JP2022046394A - Apparatus for reforming water or fuel oil - Google Patents

Apparatus for reforming water or fuel oil Download PDF

Info

Publication number
JP2022046394A
JP2022046394A JP2020166371A JP2020166371A JP2022046394A JP 2022046394 A JP2022046394 A JP 2022046394A JP 2020166371 A JP2020166371 A JP 2020166371A JP 2020166371 A JP2020166371 A JP 2020166371A JP 2022046394 A JP2022046394 A JP 2022046394A
Authority
JP
Japan
Prior art keywords
water
ultrasonic
liquid
fuel oil
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020166371A
Other languages
Japanese (ja)
Inventor
年明 恒松
Toshiaki Tsunematsu
正晃 岡崎
Masaaki Okazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020166371A priority Critical patent/JP2022046394A/en
Publication of JP2022046394A publication Critical patent/JP2022046394A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Physical Water Treatments (AREA)

Abstract

To provide an apparatus for reforming water and fuel oil in which generation of hydrogen peroxide produced in ultrasonic irradiation is suppressed as much as possible in the reformer.SOLUTION: A former apparatus of the invention comprises: a sonicator which generate the ultrasonic waves from an ultrasonic vibration front plate; an ultrasonic vibration reflector unit traveling back and forth between both plates; waves close to standing waves that are generated between both plates by moving the position of the reflecting plate 7; wherein when the liquid to be processed is made to flow from the opening of the reflector into the space between the two plates, the liquid to be processed is almost uniformly irradiated with ultrasonic waves, and hydrogen atoms are incorporated into the reformed fuel at the time of recombination of the decomposed components which proceed after being decomposed by ultrasonic cavitation, wherein alternatively, if no opening is provided in either the front diaphragm or the reflector, and the flow of the liquid to be processed is made to be a swirling flow between the two plates, the ultrasonic irradiation to the liquid to be processed can be equalized. Thereby the excess of ultrasonic energy is suppressed, and the generation of hydrogen peroxide can be minimized.SELECTED DRAWING: Figure 1

Description

本願発明は水または燃料油の改質装置に関する。 The present invention relates to a water or fuel oil reformer.

発明者は長年に亘り界面活性剤を用いることなく、燃料油と水のみを原材料とする燃料油の改質につき試行し研究を重ねる過程で、従来の水エマルジョン燃料とは性状が異なる他、燃料の単位重量当たりの発熱量と重量の積である発熱総量の比較に於いて元の燃料を大きく上回る改質油が存在し、しかも容易に得られることを見出し、液体燃料処理方法として平成28年7月8日付け特許第5963171号で登録を受けたが、燃料油の改質方法を更に進化発展させる中で超音波照射時に産生される過酸化水素が反応上の支障となっていることが判明し、その低減方法を検討した結果処理対象液の流路にヒントがあることを見出し、燃料油の処理における粘性対策、或いは燃料油に水との親和性を付与する方法と相俟って、燃料油と水のみを原料とする改質油を効率的に安定して得られる装置を開発した。 The inventor has been trying and researching the reforming of fuel oil using only fuel oil and water as raw materials for many years without using surfactants. In the comparison of the calorific value per unit weight and the total calorific value, which is the product of the weight, it was found that there is a reformed oil that greatly exceeds the original fuel, and it can be easily obtained. It was registered under Patent No. 5963171 dated July 8, but it is said that the hydrogen peroxide produced during ultrasonic irradiation is an obstacle to the reaction while further evolving and developing the fuel oil reforming method. As a result of investigating the reduction method, it was found that there is a hint in the flow path of the liquid to be treated, and it is combined with the viscous measures in the treatment of fuel oil or the method of imparting affinity to water to the fuel oil. , We have developed a device that can efficiently and stably obtain reformed oil that uses only fuel oil and water as raw materials.

上記特許第5963171号でも示し、また本願発明の過程でも明らかになった現象に改質油の総重量と総発熱量の積である発熱総量の大幅な増加が改質後の燃料油に見られることであり、元来発熱するものではない水が恰もそのまま燃料化したようになっている。即ち得られた改質油は元の燃料油と比べて密度の変化は殆どなく、単位重量当たりの発熱量は同レベル或いは若干ながらそれを上回る例もあり、また得られた改質油の容量は混合に供した水の量の9割程度が元の燃料油に加算されて増量となっている。この一見不思議な発熱総量の増大が通常の燃焼熱に由来するものではないことを確かめるための一例を挙げると、それは水を構成する水素の燃焼熱との対比であり、仮定として燃料油との混合に供する水に含まれている水素すべてがエネルギーを要することなく水分子から分離され、爾後全量が完全燃焼するとした場合に発する燃焼熱を遥かに上回り低位発熱量比で約2.6倍となっているが、果たしてどこからこれ程のエネルギーが齎されているかの疑問が生じる。このことは新たな現象が内在していることを示唆しているが、この熱量は水素の燃焼熱によるものではなく水素原子に特有な量子論で云う基底状態のK殻からその内側の殻に水素原子の電子が陥落することで差分のエネルギーが放出され、その後周囲からのエネルギーを回収して元に戻ると云うサブK殻現象で説明ができ、この現象は燃焼温度が数百度以上の高温下で見られるものであるが、同現象による齎熱量は水と同等質量の石油系液体燃料の熱量に匹敵する値であるため燃料を燃焼させてエネルギーを得ると云う点に於いては好都合な現象と云える。また、このサブK殻現象は計算式によっても妥当性が証明できる他、計測された事例で証明する他の例としては日本マリンエンジニアリング学会誌に掲載されたディーゼル機関での類似改質油を使用した負荷率と燃料消費改善率の相互関係であり、その関係に付き提起される疑問に対してもサブK殻現象を引用することにより明快な解を示すことができる。従ってサブK殻現象を起こす水素原子に注目して燃料油の改質に当たる必要があると云える。 A large increase in the total calorific value, which is the product of the total weight of the reformed oil and the total calorific value, is seen in the reformed fuel oil as a phenomenon shown in Japanese Patent No. 5963171 and also revealed in the process of the present invention. This means that water, which originally does not generate heat, has become fuel as it is. That is, the obtained reformed oil has almost no change in density as compared with the original fuel oil, and in some cases, the calorific value per unit weight is at the same level or slightly higher than that, and the capacity of the obtained reformed oil is also high. About 90% of the amount of water used for mixing is added to the original fuel oil to increase the amount. To give an example to confirm that this seemingly mysterious increase in total calorific value is not derived from normal combustion heat, it is a comparison with the combustion heat of hydrogen that constitutes water, and it is assumed that it is with fuel oil. All the hydrogen contained in the water used for mixing is separated from the water molecules without requiring energy, and the heat generated when the entire amount is completely burned after that is far higher than the combustion heat generated, and the low calorific value ratio is about 2.6 times. However, the question arises as to where such energy comes from. This suggests that a new phenomenon is inherent, but this amount of heat is not due to the heat of combustion of hydrogen, but from the K shell in the base state, which is a quantum theory peculiar to hydrogen atoms, to the inner shell. It can be explained by the sub-K shell phenomenon that the difference energy is released by the fall of the electron of the hydrogen atom, and then the energy from the surroundings is recovered and returned to the original state. This phenomenon is a high temperature of several hundred degrees or more. As can be seen below, the amount of heat generated by this phenomenon is comparable to the amount of heat of petroleum-based liquid fuel having the same mass as water, so it is convenient in terms of burning fuel to obtain energy. It can be called a phenomenon. In addition, the validity of this sub-K shell phenomenon can be proved by a calculation formula, and as another example to prove by the measured case, a similar reformed oil in a diesel engine published in the journal of the Japan Marine Engineering Society is used. It is a mutual relationship between the load factor and the fuel consumption improvement rate, and a clear solution can be shown by quoting the sub-K shell phenomenon for the questions raised about the relationship. Therefore, it can be said that it is necessary to focus on the hydrogen atom that causes the sub-K shell phenomenon and to reform the fuel oil.

