化物及び粒子状物質(PM)の発生も抑制でき、ボイラー又は内燃機関が排出するガスがもたらす環境負荷を低減させる効果がある。
 このように、水を添加することにより増量された燃料は、大変有用なものであるが、一般的に、水と油は完全な融合が難しく、混合しても時間が経過すると分離してしまう傾向がある。また、融合を十分に行うことが不可能ではないとしても、それには非常に時間がかかり、経済的観点から、実用化には程遠いと予測される。
 そのため、水と燃料油を完全に融合させ、時間が経過しても分離することがない炭化水素系合成燃料を製造できるような、短時間で水と燃料油の融合処理を行うことができる技術が望まれている。
In the conventional method of mixing water with fuel oil, by using this method, the amount of fuel used is greatly reduced, and CO 2 (carbon dioxide) emissions are reduced by the amount of fuel reduction. It is considered a fuel that can reduce the load. In addition, according to this method, since complete combustion of the fuel oil is expected, the amount of air used for combustion can be considerably reduced, and accordingly, generation of nitrogen oxides and particulate matter (PM) can also be suppressed. There is an effect of reducing the environmental load caused by the gas discharged from the boiler or the internal combustion engine.
As described above, the fuel increased by adding water is very useful, but in general, water and oil are difficult to completely fuse, and even after mixing, they will be separated over time. Tend. Moreover, even if it is not impossible to perform the fusion sufficiently, it takes a very long time, and it is predicted that it is far from practical use from an economic point of view.
Therefore, water and fuel oil can be fused in a short time so that a hydrocarbon-based synthetic fuel that does not separate even when time passes can be produced. Is desired.
 炭化水素系燃料の増量化の一手法として、燃料油と水の混合液にカタラーゼを添加し、カタラーゼを添加した燃料油と水の混合液を、超音波等の振動波によって励起させた天然鉱物又は金属に接触させて、撹拌し、混合することにより、混合液のエマルジョン状態の透明度を高める加水燃料製造方法が、特許第4682287号(特許文献1)により提案されている。より詳しく述べると、特許文献1は、カタラーゼを添加した燃料油と水の混合液に振動波励起状態の天然鉱石又は金属を接触させながら攪拌混合し、さらに撹拌混合された燃料油と水の混合液を30℃~150℃に加熱し、かつ、3気圧ないし10気圧で加圧することにより、燃料と水を融合させて、該混合液のエマルジョン状態の透明度を高める方法を開示する。特許文献1では、カタラーゼが添加された燃料油及び水を、振動波によって励起させた天然鉱物又は金属に接触させることにより、燃料油及び水の分子集合体を細分化し、その後、燃料油及び水を撹拌混合し、次いで、撹拌混合した燃料油及び水を加熱及び加圧することにより、融合させて、加水燃料のエマルジョン状態の透明度を高めることができる、と説明されている。特許文献1には、実施例1と実施例2の2つの実施例が記載されているが、これらの実施例のいずれにおいても、水と燃料油が等量で混合され、融合工程を経ることにより、透明な燃料油が得られたことが示されている。また、特許文献1においては、この製造方法により、加水化率50%以上のエマルジョン燃料において油水分離現象を防止できる、と述べられている。 As a technique for increasing the amount of hydrocarbon fuels, natural minerals are obtained by adding catalase to a mixture of fuel oil and water, and then exciting the mixture of fuel oil and water containing catalase with vibration waves such as ultrasonic waves. Alternatively, Japanese Patent No. 4682287 (Patent Document 1) proposes a method for producing a hydrolyzed fuel that increases the transparency of an emulsion state of a mixed solution by contacting with metal, stirring, and mixing. More specifically, Patent Document 1 describes a mixture of fuel oil and water to which catalase has been added while agitating and mixing natural ore or metal in a vibration wave excitation state in contact with the mixture, and further mixing the fuel oil and water that have been agitated and mixed. A method is disclosed in which the liquid is heated to 30 ° C. to 150 ° C. and pressurized at 3 to 10 atm to fuse the fuel and water to increase the transparency of the mixture in the emulsion state. In Patent Document 1, fuel oil and water to which catalase is added are brought into contact with natural minerals or metals excited by vibration waves to subdivide the molecular aggregate of fuel oil and water, and then fuel oil and water. It is described that the fuel oil and water that have been stirred and mixed can be mixed by heating and pressurizing to increase the transparency of the emulsion state of the hydrolyzed fuel. Patent Document 1 describes two examples, Example 1 and Example 2. In any of these Examples, water and fuel oil are mixed in equal amounts and undergo a fusion process. Shows that a transparent fuel oil was obtained. Patent Document 1 states that this manufacturing method can prevent an oil-water separation phenomenon in an emulsion fuel having a hydrolysis rate of 50% or more.
 この特許文献1に記載の製造方法は、燃料油に水を加えることにより、燃焼カロリーの素となる炭化水素が減少することを前提としており、この炭化水素の減少による燃焼カロリーの減少分を、カタラーゼの作用により、燃料油の含有水素比率を高めて補おうとするものである。すなわち、カタラーゼが過酸化水素を水素と酸素に分解し、酸素はガスとして大気に放出させ、水素は燃料油に残存させることによって含有水素比率を増大させることができる、というのが、特許文献1の教示である。しかしながら、加水による炭化水素比率の減少分を含有水素比率の増大だけで補うのは限界があり、特許文献1に教示される方法では、燃料の大幅な増量を期待することができない。 The manufacturing method described in Patent Document 1 is based on the premise that hydrocarbons that are the source of combustion calories are reduced by adding water to fuel oil. By the action of catalase, the hydrogen content of fuel oil is increased to compensate. That is, it is possible to increase the ratio of hydrogen contained by catalase by decomposing hydrogen peroxide into hydrogen and oxygen, releasing oxygen into the atmosphere as gas, and leaving hydrogen in the fuel oil. Is the teaching. However, there is a limit to compensate for the decrease in the hydrocarbon ratio due to water addition only by increasing the hydrogen content ratio, and the method taught in Patent Document 1 cannot be expected to significantly increase the amount of fuel.
 特開2014-47229号公報(特許文献2)は、界面活性剤を使用することなく、長期間にわたり燃料油と水が分離せず、原料の燃料油と同程度の品質及び発熱量のエマルジョン燃料を製造することができる方法を開示する。この方法は、遠赤外光線マイクロ波又は超音波を照射した電気石に、水を接触させるように流し、電磁波応答型触媒が付与された酸化チタンボールに燃料油を接触させるように流し、この水と燃料油を混合し、混合液を循環させながら熱と圧力をかけることからなる。この特許文献2にも、カタラーゼの添加により、水素含有率が高められることが記載されている。しかし、特許文献2は、特許文献1を超える技術的教示を含むものではない。 Japanese Patent Laid-Open No. 2014-47229 (Patent Document 2) discloses an emulsion fuel having the same quality and calorific value as a raw fuel oil without using a surfactant and without separating fuel oil and water over a long period of time. A method by which can be produced is disclosed. In this method, water is made to come into contact with tourmaline irradiated with far-infrared ray microwaves or ultrasonic waves, and fuel oil is made to come into contact with titanium oxide balls to which an electromagnetic wave-responsive catalyst is applied. It consists of mixing water and fuel oil and applying heat and pressure while circulating the mixture. This Patent Document 2 also describes that the hydrogen content is increased by the addition of catalase. However, Patent Document 2 does not include technical teaching beyond Patent Document 1.
 J-STAGEが2015年8月29日にウエブに掲載したTadayuki Imanakaらによる「An efficient way of producing fuel hydrocarbon from CO2 and activated water」と題する論文(非特許文献1)には、ナノバブルを含む水に対して、2酸化チタン触媒の存在下で、UV光及び黒色光(波長350nm~400nm)を照射する処理を行って活性化水を生成し、この活性化水を軽油と混合して強力に撹拌することにより、合成油を生成する方法が開示されている。この論文に記載された方法は、活性水を、反応層となる特殊ミキサーにより軽油と混合し、混合液をミキサーの壁に衝突させ、この衝突が繰り返されるように、混合液を循環させる。この過程で、反応層であるミキサーの上部空間に二酸化炭素を供給する。非特許文献1に記載の方法によれば、上述の工程で白濁エマルジョンが生成される。そして、このエマルジョンを静置すると、エマルジョンが油相と水相の2相に相分離され、油相部分から軽油と同等の油を得ることができる。非特許文献1の論文には、ここに開示された方法により、元油として使用した軽油に対し、5~10容積%増量された軽油が得られた、と報告されている。この非特許文献1に記載の方法においては、ミキサーの上部空間に二酸化炭素を供給するので、水の添加により不足する炭素を、この二酸化炭素の分解により補うものと理解される。 A paper titled “An efficient way of producing fuel hydrocarbon from CO 2 and activated water” by Tadayuki Imanaka et al. Published on the web on August 29, 2015 by J-STAGE (Non-Patent Document 1) In the presence of a titanium dioxide catalyst, UV light and black light (wavelength 350 nm to 400 nm) are irradiated to generate activated water, and this activated water is mixed with light oil to make it stronger. A method for producing synthetic oil by stirring is disclosed. In the method described in this paper, active water is mixed with light oil by a special mixer serving as a reaction layer, the mixed solution collides with the wall of the mixer, and the mixed solution is circulated so that the collision is repeated. In this process, carbon dioxide is supplied to the upper space of the mixer, which is the reaction layer. According to the method described in Non-Patent Document 1, a cloudy emulsion is generated in the above-described process. And when this emulsion is left still, an emulsion will be phase-separated into two phases, an oil phase and an aqueous phase, and oil equivalent to light oil can be obtained from an oil phase part. The paper of Non-Patent Document 1 reports that light oil increased by 5 to 10% by volume with respect to light oil used as the base oil was obtained by the method disclosed herein. In the method described in Non-Patent Document 1, since carbon dioxide is supplied to the upper space of the mixer, it is understood that the carbon deficient due to the addition of water is supplemented by the decomposition of the carbon dioxide.
特許第4682287号Japanese Patent No. 4682287 特開2014-47229号公報JP 2014-47229 A
 上述の公知文献に記載された方法においては、元油として使用される燃料油に対してある程度の増量を達成することができるであろうが、その増量の程度には限界がある。例えば、非特許文献1に記載の方法では、該文献に記載されているように、増量は10容積%程度に過ぎず、特許文献1及び2に記載の方法においても、2倍程度の増量しか達成できていない。
 本発明は、従来技術におけるこの問題に対処するのもので、元油となる炭化水素系燃料に対する合成燃料の割合を従来に比べて飛躍的に高めることができる、元油に対して水を添加することによる炭化水素系合成燃料製造方法を提供することを目的とする。
 本発明の他の目的は、水添加前の燃料である燃料元油と対比して、組成及び物理的特性が実質的に同じであるか、又はこれに近似しており、油水分離の観点からも燃料元油と同等の特性を備えた炭化水素系合成燃料油を、燃料元油の量に比べて大幅に増加した量で製造することができる、炭化水素系合成燃料油の製造方法を提供することである。
In the method described in the above-mentioned publicly known literature, a certain amount of increase can be achieved with respect to the fuel oil used as the base oil, but the extent of the increase is limited. For example, in the method described in Non-Patent Document 1, as described in the document, the increase is only about 10% by volume. In the methods described in Patent Documents 1 and 2, the increase is only about twice. Not achieved.
The present invention addresses this problem in the prior art, and can add water to the base oil, which can dramatically increase the ratio of the synthetic fuel to the hydrocarbon-based fuel that is the base oil. An object of the present invention is to provide a method for producing a hydrocarbon-based synthetic fuel.
Another object of the present invention is that the composition and physical characteristics are substantially the same as or close to those of the fuel base oil that is the fuel before water addition, from the viewpoint of oil-water separation. Provides a method for producing a hydrocarbon-based synthetic fuel oil that can produce a hydrocarbon-based synthetic fuel oil having characteristics equivalent to those of the fuel base oil in a significantly increased amount compared to the amount of the fuel base oil. It is to be.
 上記目的を達成するための本発明による方法は、炭化水素系燃料元油に水を加えて該炭化水素系燃料元油の体積より大きい体積の炭化水素系合成燃料油を製造する炭化水素系合成燃料油の製造方法において、当該製造方法により製造された炭化水素系合成燃料油を、次の炭化水素系合成燃料油の製造における燃料元油として使用し、さらに同様な工程を順次複数回繰り返すことにより、水の添加割合が高い、炭化水素系合成燃料を製造することを特徴とするものである。
 すなわち、本発明の一態様による炭化水素系合成燃料油の製造方法は、
 a)水に対して活性化処理を施して、活性化された活性化水を生成する活性化水生成工程と、
 b)該活性化水を、当初燃料元油として使用される炭化水素系燃料元油に添加して、反応性環境のもとで所定時間撹拌し混合する撹拌混合工程と、
 c)該撹拌混合工程を経た炭化水素系燃料元油と活性化水とを反応性環境のもとで融合させる融合工程と、
 d)該融合工程を経た混合物から得られる炭化水素系燃料油を一次生成炭化水素系燃料油として収集する一次生成炭化水素系燃料油収集工程と、
を含み、次いで、
 該一次生成炭化水素系燃料油を二次燃料元油として使用し、上記b)c)d)の工程を行って、二次生成炭化水素系燃料油を収集し、以下、得られた炭化水素系燃料油を、順次燃料元油として使用し、上記b)c)d)の工程を行う処理を複数回、繰り返すことにより、当初燃料元油よりも大きい体積の、水(H2O)を実質的に含まず、該当初燃料元油と実質的に同等であるか、又はこれに近似する組成の炭化水素系燃料油からなる複数次生成炭化水系合成素燃料油を生成する
ことを含むものである。
In order to achieve the above object, a method according to the present invention comprises adding hydrocarbon to a hydrocarbon-based fuel base oil to produce a hydrocarbon-based synthetic fuel oil having a volume larger than the volume of the hydrocarbon-based fuel base oil. In the method for producing fuel oil, the hydrocarbon-based synthetic fuel oil produced by the production method is used as a fuel base oil in the production of the next hydrocarbon-based synthetic fuel oil, and the same steps are sequentially repeated a plurality of times. Thus, a hydrocarbon-based synthetic fuel having a high water addition ratio is produced.
That is, the method for producing a hydrocarbon-based synthetic fuel oil according to one aspect of the present invention includes:
a) An activated water generating step of performing an activation treatment on water to generate activated activated water;
b) an agitation and mixing step of adding the activated water to a hydrocarbon-based fuel base oil that is initially used as a fuel base oil, and stirring and mixing for a predetermined time under a reactive environment;
c) a fusion step of fusing the hydrocarbon fuel base oil and the activated water that have undergone the stirring and mixing step under a reactive environment;
d) a primary produced hydrocarbon fuel oil collecting step for collecting a hydrocarbon produced fuel obtained from the mixture obtained through the fusion step as a primary produced hydrocarbon fuel oil;
And then
The primary product hydrocarbon fuel oil is used as a secondary fuel base oil, and the steps b), c) and d) are performed to collect the secondary product hydrocarbon fuel oil. System fuel oil is sequentially used as the fuel base oil, and the process of steps b), c) and d) is repeated a plurality of times, so that water (H 2 O) having a volume larger than that of the initial fuel base oil is obtained. It does not substantially contain, but includes producing a multi-generation hydrocarbon-based synthetic fuel oil composed of a hydrocarbon-based fuel oil having a composition that is substantially equivalent to or close to that of the corresponding initial fuel base oil. .
 本発明の他の態様による炭化水素系合成燃料油の製造方法は、
 a)水に対して活性化処理を施して、活性化された活性化水を生成する活性化水生成工程と、
 b)該活性化水を、当初燃料元油として使用される炭化水素系燃料元油に添加して、反応性環境のもとで所定時間撹拌し混合する撹拌混合工程と、
 c)該撹拌混合工程を経た炭化水素系燃料元油と活性化水とを反応性環境のもとで融合させる融合工程と、
 d)該融合工程を経た混合液を静置して、水(H2O)を実質的に含まず当初燃料元油と実質的に同等であるか、又はこれに近似する組成の炭化水素系燃料油からなる上方の油層と、下方の水層とに相分離させる油水分離工程と、
 e)該上方の油層の炭化水素系燃料油を一次生成炭化水素系燃料油として収集する一次生成炭化水素系燃料油収集工程と、
を含み、
 f)該撹拌混合工程と融合工程とは、該一次生成炭化水素系燃料油収集工程により得られる一次生成炭化水素系燃料油の体積が当初燃料元油として使用される炭化水素系燃料元油の体積より大きくなる時間にわたり行われるようにし、次いで、
 g)該一次生成炭化水素系燃料油を二次燃料元油として使用し、上記b)c)d)e)f)の工程を行って、二次生成炭化水素系燃料油を収集し、以下、得られた炭化水素系燃料油を、順次燃料元油として使用し、上記b)c)d)e)f)の工程を行う処理を複数回繰り返すことにより、当初燃料元油よりも大きい体積の、水(H2O)を実質的に含まず前記当初燃料元油と実質的に同等であるか、又はこれに近似する組成の炭化水素系燃料油からなる複数次生成炭化水素系合成燃料油を生成する
ことを含むものである。
A method for producing a hydrocarbon-based synthetic fuel oil according to another aspect of the present invention includes:
a) An activated water generating step of performing an activation treatment on water to generate activated activated water;
b) an agitation and mixing step of adding the activated water to a hydrocarbon-based fuel base oil that is initially used as a fuel base oil, and stirring and mixing for a predetermined time under a reactive environment;
c) a fusion step of fusing the hydrocarbon fuel base oil and the activated water that have undergone the stirring and mixing step under a reactive environment;
d) A hydrocarbon system having a composition that is not substantially contained in water (H 2 O) and is substantially equivalent to or close to the initial fuel base oil by allowing the mixed solution that has undergone the fusion step to stand. An oil-water separation step for phase separation into an upper oil layer made of fuel oil and a lower water layer;
e) a primary produced hydrocarbon fuel oil collecting step for collecting the hydrocarbon fuel oil in the upper oil layer as a primary produced hydrocarbon fuel oil;
Including
f) The stirring and mixing step and the fusion step are the steps of the hydrocarbon-based fuel base oil in which the volume of the primary-generated hydrocarbon fuel oil obtained by the primary-generation hydrocarbon-based fuel oil collecting step is used as the initial fuel base oil. To be performed over a period of time greater than the volume, then
g) Using the primary product hydrocarbon fuel oil as a secondary fuel base oil, collecting the secondary product hydrocarbon fuel oil by performing the above steps b) c) d) e) f) The obtained hydrocarbon-based fuel oil is sequentially used as a fuel base oil, and the process of the above steps b), c), d), e) and f) is repeated a plurality of times. A multi-generation hydrocarbon-based synthetic fuel comprising a hydrocarbon-based fuel oil having a composition substantially free of water (H 2 O) and substantially equivalent to or close to the original fuel base oil Including producing oil.
 本発明の方法においては、活性化水は、マイクロバブルのホットスポットを含むものであることが好ましい。また、活性化水生成工程は、水を35℃から45℃の範囲の温度に昇温し電圧を印加した状態で、該水に超音波を照射することにより行われることが好ましい。さらに、電圧の印加は、水に浸漬したトルマリンに超音波を照射して該トルマリンを励起状態にすることにより行われることが好ましい。活性化水がマイクロバブルのホットスポットを含むものである場合には、該活性化水には、マイクロバブルのホットスポットを保持するのに有効な物質が添加されていることが好ましい。 In the method of the present invention, the activated water preferably contains microbubble hot spots. Moreover, it is preferable that an activated water production | generation process is performed by irradiating an ultrasonic wave to this water in the state which heated up water to the temperature of the range of 35 to 45 degreeC, and applied the voltage. Furthermore, the voltage is preferably applied by irradiating tourmaline immersed in water with ultrasonic waves to bring the tourmaline into an excited state. When the activated water contains microbubble hot spots, it is preferable that a substance effective to retain the microbubble hot spots is added to the activated water.
 マイクロバブルのホットスポットの生成は、トルマリンに照射される超音波の周波数とは異なる周波数の超音波を水に対して照射することにより行われることが好ましい。撹拌混合工程における反応性環境は、カタラーゼを添加した水に超音波を照射しながら、該水を撹拌することにより形成することができる。撹拌は、水と燃料元油の混合物の液面に強い波立ちを生じさせるように行われることが好ましい。さらに、撹拌混合工程における反応性環境は、水に光触媒を添加し、紫外光を照射しながら撹拌を行うことにより形成することができる。 It is preferable that the generation of hot spots of microbubbles is performed by irradiating water with ultrasonic waves having a frequency different from the frequency of ultrasonic waves irradiated to tourmaline. The reactive environment in the stirring and mixing step can be formed by stirring water while irradiating water to which catalase has been added. Stirring is preferably performed so as to generate a strong wave at the liquid level of the mixture of water and fuel base oil. Furthermore, the reactive environment in the stirring and mixing step can be formed by adding a photocatalyst to water and stirring while irradiating with ultraviolet light.
 本発明の方法により製造された燃料油は炭化水素系合成燃料油であり、水(H2O)を実質的に含まず、かつ、燃料元油と実質的に同一であるか、これに近似する組成及び物理的特性を有するものとなる。例えば、燃料元油がディーゼル燃料として使用される軽油である場合には、得られる合成燃料油は、元油である軽油と同等の軽油となる、という驚くべき結果が得られる。本発明により製造される軽油は、実質的に水(H2O)を含まないので、長期間にわたり保存しても油水分離を生じないことが確認された。
 同様に、本発明の方法によれば、燃料元油がA重油である場合には、該A重油と実質的に同等か、これに近似する重油を製造することができる。
The fuel oil produced by the method of the present invention is a hydrocarbon-based synthetic fuel oil that is substantially free of water (H 2 O) and is substantially the same as or close to the fuel base oil. It has a composition and a physical characteristic to do. For example, when the fuel base oil is a light oil used as a diesel fuel, a surprising result is obtained that the resultant synthetic fuel oil is a light oil equivalent to the light oil that is the base oil. Since the light oil produced by the present invention does not substantially contain water (H 2 O), it has been confirmed that oil-water separation does not occur even when stored for a long period of time.
Similarly, according to the method of the present invention, when the fuel base oil is A heavy oil, it is possible to produce heavy oil that is substantially equivalent to or close to the A heavy oil.
 燃料元油に水を加えたにも拘わらず、合成燃料が、水(H2O)を実質的に含まず、かつ、燃料元油と実質的に同一であるか、これに近似する組成及び物理的特性を有するものとなるようにするためには、可燃成分である炭化水素を生成するための炭素を外部から取り入れることが必要になる。このためには、燃料元油と水の混合液の液面から周囲空気中の二酸化炭素を取り込み、該二酸化炭素を分解してその炭素を利用することにより、合成燃料の生成のための反応に必要とされる炭素の少なくとも大部分を得るようにすることが考えられる。このためには、撹拌混合工程が大気への開放空間で行われる場合には、該撹拌混合工程において、燃料元油と水の混合液の液面に強い波立ちを生じるように混合液を循環させることが有効である。撹拌混合工程が行われる周囲が閉空間である場合には、周囲空気中から取り込まれる二酸化炭素の量が不足するが、このような状況のもとでは、燃料元油と水の混合物に炭素を加えることにより意図する合成燃料が得られることが確認できた。加える炭素としては、木材を炭化させた木炭を使用することができる。その他、工業用途に使用される粉末炭素も有利に使用することができる。また、一酸化炭素ガス或いは二酸化炭素ガスを加えて、空気中から取り込んだ二酸化炭素の場合と同様に分解し、合成燃料の生成に使用しても良い。
 また、可燃成分である炭化水素の生成に必要な水素は、活性化された水分子の分解により得られるものと推測される。水分子は、本発明の方法においてマイクロバブルのホットスポットを含むように活性化されており、このように活性化された水分子を含む水に、カタラーゼ、水酸化ナトリウム、過酸化水素水溶液の少なくとも一つを添加した状態で、撹拌することにより、反応に必要な水素が得られることが確認されている。
Despite the addition of water to the fuel base oil, the synthetic fuel is substantially free of water (H 2 O) and is substantially the same as or close to the fuel base oil. In order to achieve physical properties, it is necessary to incorporate carbon from the outside to generate hydrocarbons that are combustible components. For this purpose, carbon dioxide in ambient air is taken in from the liquid level of the mixture of the fuel base oil and water, and the carbon dioxide is decomposed and used for the reaction for generating the synthetic fuel. It is conceivable to obtain at least the majority of the carbon required. For this purpose, when the agitation and mixing step is performed in an open space to the atmosphere, the mixture is circulated in the agitation and mixing step so as to generate a strong wave at the liquid level of the mixture of fuel base oil and water. It is effective. If the surrounding area where the stirring and mixing process is performed is a closed space, the amount of carbon dioxide taken in from the ambient air is insufficient, but under such circumstances, carbon is added to the fuel base oil and water mixture. It was confirmed that the intended synthetic fuel can be obtained by addition. As carbon to be added, charcoal obtained by carbonizing wood can be used. In addition, powdered carbon used for industrial applications can also be used advantageously. Further, carbon monoxide gas or carbon dioxide gas may be added and decomposed in the same manner as in the case of carbon dioxide taken from the air, and used for the production of synthetic fuel.
Moreover, it is estimated that hydrogen required for the production | generation of the hydrocarbon which is a combustible component is obtained by decomposition | disassembly of the activated water molecule. Water molecules are activated to include microbubble hot spots in the method of the present invention, and water containing the activated water molecules is added to at least one of catalase, sodium hydroxide, and hydrogen peroxide aqueous solution. It has been confirmed that the hydrogen necessary for the reaction can be obtained by stirring with one added.
 燃料元油に添加される水の量は、特に限界はないと考えられるが、燃料元油に対する水の添加量が多くなり過ぎると、所望の組成を有する合成燃料の生成に要する反応時間が過大になり、実用的ではなくなることが懸念される。本発明の発明者は、体積比で、燃料元油1に対し水を約1の割合で混合した場合にも、十分に短い時間で所望の合成燃料を生成できることを確認した。水の添加量がこれよりも少ない場合には、より短い時間で所望の結果を得ることができる。したがって、本発明において、燃料元油と水の混合割合は、体積比で、燃料元油1に対し、水は約1以下とすることが好ましい。 The amount of water added to the fuel base oil is not particularly limited, but if the amount of water added to the fuel base oil is too large, the reaction time required to produce a synthetic fuel having the desired composition will be excessive. There is a concern that it will become impractical. The inventor of the present invention has confirmed that a desired synthetic fuel can be produced in a sufficiently short time even when water is mixed at a ratio of about 1 to the fuel base oil 1 by volume ratio. When the amount of water added is less than this, the desired result can be obtained in a shorter time. Therefore, in the present invention, the mixing ratio of the fuel base oil and water is preferably about 1 or less with respect to the fuel base oil 1 in terms of volume ratio.
 本発明の方法においては、攪拌混合工程において、まず、燃料元油のみを攪拌混合タンクに投入し、攪拌しながら、水活性化工程と添加剤投入工程を経た水を所定量ずつ添加混合することが好ましい。この場合、液面に強い波立ちを生じるように激しく撹拌することが、空気中の二酸化炭素を液中に取り込むために好ましい。 In the method of the present invention, in the agitation and mixing step, first, only the fuel base oil is charged into the agitation and mixing tank, and the water after the water activation step and the additive addition step is added and mixed in predetermined amounts while stirring. Is preferred. In this case, it is preferable to vigorously stir so as to generate a strong wave on the liquid surface in order to take carbon dioxide in the air into the liquid.
 本発明の方法においては、円筒部分を持つ攪拌混合タンクと、水活性化工程と添加剤投入工程とを経た水を該タンク内に噴射等の手法により投入する少なくとも一つの噴射管とを有する装置を使用し、該噴射管による水の噴射方向は、該円筒部分の直径線に対して所定の角度を持つようにすることが好ましい。 In the method of the present invention, an apparatus having a stirring and mixing tank having a cylindrical portion, and at least one injection pipe for introducing water that has undergone a water activation step and an additive addition step into the tank by a method such as injection. It is preferable that the water jet direction of the jet pipe has a predetermined angle with respect to the diameter line of the cylindrical portion.
 円筒部分を持つ攪拌混合タンクに少なくとも一つの噴射管を備えた装置を使用する上記態様による本発明の方法においては、上記の所定の角度は、約40度ないし約50度、特に約45度であることが好ましく、複数の噴射管が備えられる場合には、すべての噴射管における上記の所定の角度が、約40度ないし約50度の範囲内の特定の角度、例えば、約45度であるようにすることが好ましい。撹拌混合タンク中の液面に上述した強い波立ちを生じさせるためには、噴射管の吐出口は、液面から少なくとも8cm、好ましくは10cm又はそれ以上、上方に位置させ、高速噴流として活性化水を液面に噴射することが好ましい。 In the method of the invention according to the above embodiment using an apparatus with at least one injection tube in a stirred mixing tank having a cylindrical portion, the predetermined angle is about 40 degrees to about 50 degrees, in particular about 45 degrees. Preferably, when multiple spray tubes are provided, the predetermined angle in all the spray tubes is a specific angle in the range of about 40 degrees to about 50 degrees, for example, about 45 degrees. It is preferable to do so. In order to generate the above-described strong ripples on the liquid level in the stirring and mixing tank, the discharge port of the injection pipe is positioned at least 8 cm, preferably 10 cm or more above the liquid level, and activated water is used as a high-speed jet. Is preferably sprayed onto the liquid surface.
 本発明の上記態様においては、該噴射管は、攪拌混合タンクタンクの内部に突出する突出部を持つ構成にすることが好ましい。 In the above aspect of the present invention, it is preferable that the injection pipe has a projecting portion that projects into the stirring and mixing tank tank.
 この場合において、該突出部の長さは、約10cmとすることが好ましい。 In this case, the length of the protrusion is preferably about 10 cm.
 本発明の一態様においては、添加剤添加工程において、カタラーゼを、水に対する重量比で0.04から0.05%添加することが好ましい。 In one embodiment of the present invention, in the additive addition step, it is preferable to add catalase in a weight ratio of 0.04 to 0.05% with respect to water.
 本発明のさらに他の態様においては、上述した水活性化工程で活性化された水は、そのORPが160mVから-200mVとなるようにすることが好ましい。 In still another aspect of the present invention, it is preferable that the water activated in the water activation step described above has an ORP of 160 mV to −200 mV.
 本発明の好ましい態様においては、水活性化工程は、トルマリン又は銅イオン発生材料を水に接触させた状態に保持し、水に対して、或いは、該トルマリン又は銅イオン発生材料に、10KHzから60KHzまでと、200KHz以上の2つの周波数超音波を交互に照射して、該トルマリンから放射される電気エネルギ又は該銅イオン発生材料から放射される銅イオンにより水を活性化することにより行われる。 In a preferred embodiment of the present invention, the water activation step maintains the tourmaline or copper ion generating material in contact with water, and the water or the tourmaline or copper ion generating material is 10 KHz to 60 KHz. Until then, two frequency ultrasonic waves of 200 KHz or higher are alternately irradiated, and water is activated by electrical energy radiated from the tourmaline or copper ions radiated from the copper ion generating material.
 本発明の更に好ましい態様においては、融合工程における加圧圧力を0.3MPa以上とし、加熱温度を40℃から80℃までの範囲とする。 In a further preferred embodiment of the present invention, the pressure applied in the fusion step is 0.3 MPa or more, and the heating temperature is in the range from 40 ° C to 80 ° C.
 本発明の更に好ましい態様においては、攪拌混合工程において、OHRミキサを用いることができる。 In a further preferred embodiment of the present invention, an OHR mixer can be used in the stirring and mixing step.
 本発明によれば、上述した方法により、合成された後には水と油に分離され難いか、又は分離される恐れが殆どない炭化水素系合成燃料油を得ることができる。また、得られた合成燃料油を元油として使用して、これに水を加え、さらに同様の工程を繰り返すことにより、加水率の高い炭化水素系合成燃料油を効率よく生成することができる。上述したように、本発明の方法により製造された合成燃料油は、水(H2O)を実質的に含まず、かつ、燃料元油と実質的に同一であるか、又はこれに近似する組成及び物理的特性を有するものとなる。
 また、本発明の炭化水素系合成燃料油は、既存の燃料油と単位分量当たりの発熱量が同等又はそれ以上であり、かつ、既存の燃料油と比較して、燃焼後の燃焼室、排気管等の劣化や腐食が少ないという効果がある。さらに、本発明の合成燃料油は、完全燃焼性に優れており、一酸化炭素が生成されにくく、また一酸化炭素の排出量も少ないなど、といった効果が達成される。
According to the present invention, by the above-described method, it is possible to obtain a hydrocarbon-based synthetic fuel oil that is difficult to be separated into water and oil after being synthesized, or hardly separated. Further, by using the obtained synthetic fuel oil as a base oil, adding water thereto, and further repeating the same steps, a hydrocarbon-based synthetic fuel oil having a high water content can be efficiently produced. As described above, the synthetic fuel oil produced by the method of the present invention is substantially free of water (H 2 O) and is substantially the same as or close to the fuel base oil. It will have composition and physical properties.