水分子が一定条件下で容易に分解することは理化学研究所の2010年の報告書に分解した結果生じた水酸化物イオンの画像と共に示されているが、与えられる振動が水の酸素水素結合の振動周波数と一致した場合には結合エネルギーよりはるかに低いエネルギーで水は分解されることが明らかになっている。 The easy decomposition of water molecules under certain conditions is shown in the 2010 report of the Institute of Physical and Chemical Research, along with images of hydroxide ions resulting from the decomposition, but the vibrations given are the oxygen-hydrogen bonds of water. It has been clarified that water is decomposed with an energy much lower than the binding energy when it matches the vibration frequency of.

特開2000-144158号公報Japanese Unexamined Patent Publication No. 2000-144158 特許第5963171号公報Japanese Patent No. 5963171 特開2017-209646号公報JP-A-2017-209646

THE CHEMICAL TIMES 2009No.2 超音波による化学物質の分解と超音波反応器の開発THE CHEMICAL TIMES 2009 No. 2 Decomposition of chemical substances by ultrasonic waves and development of ultrasonic reactors 有機合成化学協会誌 1960年18巻6号 過酸化水素による有機物の酸化反応Journal of Synthetic Organic Chemistry, Vol. 18, No. 6, 1960 Oxidation reaction of organic substances by hydrogen peroxide RIKEN RESEARCH 2010 水分子を切り刻むRIKEN RESEARCH 2010 Chopping water molecules やさしい超音波工学 川端昭著 工業調査会Easy Ultrasonic Engineering by Akira Kawabata Kogyo Chosakai トコトンやさしい超音波の本(第2版) 谷腰欣司他著 日刊工業新聞社Tokoton Easy Ultrasonic Book (2nd Edition) by Kinji Tanikoshi et al. Nikkan Kogyo Shimbun

従来の技術によれば、水分子を分解するには電気分解で或いは高周波を用いた電磁気的な振動を与えてと云うのが通常の方法であった。またこれらの方法を用いて分解した水と燃料油とを結合させると云う技術もあったが、それらはいずれもバッチ処理が回避できず処理時間も長くなり大規模な処理には適さない方法であった。更に燃料油と水とを用いた燃料油の改質に於いても水との親和性を示さない燃料油には乳化剤等の界面活性剤の添加が必要で、原材料費の他界面活性剤の管理や均一化のために攪拌装置が必要である等の問題があった。 According to the prior art, the usual method for decomposing water molecules is to electrolyze or apply electromagnetic vibration using high frequency. There was also a technique of combining decomposed water and fuel oil using these methods, but all of them are not suitable for large-scale processing because batch processing cannot be avoided and the processing time is long. there were. Furthermore, even in the reforming of fuel oil using fuel oil and water, it is necessary to add a surfactant such as an emulsifier to the fuel oil that does not show affinity with water. There was a problem that a stirrer was required for management and homogenization.

また、燃料油を改質する場合燃料油に水を加えて水エマルジョン燃料とする方法があり、それは燃焼の効率向上を図り同時に排ガス中の有害成分を減少させる上で若干の効果があるが、この場合も油と水の親和性を増すために乳化剤等の界面活性剤を加えて微小化した水分子を油に結合させる方法であるために、油に結合しているのは水分子の分解成分ではなく水の分子そのものであった。 In addition, when reforming fuel oil, there is a method of adding water to fuel oil to make a water emulsion fuel, which has a slight effect in improving combustion efficiency and at the same time reducing harmful components in exhaust gas. In this case as well, in order to increase the affinity between oil and water, a surfactant such as an emulsifier is added to bind the micronized water molecules to the oil. Therefore, what is bound to the oil is the decomposition of the water molecules. It was not a component but a water molecule itself.

水に超音波を照射することに依り水の分解を図る、或いは燃料油と水の混合液を用いて燃料油の改質処理を行うと云う方法は超音波による各種の作用を利用するソノケミストリーの分野に属するが、超音波照射は対象物の分解を目的とし、しかもその成果が最大となるようにするのが通例であって、産生物の内のいずれかを抑制する或いはその分解を適度に抑えると云った技術は発表されておらず、超音波照射に付随し反応上有害となる過酸化水素の発生問題については有効な打開策が見出せないままであり、水を処理する場合の効果的な過酸化水素対策が求められていた。 The method of decomposing water by irradiating water with ultrasonic waves or reforming fuel oil using a mixed solution of fuel oil and water is a sonochemistry that utilizes various actions of ultrasonic waves. Although it belongs to the field of ultrasonic irradiation, the purpose is to decompose the object, and the result is usually maximized, and one of the products is suppressed or the decomposition is moderately suppressed. No effective solution has been found for the problem of hydrogen generation, which is harmful to the reaction associated with ultrasonic irradiation, and the effect of treating water has not been announced. There was a need for specific measures against ultrasonic waves.

超音波を用いて水を分解すれば種々の物質が産生されるが、中でも過酸化水素は超音波のエネルギーを受けて活性化し酸化力の強いラジカル性の物質に変化することが知られており、水または燃料油の改質に於いて負の影響を及ぼすため、過酸化水素の産生並びに活性化を如何にして抑えるかは水の分解を伴う超音波装置にとっては重要な懸案事項であった。その過酸化水素は超音波キャビテーションに付随して発生するが、キャビテーションの発生に必要なパワー密度は超音波の周波数が低い程小さいと云う研究報告があるものの、それ以上の具体的な方法は示されていない中、本願発明は水または燃料油の改質に於いて有効な手段である超音波を活用しつつも過酸化水素を生じさせる過剰な超音波を抑制する有効な具体策を提示することにある。 Decomposing water using ultrasonic waves produces various substances, but it is known that hydrogen peroxide is activated by receiving the energy of ultrasonic waves and changes to a radical substance with strong oxidizing power. How to suppress the production and activation of hydrogen peroxide has been an important concern for ultrasonic devices with decomposition of water, as it has a negative effect on the reforming of water or fuel oil. .. The hydrogen peroxide is generated in association with ultrasonic cavitation, and although there is a research report that the power density required for cavitation generation is smaller as the ultrasonic frequency is lower, a more specific method is shown. However, the present invention presents an effective concrete measure for suppressing excessive ultrasonic waves that generate hydrogen peroxide while utilizing ultrasonic waves, which are effective means for reforming water or fuel oil. There is something in it.