Further, the hydrocarbon-based synthetic fuel oil of the present invention has a calorific value per unit amount equal to or higher than that of the existing fuel oil, and compared with the existing fuel oil, the combustion chamber and exhaust after combustion. There is an effect that there is little deterioration and corrosion of a pipe etc. Furthermore, the synthetic fuel oil of the present invention is excellent in complete combustibility, and it is difficult to produce carbon monoxide, and the effects such as low carbon monoxide emission are achieved.
本発明に係る合成燃料油の製造方法の工程図である。It is process drawing of the manufacturing method of the synthetic fuel oil which concerns on this invention. 本発明に係る合成燃料油の製造方法に用いる製造装置の全体構成図である。It is a whole block diagram of the manufacturing apparatus used for the manufacturing method of the synthetic fuel oil which concerns on this invention. 図2の製造装置に使用することができる撹拌装置の反応槽への噴射管の構造図である。It is a structural diagram of the injection tube to the reaction tank of the stirring apparatus which can be used for the manufacturing apparatus of FIG. 図2の製造装置に使用することができるイオン化装置の一例の概略図である。It is the schematic of an example of the ionization apparatus which can be used for the manufacturing apparatus of FIG. 本発明の一実施例に係る方法により軽油を元油として得られた炭化水素系合成燃料油についてのGC-MS分析の結果を示すチャートである。It is a chart which shows the result of the GC-MS analysis about the hydrocarbon type | system | group synthetic fuel oil obtained by using the method which concerns on one Example of this invention as a base oil. 本発明の一実施例に係る方法により軽油を元油として得られた他の合成燃料についてのGC-MS分析の結果を示すチャートである。It is a chart which shows the result of the GC-MS analysis about the other synthetic fuel obtained by using the light oil as base oil by the method which concerns on one Example of this invention. 本発明の一実施例において、元油として使用した軽油についてのGC-MS分析の結果を示すチャートである。4 is a chart showing the results of GC-MS analysis of light oil used as base oil in one example of the present invention. 本発明の他の実施例に係る方法によりA重油を元油として得られた他の合成燃料についてのGC-MS分析の結果を示すチャートである。It is a chart which shows the result of the GC-MS analysis about the other synthetic fuel obtained by using A heavy oil as a base oil by the method which concerns on the other Example of this invention. 図8に示す実施例において、元油として使用したA重油についてのGC-MS分析の結果を示すチャートである。FIG. 9 is a chart showing GC-MS analysis results for A heavy oil used as base oil in the example shown in FIG. 8.
 本発明による炭化水素系合成燃料油の製造方法について、以下に一実施形態を図面に基づいて説明する。
 なお、本実施例で示される合成燃料の製造方法の全体的な構成及び各細部の構成、数値は、下記に述べる実施形態及び実施例に限定されるものではなく、本発明の技術的思想の範囲内、即ち、同一の作用効果を発揮できる形状及び寸法の範囲内で変更することができるものである。
An embodiment of a method for producing a hydrocarbon-based synthetic fuel oil according to the present invention will be described below with reference to the drawings.
It should be noted that the overall configuration of the synthetic fuel production method shown in this example, the configuration of each detail, and the numerical values are not limited to the embodiments and examples described below, but are based on the technical idea of the present invention. It can be changed within the range, that is, within the range of the shape and size that can exhibit the same effect.
 図1、図2、及び図3を参照して、本発明の一実施形態を説明する。図1は、本発明に係る製造装置を用いて遂行される本発明の一実施形態による方法のフロー図である。図2は、本発明に係る合成燃料の製造方法に用いる製造装置の全体構成図であり、図3は、本発明に係る製造装置の反応槽への水噴射を行うための噴射管の構造図である。
 図2を参照すると、本発明の一実施形態において、合成燃料製造装置1は、元油改善槽2、精製水槽3、反応促進剤注入部4、反応槽5、静置槽6、及び製品受槽7から構成される。この装置1の概要を説明すると、元油改善槽2において燃料元油の前処理を行い、精製水槽3で水の活性化処理を行い、反応促進剤注入部4から添加剤を所定の槽に投入する。さらに、反応槽5において燃料元油と水の攪拌混合及び融合を行い、静置槽6においてスカムなどの不要な残留物を除去し、必要な場合には油相と水相の相分離を行い、該静置槽6から製品受槽7に製品である炭化水素系合成燃料油を導入する。
An embodiment of the present invention will be described with reference to FIGS. 1, 2, and 3. FIG. 1 is a flow diagram of a method according to an embodiment of the present invention performed using a manufacturing apparatus according to the present invention. FIG. 2 is an overall configuration diagram of a manufacturing apparatus used in the synthetic fuel manufacturing method according to the present invention, and FIG. 3 is a structural diagram of an injection pipe for performing water injection into a reaction tank of the manufacturing apparatus according to the present invention. It is.
Referring to FIG. 2, in one embodiment of the present invention, the synthetic fuel production apparatus 1 includes a base oil improvement tank 2, a purified water tank 3, a reaction accelerator injection unit 4, a reaction tank 5, a stationary tank 6, and a product receiving tank. 7 is composed. The outline of the apparatus 1 will be described. The fuel base oil is pretreated in the base oil improvement tank 2, the water is activated in the purified water tank 3, and the additive is supplied from the reaction accelerator injection unit 4 to a predetermined tank. throw into. Further, the fuel tank oil and water are stirred and mixed and fused in the reaction tank 5, and unnecessary residues such as scum are removed in the stationary tank 6. If necessary, the oil phase and the water phase are phase-separated. Then, hydrocarbon synthetic fuel oil as a product is introduced from the stationary tank 6 to the product receiving tank 7.
 元油改善槽2は、燃料油を混合する前の処理を行う槽である。燃料元油は、別の元油槽201から供給される。この元油改善槽は、油の温度を混合に適した温度にすることを目的とするものである。燃料元油は、元油槽201から元油改善槽2に供給された後、該元油改善槽2に設けられたヒータ8によって加熱され、熱電対(T)によって所定の温度に管理される。
 元油改善槽2内の燃料元油は、油温の均一度を高めるために、ポンプ11により、該元油改善槽2から取出し、ヘッダ管202を通して槽内に再投入することにより、循環させてもよい。また、触媒を用いて、前処理として、油の分子を細分化してもよい。
The base oil improvement tank 2 is a tank that performs a process before the fuel oil is mixed. The fuel base oil is supplied from another base oil tank 201. This base oil improvement tank is intended to make the temperature of the oil suitable for mixing. After the fuel base oil is supplied from the base oil tank 201 to the base oil improvement tank 2, it is heated by the heater 8 provided in the base oil improvement tank 2, and is managed at a predetermined temperature by the thermocouple (T).
In order to increase the uniformity of the oil temperature, the fuel base oil in the base oil improvement tank 2 is circulated by being taken out of the base oil improvement tank 2 by the pump 11 and reintroducing into the tank through the header pipe 202. May be. Further, oil molecules may be subdivided as a pretreatment using a catalyst.
 精製水槽3は、水活性化工程を遂行する。本発明の方法に使用される水は、軟水であることが好ましく、したがって、水は軟水化装置301から供給されるようにすることが好ましい。この精製水槽3は、水の温度を混合に適した温度に維持すると共に、水の分子を活性レベルまで細分化し、マイクロバブルスポットを含む活性化水とすることを目的とする。該精製水槽3に供給された水は、該精製水槽3に設けられたヒータ8によって、加熱され、熱電対(T)によって所定の温度に管理される。ORP(酸化・還元電位)計によって、活性化の程度を測定することができる。精製水槽3の底部には超音波発生部10が設けられており、該超音波発生部10から、超音波を水に照射することで、水の分子集合体を細分化することができる。この場合において、2種類の波長の超音波を交互に照射することが好適である。具体的には、10kHz~60kHzの超音波と200kHz以上の超音波を交互に照射する。こうすることで、活性化の効率が向上する。 The purified water tank 3 performs a water activation process. The water used in the method of the present invention is preferably soft water, and therefore water is preferably supplied from the water softening device 301. The purpose of the purified water tank 3 is to maintain the temperature of the water at a temperature suitable for mixing, and to subdivide the water molecules to an active level to obtain activated water containing microbubble spots. The water supplied to the purified water tank 3 is heated by a heater 8 provided in the purified water tank 3 and is controlled at a predetermined temperature by a thermocouple (T). The degree of activation can be measured by an ORP (oxidation / reduction potential) meter. An ultrasonic generator 10 is provided at the bottom of the purified water tank 3, and the water molecular aggregate can be subdivided by irradiating the ultrasonic wave from the ultrasonic generator 10. In this case, it is preferable to irradiate ultrasonic waves of two types of wavelengths alternately. Specifically, ultrasonic waves of 10 kHz to 60 kHz and ultrasonic waves of 200 kHz or higher are alternately applied. By doing so, the efficiency of activation is improved.
 さらに、精製水槽3においては、触媒9として、トルマリン、銅イオン発生材料を用いることが好ましい。超音波発生部10から超音波を照射する際に、水に触媒9を接触させることで、該触媒9から放射される電気エネルギにより、活性化の効率を向上させることができる。また、精製水槽3内に浸漬したトルマリン又は銅イオン発生材料等の触媒9に超音波を照射して、該触媒の作用を促進させることができる。 Furthermore, in the purified water tank 3, it is preferable to use tourmaline or a copper ion generating material as the catalyst 9. When the ultrasonic wave is irradiated from the ultrasonic wave generation unit 10, the efficiency of activation can be improved by bringing the catalyst 9 into contact with water by the electric energy radiated from the catalyst 9. Further, the action of the catalyst can be promoted by irradiating the catalyst 9 such as tourmaline or copper ion generating material immersed in the purified water tank 3 with ultrasonic waves.
 活性化が均等に行われるように、槽内の水をポンプ11によりヘッダ302に取出し、該ヘッダ302から再度、精製水槽3内に戻すことにより、水を循環させてもよい。この場合には、水を槽の下部から引き出し、ポンプ11で圧力をかけ、ヘッダ管302を通して、槽の上部から水を再噴射させる。このような構造とすることで、水の温度、活性化を均等に行うことができる。 The water may be circulated by taking out the water in the tank to the header 302 by the pump 11 and returning it again from the header 302 into the purified water tank 3 so that the activation is performed uniformly. In this case, water is drawn from the bottom of the tank, pressure is applied by the pump 11, and water is re-injected from the top of the tank through the header pipe 302. By setting it as such a structure, the temperature and activation of water can be performed equally.
 水の活性化は、高圧トランスに接続された電極間に放電を発生させ、この放電により水を解離・電離させるように構成された、水のプラズマアーク処理によって行うこともできる。プラズマアーク処理により水を活性化させる場合、例えば、水の循環経路中、精製水槽3とポンプ11との間にプラズマアーク処理装置を設置することにより、処理を行うことができる。また、プラズマアーク処理を行う場合、触媒9としてアルミニウムを好適に使用することができる。
 本発明においては、上述した電気エネルギの印加、及び水のプラズマアーク処理を総称して、「電気的刺激」と呼ぶ。
The activation of water can also be performed by plasma arc treatment of water configured to generate a discharge between electrodes connected to a high-voltage transformer and dissociate and ionize water by this discharge. When water is activated by plasma arc treatment, for example, the treatment can be performed by installing a plasma arc treatment apparatus between the purified water tank 3 and the pump 11 in the water circulation path. Moreover, when performing a plasma arc process, aluminum can be used suitably as the catalyst 9.
In the present invention, the above-described application of electrical energy and plasma arc treatment of water are collectively referred to as “electrical stimulation”.
 反応促進剤注入部4は、反応促進剤として添加剤を精製水槽3又は反応槽5に投入するものである。添加剤は、過酸化水素を水素と酸素に分解して酸素はガスとして大気に放出させる作用を達成する物質である。この作用により、生成される燃料油の含有水素比率を増大させ発熱量の低下を防止できる。添加剤としては、カタラーゼ、水酸化ナトリウム、過酸化水素水溶液などを用いることができる。添加剤の投入量は、細かく調整する必要がある。カタラーゼを添加する場合には、該カタラーゼの添加量は、水に対する重量比で、0.04%から0.05%が好適である。カタラーゼの添加量が0.04重量%よりも少ないと効果が薄く、0.05%よりも多いと十分溶けず、返ってスカムを増やすこととなり、生成される燃料油の品質を下げることとなる。 The reaction accelerator injecting section 4 is for introducing an additive into the purified water tank 3 or the reaction tank 5 as a reaction accelerator. The additive is a substance that achieves the action of decomposing hydrogen peroxide into hydrogen and oxygen and releasing the oxygen into the atmosphere as a gas. By this action, the hydrogen content ratio of the produced fuel oil can be increased to prevent the calorific value from decreasing. As an additive, catalase, sodium hydroxide, aqueous hydrogen peroxide solution or the like can be used. It is necessary to finely adjust the amount of additive added. When catalase is added, the amount of catalase added is preferably 0.04% to 0.05% by weight with respect to water. If the amount of catalase added is less than 0.04% by weight, the effect is weak, and if it exceeds 0.05%, it will not dissolve sufficiently and will increase the scum, which will lower the quality of the fuel oil produced. .
 反応槽5は、攪拌混合工程及び融合工程を遂行するためのものである。燃料元油は、元油改善槽2から反応槽容器13の上部に供給される。水は、精製水槽3から反応槽5の容器13の側面に、噴射管14により供給される。油と水の混合液は、反応槽5の容器13の排出口15からポンプ11により取り出され、加圧された状態で、OHRミキサ12を通って、ヘッダ管502から噴射管14を通って反応槽5の容器13内部に循環させられる。OHRミキサ12は、複数の物質を効率よく混合するためのものである。この反応槽5は、融合工程に使用する際に、3~9気圧程度の圧力を作用させることになるので、他の槽よりも高圧力に耐える構造とする必要がある。槽の中段には、ヒータ8があり、油と水の混合物は、該ヒータ8によって所定の温度に管理される。 The reaction vessel 5 is for performing a stirring and mixing step and a fusion step. The fuel base oil is supplied from the base oil improvement tank 2 to the upper part of the reaction tank container 13. Water is supplied from the purified water tank 3 to the side surface of the container 13 of the reaction tank 5 through the injection pipe 14. The mixed liquid of oil and water is taken out from the discharge port 15 of the container 13 of the reaction tank 5 by the pump 11, and in a pressurized state, passes through the OHR mixer 12 and reacts through the header pipe 502 and the injection pipe 14. It is circulated inside the container 13 of the tank 5. The OHR mixer 12 is for efficiently mixing a plurality of substances. Since this reaction tank 5 acts on a pressure of about 3 to 9 atm when used in the fusion process, it needs to have a structure that can withstand a higher pressure than other tanks. There is a heater 8 in the middle of the tank, and the mixture of oil and water is managed at a predetermined temperature by the heater 8.
 静置槽6は、融合工程後の生成液を一時的に貯蔵する槽である。この槽6では、添加物などで発生したスカムなどを沈殿させる。油と水が完全に一体となった合成燃料油と、不純物とは、この静置槽6内に静置することによって分離され、上澄みである合成燃料油が製品受槽7に供給される。不純物には添加剤も含まれており、この不純物は、反応槽5に戻す。この静置槽6での滞留時間は1時間程度が好適である。融合工程後の生成液が水を含む場合には、生成液は、該静置槽6において、上方の油相と下方の水相に相分離され、上方の油相の合成油が生成物として製品受槽7に取り出される。 The stationary tank 6 is a tank that temporarily stores the product solution after the fusion process. In this tank 6, scum generated by additives and the like is precipitated. The synthetic fuel oil in which the oil and water are completely integrated and the impurities are separated by being left in the stationary tank 6, and the synthetic fuel oil as a supernatant is supplied to the product receiving tank 7. The impurities include additives, and these impurities are returned to the reaction vessel 5. The residence time in the stationary tank 6 is preferably about 1 hour. When the product solution after the fusion step contains water, the product solution is phase-separated into an upper oil phase and a lower water phase in the stationary tank 6, and the synthetic oil in the upper oil phase is used as a product. It is taken out into the product receiving tank 7.