超音波振動子の振動を媒体に発振するのは振動子に取り付けた前面板からであるが、複数個の振動子を用いる場合は振動板型或いは板付型と呼称されているため、本願発明に於いてはそれら発振の振動部位を振動前面板と総称するが、該振動前面板の前方にそれと向き合う様に反射板を設置すると反射板からの反射波は振動前面板に入射後反射し両板間で往還することになる。該反射波が振動前面板に入射する時点の位相と振動前面板から新たに発射される波の位相は通常一致しないものの反射板を移動することに依りその位相差を変化させることができ、極端な場合は位相差をゼロにして往還する波を定在波とすることもできる。この位相差をゼロに近づけると振幅は発射される元の振幅の二倍近くになり、音圧差も大きくなることでキャビテーションも生じ易く、同時にそれはキャビテーション発生のために必要な音圧差の閾値から外れた余剰の超音波のエネルギーを減ずることにもなり、反射板を移動して位相差の調整を図ることは効率的なキャビテーションの発生には有効かつ適した方法と云える。しかしながら定在波を利用する場合に留意すべき事項は処理対象液の速度と流れの方向であり、定在波の山と谷は一波長につき一つ故に処理対象液の流速が速い場合、超音波キャビテーションの作用を有効に受けるには処理対象液の流れの進行方向のベクトルと定在波の進行方向或いは逆方向との関係を考慮する必要がある。 The vibration of the ultrasonic vibrator is oscillated in the medium from the front plate attached to the vibrator. However, when a plurality of vibrators are used, it is called a vibrating plate type or a plate-mounted type. In these, the vibration parts of these oscillations are collectively referred to as the vibration front plate, but if a reflector is installed in front of the vibration front plate so as to face it, the reflected wave from the reflector is reflected on the vibration front plate and then reflected on both plates. It will go back and forth between. Although the phase at the time when the reflected wave is incident on the vibration front plate and the phase of the wave newly emitted from the vibration front plate do not usually match, the phase difference can be changed by moving the reflection plate, which is extreme. In this case, the wave that goes back and forth with the phase difference set to zero can be used as a standing wave. When this phase difference approaches zero, the amplitude becomes nearly twice the original amplitude at which it is emitted, and cavitation is likely to occur due to the large sound pressure difference, which at the same time deviates from the threshold value of the sound pressure difference required for cavitation. It also reduces the energy of excess ultrasonic waves, and moving the reflector to adjust the phase difference can be said to be an effective and suitable method for the generation of efficient cavitation. However, when using a standing wave, the points to keep in mind are the velocity and flow direction of the liquid to be treated, and since there is one peak and valley for each wavelength of the standing wave, when the flow velocity of the liquid to be treated is high, it is super In order to effectively receive the action of ultrasonic cavitation, it is necessary to consider the relationship between the vector of the traveling direction of the flow of the liquid to be treated and the traveling direction or the opposite direction of the standing wave.

上記の論に従い、往還する超音波に依る定在波の方向及び処理対象液の流れの方向それぞれが示すベクトルの重なりを多くするために、水或いは燃料油と水とを混合した処理対象液を反射板の開口部から両板間に流入させた上振動前面板の方向に進ませ、その後両板間を往還する超音波を横切り流出させれば、処理対象液は相当な離隔距離の両板間に於いて定在波或いはそれに近い波形の超音波が引き起こす超音波キャビテーションを複数回受けることが可能となり、処理対象液の全量に対して超音波の作用を確実なものとすることができる。上記に加えて更に、両板間を往還する超音波の存在箇所を開口部を中心とする均等厚の円筒状に近づけておけば、その開口部から流入し往還する超音波を横切って流出する処理対象液に対する超音波の照射をかなり均等化することができるが、これも超音波に依る効果を得ながら過剰な過酸化水素の産生を抑える上で効果のある方法である。或いは、前記振動前面板または前記反射板のいずれにも開口部を設けず、上流に位置する反射板側から流入し下流側に向かう処理対象液の流れをインペラ等を用いて旋回流にすれば処理対象液はほぼ均等に往還する超音波の影響を受けることになり、この場合にも過剰な過酸化水素の産生は抑えられることになる。 According to the above theory, in order to increase the overlap of the vectors indicated by the direction of the standing wave and the direction of the flow of the liquid to be treated due to the returning ultrasonic waves, the liquid to be treated is prepared by mixing water or fuel oil and water. If the liquid is advanced in the direction of the upper vibration front plate that has flowed in between the two plates from the opening of the reflector, and then the ultrasonic waves that travel back and forth between the two plates are crossed and flowed out, the liquid to be treated will be on both plates at a considerable separation distance. In the meantime, it becomes possible to receive ultrasonic cavitation caused by a standing wave or an ultrasonic wave having a waveform close to it multiple times, and it is possible to ensure the action of the sound wave on the total amount of the liquid to be treated. In addition to the above, if the location of the ultrasonic wave that travels back and forth between the two plates is brought closer to a cylindrical shape of uniform thickness centered on the opening, the ultrasonic wave that flows in and out from the opening will flow out across the opening. It is possible to considerably equalize the irradiation of the liquid to be treated with ultrasonic waves, which is also an effective method for suppressing the production of excessive hydrogen hydrogen while obtaining the effect of ultrasonic waves. Alternatively, if an opening is not provided in either the vibration front plate or the reflector, and the flow of the liquid to be processed that flows in from the reflector side located upstream and goes to the downstream side is swirled using an impeller or the like. The liquid to be treated will be affected by the ultrasonic waves that travel back and forth almost evenly, and even in this case, the production of excess hydrogen hydrogen will be suppressed.

本願発明の水改質装置で酸化還元電位即ちORPの低い、且つ酸アルカリ度を示すpH値の高い水に改質することができるが、同じ装置を燃料油改質装置として用いて、燃料油と水を混合の上処理対象液として流入させると元の燃料油を恰も増量させたが如くで、発熱総量の大幅な増大が齎される新たな燃料油が得られることになる。即ち、まず超音波を用いて水を分解し、同じ超音波の作用で燃料油も分断、分解すると燃料油の分断、分解成分が再結合する段階で水の分解成分を組み入れ元の燃料油とは異なる新たな燃料油が得られることになる。 The water reformer of the present invention can reform to water having a low oxidation-reduction potential, that is, an ORP and a high pH value indicating acid alkalinity, but the same device can be used as a fuel oil reformer to reform fuel oil. When water and water are mixed and flowed in as the liquid to be treated, it seems that the original fuel oil has been increased, and a new fuel oil can be obtained, which causes a significant increase in the total calorific value. That is, first, water is decomposed using ultrasonic waves, and the fuel oil is also divided by the action of the same ultrasonic waves. Will provide different new fuel oils.

水分子は1個の酸素原子と2個の水素原子で構成されているが、水素原子は対称伸縮振動、非対称伸縮振動、変角振動と云った動きを、また水分子としても3軸周りの回転運動や秤動、変角運動をしながら、更には多数がクラスターを構成してその中で束縛並進や束縛回転の諸運動をしていると言われている。 A water molecule is composed of one oxygen atom and two hydrogen atoms, but the hydrogen atom has motions such as symmetric stretching vibration, asymmetric stretching vibration, and variable angle vibration, and even as a water molecule, it is around three axes. It is said that while performing rotational motion, oscillating motion, and oscillating motion, a large number of them form a cluster and perform various motions of bound translation and bound rotation in it.