 製品受槽7は、製品として生成された合成燃料油を貯蔵する槽である。生成された合成燃料油は、ある程度まとまった段階で製品受槽7から製品貯蔵槽701に供給される。 The product receiving tank 7 is a tank for storing synthetic fuel oil produced as a product. The produced synthetic fuel oil is supplied from the product receiving tank 7 to the product storage tank 701 at a stage where it is gathered to some extent.
 次に、本発明による合成燃料の製造方法において基本となる工程について、図1を参照して説明する。この方法は、水を処理する工程と、燃料元油を処理する工程とに分けられる。水を処理する工程は、水活性化工程と添加剤投入工程を含む。燃料元油を処理する工程は、元油改善工程と添加剤投入工程とを含む。水活性化工程及び添加剤投入工程を経た活性化水と、元油改善工程及び添加剤投入工程を経た燃料元油は、攪拌混合工程において撹拌混合され、融合工程を経て一次生成合成油が生成される。必要に応じて、一次生成合成油の取出し前に、ろ過工程が遂行される。 Next, a basic process in the method for producing a synthetic fuel according to the present invention will be described with reference to FIG. This method is divided into a process for treating water and a process for treating fuel base oil. The process for treating water includes a water activation process and an additive charging process. The process of processing the fuel base oil includes a base oil improving process and an additive charging process. The activated water that has undergone the water activation process and additive feeding process and the fuel base oil that has undergone the base oil improvement process and additive feeding process are agitated and mixed in the agitation and mixing process, and the primary production synthetic oil is produced through the fusion process. Is done. If necessary, a filtration step is performed before removal of the primary synthetic oil.
 活性化工程は、精製水槽3において行われる。この工程においては、水分子集合体が活性レベルまで細分化される。水を活性レベルまで細分化することによって、燃料元油の分子との親和性が向上し、より多くの水を合成燃料の生成に使用することができるようになる。水を精製水槽3に入れ、超音波発生部10によって、超音波を水に照射し、水を高周波で振動させることで、水分子の細分化を促す。超音波の照射は、異なる2つの周波数をもった超音波を、交互に照射することで、水の細分化を促すことができる。超音波の周波数は、例えば、10KHz~60KHzと200KHz以上の2種類とすることでより細分化が可能となる。また、超音波発生部10を用いる際に、さらに、トルマリン又は銅イオン発生材料のような物質を触媒として用いて、水に電気的刺激を与えることが有効である。このような触媒材料を水に浸漬させた状態で超音波発生部10を動作させることにより、水に対して電気的刺激が与えられ、水にマイクロバブルのホットスポットが形成されて、水の活性化の度合を高めることができる。この場合、トルマリン又は銅イオン発生材料のような触媒材料に超音波が当たるように、超音波の照射を行うことが好ましい。 The activation process is performed in the purified water tank 3. In this step, the water molecule aggregate is subdivided to the active level. By subdividing the water to the active level, the affinity with the fuel base oil molecules is improved, and more water can be used for the production of synthetic fuel. Water is put into the purified water tank 3, and ultrasonic waves are irradiated to the water by the ultrasonic wave generation unit 10, and the water is vibrated at a high frequency, thereby promoting the fragmentation of water molecules. Ultrasonic irradiation can promote subdivision of water by alternately irradiating ultrasonic waves having two different frequencies. For example, the frequency of the ultrasonic waves can be further subdivided by using two types of frequencies of 10 KHz to 60 KHz and 200 KHz or more. Moreover, when using the ultrasonic wave generation part 10, it is effective to give an electrical stimulus to water using a substance such as tourmaline or a copper ion generating material as a catalyst. By operating the ultrasonic wave generator 10 in a state where such a catalyst material is immersed in water, electrical stimulation is given to the water, and microbubble hot spots are formed in the water. The degree of conversion can be increased. In this case, it is preferable to perform ultrasonic irradiation so that the ultrasonic wave strikes a catalyst material such as tourmaline or a copper ion generating material.
 超音波を照射することによる活性化の程度は、ORP(酸化還元電位)(mv)を測定することにより確認することができる。超音波を照射して得られる水のORPは、好ましくは160mV~-790mV、さらに好ましくは30mV~-600mVである。因みに、通常の水道水のORPは、700mV~500mVである。
 また、超音波を照射することによって、水から酸素が放出され、水の含有水素比率が向上する。
 例えば、水200Lを改質するためにトルマリンと水を接触させる場合には、20L/min~50L/minの流量で水を配管からトルマリンに向けて噴出させることが望ましい。反応時間は、1時間程度が適当であるが、20分から1日でも効果を出すことができる。
The degree of activation by irradiating with ultrasonic waves can be confirmed by measuring ORP (redox potential) (mv). The ORP of water obtained by irradiating with ultrasonic waves is preferably 160 mV to -790 mV, more preferably 30 mV to -600 mV. Incidentally, the normal tap water ORP is 700 mV to 500 mV.
Moreover, by irradiating ultrasonic waves, oxygen is released from water, and the hydrogen content ratio of water is improved.
For example, in the case where tourmaline and water are brought into contact with each other in order to reform 200 L of water, it is desirable to eject water from the pipe toward the tourmaline at a flow rate of 20 L / min to 50 L / min. The reaction time is suitably about 1 hour, but the effect can be obtained even from 20 minutes to 1 day.
 次に、添加剤投入工程について説明する。添加剤投入工程は、反応促進剤注入部4に貯蔵された添加剤を、精製水槽3又は反応槽5に添加することで、水の含有水素比率を増大させるものである。
 添加剤としては、カタラーゼ、水酸化ナトリウム、過酸化水素水溶液の一種又は複数種を用いる。添加剤の投入量は、細かく調整する必要がある。前述したように、カタラーゼを使用する場合には、カタラーゼの添加量は、水に対する重量比で、0.04%から0.05%とするのが好適である。0.04%よりも少ないと効果が薄く、0.05%よりも多いと十分溶けず、返ってスカムを増やすこととなり、燃料の品質を下げることとなる。
 水酸化ナトリウムについては、水に対して0.001重量%~0.1重量%の添加で添加剤としても効果を十分発揮する。過酸化水素水溶液の場合は、水に対して0.001重量%から0.1重量%の添加で添加剤としても効果を十分発揮する。
Next, the additive charging process will be described. The additive charging step is to increase the hydrogen content ratio of water by adding the additive stored in the reaction accelerator injecting unit 4 to the purified water tank 3 or the reaction tank 5.
As the additive, one or more of catalase, sodium hydroxide, and hydrogen peroxide aqueous solution are used. It is necessary to finely adjust the amount of additive added. As described above, when catalase is used, the amount of catalase added is preferably 0.04% to 0.05% by weight with respect to water. If it is less than 0.04%, the effect is weak, and if it is more than 0.05%, it does not dissolve sufficiently, so that the scum is increased and the quality of the fuel is lowered.
Sodium hydroxide is sufficiently effective as an additive when added in an amount of 0.001 to 0.1% by weight based on water. In the case of an aqueous hydrogen peroxide solution, the addition of 0.001% to 0.1% by weight with respect to water can sufficiently exhibit the effect as an additive.
 次に、攪拌混合工程について説明する。攪拌混合工程では、精製水槽3において活性化され、添加剤が投入された後の水と、燃料元油とを混合する。まず、反応槽5に燃料元油のみを投入する。この燃料元油を反応槽5のOHRミキサ12を通して循環させる。OHRミキサ12を通すことで、燃料元油の分子が均一化され、水と融合しやすくなる。ある程度、循環が完了した時点で、精製水槽3から活性化水を反応槽5に少量ずつ投入する。これは、燃料元油に対して水をできるだけ均一に分散させるためである。精製水槽3から供給される活性化水は、精製水槽3のポンプ11によって加圧され、反応槽5の排出口15から取り出された燃料元油と混合され、反応槽5のポンプ11によって加圧され、OHRミキサ12によって混合される。OHRミキサ12の圧力は、3気圧(0.3MPa)以上、温度は、40℃から80℃が好適である。したがって、精製水槽3、反応槽5のポンプ11の圧力は、それに見合った圧力とし、精製水槽3、反応槽5のヒータ8の加温もそれに見合ったものとする。OHRミキサ12で混合された活性化水と燃料元油は、ヘッダ管502を通って、噴射管14から反応槽5に再投入される。反応槽5に対する噴射管14の角度、反応槽5内部での突出量によって、混合の効率及び質が変化する。
 例えば、活性化水100Lを燃料元油100Lと混合する場合には、活性化水と燃料元油の混合液は、20L/min~50L/minの流量で、配管サイズ15A~50Aの配管を通して循環させることが好ましい。混合時間は、5分ないし1時間程度とすることができる。
Next, the stirring and mixing step will be described. In the stirring and mixing step, the water after being activated in the purified water tank 3 and charged with the additive is mixed with the fuel base oil. First, only the fuel base oil is charged into the reaction tank 5. This base fuel oil is circulated through the OHR mixer 12 in the reaction vessel 5. By passing through the OHR mixer 12, the molecules of the fuel base oil are made uniform and are easily fused with water. When the circulation is completed to some extent, the activated water is poured from the purified water tank 3 into the reaction tank 5 little by little. This is because water is dispersed as uniformly as possible in the fuel base oil. The activated water supplied from the purified water tank 3 is pressurized by the pump 11 of the purified water tank 3, mixed with the fuel base oil taken out from the discharge port 15 of the reaction tank 5, and pressurized by the pump 11 of the reaction tank 5. And mixed by the OHR mixer 12. The pressure of the OHR mixer 12 is preferably 3 atm (0.3 MPa) or more, and the temperature is preferably 40 ° C. to 80 ° C. Therefore, the pressure of the pump 11 of the purified water tank 3 and the reaction tank 5 is set to a pressure corresponding to that, and the heating of the heater 8 of the purified water tank 3 and the reaction tank 5 is also set to the pressure. The activated water and the fuel base oil mixed in the OHR mixer 12 are reintroduced into the reaction tank 5 from the injection pipe 14 through the header pipe 502. Depending on the angle of the injection pipe 14 with respect to the reaction tank 5 and the amount of protrusion inside the reaction tank 5, the efficiency and quality of mixing change.
For example, when 100 L of activated water is mixed with 100 L of fuel base oil, the mixture of the activated water and fuel base oil is circulated through a pipe having a pipe size of 15 A to 50 A at a flow rate of 20 L / min to 50 L / min. It is preferable to make it. The mixing time can be about 5 minutes to 1 hour.
 次に、融合工程について説明する。融合工程では、活性化水の精製水槽3から反応槽5への投入は完了しており、該融合工程は、OHRミキサ12を通して、活性化水と燃料元油の混合液を循環させることにより遂行される。この場合の圧力は、攪拌混合工程と同じ3気圧(0.3MPa)以上であることが好ましく、温度は、40℃から80℃が好適である。この工程において、活性化水と燃料元油の混合液を、OHRミキサ12に十分な時間にわたって通すことにより、活性化水と油の融合が行われ、分離する恐れのない炭化水素系合成燃料油を得ることができる。
 例えば、活性化水100Lを燃料元油100Lに融合させる場合には、混合液に作用させる加圧圧力は、0.3MPa(3気圧)以上とすることが望ましい。温度は、70℃或いはそれ以下の温度でもよい。融合工程における加圧圧力は0.9MPa、温度は50℃とすることが最も有効である。反応時間は、この加圧圧力及び温度に到達してから20分ないし60分が適当である。
Next, the fusion process will be described. In the fusion process, the input of the activated water from the purified water tank 3 to the reaction tank 5 is completed, and the fusion process is performed by circulating the mixture of the activated water and the fuel base oil through the OHR mixer 12. Is done. In this case, the pressure is preferably 3 atm (0.3 MPa) or more, which is the same as in the stirring and mixing step, and the temperature is preferably 40 ° C to 80 ° C. In this step, the mixture of activated water and fuel base oil is passed through the OHR mixer 12 for a sufficient period of time, so that the activated water and the oil are fused and the hydrocarbon-based synthetic fuel oil that is not likely to be separated. Can be obtained.
For example, when the activated water 100L is fused with the fuel base oil 100L, it is desirable that the pressure applied to the mixed liquid is 0.3 MPa (3 atm) or more. The temperature may be 70 ° C. or lower. It is most effective that the pressure applied in the fusion process is 0.9 MPa and the temperature is 50 ° C. The reaction time is suitably 20 to 60 minutes after reaching the pressure and temperature.
 次に、ろ過工程について説明する。ろ過工程では、完全に生成された合成燃料から、生成時に酵素を使用した場合に酵素の成分やその他の成分が凝固してスカム状となったものを分離する工程である。静置槽6を用いる方法は、生成物を静置させ、比重分離する方法である。比較的比重の重いスカムなどは底に溜まり、合成燃料は、比重が軽いので上層に集まる。上層の合成燃料を製品受槽7に送ることにより、製品としての炭化水素系合成燃料油を得ることができる。静置槽6における混合液滞留時間は、1時間以上とすることが望ましい。
 また、ろ過フィルターを通過させることによっても、合成燃料とスカムなどを分離することができる。ろ過フィルターは、10μmないし30μm程度のものを用いる。ろ過フィルターを通過させる温度は40℃以下が好ましく、通過時間は、配管サイズ20A~50Aの配管に通す場合には、流量20L/min~50L/min程度が望ましいが、速度は穏やかな方がより望ましい。ろ過フィルター通過の回数は1回又はそれ以上とすることができる。
Next, the filtration process will be described. The filtration step is a step of separating the scum-like product from the coagulation of the components of the enzyme and other components when the enzyme is used at the time of production from the completely produced synthetic fuel. The method using the stationary tank 6 is a method in which the product is allowed to stand and the specific gravity is separated. Scum, which has a relatively high specific gravity, accumulates at the bottom, and synthetic fuel collects in the upper layer because of its low specific gravity. By sending the upper layer synthetic fuel to the product receiving tank 7, a hydrocarbon-based synthetic fuel oil as a product can be obtained. The mixed liquid residence time in the stationary tank 6 is desirably 1 hour or longer.
Moreover, synthetic fuel and scum can also be separated by passing through a filtration filter. A filtration filter having a size of about 10 μm to 30 μm is used. The temperature for passing through the filtration filter is preferably 40 ° C. or less, and the passage time is preferably about 20 L / min to 50 L / min when passing through a pipe having a pipe size of 20 A to 50 A, but the speed is more moderate. desirable. The number of passes through the filtration filter can be one or more.
 このように、上記の工程を行うことによって、水と燃料油を完全に混合し融和させ、時間が経過しても分離することがない炭化水素系合成油を生成することができる。また、活性化水と燃料元油の融合処理を短時間で行うことが可能になる。
 図1に示すように、得られた一次生成合成燃料油を燃料元油として使用し、同様の工程を繰り返すことにより、二次生成合成燃料油を製造することができる。その後、同様にして、得られた合成油を元油とする工程を複数回繰り返すことにより、複数次生成合成燃料油を製造することが可能である。本発明の方法により製造されるこのような複数次生成合成燃料油は、加水率が非常に高いものとなる。
In this way, by performing the above-described steps, it is possible to produce a hydrocarbon-based synthetic oil that is thoroughly mixed and united with water and does not separate over time. Moreover, it becomes possible to perform the fusion process of the activated water and the fuel base oil in a short time.
As shown in FIG. 1, by using the obtained primary production synthetic fuel oil as a fuel base oil and repeating the same steps, a secondary production synthetic fuel oil can be produced. Thereafter, in the same manner, it is possible to produce a multi-generation synthetic fuel oil by repeating the process of using the obtained synthetic oil as a base oil a plurality of times. Such a multi-generation synthetic fuel oil produced by the method of the present invention has a very high water content.
 本発明の他の実施形態について図3を用いて説明する。以下の説明において、前述の実施形態と同様の部分は説明を省略する。図3は、本発明に係る製造装置に使用できる反応槽5への液噴射管の構造を示す図である。図3(a)は、反応槽5と噴射管14の位置関係を示すための、上部から見た図である。図3(b)は、反応槽5の側面図である。 Another embodiment of the present invention will be described with reference to FIG. In the following description, the description of the same parts as those of the above-described embodiment is omitted. FIG. 3 is a view showing the structure of a liquid injection pipe to the reaction vessel 5 that can be used in the production apparatus according to the present invention. FIG. 3A is a view seen from above for showing the positional relationship between the reaction vessel 5 and the injection pipe 14. FIG. 3B is a side view of the reaction vessel 5.
 前述の実施形態に関連して、合成燃料製造のための各工程について説明したが、各工程の中で、攪拌混合工程及び融合工程で遂行される、活性化水と燃料元油の混合液の循環が重要である。循環は、図2に示す装置において、基本的に、反応槽5の排出口15から取り出された混合液を、ポンプ11及びOHRミキサ12から、噴射管14を経て、反応槽5の上部側面から、再び反応槽5内に噴射状態で投入することにより行われる。この循環過程では、混合液のすべてが均等に循環されることが理想である。しかし、反応槽5内への再投入の方法が適当でないと、混合液の一部のみがより多く循環され、他の部分は、あまり循環されないこととなり、全体が均一の合成燃料油とはならないか、又は均一にするまでの時間が非常に長くなることが懸念される。 In connection with the above-mentioned embodiment, although each process for synthetic fuel manufacture was demonstrated, in each process, the mixing liquid of activated water and a fuel base oil performed by a stirring mixing process and a fusion process is carried out. Circulation is important. In the apparatus shown in FIG. 2, basically, the mixture is extracted from the discharge port 15 of the reaction tank 5 from the pump 11 and the OHR mixer 12 through the injection pipe 14 and from the upper side surface of the reaction tank 5. Then, it is carried out by charging the reaction vessel 5 again in an injection state. In this circulation process, it is ideal that all of the mixed solution is circulated evenly. However, if the recharging method into the reaction tank 5 is not appropriate, only a part of the mixed solution is circulated more and the other part is not circulated so much, and the whole is not a uniform synthetic fuel oil. There is a concern that the time until it becomes uniform becomes very long.
 そこで、本発明の発明者は、反応槽5へ混合物を再投入する噴射管14と反応槽5との関係について検討した。図3(b)に示すように、反応槽5は、上部が円筒体、下部が円錐体である。上部の側面には、噴射管14が4個配置され、図3(a)に示すように、4方向から、油水混合物を反応槽5内に噴射することができる。図3(c)に示すように、反応槽5の円筒部の中心軸と噴射管14が反応槽5に取り付けられる取付点とを結ぶ直径線に対する、噴射管14の長さ方向の角度を、該噴射管14の取付角又は噴射方向と定めた。そして、この取付角を、0度から90度まで変えた際の、融合に必要な時間、生成された合成燃料油の品質について検討した。図3(c)において、取付角が0度の場合が噴射管14a1である。以下14a2、14a3、14a4と軸からの角度を15度づつ大きくした。このように、角度を15度ごとに変化させて試験を行い、検討した結果、軸からの角度が45度のときが最も融合に必要な時間が短く、生成された合成燃焼の品質もよいことが確認された。この結果から、噴射管14の取付角は、上述の直径線に対し、約40度から約50度までの範囲が好ましいことが分かる。 Therefore, the inventor of the present invention examined the relationship between the injection tube 14 for recharging the mixture into the reaction vessel 5 and the reaction vessel 5. As shown in FIG. 3B, the reaction vessel 5 has a cylindrical body at the top and a cone at the bottom. Four injection pipes 14 are arranged on the upper side surface, and the oil / water mixture can be injected into the reaction tank 5 from four directions as shown in FIG. As shown in FIG. 3 (c), the angle in the length direction of the injection tube 14 with respect to the diameter line connecting the central axis of the cylindrical portion of the reaction vessel 5 and the attachment point where the injection tube 14 is attached to the reaction vessel 5, The mounting angle or the injection direction of the injection pipe 14 was determined. Then, the time required for the fusion and the quality of the generated synthetic fuel oil were examined when the mounting angle was changed from 0 degrees to 90 degrees. In FIG.3 (c), the case where an attachment angle is 0 degree | times is the injection pipe 14a1. Below, the angles from 14a2, 14a3, 14a4 and the axis were increased by 15 degrees. In this way, as a result of examining and examining by changing the angle every 15 degrees, when the angle from the axis is 45 degrees, the time required for the fusion is shortest, and the quality of the generated synthetic combustion is good. Was confirmed. From this result, it can be seen that the mounting angle of the injection tube 14 is preferably in the range of about 40 degrees to about 50 degrees with respect to the above-described diameter line.
 次に、図3(d)のように、噴射管14の、直径が60cmの反応槽5内部への突出量と融合に必要な時間及び生成された合成燃料油の品質について検討した。図3(d)において、突出量が0の場合が噴射管14b1である。以下14b2、14b3、14b4と突出量を大きくした。突出量は、10cmづつ変化させて検討した。その結果、突出量は10cmのときが最も融合に必要な時間が短く、生成された合成燃料油の品質もよいことが分かった。なお、さらに大きい反応槽を使用する場合には、反応槽の直径に応じて噴射管の突出量を大きくするのが好ましく、また、噴射管の数を増やすのが望ましいと考えられる。 Next, as shown in FIG. 3 (d), the amount of protrusion of the injection tube 14 into the reaction vessel 5 having a diameter of 60 cm, the time required for fusion, and the quality of the generated synthetic fuel oil were examined. In FIG.3 (d), when the protrusion amount is 0, it is the injection pipe 14b1. Below, the amount of protrusion was increased to 14b2, 14b3, 14b4. The amount of protrusion was examined by changing by 10 cm. As a result, it was found that when the protrusion amount was 10 cm, the time required for fusion was the shortest and the quality of the produced synthetic fuel oil was good. When a larger reaction tank is used, it is preferable to increase the protruding amount of the injection pipe according to the diameter of the reaction tank, and it is desirable to increase the number of injection pipes.
 以上のことから、反応槽5への噴射管14による混合物の投入は、円筒の直径線に対して45度の角度が最適で、直径が60cmの反応槽5の事例では、噴射管14の反応槽5内部への突出量は、10cmが最適であると考えてよい。円筒の直径方向軸に対して角度を持たせることによって、槽内に自然な渦を作ることができる。そのため、混合も効率的にできる。また、噴射管14の反応槽5内部への突出量を所定の量とすることによって、混合物の円周付近又は、中心付近のみに循環した混合物が集まってしまうことを避けることができる。噴射管14は、反応槽5内の液面から少なくとも8cm、好ましくは少なくとも10cmだけ上方に位置するように配置し、混合物は、高速で噴射管14から噴射されるようにすることが好ましい。 From the above, the mixture is injected into the reaction vessel 5 through the injection tube 14 at an angle of 45 degrees with respect to the diameter line of the cylinder. In the case of the reaction vessel 5 having a diameter of 60 cm, the reaction of the injection tube 14 is performed. It may be considered that 10 cm is optimal for the amount of protrusion into the tank 5. By providing an angle with respect to the diametrical axis of the cylinder, a natural vortex can be created in the vessel. Therefore, mixing can be performed efficiently. Further, by setting the amount of protrusion of the injection tube 14 into the reaction tank 5 to a predetermined amount, it is possible to avoid the mixture that has circulated around the circumference of the mixture or only near the center. It is preferable that the injection tube 14 is disposed so as to be located at least 8 cm, preferably at least 10 cm above the liquid level in the reaction vessel 5, and the mixture is injected from the injection tube 14 at a high speed.
 このように、噴射管14の反応槽5に対する配置を調整することによって、活性化水と燃料元油を完全に混合し融和させて、時間が経過しても分離することがない炭化水素系合成燃料油を製造することができる。また、活性化水と燃料油の融合処理は、短時間で行うことができる。 In this way, by adjusting the arrangement of the injection pipe 14 with respect to the reaction vessel 5, the activated water and the fuel base oil are completely mixed and united so that they do not separate over time. Fuel oil can be produced. Moreover, the fusion process of activated water and fuel oil can be performed in a short time.
 本発明のさらに別の実施形態について図4を用いて説明する。
 図4は、本発明に係る製造装置の活性化装置として使用可能なプラズマアーク処理装置の一例を示す概略図である。このプラズマアーク処理装置20は、それぞれが高圧トランス(図示せず)に接続されている、装置の中心に配置された(図中六角形で示す)電極21と、この中心電極を取り囲むように配置された複数の(図では12本)電極22を備えている。電極に電力を供給することにより、電極間にアーク放電が発生する。図2に示されている製造装置1中の精製水槽3において、精製水槽3とポンプ11との間にプラズマアーク処理装置20を設置して、精製水槽からの水をプラズマアーク処理装置20に通すことにより、水をプラズマアーク処理によって活性化することができる。このようなプラズマアーク処理装置としては、例えば、株式会社日本理水研社製のウルトラU-MANに使用されているようなプラズマアーク処理装置を好適に使用することができる。
Still another embodiment of the present invention will be described with reference to FIG.
FIG. 4 is a schematic diagram showing an example of a plasma arc processing apparatus that can be used as an activation apparatus of a manufacturing apparatus according to the present invention. The plasma arc processing apparatus 20 is arranged so as to surround the center electrode and an electrode 21 (shown by a hexagon in the figure) each connected to a high voltage transformer (not shown). A plurality of (in the figure, 12) electrodes 22 are provided. By supplying power to the electrodes, arc discharge occurs between the electrodes. In the purified water tank 3 in the production apparatus 1 shown in FIG. 2, a plasma arc treatment apparatus 20 is installed between the purified water tank 3 and the pump 11, and water from the purified water tank is passed through the plasma arc treatment apparatus 20. Thus, water can be activated by plasma arc treatment. As such a plasma arc processing apparatus, for example, a plasma arc processing apparatus used for Ultra U-MAN manufactured by Nippon Risuiken Co., Ltd. can be preferably used.
〔活性化水の形成〕
(トルマリン及びカタラーゼの準備)
 ブラジル国トカンチン州産出で粒径20mmないし80mmのトルマリンを、有限会社ニュー・ウェーブから購入した。さらに、ナガセケムテックス株式会社から、商品名「レオネットF-35」のカタラーゼを購入した。これらトルマリン及びカタラーゼを、以下の製造例及び実施例において使用した。
(活性水の形成例)
 活性水を形成するための水として、軟水である水道水を使用した。常温の水20リットルにトルマリン3kgを浸漬させ、トルマリンに対して周波数30kHzないし40kHzの超音波を、水に対して周波数200kHzないし600kHzの超音波を、20分間照射する。以下の製造例及び実施例では、トルマリンに照射される超音波の周波数は35kHz、水に照射される超音波の周波数は400kHzとした。20分経過後に、上述の超音波照射を続け、水をポンプで循環させながら、ヒータを使用して43℃の水温まで昇温した。水温が43℃に達したとき、水の循環と、ヒータによる加熱及び超音波照射を停止した。この時点で水のORPは約-790mVであり、pHは8ないし9であり、水にはマイクロバブルのホットスポットが形成されており、活性化されていることが認められた。
 上述の操作において、マイクロバブルのホットスポットを維持する物質として、トルマリンに、炭酸カルシウムを主成分とする琉球石灰岩を予め混入させた。上記した活性化水の準備工程では、水のORPがマイナス傾向で安定し、pHが8ないし9になれば、活性化は完了したものと考えてよい。
[Formation of activated water]
(Preparation of tourmaline and catalase)
A tourmaline with a particle size of 20mm to 80mm from Tocantin, Brazil was purchased from New Wave. Furthermore, a catalase with the trade name “Leonette F-35” was purchased from Nagase ChemteX Corporation. These tourmalines and catalases were used in the following preparation examples and examples.
(Example of formation of active water)
Tap water which is soft water was used as water for forming active water. 3 kg of tourmaline is immersed in 20 liters of water at room temperature, and ultrasonic waves with a frequency of 30 kHz to 40 kHz are irradiated to tourmaline, and ultrasonic waves with a frequency of 200 kHz to 600 kHz are irradiated to water for 20 minutes. In the following production examples and examples, the frequency of ultrasonic waves irradiated to tourmaline was 35 kHz, and the frequency of ultrasonic waves irradiated to water was 400 kHz. After the elapse of 20 minutes, the ultrasonic irradiation was continued, and the temperature was raised to a water temperature of 43 ° C. using a heater while circulating water with a pump. When the water temperature reached 43 ° C., water circulation, heating by the heater and ultrasonic irradiation were stopped. At this time, the ORP of water was about −790 mV, the pH was 8 to 9, and microbubble hot spots were formed in the water, and it was confirmed that the water was activated.
In the above-described operation, Ryukyu limestone containing calcium carbonate as a main component was previously mixed in tourmaline as a substance for maintaining the hot spot of microbubbles. In the above-mentioned preparation step of the activated water, if the ORP of water is stabilized in a negative tendency and the pH becomes 8 to 9, it may be considered that the activation is completed.
 ここで、マイクロバブルとは、水に超音波を照射した場合に、局所的な圧力変動により生じる微小気泡を意味するものである。名古屋大学大学院工学研究科の香田忍が電子情報通信学会誌A VOl.J89-ANo.9(2006)に発表した「キャビテーションの化学的な応用;ソノケミストリー(Application of Cavitation Induced by Ultrasound)」と題する論文(非特許文献2)、関東化学株式会社が平成21年4月1日に刊行した"THE CHEMICAL TIMES"に名古屋大学大学院工学研究科の安田啓司が発表した「超音波による化学物質の分解と超音波反応器の開発((Decomposition of Chemical Compounds by Ultrasound and Development of Sonochemical Reactor")」と題する論文(非特許文献3)、及び、東北大学金属材料研究所の水越克彰による、2013年2月20日開催の「ものづくり基礎講座(第34回技術セミナー)」におけるプレゼンテーション資料(非特許文献4)には、液体に強力な超音波を照射して、該液体に微小な気泡を発生させた状態すなわちキャビテーション状態を生じさせ、液体分子の分解を生じさせることを基本とするソノケミストリーが詳細に論じられている。これらの非特許文献の記載によると、超音波により発生した気泡すなわちマイクロバブルは、数サイクルで凡そ数十μm程度の大きさまで膨張し、その後急激に準断熱圧縮過程により収縮する。その結果、収縮時には気泡内部は5000K~数万Kの温度で、1000数百気圧に達する。この高温・高圧の局所場は、ホットスポットと呼ばれ、キャビテーションによる化学作用の起源となっているものと理解される。 Here, microbubbles mean microbubbles generated by local pressure fluctuation when water is irradiated with ultrasonic waves. Shinobu Koda from the Graduate School of Engineering, Nagoya University J89-ANo. 9 (2006), a paper titled “Chemical application of cavitation: Application of cavitation Induced by Ultrasound,” published by Kanto Chemical Co., Ltd. on April 1, 2009 "THE CHEMICAL TIMES" announced by Keiji Yasuda, Graduate School of Engineering, Nagoya University "Decomposition of Chemical Compounds by Ultrasound and Development of Sonochemical Reactor" " And a presentation material (Non-Patent Document 3) and “Manufacturing Basic Course (34th Technology Seminar)” held on February 20, 2013 by Toshi University Katsuaki Mizukoshi 4) is a state in which minute bubbles are generated in the liquid by irradiating the liquid with strong ultrasonic waves, that is, a cavitation state Sonochemistry, which is based on the generation of liquid molecules and the decomposition of liquid molecules, is discussed in detail.According to these non-patent literature descriptions, bubbles or microbubbles generated by ultrasonic waves are approximately in several cycles. It expands to a size of about several tens of μm, and then suddenly contracts by a quasi-adiabatic compression process. Local fields are called hot spots and are understood to be the origin of cavitation chemistry.
[一次生成合成燃料油の製造]
(一次燃料油製造例1)
 次のとおりの方法により、A重油を元油とする一次合成燃料油を製造した。
 まず、トルマリンを収容する部分と超音波発生装置(35kHzの超音波振動子)、及び温度計を備え、循環ポンプ(24リットル/分×0.5Mpa)を接続した容積25リットルの容器に、トルマリン(有限会社ニュー・ウェーブから購入したブラジル・トカンチン州鉱山直輸入で小サイズのトルマリン原石)3kgと、水道水20リットルとを入れた。この水に、カタラーゼ(ナガセケムテックス株式会社製 レオネットF-35)を20ミリリットル添加した。次いで、超音波振動子を作動させて、「活性化水の形成例1」において述べた条件で、超音波をトルマリンと水に照射しながら、循環用ポンプにより水の循環を開始した。水の循環経路中に設けた3kWのラインヒータの設定温度を40℃として、容器内の水の温度が40℃以上になったことを確認した時点から1時間、循環を続けた。1時間経過後、ORP計によって容器中の水の酸化還元電位を測定したところ、12mVであり、水が活性化されたことが確認できた。
[Production of primary production synthetic fuel oil]
(Primary fuel oil production example 1)
A primary synthetic fuel oil using A heavy oil as a base oil was produced by the following method.