一方、水中で発生する超音波キャビテーションはパワー密度が1平方米当たり0.35x10W超の場合であり、キャビティの圧壊により高温、高圧、高速流動が微小領域で発生することにより処理対象液中の水は高温高圧の亜臨界もしくは超臨界状態となることで、またその微小領域に現れる赤外線領域の電磁波が齎す酸素-水素結合の基準振動数によってその微小領域内は勿論その近傍に存在する水は分解されることが知られているが、圧壊の反応時間はマイクロ秒と非常に短いため水分子が集合した状態のクラスターの分解に時間を取られていては水分子の分解そのものに支障となるため、超音波を照射する前の段階でクラスターを事前に極力分解しておくことは水分子の分解を効果的に進める上で望ましいが、このことはクラスターの事前分解処理をした場合としない場合とのpH値並びにORP値の比較実験で判明している。その為にクラスターを構成している水の分子数を数十~数百と想定して、まずそのクラスターに振動或いは衝撃を与えてクラスターを分解する、或いは結合を緩ませておくことであるが、その簡便かつ有効な手段は適切かつ十分な赤外線領域の周波数の電磁波を照射することであり、その場合には単独でなく異なった鉱石数種類を選びそれらが発する周波数の電磁波を重畳加算の上周波数帯として照射するのが効率的であり、鉱石としては例えば、酸化チタン、酸化ケイ素、酸化アルミニウム、或いは酸化マグネシュウム等の数種類が推奨される。On the other hand, the ultrasonic cavitation generated in water is when the power density is more than 0.35 x 10 4 W per square rice, and high temperature, high pressure and high speed flow are generated in a minute region due to the crushing of the cavity, so that it is in the liquid to be treated. Water in the subcritical or supercritical state of high temperature and high pressure, and water existing in the minute region as well as in the vicinity due to the reference frequency of oxygen-hydrogen bond caused by the electromagnetic wave in the infrared region appearing in the minute region. Is known to be decomposed, but the reaction time of crushing is very short, microseconds, so if it takes time to decompose the clusters in which water molecules are gathered, it will hinder the decomposition of water molecules themselves. Therefore, it is desirable to decompose the cluster as much as possible in advance before irradiating with ultrasonic waves in order to effectively promote the decomposition of water molecules, but this is not the case when the cluster is pre-decomposed. It has been found in a comparative experiment of the pH value and the ORP value with the case. Therefore, assuming that the number of water molecules constituting the cluster is tens to hundreds, first, the cluster should be vibrated or shocked to decompose the cluster or loosen the bond. , The simple and effective means is to irradiate electromagnetic waves with appropriate and sufficient frequencies in the infrared region. It is efficient to irradiate as a band, and several kinds of ores such as titanium oxide, silicon oxide, aluminum oxide, and magnesium oxide are recommended.

同一の超音波を用いて行う燃料油の改質に於いては水分子の分解と同時に燃料油の分断、分解も引き起こされるが、燃料油の分断、分解は水の分解とは異なり、超音波キャビテーションにより圧壊されたキャビティが引き起こす高速流動や超音波の伝播に伴う局所的なずり応力を受けることに依るとされている。水が中心となり形成されるキャビティ故に燃料油分子が圧壊の影響を強く受け、なお且つ短時間の内に完了する水の分解成分と燃料油の分断、分解成分との再結合に進むにはこの時点に於いて燃料油分子はある程度の水和性を有して水分子の極近傍に分布散在していることが必要であるが、そのためには燃料油と水は事前の攪拌等により十分に微粒子混合されている必要がある。重油には僅かながら親水性があるが、軽油等の殆ど水和性を持たない油種の場合の対処方法についての一例は特許第5963171号に記載の通りである。これにより本願発明の燃料油改質装置は界面活性剤を一切用いることなく水を燃料油に変えるが如き改質を可能にしている。 In the reformation of fuel oil performed using the same ultrasonic waves, the fuel oil is divided and decomposed at the same time as the decomposition of water molecules, but the division and decomposition of fuel oil is different from the decomposition of water, and ultrasonic waves are used. It is said that it is due to the high-speed flow caused by the cavity crushed by cavitation and the local shear stress caused by the propagation of ultrasonic waves. Due to the cavity formed mainly by water, the fuel oil molecules are strongly affected by crushing, and the decomposition component of water and the fuel oil are separated and recombined with the decomposition component, which is completed within a short time. At the time point, it is necessary that the fuel oil molecules have a certain degree of hydration and are distributed and scattered in the very vicinity of the water molecules. For that purpose, the fuel oil and water should be sufficiently agitated in advance. It needs to be mixed with fine particles. Although heavy oil has a slight hydrophilicity, an example of a coping method in the case of an oil type having almost no hydration such as light oil is as described in Japanese Patent No. 5963171. As a result, the fuel oil reformer of the present invention enables reforming such as converting water into fuel oil without using any surfactant.

振動前面板から新たに発射される超音波と反射板で反射し幾分減衰して振動前面板に入射する超音波との間には通常位相差があるが、振動前面板は超音波振動子を介して処理容器に間接的に固定されているため反射板を手動或いは自動で移動させて振動前面板との離隔距離を調整すれば発生する超音波の波形を変化させ得ると共に、処理対象液中の超音波キャビテーションの発生状況を確認しながら最大効果を齎す離隔距離を確認、掌握することができる。超音波キャビテーションの発生状況を簡便に確認するには両板間の様子を見ることができる観察穴を処理容器に設けて発生する微小泡の状況を観察することであるが、光学的センサーで両板間の状況を確認する方法もある。 There is usually a phase difference between the ultrasonic waves newly emitted from the vibrating front plate and the ultrasonic waves reflected by the reflecting plate and slightly attenuated and incident on the vibrating front plate, but the vibrating front plate is an ultrasonic transducer. Since it is indirectly fixed to the processing container via the above, the waveform of the generated ultrasonic waves can be changed by adjusting the separation distance from the vibration front plate by manually or automatically moving the reflector, and the liquid to be processed. While checking the occurrence of ultrasonic cavitation inside, it is possible to check and grasp the separation distance that brings about the maximum effect. To easily check the state of ultrasonic cavitation, it is necessary to provide an observation hole in the processing container to observe the state between the two plates and observe the state of minute bubbles generated, but both with an optical sensor. There is also a way to check the situation between the boards.

このように赤外線及び超音波キャビテーションを利用して水分子を分解すると、水の酸化還元電位を示す計測値のORPは低下し、酸アルカリ度を示すpHはアルカリ側に傾くことになる。水は通常の状態であれば分解されたOHとHが同数出現しpHも中性の7であるが、上記の方法で分解され最終的に産生された水素原子Hは一部が結合して水素分子Hとなる等によりOHが優勢となり水はアルカリ性を呈することになる。一方、H及びHを多く検出すれば酸化還元電位を示すORPは還元性優位であることを示して低下し、時にはマイナス値で示されることにもなるため、この2種類の計測値は水の分解程度を示す上で有力な指標となっている。When water molecules are decomposed using infrared rays and ultrasonic cavitation in this way, the ORP of the measured value indicating the redox potential of water decreases, and the pH indicating acid alkalinity tends to be inclined to the alkaline side. Under normal conditions, the same number of decomposed OH- and H + appear in water, and the pH is also neutral 7, but some of the hydrogen atoms H + finally produced after being decomposed by the above method are partially produced. OH becomes predominant due to the combination to form hydrogen molecule H 2 , and the water becomes alkaline. On the other hand, if a large amount of H + and H 2 is detected, the ORP showing the redox potential is shown to be dominant in reducing property and is lowered, and sometimes it is shown as a negative value. Therefore, these two types of measured values are It is a powerful indicator of the degree of water decomposition.

一方、改質に供する燃料油の粘度は概ね10~15センチストークス以下とすることが望ましいが、その理由は燃料油と水との良好な混合のために、また配管、ポンプ等の流路に於ける円滑な流動のために、また燃料油分子が超音波キャビテーションの破壊により生じた高速流動や振動伝播に伴う局所的なずり応力による分解を受け易くするために、また分解を受けて産生された燃料油の分断片等の遊動性が向上し爾後の結合で反応性が増すために、更には超音波キャビテーションを発生させる為に必要な超音波振動子の出力を低下させるためであり、特に常温に於いて高い粘度を示す重油或いは廃油等の粘度は低下させておくことが必要であるが、その簡便な方法は燃料油を加熱により高温にすることである。 On the other hand, it is desirable that the viscosity of the fuel oil used for reforming is approximately 10 to 15 cm Stokes or less, because of the good mixing of fuel oil and water, and in the flow paths of pipes, pumps, etc. Produced for smooth flow in fuel oil and for the fuel oil molecules to be easily decomposed by the high-speed flow caused by the destruction of ultrasonic cavitation and the local shear stress associated with vibration propagation. This is because the mobility of fuel oil fragments and the like is improved and the reactivity is increased by the subsequent coupling, and further, the output of the ultrasonic transducer required for generating ultrasonic cavitation is reduced, in particular. It is necessary to reduce the viscosity of heavy oil or waste oil, which has a high viscosity at room temperature, but a simple method is to heat the fuel oil to a high temperature.