First, a tourmaline container with a volume of 25 liters equipped with a part for accommodating tourmaline, an ultrasonic generator (35 kHz ultrasonic transducer), and a thermometer and connected with a circulation pump (24 liters / minute × 0.5 Mpa). 3kg and 20 liters of tap water were added (a small-sized tourmaline ore imported from New Wave Co., Ltd.) To this water, 20 ml of catalase (Leonet F-35 manufactured by Nagase ChemteX Corporation) was added. Next, the ultrasonic vibrator was actuated, and water circulation was started by a circulation pump while irradiating tourmaline and water under the conditions described in “Formation example 1 of activated water”. The set temperature of the 3 kW line heater provided in the water circulation path was set to 40 ° C., and the circulation was continued for 1 hour from the time when it was confirmed that the temperature of the water in the container became 40 ° C. or higher. After 1 hour, when the redox potential of water in the container was measured with an ORP meter, it was 12 mV, and it was confirmed that the water was activated.
 次に、上記容器と同様に温度計を備え、循環ポンプを接続した容積25リットルの容器に、市販のA重油(富士興産株式会社から購入した1種1号A重油)を20リットル入れた。循環ポンプによりA重油の循環を開始した。A重油の循環経路中に設けた3kWのラインヒータの設定温度を40℃とし、容器内のA重油の温度が40℃以上になったことを確認した時点から1時間、循環を続けた。 Next, 20 liters of commercially available A heavy oil (Type 1 No. 1 A heavy oil purchased from Fujikosan Co., Ltd.) was placed in a 25 liter container equipped with a thermometer and connected to a circulation pump, as in the above container. Circulation of heavy oil A was started by a circulation pump. The set temperature of the 3 kW line heater provided in the circulation path of A heavy oil was set to 40 ° C., and the circulation was continued for 1 hour from the time when it was confirmed that the temperature of the A heavy oil in the container became 40 ° C. or higher.
 このようにして得られた活性化した水とA重油を、次のように混合し、攪拌し、次いで混合液を加熱し、圧力を印加して融合させた。すなわち、温度計に加えて1kWの加温ヒータと回転翼式の攪拌機とを備え、容積25リットルの上部を大気に開放した開放系の容器に、活性化した水を10リットル、得られたA重油を10リットル入れた。容器は、循環ポンプと混合ミキサ(株式会社OHR流体工学研究所製OHRミキサ)を接続した構成であった。この活性化水とA重油を入れた容器において、加温ヒータの電源を入れ、容器内の液体の温度が40℃で維持されるようにした。ここに、上記と同じカタラーゼを10ミリリットル添加した。40分経過した後、攪拌機の電源を入れ、水とA重油を混合、撹拌した。次いで、循環ポンプを作動させるとともに、混合ミキサへの供給圧力が0.5MPa程度となるように調整して、混合液体を循環させた。その際、循環経路から容器に液体を投入する循環配管が、容器内の混合液体の液面から8cm程度上方に位置するようにした。混合液体を1時間循環させた後、攪拌機、循環ポンプ及び加温ヒータを停止した。このようにして得られた液体を約3日間静置した後、分析のため試料を採取した。採取した試料の量は、20リットルであり、表1に示す特性の合成燃料油であることが確認された。 The activated water and A heavy oil thus obtained were mixed and stirred as follows, and then the mixed solution was heated and applied with pressure to be fused. That is, in addition to a thermometer, a 1 kW heating heater and a rotary vane type stirrer were provided, and an open system container having a volume of 25 liters opened to the atmosphere, and 10 liters of activated water was obtained. 10 liters of heavy oil was added. The container had a configuration in which a circulation pump and a mixing mixer (OHR mixer manufactured by OHR Fluid Engineering Laboratory Co., Ltd.) were connected. In the container containing the activated water and A heavy oil, the heating heater was turned on so that the temperature of the liquid in the container was maintained at 40 ° C. Here, 10 ml of the same catalase as described above was added. After 40 minutes, the stirrer was turned on, and water and A heavy oil were mixed and stirred. Next, the circulating pump was operated, and the supply pressure to the mixing mixer was adjusted to be about 0.5 MPa, and the mixed liquid was circulated. At that time, the circulation pipe for introducing the liquid into the container from the circulation path was positioned about 8 cm above the liquid level of the mixed liquid in the container. After the mixed liquid was circulated for 1 hour, the stirrer, the circulation pump and the heating heater were stopped. The liquid thus obtained was allowed to stand for about 3 days, and then a sample was taken for analysis. The amount of the sample collected was 20 liters, and it was confirmed that the sample was a synthetic fuel oil having the characteristics shown in Table 1.
(一次燃料油製造例2)
 元油として、A重油に代えて市販の軽油(JXエネルギ株式会社(ENEOS)から購入した2号軽油)を使用したことを除き、製造例1と同様にして合成燃料油を製造し、分析のため試料を採取した。採取した試料の量は、20リットルであった。
(Primary fuel oil production example 2)
A synthetic fuel oil was produced in the same manner as in Production Example 1 except that a commercial diesel oil (No. 2 diesel oil purchased from JX Energy Co., Ltd. (ENEOS)) was used as the base oil instead of A heavy oil. Therefore, a sample was taken. The amount of sample collected was 20 liters.
 表1に、本発明の一次合成燃料油製造例1及び2で生成された合成燃料油の成分分析結果を示す。水と油を1対1で混合、融合したものである。
 比較のため、元油として使用したA重油及び軽油についても同様の成分分析を行った。
 まず、総発熱量、真発熱量を見ると、実施例1、実施例2とも、元油を上回っており、本発明の効果が出ていることが分かる。
 次に、水分の項目を見ると、製造例1、製造例2とも、合成燃料油における水分の容積%は0.00%であり、水を実質的に含まないことが分かる。燃料油と水を1対1で混合し、融合させたものであるから、十分な融合ができていなければ、水分量として検出されるはずである。しかるに、水分の容積%が0.00%であるということは、燃料元油と水が完全に融合し、水成分として、分析されなかったことを示す。
 このように、本発明によれば、燃料元油と水を完全融合し、高品質の炭化水素系合成燃料油を生成することができる。
Table 1 shows the component analysis results of the synthetic fuel oil produced in the primary synthetic fuel oil production examples 1 and 2 of the present invention. It is a mixture of water and oil, mixed one-on-one.
For comparison, the same component analysis was performed on the A heavy oil and light oil used as the base oil.
First, looking at the total calorific value and the true calorific value, it can be seen that both Example 1 and Example 2 exceed the base oil, and the effect of the present invention is obtained.
Next, when looking at the item of moisture, it can be seen that in both Production Example 1 and Production Example 2, the volume% of moisture in the synthetic fuel oil is 0.00% and substantially does not contain water. Since fuel oil and water are mixed one-to-one and fused, if sufficient fusion is not achieved, the amount of water should be detected. However, the volume% of water being 0.00% indicates that the fuel base oil and water are completely fused and not analyzed as a water component.
Thus, according to the present invention, the fuel base oil and water can be completely fused to produce a high-quality hydrocarbon-based synthetic fuel oil.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(一次燃料油製造例3)
 図2及び図3に示したような装置を使用し、元油として軽油を使用して、合成燃料を製造した。
 まず、トルマリンを収容する部分に製造例1で使用したものと同じトルマリンを充填した精製水槽に、水道水を150リットル注入した。該精製水槽に設置されたヒータの電源を入れ、温度を40℃に設定した。さらに、製造例1で使用したものと同じカタラーゼを150ミリリットル添加した。次いで、精製水槽に接続された循環ポンプを作動させ(吐出圧力0.5MPa)、精製水槽に設置された超音波発生装置を作動させて、水の温度が40℃に達するまで60分間、40℃に達した後さらに60分間、トルマリンと水に超音波(周波数40kHz)を照射した。水を精製水槽に投入する際、4本の噴射管のうち1本のみを使用(3本を閉止)して、噴射管先端部での流速を3.3m/sとした。ORP計によって得られた水の酸化還元電位を測定したところ、20mVであった。このようにして活性化水を得た。
(Primary fuel oil production example 3)
A synthetic fuel was produced using an apparatus as shown in FIGS. 2 and 3 and using light oil as the base oil.
First, 150 liters of tap water was injected into a purified water tank filled with the same tourmaline as used in Production Example 1 in a portion containing tourmaline. The heater installed in the purified water tank was turned on, and the temperature was set to 40 ° C. Further, 150 ml of the same catalase used in Production Example 1 was added. Next, the circulating pump connected to the purified water tank is operated (discharge pressure 0.5 MPa), the ultrasonic generator installed in the purified water tank is operated, and the temperature of the water reaches 40 ° C. for 60 minutes, 40 ° C. After reaching the value, ultrasonic waves (frequency: 40 kHz) were irradiated to tourmaline and water for another 60 minutes. When water was introduced into the purified water tank, only one of the four injection tubes was used (three were closed), and the flow velocity at the tip of the injection tube was 3.3 m / s. It was 20 mV when the oxidation reduction potential of the water obtained by the ORP meter was measured. In this way, activated water was obtained.
 次に、元油改善槽に、市販の軽油(JXエネルギ株式会社(ENEOS)から購入した2号軽油)を150リットル注入した。次いで、元油改善槽に設置されたヒータの電源を入れ、温度を40℃に設定した。元油改善槽に接続された循環ポンプを作動させ(吐出圧力0.3MPa)、軽油の温度が40℃に達するまで60分間、40℃に達した後さらに60分間、軽油を循環させた。軽油を元油改善槽に噴射する際、4本の噴射管のうち1本のみを使用(3本を閉止)して、噴射管先端部での流速を2.0m/sとした。 Next, 150 liters of commercially available light oil (No. 2 light oil purchased from JX Energy Corporation (ENEOS)) was injected into the base oil improvement tank. Subsequently, the heater installed in the base oil improvement tank was turned on, and the temperature was set to 40 ° C. The circulation pump connected to the base oil improvement tank was operated (discharge pressure 0.3 MPa), and the diesel oil was circulated for 60 minutes until the temperature of the diesel oil reached 40 ° C., and after reaching 40 ° C. for another 60 minutes. When light oil was injected into the base oil improvement tank, only one of the four injection pipes was used (three were closed), and the flow velocity at the tip of the injection pipe was 2.0 m / s.
 このようにして得られた活性化水及び軽油を、反応槽に入れて混合し、攪拌した。さらに、活性化水と軽油を昇温し、圧力を印加することによって、融合させた。詳細に述べると、反応槽に、元油改善槽からの元油を75リットル、精製水槽中からの活性化水を55リットル移送した(加水率約42%)。この反応槽に、製造例1で使用したものと同じカタラーゼを65ミリリットル添加した。次いで、ヒータの電源を入れ、容器内の液体の温度が40℃となるようにした。液温が40℃に達した後、循環ポンプを作動させるとともに、混合ミキサへの供給圧力が0.5MPa程度となるように調整して、混合液体を60分間循環させた。混合液を反応槽に投入する際、4本の噴射管のうち1本のみを使用(3本を閉止)して、噴射管先端部での流速を2.0m/sとした。また、噴射管が、反応槽中で混合液中に没しないようにした。具体的には、噴射管が、反応槽内の混合液の液面から8cm程度上方に位置するようにした。得られた液体から、分析のための合成燃料油の試料を採取した。採取した試料の量は、114リットルであった。 The activated water and light oil thus obtained were mixed in a reaction vessel and stirred. Further, the activated water and light oil were heated and fused by applying pressure. More specifically, 75 liters of base oil from the base oil improvement tank and 55 liters of activated water from the purified water tank were transferred to the reaction tank (hydration rate of about 42%). 65 ml of the same catalase used in Production Example 1 was added to the reaction vessel. Next, the heater was turned on so that the temperature of the liquid in the container was 40 ° C. After the liquid temperature reached 40 ° C., the circulation pump was operated, and the supply pressure to the mixing mixer was adjusted to be about 0.5 MPa, and the mixed liquid was circulated for 60 minutes. When the mixed solution was charged into the reaction tank, only one of the four injection tubes was used (three were closed), and the flow rate at the tip of the injection tube was 2.0 m / s. In addition, the injection tube was not submerged in the mixed solution in the reaction vessel. Specifically, the injection tube was positioned about 8 cm above the liquid level of the mixed liquid in the reaction tank. A sample of synthetic fuel oil for analysis was taken from the resulting liquid. The amount of sample collected was 114 liters.
(一次燃料油製造例4)
 精製水槽と、元油改善槽、及び反応槽の温度を、製造例3の場合よりも高く、それぞれ42℃、41℃、及び44℃に設定し、精製水槽及び元油改善槽での循環時間を製造例3の場合の半分(すなわちいずれも60分)としたことを除き、製造例3と同様の工程を行って合成燃料油を製造した。なお、ORP計によって精製水槽で得られた水の酸化還元電位を測定したところ、26mVであった。反応槽で得られた液体から、分析のための合成燃料油の試料を採取した。採取した試料の量は、114リットルであった。
(Primary fuel oil production example 4)
The temperature of the refined water tank, the base oil improvement tank, and the reaction tank is higher than that in Production Example 3, and is set to 42 ° C, 41 ° C, and 44 ° C, respectively, and the circulation time in the refined water tank and the base oil improvement tank A synthetic fuel oil was produced by carrying out the same steps as in Production Example 3 except that it was half of that in Production Example 3 (that is, 60 minutes). In addition, it was 26 mV when the oxidation reduction potential of the water obtained with the ORP meter in the purified water tank was measured. A sample of synthetic fuel oil for analysis was taken from the liquid obtained in the reaction vessel. The amount of sample collected was 114 liters.
(一次燃料油製造例5)
 元油としてA重油(富士興産株式会社から購入した1種1号A重油)を使用し、反応槽温度を36℃に設定し、精製水槽及び元油改善槽での循環時間をいずれも90分とするとともに、カタラーゼの精製水槽及び反応槽への添加量をそれぞれ230ミリリットル及び130ミリリットルとしたことを除き、製造例3と同様に合成燃料を製造した。なお、ORP計によって精製水槽で得られた水の酸化還元電位を測定したところ、18mVであった。反応槽で得られた液体から、分析のための合成燃料油の試料を採取した。採取した試料の量は、114リットルであった。
(Primary fuel oil production example 5)
A heavy oil (type 1 No. 1 A heavy oil purchased from Fujikosan Co., Ltd.) is used as the base oil, the reaction tank temperature is set to 36 ° C., and the circulation time in the refined water tank and the base oil improvement tank is both 90 minutes. In addition, a synthetic fuel was produced in the same manner as in Production Example 3, except that the amounts of catalase added to the purified water tank and the reaction tank were 230 ml and 130 ml, respectively. In addition, it was 18 mV when the redox potential of the water obtained in the purified water tank was measured with the ORP meter. A sample of synthetic fuel oil for analysis was taken from the liquid obtained in the reaction vessel. The amount of sample collected was 114 liters.