燃料油は水に比べて蒸気圧が低く粘性が高いため超音波のキャビティに取り込まれる割合は少なく、キャビティ周辺の燃料油はキャビティの圧壊により生じた高速流動や振動伝播時の局所的ずり応力に依り分断、分解されるが、それらの分断、分解された構成成分は炭素や水素と云った元素の相互間に働く結合力により瞬時に結合を開始し、元の燃料油分子に近いものなど様々な大きさに成長する。燃料油が事前に水と十分に攪拌混合されていた場合、燃料油の分断、分解成分はその周囲に分散している水の分解産物である水酸化物イオン(OH)、水素イオン(H)或いは水素イオンと水分子が結合したオキソニウムイオン(H)或いは残留している単体水分子等を組み込み、新たな構成の燃料油が誕生する。これは従来から知られていた水エマルジョン燃料のように水が水として燃料油に組み込まれたものとは明らかに異なるものであり、また結合の主体となっている水素結合は他の結合に比べて10%程度の弱い結合と云われているものの容易に分離することはなく、この結合の過程で組み込まれた水素原子のかなりの部分は燃焼の段階で上述のサブK殻現象を引き起こすことになる。Since fuel oil has a lower vapor pressure and higher viscosity than water, it is less likely to be taken into the cavity of ultrasonic waves, and the fuel oil around the cavity is subject to high-speed flow caused by crushing the cavity and local shear stress during vibration propagation. It is divided and decomposed depending on the fuel, but the divided and decomposed components start to bond instantly due to the bonding force acting between elements such as carbon and hydrogen, and are similar to the original fuel oil molecule. It grows to a large size. When the fuel oil is sufficiently stirred and mixed with water in advance, the fuel oil is divided and the decomposition components are hydroxide ions (OH- ) and hydrogen ions (H), which are decomposition products of water dispersed around the fuel oil. + ) Or oxonium ion ( H3O + ) in which hydrogen ion and water molecule are bonded, or residual single water molecule, etc. are incorporated to create a fuel oil having a new composition. This is clearly different from the conventionally known water emulsion fuel in which water is incorporated into the fuel oil as water, and the hydrogen bond that is the main body of the bond is compared with other bonds. Although it is said to be a weak bond of about 10%, it does not separate easily, and a large part of the hydrogen atoms incorporated in the process of this bond causes the above-mentioned sub-K shell phenomenon at the stage of combustion. Become.

この改質油の特徴的な事象は、例えばC重油の場合元の燃料油に比べて得られた改質油はその容器を手に取ると常温に於いて流動性の向上が見られるが、測定値はそれとは逆に粘度が高く表示されることであり、これは改質油の構成分子が短くなっていることを示す一方、各種分解成分を組み込んで複雑な形状となっているために、JISに於ける重油の粘度測定時の50℃に温度が上昇すると複雑な構成分子間の絡み合いが増し、その結果粘度の測定値が高くなるものと推測される。この様な性状は、図2に示す油改質装置を用いて燃料油と水との混合液に対し超音波処理の繰返しを2~3回以内に留めた場合であり、それ以上の繰返しでは処理中の混合液に粘度の急激な上昇が見られる。 The characteristic phenomenon of this reformed oil is that, for example, in the case of heavy fuel oil C, the reformed oil obtained compared to the original fuel oil shows an improvement in fluidity at room temperature when the container is picked up. On the contrary, the measured value is displayed as high viscosity, which indicates that the constituent molecules of the reformed oil are shortened, but on the other hand, it has a complicated shape by incorporating various decomposition components. It is presumed that when the temperature rises to 50 ° C. at the time of measuring the viscosity of heavy oil in JIS, the entanglement between complicated constituent molecules increases, and as a result, the measured value of the viscosity increases. Such a property is a case where the ultrasonic treatment of the mixed liquid of fuel oil and water is kept within 2 to 3 times by using the oil reformer shown in FIG. 2, and the repetition is more than 2 times. A sharp increase in viscosity is seen in the mixed solution during treatment.

水中には勿論燃料油中にも空気が溶解しているが、超音波キャビテーションの効果を高めるには処理容器に処理対象液が流入する前の段階で少なくとも水は抜気装置にて抜気処理をしておく必要がある。 Of course, air is dissolved in the fuel oil in the water, but in order to enhance the effect of ultrasonic cavitation, at least the water is degassed by the deaerator before the liquid to be treated flows into the treatment container. It is necessary to do.

超音波キャビテーションは圧壊に拠り高温と高圧並びに高速流動が微小空隙であるキヤビティ内に発生するとその影響が近傍部にも及び、それにより対象物が分断、分解されることに特徴がある。本願発明に於いても水または燃料油に対する超音波キャビテーションのそれらの分断、分解等の作用を活用するが、水の分解過程に於いて産生される過酸化水素或いはそれが変化しラジカル性を帯びた物質はその強い酸化作用の故に水または燃料油の改質に於いて有害となる物質であり、過酸化水素の産生とそのラジカル化を抑制する必要がある。しかし、水分子が存在する場合のキャビテーション発生に於いては過酸化水素が出現すると云う不可避の関係があるため超音波によるキャビテーションを発生させながらも過酸化水素を産生しなお且つラジカル化させる超音波のエネルギーを如何にして下げるかが課題であり、本願発明では種々の方策によりその課題を克服している。それらの方策によりまず水の分解ではORPの低い且つアルカリ度に優れた水が得られ、また広範な種類の燃料油との混合により改質された燃料油が得られることになる。 Ultrasonic cavitation is characterized in that when high temperature, high pressure, and high speed flow occur in the cavity, which is a small void, due to crushing, the effect extends to the vicinity, and the object is divided and decomposed by it. Also in the present invention, the action of ultrasonic cavitation on water or fuel oil such as division and decomposition is utilized, but hydrogen peroxide produced in the decomposition process of water or its change and becomes radical. Because of its strong oxidizing action, it is a harmful substance in the reformation of water or fuel oil, and it is necessary to suppress the production of hydrogen peroxide and its radicalization. However, since there is an unavoidable relationship that hydrogen peroxide appears in the generation of cavitation in the presence of water molecules, ultrasonic waves that generate hydrogen peroxide and radicalize it while generating cavitation by ultrasonic waves. The problem is how to reduce the energy of hydrogen peroxide, and the present invention overcomes the problem by various measures. By these measures, first, water decomposition has a low ORP and an excellent alkalinity, and a reformed fuel oil can be obtained by mixing with a wide variety of fuel oils.

本願発明に依って得られる改質された水をガス或いは石炭に類する一般的な化石燃料の燃焼炎中に噴霧、噴射することに依り燃焼炎中にサブK殻現象を生じさせて燃費改善を図ると同時に地球温暖化の原因物質であるCOの排出量を抑制すると云った用途への応用も考えられる。By spraying and injecting the reformed water obtained by the present invention into the combustion flame of a general fossil fuel similar to gas or coal, a sub-K shell phenomenon is generated in the combustion flame to improve fuel efficiency. At the same time, it can be applied to applications such as suppressing the emission of CO 2 , which is a causative substance of global warming.

また本願発明の燃料油改質装置を用いて得られる改質油は様々な効果を発揮するが、代表的なものは燃費改善効果と温室効果ガスの削減であり、元の燃料油に比して値段の安い水を加えればそれが同等量の燃料に変わると云うことにより燃料費の大幅な低減が可能となる他、COの排出量も当然ながら少なくなる等地球温暖化対策にも貢献して環境にやさしいものと云える。Further, the reformed oil obtained by using the fuel oil reformer of the present invention exerts various effects, but the typical ones are the fuel efficiency improving effect and the reduction of greenhouse gases, which are compared with the original fuel oil. By adding cheap water, it will be converted to the same amount of fuel, which will enable a significant reduction in fuel costs, and will naturally reduce CO 2 emissions, contributing to global warming countermeasures. It can be said that it is environmentally friendly.

燃料油を用いる内燃機関に於いて燃費改善を図る場合、改質油の性状は混合に供する水の割合に応じて元の燃料油から乖離するため、代替燃料とする場合には規定値内であることの確認が必要である他、ボイラー、タービン、或いは火炉等の熱源とする場合にも規定値に留意し使用する必要がある。 When improving fuel efficiency in an internal combustion engine that uses fuel oil, the properties of the reformed oil deviate from the original fuel oil according to the proportion of water used for mixing. In addition to needing to confirm that there is, it is also necessary to pay attention to the specified value when using it as a heat source for boilers, turbines, furnaces, etc.

本願発明の請求項1に記載する水または燃料油改質装置の要部縦断面図である。 FIG. 3 is a vertical sectional view of a main part of the water or fuel oil reforming apparatus according to claim 1 of the present invention. 本願発明の請求項2に記載する処理対象液に旋回流を生じさせるためのインペラを具備した水または燃料油改質装置の要部縦断面図であり、図1との相違箇所を示す。 FIG. 2 is a vertical sectional view of a main part of a water or fuel oil reformer provided with an impeller for causing a swirling flow in the liquid to be treated according to claim 2 of the present invention, and shows differences from FIG. 1. 燃料油改質の試験に用いた燃料油改質装置の要部縦断面図である。 It is the main part vertical sectional view of the fuel oil reforming apparatus used for the fuel oil reforming test.

図3に示す装置は本願発明に至る過程で使用していた燃料油改質装置であり、該装置に供給する燃料を変えることでその改質が左右されることを通して、過酸化水素が燃料の改質に障害となっていることを見出した。装置の概要は、仕切板兼超音波反射板6の位置及び超音波の周波数20kHzは固定となっており、固定ホーン5から発射された超音波は処理容器1の内壁と仕切板兼超音波反射板6及び超音波振動子の固定部との間で反射され、一部は仕切板兼超音波反射板6を通して波長約2~3μmから1mmの電磁波を放射するSiO、TiOを主要成分とする直径8~15mmのセラミック球3に照射される構造となっている。この燃料油改質装置を用いて試行し、好結果であったのは共に硫黄を比較的多く含有するA重油と、C重油の残渣油の2種類で、環境対策上低硫黄化され硫黄が0.5%以下の低硫黄A重油は同一条件下で処理したにも拘らず好結果が得られるものは皆無であった。なお、C重油の低硫黄タイプは試行時には流通しておらず入手はできなかった。The apparatus shown in FIG. 3 is a fuel oil reforming apparatus used in the process leading up to the present invention, and hydrogen peroxide is used as a fuel through the fact that the reforming is influenced by changing the fuel supplied to the apparatus. We found that it was an obstacle to reforming. The outline of the device is that the position of the partition plate / ultrasonic reflector 6 and the ultrasonic frequency of 20 kHz are fixed, and the ultrasonic waves emitted from the fixed horn 5 are the inner wall of the processing container 1 and the partition plate / ultrasonic reflection. The main components are SiO 2 and TiO 2 that are reflected between the plate 6 and the fixed portion of the ultrasonic transducer and radiate electromagnetic waves with a wavelength of about 2 to 3 μm to 1 mm through the partition plate and ultrasonic reflector 6. The structure is such that the ceramic sphere 3 having a diameter of 8 to 15 mm is irradiated. We tried using this fuel oil reformer and found two types of fuel oil, A heavy oil and C heavy oil residue oil, both of which contain a relatively large amount of sulfur. None of the low sulfur A heavy oils of 0.5% or less gave good results even though they were treated under the same conditions. The low sulfur type of C heavy oil was not available at the time of trial because it was not distributed.

各重油に対して行った燃料油改質の手順は、まず混合に供する水の前処理として別途設けたセラミック球が充填された容器にORP+550~+565mVの水道水を通過させ、水温25℃でORPを+110~+120mVとした後脱気装置を通し、その後静止型混合器を用いて重油と攪拌混合したものを図3に示す処理対象液の入口2から流入させ、一方配管系と燃料油改質装置に対する昇温はそれぞれに取り付けた電気ヒータの設定温度を変えることにより行った上で超音波の照射を実施した。この手順に従い、加温温度を変える、或いは異なる硫黄含有量の重油を用いる等条件を変えて幾通りかのベルヌーイ試行を行い、それらの内好結果が得られたA重油の改質例を表1に、またC重油の残渣油の改質例を表2に示すが、それぞれの加温温度の設定はA重油の場合は約64~65℃に、またC重油の場合は約94~95℃に保ち実施したものであり、資料によればこれらの温度であれば粘度はいずれも10~15センチストークス以下となっている。 The fuel oil reforming procedure performed for each heavy oil is as follows: First, tap water of ORP +550 to +565 mV is passed through a container filled with ceramic balls separately provided as a pretreatment of water to be mixed, and ORP is performed at a water temperature of 25 ° C. After setting the value to +110 to +120 mV, the mixture is passed through a degassing device, and then a mixture of heavy oil and heavy oil is allowed to flow in from the inlet 2 of the liquid to be treated shown in FIG. 3, while the piping system and fuel oil are reformed. The temperature of the device was raised by changing the set temperature of the electric heater attached to each device, and then the irradiation of ultrasonic waves was carried out. According to this procedure, several Bernoulli trials were performed under different conditions such as changing the heating temperature or using heavy oil with different sulfur contents. Table 2 shows an example of reforming the residual oil of C heavy oil, and the heating temperature is set to about 64 to 65 ° C for A heavy oil and about 94 to 95 for C heavy oil. It was carried out at a temperature of 10 ° C., and according to the data, the viscosity was 10 to 15 cm Stokes or less at these temperatures.