 表2に、本発明の製造例4及び5で生成された炭化水素系合成燃料油の成分分析結果を示す。 Table 2 shows the component analysis results of the hydrocarbon-based synthetic fuel oil produced in Production Examples 4 and 5 of the present invention.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[一次生成合成燃料油の定性分析]
 製造例3において軽油を燃料元油として本発明の方法により得られた合成燃料油の試料について、ガスクロマトグラム質量分析法(GC-MS)による定性分析を行った。分析試料として、製造例3で得られた試料をn-ヘキサンで1000倍に希釈したものを準備した。カラムはHP-5MS(長さ30m、内径2.5mm、膜厚0.25μm)を使用し、キャリアーガスはHeとした。分析試料の注入量は1マイクロリットル、注入方法はスプリットレスモードとし、オーブン温度は50℃で3分間保持、その温度から100℃まで毎分5℃の昇温速度で昇温し、さらにそこから300℃まで毎分15℃の昇温速度で昇温し、300℃で3分間保持した。結果として得られたGC-MSのチャートを図5に示す。(a)はTICクロマトグラム、(b)は18.4分付近のピークのマススペクトルである。
 製造例4で得られた合成燃料の試料についても、同様の定性分析を行った。結果を図6に示す。
 比較のため、燃料元油として使用した軽油についても、同様の定性分析を行った。結果を図7に示す。
 図5及び図6を図7と対比すると、炭素数の多い成分(C19よりも大きいもの)が、元油に比べて減少する傾向が認められるものの、製造例3及び4で得られた炭化水素系合成燃料油は、その成分組成が元油とよく一致することが確認された。
[Qualitative analysis of primary synthetic fuel oil]
A qualitative analysis by gas chromatogram mass spectrometry (GC-MS) was performed on a sample of the synthetic fuel oil obtained by the method of the present invention using light oil as the fuel base oil in Production Example 3. As an analytical sample, a sample obtained by diluting the sample obtained in Production Example 3 1000 times with n-hexane was prepared. The column was HP-5MS (length 30 m, inner diameter 2.5 mm, film thickness 0.25 μm), and the carrier gas was He. The injection amount of the analysis sample is 1 microliter, the injection method is splitless mode, the oven temperature is kept at 50 ° C. for 3 minutes, the temperature is raised from that temperature to 100 ° C. at a heating rate of 5 ° C. per minute, and from there The temperature was raised to 300 ° C. at a rate of 15 ° C. per minute and held at 300 ° C. for 3 minutes. The resulting GC-MS chart is shown in FIG. (A) is a TIC chromatogram, and (b) is a mass spectrum of a peak around 18.4 minutes.
The same qualitative analysis was performed on the synthetic fuel sample obtained in Production Example 4. The results are shown in FIG.
For comparison, the same qualitative analysis was performed on light oil used as the fuel base oil. The results are shown in FIG.
When FIG. 5 and FIG. 6 are compared with FIG. 7, the hydrocarbons obtained in Production Examples 3 and 4 have a tendency to reduce the components having a large number of carbon atoms (those larger than C19) compared to the base oil. It was confirmed that the component composition of the system synthetic fuel oil is in good agreement with the base oil.
 製造例5においてA重油を元油として本発明の方法により得られた一次生成合成燃料油の試料についても、同様の定性分析を行った。結果を図8に示す。
 比較のため、元油として使用したA重油についても、同様の定性分析を行った。結果を図9に示す。
 図8を図9と対比すると、製造例5で得られた一次生成合成燃料油も、その成分組成が元油とよく一致することが確認された。
The same qualitative analysis was performed on the sample of the primary production synthetic fuel oil obtained by the method of the present invention using A heavy oil as the base oil in Production Example 5. The results are shown in FIG.
For comparison, the same qualitative analysis was performed on heavy oil A used as the base oil. The results are shown in FIG.
8 was compared with FIG. 9, it was confirmed that the component composition of the primary synthetic fuel oil obtained in Production Example 5 was also in good agreement with that of the base oil.
[一次生成合成燃料の性状試験]
 製造例3及び4において軽油を元油として本発明の方法により得られた合成燃料油の試料について、性状試験を行った。性状試験の項目と方法は、次のとおりとした。
 ・密度(振動式15℃): JIS K2249
 ・動粘度(30℃): JIS K2283
 ・窒素定量分析: JIS K2609
 ・硫黄分(紫外蛍光法): JIS K2541-6
 ・酸素分: ASTM D5622
 ・軽油組成分析(JPI法): JPI-5S-49
 比較のため、元油として使用した軽油についても、同様の性状試験を行った。
 結果を表3に示す。
 表3から、本発明の方法により得られた一次生成合成燃料油では、元油に比べて芳香族分が減少し、飽和分が増加していることが認められる。芳香族分が少なく飽和分が多い軽油は、効率や排ガスの毒性分及びPMの削減の観点から望ましいとされている。
[Property test of primary synthetic fuel]
A property test was conducted on samples of synthetic fuel oil obtained by the method of the present invention using light oil as a base oil in Production Examples 3 and 4. The property test items and methods were as follows.
・ Density (vibration type 15 ℃): JIS K2249
・ Kinematic viscosity (30 ℃): JIS K2283
・ Nitrogen quantitative analysis: JIS K2609
・ Sulfur content (ultraviolet fluorescence method): JIS K2541-6
・ Oxygen content: ASTM D5622
-Light oil composition analysis (JPI method): JPI-5S-49
For comparison, the same property test was performed on light oil used as base oil.
The results are shown in Table 3.
From Table 3, it can be seen that in the primary product synthetic fuel oil obtained by the method of the present invention, the aromatic content decreased and the saturated content increased compared to the base oil. A light oil with a small aromatic content and a high saturation content is desirable from the viewpoints of efficiency, toxic content of exhaust gas, and reduction of PM.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[一次生成合成燃料油の酸化安定度試験]
 製造例3及び4において軽油を元油として本発明の方法により得られた一次生成合成燃料油の試料について、酸化安定度試験(試験方法:ASTM D2274)を遂行した。比較のため、元油として使用した軽油についても、同様の酸化安定度試験を行った。
 測定されたスラッジ量は、いずれの試料についても、測定限界である0.1mg/100ミリリットルを下回っていた。
[Oxidation stability test of primary production synthetic fuel oil]
An oxidation stability test (test method: ASTM D2274) was performed on samples of the primary production synthetic fuel oil obtained by the method of the present invention using light oil as the base oil in Production Examples 3 and 4. For comparison, the same oxidative stability test was performed on light oil used as the base oil.
The measured amount of sludge was below the measurement limit of 0.1 mg / 100 ml for any sample.
[一次生成合成燃料油による走行試験]
 製造例3で軽油を燃料元油として本発明の方法により得られた一次生成合成燃料油について、JC08モード走行試験を行った(使用車:日産自動車 NV350 型式LDF-VW2E26 重量1840kg)。比較のため、市販の軽油(JIS2号)についても、同様の走行試験を行った。
 結果を表4に示す。参考のため、排ガス規制値も併記した。
 表4から、本発明の方法により得られた一次生成合成燃料油では、特にCO2排出量が市販の軽油に比べて低い点が注目される。
 製造例3で得られた一次生成合成燃料油は、体積比率で42%が水由来である。燃料元油に混合した水の燃料への転換率は、これまでの実験結果から略70%と推定され、生成された燃料の総量のうち、水由来の燃料の体積比率は、式
 〔水由来の燃料の体積比率〕=(42×0.7)/(58+42×0.7)=34%
により求めることができる。このことから、製造例3の場合には、得られた燃料のうち、34%は石油由来でないと評価できる。したがって、製造例3により得られた燃料は、炭素排出量を34%程度削減していると見ることができる。
[Running test with primary synthetic fuel oil]
The primary production synthetic fuel oil obtained by the method of the present invention using light oil as the fuel base oil in Production Example 3 was subjected to a JC08 mode running test (vehicle used: Nissan Motor NV350 model LDF-VW2E26 weight 1840 kg). For comparison, a similar running test was performed on a commercially available light oil (JIS No. 2).
The results are shown in Table 4. For reference, emission control values are also shown.
From Table 4, it is noted that the primary produced synthetic fuel oil obtained by the method of the present invention has a lower CO 2 emission than that of commercially available light oil.
The primary production synthetic fuel oil obtained in Production Example 3 is 42% by volume derived from water. The conversion rate of water mixed with fuel base oil to fuel is estimated to be approximately 70% from the results of previous experiments, and the volume ratio of water-derived fuel out of the total amount of fuel produced is given by the formula [water-derived Fuel volume ratio] = (42 × 0.7) / (58 + 42 × 0.7) = 34%
It can ask for. From this, in the case of Production Example 3, it can be evaluated that 34% of the obtained fuel is not derived from petroleum. Therefore, it can be seen that the fuel obtained in Production Example 3 has reduced carbon emissions by about 34%.
Figure JPOXMLDOC01-appb-T000004
(一次燃料油製造例6)
 先に「活性化水の形成」において述べた手順により形成した活性化水5リットルと、元油改善槽2に通した市販の軽油(JXエネルギ株式会社(ENEOS)から購入した2号軽油)10リットルを、反応槽5内に投入し、製造例2におけると同様の条件で、混合、撹拌、融合の各工程を遂行した。その後、生成された混合液を静置槽6に移し、1時間静置した。その結果、混合液は、上方の油相と下方の水相に相分離した。そこで、上方の油相に存在する油を一次生成合成燃料油として取り出した。一次生成合成燃料油の量は、11リットルであった。水相に残る水の量は4リットルであった。この工程により、5リットルの水のうち、1リットルが合成燃料油に変換されたことが確認できた。元油に比べて合成燃料油は10%増量されたことが分かる。
Figure JPOXMLDOC01-appb-T000004
(Primary fuel oil production example 6)
5 liters of activated water formed by the procedure described in “Formation of activated water” above, and commercially available diesel oil (No. 2 diesel oil purchased from JX Energy Co., Ltd. (ENEOS)) passed through the base oil improvement tank 2 10 The liter was put into the reaction vessel 5 and the mixing, stirring, and fusion steps were performed under the same conditions as in Production Example 2. Then, the produced | generated liquid mixture was moved to the stationary tank 6, and left still for 1 hour. As a result, the mixed solution was phase-separated into an upper oil phase and a lower aqueous phase. Therefore, the oil present in the upper oil phase was taken out as the primary production synthetic fuel oil. The amount of primary production synthetic fuel oil was 11 liters. The amount of water remaining in the aqueous phase was 4 liters. By this step, it was confirmed that 1 liter of 5 liters of water was converted to synthetic fuel oil. It can be seen that the synthetic fuel oil was increased by 10% compared to the base oil.
〔実施例1〕
 本発明の実施例として、一次燃料油製造例6において生成された合成燃料油を元油として使用し、二次合成燃料油を製造した。具体的に述べると、一次燃料油製造例6において生成された合成燃料油10リットルを、元油改善槽2に通して調整したのち、反応槽5内に投入した。同時に、「活性化水の形成」において述べた手順により形成した活性化水5リットルを反応槽5に投入し、製造例2におけると同様の条件で、混合、撹拌、融合の各工程を遂行した。その後、生成された混合液を静置槽6に移し、1時間静置した。その結果、混合液は、上方の油相と下方の水相に相分離した。そこで、上方の油相に存在する油を二次生成合成燃料油として取り出した。取り出された二次生成合成燃料油の量は、11リットルであった。水相に残る水の量は4リットルであった。この工程により、5リットルの水のうち、1リットルが合成燃料油に変換されたことが確認できた。元油として使用された一次生成合成燃料油に比べて二次合成燃料油は10%増量されたことが分かる。
[Example 1]
As an example of the present invention, the synthetic fuel oil produced in the primary fuel oil production example 6 was used as a base oil to produce a secondary synthetic fuel oil. Specifically, 10 liters of the synthetic fuel oil produced in the primary fuel oil production example 6 was adjusted through the base oil improvement tank 2 and then charged into the reaction tank 5. At the same time, 5 liters of activated water formed by the procedure described in “Formation of activated water” was charged into the reaction vessel 5 and the mixing, stirring, and fusion steps were performed under the same conditions as in Production Example 2. . Then, the produced | generated liquid mixture was moved to the stationary tank 6, and left still for 1 hour. As a result, the mixed solution was phase-separated into an upper oil phase and a lower aqueous phase. Therefore, the oil present in the upper oil phase was taken out as a secondary generated synthetic fuel oil. The amount of the secondary production synthetic fuel oil taken out was 11 liters. The amount of water remaining in the aqueous phase was 4 liters. By this step, it was confirmed that 1 liter of 5 liters of water was converted to synthetic fuel oil. It can be seen that the secondary synthetic fuel oil was increased by 10% compared to the primary synthetic fuel oil used as the base oil.
 次に、上記工程により得られた二次生成合成燃料油を元油として使用し、三次合成燃料油を製造した。具体的に述べると、上記工程において生成された二次合成燃料油10リットルを、元油改善槽2に通して調整したのち、反応槽5内に投入した。同時に、「活性化水の形成」において述べた手順により形成した活性化水5リットルを反応槽5に投入し、製造例2におけると同様の条件で、混合、撹拌、融合の各工程を遂行した。その後、生成された混合液を静置槽6に移し、1時間静置した。その結果、混合液は、上方の油相と下方の水相に相分離した。そこで、上方の油相に存在する油を三次生成合成燃料油として取り出した。取り出された三次生成合成燃料油の量は、11リットルであった。水相に残る水の量は4リットルであった。この工程により、5リットルの水のうち、1リットルが合成燃料油に変換されたことが確認できた。元油として使用された二次生成合成燃料油に比べて三次生成合成燃料油は10%増量されたことが分かる。
 一次燃料油製造例6により製造した一次生成合成燃料油と、実施例1で製造した二次生成合成燃料油の発熱量測定及び成分分析を行った。結果を、一次燃料油製造例6において元油として使用した市販の軽油のものと対比して表5に示す。
Figure JPOXMLDOC01-appb-T000005
 上記実施例1は、一次燃料油製造例6により製造した一次生成合成燃料油を元油として使用する例であるが、一次燃料油製造例1ないし5により製造した一次生成合成燃料油を元油として、実施例1と同様に合成燃料油を製造することができる。
Next, the secondary synthetic fuel oil obtained by the above process was used as a base oil to produce a tertiary synthetic fuel oil. Specifically, 10 liters of the secondary synthetic fuel oil produced in the above process was adjusted through the base oil improvement tank 2 and then charged into the reaction tank 5. At the same time, 5 liters of activated water formed by the procedure described in “Formation of activated water” was charged into the reaction vessel 5 and the mixing, stirring, and fusion steps were performed under the same conditions as in Production Example 2. . Then, the produced | generated liquid mixture was moved to the stationary tank 6, and left still for 1 hour. As a result, the mixed solution was phase-separated into an upper oil phase and a lower aqueous phase. Therefore, the oil present in the upper oil phase was taken out as the tertiary production synthetic fuel oil. The amount of the tertiary production synthetic fuel oil taken out was 11 liters. The amount of water remaining in the aqueous phase was 4 liters. By this step, it was confirmed that 1 liter of 5 liters of water was converted to synthetic fuel oil. It can be seen that the amount of the tertiary generated synthetic fuel oil is increased by 10% compared to the secondary generated synthetic fuel oil used as the base oil.
The calorific value measurement and component analysis of the primary product synthetic fuel oil produced in the primary fuel oil production example 6 and the secondary product synthetic fuel oil produced in Example 1 were performed. The results are shown in Table 5 in comparison with the commercially available diesel oil used as the base oil in the primary fuel oil production example 6.
Figure JPOXMLDOC01-appb-T000005
The first embodiment is an example in which the primary production synthetic fuel oil produced in the primary fuel oil production example 6 is used as the base oil, but the primary production synthetic fuel oil produced in the primary fuel oil production examples 1 to 5 is used as the base oil. As in Example 1, a synthetic fuel oil can be produced.