上記の通り試行を幾度となく繰り返す際に用いた図3に示す燃料油改質装置の超音波照射部8には固定ホーン5から発射された後超音波照射部8を中心とした各部位に当たり反射を繰り返した超音波が充満しているが、超音波に係わるこの状況は供試された全ての燃料油に共通しているにも拘らず燃料油の改質の結果に差異が生じる原因に付き考察した結果、それは燃料油中の硫黄の含有量と過酸化水素の関係と判断される。即ち、超音波キャビテーションにより水が分解される際に産生される複数の物質の内、過酸化水素は光や熱或いは波動等の強いエネルギーを受けるとラジカル性を帯びた物質に変化することが知られているが、そのラジカル性を帯びた物質が水の分解で産生された水素原子を酸化して元の水に戻し、結果としては水の分解が進行しなかったのと同様な事象を引き起こしていることになる。しかし硫黄には過酸化水素の分解能があり、硫黄分の多いA重油の場合一旦生じた過酸化水素は分解されて消失し、水の分解により生じた水素原子は温存されて燃料油の改質に関与することになり表1の通り好結果となったと判断される。他の例を挙げると、軽油に対する改質事例は特許第5963171号に示す通りであるが、当時の軽油は規定により硫黄は0.05%以下と無視できる程度でありながら、水分子の分解は超音波ではなく磁界による方法であり、且つ発生させた磁界も比較的弱いため過酸化水素の影響を受けることなく好結果が得られたものと云える。 As described above, the ultrasonic irradiation unit 8 of the fuel oil reformer shown in FIG. 3, which was used when the trial was repeated many times, hit each part centering on the ultrasonic irradiation unit 8 after being emitted from the fixed horn 5. It is filled with repeatedly reflected ultrasonic waves, but this situation related to ultrasonic waves is common to all the fuel oils tested, but it is the cause of the difference in the result of fuel oil reforming. As a result of the additional consideration, it is judged that it is the relationship between the sulfur content in the fuel oil and hydrogen peroxide. That is, it is known that hydrogen hydrogen changes to a substance with radicality when it receives strong energy such as light, heat or wave, among multiple substances produced when water is decomposed by ultrasonic cavitation. However, the radical substance oxidizes the hydrogen atom produced by the decomposition of water and returns it to the original water, resulting in the same phenomenon as the decomposition of water did not proceed. It will be. However, sulfur has the resolution of hydrogen peroxide, and in the case of heavy A heavy oil with a high sulfur content, the hydrogen peroxide once generated is decomposed and disappears, and the hydrogen atoms generated by the decomposition of water are preserved to reform the fuel oil. It is judged that the result was good as shown in Table 1. To give another example, the modification example for light oil is as shown in Japanese Patent No. 5963171, but the decomposition of water molecules is negligible while the sulfur content of light oil at that time is 0.05% or less according to the regulations. It can be said that good results were obtained without being affected by hydrogen peroxide because the method uses a magnetic field instead of ultrasonic waves and the generated magnetic field is relatively weak.

これらの結果を踏まえて、本願発明の水または燃料油改質装置はそれらの改質に於いて障害となる過酸化水素の産生を抑制することに主眼を置き、図3に示す装置を改造し新たな機能を付加することにするが、装置に供給し用いる水の前処理として別途設けた波長約2~3μmから1mmの電磁波を放射するSiO、TiOを主要成分とする直径8~15mmのセラミック球が充填された容器を通過させることによりORP+450~+580mV級の一般的な水道水をORP値で約440~450mV下げることとする。その後は脱気装置を通し、水を処理対象液とする場合はそのまま静止型混合器を通した上で、また燃料油と水を混合した液体が処理対象液の場合で燃料油が重油であれば別の配管から供給された重油と水を共に静止型混合器を通すことにより重油と水とを攪拌混合させた上で、いずれの処理対象液も図1に示す処理容器1の処理対象液の入口2から流入させるが、重油の場合は配管系と燃料油改質装置に取り付けた電気ヒータの設定温度を調節し目安とする粘度を10~15センチストークス以下とする。また、燃料油が軽油等親水性のない油種の場合は水と共に静止型混合器を通す前に親水性を付与する処理が必要であり、その一例は前述の特許第5963171号の通りであるが60気圧程度の送油ポンプを用いてアスピレータから噴出させ、赤外線照射と脱気処理を終えた水を、燃料油との容量比で5%程度、供給して両液体を静止型混合器を用いて微粒子混合をさせておくことである。Based on these results, the water or fuel oil reformer of the present invention is modified with the focus on suppressing the production of electromagnetic waves, which is an obstacle in their reforming, and the device shown in FIG. We will add a new function, but the diameter is 8 to 15 mm, which is mainly composed of SiO 2 , which emits electromagnetic waves with a wavelength of about 2 to 3 μm to 1 mm, which is separately provided as a pretreatment for the water supplied to the device. By passing through a container filled with the ceramic spheres of the above, general tap water of ORP +450 to +580 mV class is reduced by about 440 to 450 mV in ORP value. After that, pass through the deaerator, and if water is to be treated, pass it through a static mixer as it is, and if the liquid that is a mixture of fuel oil and water is the liquid to be treated, if the fuel oil is heavy oil. For example, heavy oil and water supplied from another pipe are passed through a static mixer to stir and mix the heavy oil and water, and then the liquid to be treated is the liquid to be treated in the treatment container 1 shown in FIG. In the case of heavy oil, the set temperature of the electric heater attached to the piping system and the fuel oil reformer is adjusted so that the standard viscosity is 10 to 15 cm Stokes or less. Further, when the fuel oil is a non-hydrophilic oil type such as light oil, it is necessary to impart hydrophilicity before passing it through a static mixer together with water, and an example thereof is as described in Japanese Patent No. 5963171. Is ejected from the aspirator using an oil pump of about 60 atm, and the water that has been irradiated with infrared rays and degassed is supplied at a volume ratio of about 5% with the fuel oil, and both liquids are supplied into a static mixer. It is to be used to mix fine particles.

本願発明の水または燃料油改質装置の好ましい実施形態は、図1に示すように、処理対象液の流路を構成する処理容器1内にセラミック球の充填部3と超音波振動子4を配設してなり、処理対象液は処理対象液の入口2からセラミック球の充填部3に向けて導入され、その部位を通過することにより処理される一方、超音波振動子4からの振動は振動前面板5と反射板7との間を往還する超音波を生じさせるが、反射板7が移動機構に依り移動することにより往還する超音波は定在波或いはそれに近い波となって両板間に流入した処理対象液は処理され、その後処理済液は超音波振動子4側から処理容器外に排出されるよう構成するものである。6は仕切板、8は超音波照射部、9は処理済処理対象液の出口、10は処理対象液の流れ、11は測定用超音波発振器、12は測定用超音波受信器、13は反射板のシャフト、14はモータのシャフト、15はシャフトの接続部、16はモータ、17はモータ駆動、制御配線である。 In a preferred embodiment of the water or fuel oil reformer of the present invention, as shown in FIG. 1, a ceramic ball filling portion 3 and an ultrasonic transducer 4 are placed in a processing container 1 constituting a flow path of the liquid to be processed. The liquid to be treated is arranged and introduced from the inlet 2 of the liquid to be treated toward the filling portion 3 of the ceramic sphere, and is processed by passing through the portion, while the vibration from the ultrasonic vibrator 4 is generated. Vibration An ultrasonic wave is generated between the front plate 5 and the reflector 7, but the ultrasonic wave that travels back and forth due to the movement of the reflector 7 by the moving mechanism becomes a standing wave or a wave close to it, and both plates. The liquid to be treated that has flowed in between is treated, and then the treated liquid is configured to be discharged from the ultrasonic transducer 4 side to the outside of the treatment container. 6 is a partition plate, 8 is an ultrasonic irradiation unit, 9 is an outlet of the processed liquid to be processed, 10 is a flow of the liquid to be processed, 11 is an ultrasonic oscillator for measurement, 12 is an ultrasonic receiver for measurement, and 13 is reflection. A plate shaft, 14 is a motor shaft, 15 is a shaft connection, 16 is a motor, and 17 is a motor drive and control wiring.