1 合成燃料製造装置
2 元油改善槽
3 精製水槽
4 反応促進剤注入部
5 反応槽
6 静置槽
7 製品受槽
8 ヒータ
9 触媒
10 超音波発生部
11 ポンプ
12 OHRミキサ
13 反応槽容器
14 噴射管
15 排出口
20 プラズマアーク処理装置
21、22 電極
DESCRIPTION OF SYMBOLS 1 Synthetic fuel manufacturing apparatus 2 Original oil improvement tank 3 Purified water tank 4 Reaction promoter injection | pouring part 5 Reaction tank 6 Stationary tank 7 Product receiving tank 8 Heater 9 Catalyst 10 Ultrasonic wave generation part 11 Pump 12 OHR mixer 13 Reaction tank container 14 Injection pipe 15 Discharge port 20 Plasma arc treatment device 21, 22 Electrode

Claims (10)

  1.  炭化水素系燃料元油に水を加えて該炭化水素系燃料元油の体積より大きい体積の炭化水素系合成燃料油を製造する炭化水素系合成燃料油の製造方法であって、
     a)水に対して活性化処理を施して、活性化された活性化水を生成する活性化水生成工程と、
     b)前記活性化水を、当初燃料元油として使用される炭化水素系燃料元油に添加して、反応性環境のもとで所定時間撹拌し混合する撹拌混合工程と、
     c)前記撹拌混合工程を経た炭化水素系燃料元油と前記活性化水とを反応性環境のもとで融合させる融合工程と、
     d)前記融合工程を経た混合物から得られる炭化水素系燃料油を一次生成炭化水素系燃料油として収集する一次生成炭化水素系燃料油収集工程と、
    を含み、次いで、
     前記一次生成炭化水素系燃料油を二次燃料元油として使用し、前記b)c)d)の工程を行って、二次生成炭化水素系燃料油を収集し、以下、得られた炭化水素系燃料油を、順次燃料元油として使用し、前記b)c)d)の工程を行う処理を複数回繰り返すことにより、前記当初燃料元油よりも大きい体積の、水(H2O)を実質的に含まず、前記当初燃料元油と実質的に同等であるか、又はこれに近似する組成の炭化水素系燃料油からなる複数次生成炭化水素系合成燃料油を生成する
    ことを特徴とする炭化水素系合成燃料の製造方法。
    A method for producing a hydrocarbon-based synthetic fuel oil, wherein water is added to a hydrocarbon-based fuel base oil to produce a hydrocarbon-based synthetic fuel oil having a volume larger than the volume of the hydrocarbon-based fuel base oil,
    a) An activated water generating step of performing an activation treatment on water to generate activated activated water;
    b) an agitation and mixing step in which the activated water is added to a hydrocarbon-based fuel base oil that is initially used as a fuel base oil and stirred and mixed for a predetermined time under a reactive environment;
    c) a fusion step of fusing the hydrocarbon-based fuel base oil that has undergone the stirring and mixing step and the activated water under a reactive environment;
    d) a primary produced hydrocarbon fuel oil collecting step for collecting a hydrocarbon produced fuel obtained from the mixture obtained through the fusion step as a primary produced hydrocarbon fuel;
    And then
    The primary product hydrocarbon fuel oil is used as a secondary fuel base oil, and the steps b), c) and d) are performed to collect the secondary product hydrocarbon fuel oil. System fuel oil is sequentially used as fuel base oil, and the process of b), c) and d) is repeated a plurality of times, so that a volume of water (H 2 O) larger than that of the original fuel base oil is increased. A multi-generation hydrocarbon-based synthetic fuel oil comprising a hydrocarbon-based fuel oil having a composition substantially not included and substantially equivalent to or close to the initial fuel base oil is produced. A method for producing a hydrocarbon-based synthetic fuel.
  2.  炭化水素系燃料元油に水を加えて該炭化水素系燃料元油の体積より大きい体積の炭化水素系合成燃料を製造する炭化水素系合成燃料の製造方法であって、
     a)水に対して活性化処理を施して、活性化された活性化水を生成する活性化水生成工程と、
     b)前記活性化水を、当初燃料元油として使用される炭化水素系燃料元油に添加して、反応性環境のもとで所定時間撹拌し混合する撹拌混合工程と、
     c)前記撹拌混合工程を経た炭化水素系燃料元油と前記活性化水とを反応性環境のもとで融合させる融合工程と、
     d)前記融合工程を経た混合物を静置して、水(H2O)を実質的に含まず前記当初燃料元油と実質的に同等であるか、又はこれに近似する組成の炭化水素系燃料油からなる上方の油層と、下方の水層とに相分離させる油水分離工程と、
     e)前記上方の油層の炭化水素系燃料油を一次生成炭化水素系燃料油として収集する一次生成炭化水素系燃料油収集工程と、
    を含み、
     f)前記撹拌混合工程と前記融合工程とは、前記一次生成炭化水素系燃料油収集工程により得られる一次生成炭化水素系燃料油の体積が前記当初燃料元油として使用される前記炭化水素系燃料元油の体積より大きくなる時間にわたり行われ、次いで、
     g)前記一次生成炭化水素系燃料油を二次燃料元油として使用し、前記b)c)d)e)f)の工程を行って、二次生成炭化水素系燃料油を収集し、以下、得られた炭化水素系燃料油を、順次燃料元油として使用し、前記b)c)d)e)f)の工程を行う処理を複数回繰り返すことにより、前記当初燃料元油よりも大きい体積の、水(H2O)を実質的に含まず前記当初燃料元油と実質的に同等であるか、又はこれに近似する組成の炭化水素系燃料油からなる複数次生成炭化水素系合成燃料油を生成する
    ことを特徴とする炭化水素系合成燃料の製造方法。
    A method for producing a hydrocarbon-based synthetic fuel, wherein water is added to a hydrocarbon-based fuel base oil to produce a hydrocarbon-based synthetic fuel having a volume larger than the volume of the hydrocarbon-based fuel base oil,
    a) An activated water generating step of performing an activation treatment on water to generate activated activated water;
    b) an agitation and mixing step in which the activated water is added to a hydrocarbon-based fuel base oil that is initially used as a fuel base oil and stirred and mixed for a predetermined time under a reactive environment;
    c) a fusion step of fusing the hydrocarbon-based fuel base oil that has undergone the stirring and mixing step and the activated water under a reactive environment;
    d) A hydrocarbon system having a composition in which the mixture that has undergone the fusion step is allowed to stand and does not substantially contain water (H 2 O) and is substantially equivalent to or close to the initial fuel base oil. An oil-water separation step for phase separation into an upper oil layer made of fuel oil and a lower water layer;
    e) a primary produced hydrocarbon fuel oil collecting step of collecting the hydrocarbon fuel oil in the upper oil layer as a primary produced hydrocarbon fuel oil;
    Including
    f) In the stirring and mixing step and the fusion step, the hydrocarbon-based fuel in which the volume of the primary-generated hydrocarbon-based fuel oil obtained by the primary-generated hydrocarbon-based fuel oil collecting step is used as the initial fuel base oil. Performed over a period of time greater than the volume of the base oil, then
    g) The primary product hydrocarbon fuel oil is used as a secondary fuel base oil, and the steps b) c) d) e) f) are performed to collect the secondary product hydrocarbon fuel oil, and The obtained hydrocarbon-based fuel oil is sequentially used as a fuel base oil, and the process of steps b), c), d), e) and f) is repeated a plurality of times, so that it is larger than the initial fuel base oil. A multi-generation hydrocarbon-based synthesis comprising a hydrocarbon-based fuel oil having a composition substantially free of water (H 2 O) or substantially equivalent to or close to the initial fuel base oil. A method for producing a hydrocarbon-based synthetic fuel, characterized by producing a fuel oil.
  3.  請求項1又は請求項2に記載した炭化水素系合成燃料の製造方法であって、
     前記活性化された活性化水は、マイクロバブルのホットスポットを含むように活性化されたものであることを特徴とする炭化水素系合成燃料の製造方法。
    A method for producing a hydrocarbon-based synthetic fuel according to claim 1 or 2,
    The method for producing a hydrocarbon-based synthetic fuel, wherein the activated water that has been activated is activated so as to include a hot spot of a microbubble.
  4.  請求項1から請求項3までのいずれか1項に記載した炭化水素系合成燃料の製造方法であって、前記活性化水生成工程は、水を35℃から45℃の範囲の温度に昇温し電圧を印加した状態で、該水に超音波を照射することにより行われることを特徴とする炭化水素系合成燃料の製造方法。 The method for producing a hydrocarbon-based synthetic fuel according to any one of claims 1 to 3, wherein the activated water generation step raises water to a temperature in the range of 35 ° C to 45 ° C. A method for producing a hydrocarbon-based synthetic fuel, which is performed by irradiating the water with ultrasonic waves in a state where a voltage is applied.
  5.  請求項4に記載した炭化水素系合成燃料の製造方法であって、前記電圧の印加は、前記水に浸漬したトルマリンに超音波を照射して該トルマリンを励起状態にすることにより行われることを特徴とする炭化水素系合成燃料の製造方法。 5. The method for producing a hydrocarbon-based synthetic fuel according to claim 4, wherein the voltage is applied by irradiating tourmaline immersed in water with ultrasonic waves to bring the tourmaline into an excited state. A method for producing a hydrocarbon-based synthetic fuel.
  6.  請求項3に記載した炭化水素系合成燃料の製造方法であって、前記水には、マイクロバブルのホットスポットを保持するのに有効な物質が添加されていることを特徴とする炭化水素系合成燃料の製造方法。 4. The method for producing a hydrocarbon-based synthetic fuel according to claim 3, wherein a substance effective to hold a microbubble hot spot is added to the water. Fuel manufacturing method.
  7.  請求項3又は請求項6に記載した炭化水素系合成燃料の製造方法であって、前記マイクロバブルのホットスポットの生成は、前記トルマリンに照射される超音波の周波数とは異なる周波数の超音波を前記水に対して照射することにより行われることを特徴とする炭化水素系合成燃料の製造方法。 The method for producing a hydrocarbon-based synthetic fuel according to claim 3 or 6, wherein the generation of the hot spot of the microbubble is performed by using an ultrasonic wave having a frequency different from the frequency of the ultrasonic wave irradiated on the tourmaline. A method for producing a hydrocarbon-based synthetic fuel, which is performed by irradiating the water.
  8.  請求項1から請求項7までのいずれか1項に記載した炭化水素系合成燃料の製造方法であって、前記撹拌混合工程における前記反応性環境は、カタラーゼを添加した前記水に超音波を照射しながら、該水を撹拌することにより形成されることを特徴とする炭化水素系燃料の製造方法。 The method for producing a hydrocarbon-based synthetic fuel according to any one of claims 1 to 7, wherein the reactive environment in the stirring and mixing step irradiates the water to which catalase is added with ultrasonic waves. A method for producing a hydrocarbon-based fuel, which is formed by stirring the water.
  9.  請求項8に記載した炭化水素系合成燃料の製造方法であって、前記撹拌は、水と燃料元油の混合物の液面に強い波立ちを生じさせるように行われることを特徴とする炭化水素系合成燃料の製造方法。 9. The method for producing a hydrocarbon-based synthetic fuel according to claim 8, wherein the agitation is performed so as to generate strong undulations in a liquid surface of a mixture of water and fuel base oil. Synthetic fuel manufacturing method.
  10.  請求項1から請求項9までのいずれか1項に記載した炭化水素系合成燃料の製造方法であって、前記撹拌混合工程における前記反応性環境は、前記水に光触媒を添加し、紫外光を照射しながら撹拌を行うことにより形成されることを特徴とする炭化水素系合成燃料の製造方法。 The method for producing a hydrocarbon-based synthetic fuel according to any one of claims 1 to 9, wherein the reactive environment in the stirring and mixing step includes adding a photocatalyst to the water and generating ultraviolet light. A method for producing a hydrocarbon-based synthetic fuel, which is formed by stirring while irradiating.
PCT/JP2017/035109 2016-09-30 2017-09-28 Method for producing hydrocarbon-based synthetic fuel by adding water to hydrocarbon-based fuel oil WO2018062345A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/337,824 US20200032153A1 (en) 2016-09-30 2017-09-28 Method for Producing HydroCarbon-Based Synthetic Fuel By Adding Water to Hyrocarbon-Based Fuel Oil
JP2018542825A JP6995373B2 (en) 2016-09-30 2017-09-28 A method of producing a hydrocarbon-based synthetic fuel by adding water to a hydrocarbon-based fuel oil.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-193904 2016-09-30
JP2016193904 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062345A1 true WO2018062345A1 (en) 2018-04-05

Family

ID=61759831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035109 WO2018062345A1 (en) 2016-09-30 2017-09-28 Method for producing hydrocarbon-based synthetic fuel by adding water to hydrocarbon-based fuel oil

Country Status (4)

Country Link
US (1) US20200032153A1 (en)
JP (1) JP6995373B2 (en)
TW (1) TW201827582A (en)
WO (1) WO2018062345A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029483A (en) * 2018-08-20 2020-02-27 株式会社アイティー技研 Producing method and apparatus for liquid hydrocarbon
JP6976016B1 (en) * 2021-05-11 2021-12-01 ガルファ株式会社 Fossil resource increase device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216794A (en) * 2012-04-10 2013-10-24 Shinji Hasegawa Method and apparatus for producing reformed fuel by mixing fuel oil and water
WO2013186936A1 (en) * 2012-06-15 2013-12-19 Kobayashi Hiroshi Novel fuel and process for manufacturing novel fuel
JP2016003297A (en) * 2014-06-18 2016-01-12 合同会社ネクストエナジー Method for producing water-added fuel and water-added fuel
WO2016159254A1 (en) * 2015-04-01 2016-10-06 株式会社Tristarhco Hydrated fuel production method and production apparatus
JP6128453B1 (en) * 2016-09-09 2017-05-17 古山 幹雄 Hydrolyzed fuel production method and production apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140101532A (en) * 2013-02-12 2014-08-20 가부시키가이샤 클라이막스 쟈판 Method of manufacturing a reforming fuel by adding water to a fuel oil and the manufacturing apparatus thereof
KR101328151B1 (en) * 2013-04-11 2013-11-13 고천일 Apparatus for manufacturing a reforming fuel and a method for manuracturing the same
US20180037823A1 (en) * 2016-08-02 2018-02-08 Bio Hitech Energy Co. Manufacturing apparatus and method for fuel hydrocarbon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216794A (en) * 2012-04-10 2013-10-24 Shinji Hasegawa Method and apparatus for producing reformed fuel by mixing fuel oil and water
WO2013186936A1 (en) * 2012-06-15 2013-12-19 Kobayashi Hiroshi Novel fuel and process for manufacturing novel fuel
JP2016003297A (en) * 2014-06-18 2016-01-12 合同会社ネクストエナジー Method for producing water-added fuel and water-added fuel
WO2016159254A1 (en) * 2015-04-01 2016-10-06 株式会社Tristarhco Hydrated fuel production method and production apparatus
JP6128453B1 (en) * 2016-09-09 2017-05-17 古山 幹雄 Hydrolyzed fuel production method and production apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029483A (en) * 2018-08-20 2020-02-27 株式会社アイティー技研 Producing method and apparatus for liquid hydrocarbon
JP6976016B1 (en) * 2021-05-11 2021-12-01 ガルファ株式会社 Fossil resource increase device
WO2022239258A1 (en) * 2021-05-11 2022-11-17 ガルファ株式会社 Fossil resource increasing device

Also Published As

Publication number Publication date
TW201827582A (en) 2018-08-01
JP6995373B2 (en) 2022-01-14
JPWO2018062345A1 (en) 2019-10-10
US20200032153A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
Kaptakov Catalytic Desulfuration of Oil Products under Ultrasonic Treatment.
US9493709B2 (en) Hybrid fuel and method of making the same
US9567542B2 (en) Hybrid fuel and method of making the same
JP4682287B1 (en) Hydrolyzed fuel production method and production apparatus
JP2005529455A (en) Plasma created in fluid
JP6146789B2 (en) Hydrolyzed fuel production method and production apparatus
Cako et al. Cavitation based cleaner technologies for biodiesel production and processing of hydrocarbon streams: A perspective on key fundamentals, missing process data and economic feasibility–A review
WO2018062345A1 (en) Method for producing hydrocarbon-based synthetic fuel by adding water to hydrocarbon-based fuel oil
JP2016003297A (en) Method for producing water-added fuel and water-added fuel
KR101512753B1 (en) Method for manufacturing hydrolysis fuel
CA2952768A1 (en) Hybrid fuel and method of making the same
JP2017119775A (en) Novel fuel, novel fuel manufacturing device and manufacturing method of novel fuel
RU2422493C1 (en) Procedure for hydrocarbon cracking and plasma reactor for its implementation
JP6541230B2 (en) Method of producing oil-water fusion fuel
Jiang et al. Study on synergistic catalytic degradation of wastewater containing polyacrylamide catalyzed by low-temperature plasma-H2O2
JPH11140470A (en) Water-fossil fuel mixed emulsion
JP2014047229A (en) Production method of emulsion fuel that is mixture of water and oil, emulsion fuel, and production apparatus of emulsion fuel
RU2451715C1 (en) Method and plant for plasma thermal processing of carbon-containing industrial and agricultural wastes for production of plasmagas
JP2019189870A (en) Manufacturing method and manufacturing apparatus of water-added fuel
Li et al. High efficiency and rapid treatment of naproxen sodium wastewater by dielectric barrier discharge coupled with catalysis
WO2005009607A1 (en) Method for originating chain dissociation and polycondensation reactions of hydrocarbons and device for carrying out said method
WO2016022090A1 (en) Hybrid fuel and method of making the same
JP2022046394A (en) Apparatus for reforming water or fuel oil
Adamou et al. Ultrasonic reactor set-ups and applications: A review
Wan Development of a portable, modular unit for the optimization of ultrasound-assisted oxidative desulfurization of diesel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542825

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856294

Country of ref document: EP

Kind code of ref document: A1