図1に於いて処理対象液はセラミックの充填部3を通過することにより処理されるが、それはセラミックから放射される赤外線により水のクラスターを分解することが主であり、同時に一部水の分解も進行するが、超音波振動子4の振動が処理容器1を介して、また振動前面板5からの超音波が反射板の開口部から仕切板6を介して間接的にセラミックに伝わることによりセラミックからの赤外線の放射は一層強まることになる。なお、このセラミック球は一例であり同様の機能を有するセラミックの成形品を用いることも可能である他、上述と同様の効果が得られれば処理容器1に収納しておく必然性はなく、独立した容器内であってもよい。 In FIG. 1, the liquid to be treated is treated by passing through the filling portion 3 of the ceramic, which mainly decomposes water clusters by the infrared rays radiated from the ceramic, and at the same time partially decomposes water. However, the vibration of the ultrasonic transducer 4 is indirectly transmitted to the ceramic through the processing container 1, and the ultrasonic waves from the vibration front plate 5 are indirectly transmitted from the opening of the reflecting plate to the ceramic through the partition plate 6. The emission of infrared rays from the ceramic will be even stronger. It should be noted that this ceramic sphere is an example, and a ceramic molded product having the same function can be used, and if the same effect as described above is obtained, it is not necessary to store it in the processing container 1 and it is independent. It may be in a container.

次に処理対象液に超音波を照射するが、その超音波の様子を図1に於いて模式的に多数のドットで示している。これは振動前面板5と反射板7の両板間を往還する超音波であり、該超音波は振動前面板5からの新たな超音波に加えて減衰しながら反射板から戻る反射波が重畳されることで成り立ち、後述する機構に依り定在波或いはそれに近い波となっている。図1に於いて処理対象液の流れ10で示す通り処理対象液の流路を反射板7の開口部から両板間に流入させた上振動前面板5の方向に進ませ、その後両板間を往還する超音波を横切った後流出させるとすることで処理対象液のすべては定在波或いはそれに近い波形の超音波が引き起こす超音波キャビテーションの作用を複数回受けることが可能となり、処理対象液の全量が超音波からの作用を確実なものとすることができる。上記に加えて更に、両板間を往還する超音波の存在箇所を開口部を中心とする均等厚の円筒状に近づけておけば、反射板7の開口部から流入し往還する超音波を横切って流出する処理対象液に対する超音波の照射をかなり均等化することができ、超音波に依る効果を得ながら過剰な過酸化水素の産生を抑える上で効果のある方法である。 Next, the liquid to be treated is irradiated with ultrasonic waves, and the state of the ultrasonic waves is schematically shown by a large number of dots in FIG. This is an ultrasonic wave that goes back and forth between both plates of the vibrating front plate 5 and the reflecting plate 7, and the ultrasonic wave is superimposed on the reflected wave returning from the reflecting plate while being attenuated in addition to the new ultrasonic wave from the vibrating front plate 5. It is a standing wave or a wave close to it, depending on the mechanism described later. As shown by the flow of the liquid to be treated 10 in FIG. 1, the flow path of the liquid to be treated is advanced in the direction of the upper vibration front plate 5 which has flowed between the two plates from the opening of the reflective plate 7, and then between the two plates. By allowing the ultrasonic waves to flow back and forth after crossing the ultrasonic waves, all of the liquids to be treated can be subjected to the action of ultrasonic cavitation caused by ultrasonic waves with a standing wave or a waveform close to it, and the liquids to be treated can be treated multiple times. The total amount of can ensure the action from the ultrasonic waves. In addition to the above, if the location of the ultrasonic wave that travels back and forth between the two plates is brought closer to a cylindrical shape with a uniform thickness centered on the opening, the ultrasonic wave that flows in and back and forth from the opening of the reflector 7 is crossed. It is possible to considerably equalize the irradiation of the liquid to be treated with ultrasonic waves, and it is an effective method for suppressing the production of excess hydrogen hydrogen while obtaining the effect of ultrasonic waves.

図2は上述とは一部異なる実施形態のもので、図1との相違箇所を図示している。両図に於いて両板間を往還する超音波を多数のドットで示すが、図2では反射板7には開口部はなく、反射板7の上流側に反射板のシャフト13と同軸の回転軸に取り付けたインペラ18を配設してその回転により処理対象液を旋回流とした上で両板間に流入させることとしている。これにより処理対象液の流れ10は両板間で複数回旋回することになり両板間に現れている超音波の定在波或いはそれに近い波形の超音波が引き起こす超音波キャビテーションの作用を処理対象液はほぼ均等に受けることになるが、このように処理対象液を旋回流とすることは超音波に依る効果を得ながら過剰な過酸化水素の産生を抑えると云う点で効果のある方法である。なお、インペラ18の駆動力はかさ歯車駆動軸20により処理容器1の外部に設置した駆動源から伝達される、また19はインペラ支持材である。 FIG. 2 shows an embodiment partially different from the above, and shows differences from FIG. 1. In both figures, the ultrasonic waves that go back and forth between the two plates are shown by a large number of dots. In FIG. 2, the reflector 7 has no opening, and the rotation coaxial with the shaft 13 of the reflector on the upstream side of the reflector 7. An impeller 18 attached to the shaft is arranged so that the liquid to be treated is swirled by its rotation and then flows into the space between the two plates. As a result, the flow 10 of the liquid to be processed is swirled between both plates multiple times, and the action of ultrasonic cavitation caused by the standing wave of ultrasonic waves appearing between both plates or the ultrasonic wave having a waveform close to it is processed. The liquid will be received almost evenly, but making the liquid to be treated a swirling flow in this way is an effective method in that it suppresses the production of excess hydrogen peroxide while obtaining the effect of ultrasonic waves. be. The driving force of the impeller 18 is transmitted from a drive source installed outside the processing container 1 by the bevel gear drive shaft 20, and 19 is an impeller support material.

ここで留意すべき事項は処理対象液の流れの方向であり、定在波の山と谷は一波長につき一つ故に超音波キャビテーションの作用を有効に受けるには処理対象液の流れ方向のベクトル成分と定在波の方向を示すベクトルとの重なりを大きくする必要があり、図1及び図2に於いてはそのことを考慮しているが、処理対象液の流速が早い場合にはドップラー効果のプラス、マイナスにも留意する必要がある。なお、図1と図2に示す方法それぞれの特徴から、処理対象液の流速が早い、或いは処理対象液の量が多い場合は図2に示す方法が適していると云える。 The point to be noted here is the direction of the flow of the liquid to be treated, and since there is one standing wave peak and valley per wavelength, the vector of the flow direction of the liquid to be treated is to be effectively affected by ultrasonic cavitation. It is necessary to increase the overlap between the component and the vector indicating the direction of the standing wave, which is taken into consideration in FIGS. 1 and 2, but the Doppler effect occurs when the flow velocity of the liquid to be treated is high. It is also necessary to pay attention to the plus and minus of. From the characteristics of each of the methods shown in FIGS. 1 and 2, it can be said that the method shown in FIG. 2 is suitable when the flow rate of the liquid to be treated is high or the amount of the liquid to be treated is large.

両板間に定在波或いはそれに近い波形を発生させるには反射板7を移動させて両板間の離隔距離を調整することであるが、処理対象液中の超音波の速度を超音波の振動数で除した値が波長であるため自動式の場合は、処理容器1内を横断する対向位置に測定用超音波発振器11と測定用超音波受信器12を取り付け、測定用超音波の送受信の時間差から処理対象液中の超音波の速度を得るが、それを示す速度信号、また超音波の振動数を示す信号、及び必要とする波長の倍数を現わす倍数信号等を処理容器1の外に設けた演算装置に入力して振動前面板5と反射板7との必要な離隔距離を算出し、モータ駆動、制御配線17を通してモータ16を駆動し、反射板のシャフト13に取り付けた反射板7を算出された離隔距離となるように移動させるが、その後の離隔距離の微細な調整は水の改質に於いては酸化還元電位を示すORPと酸アルカリ度を示すpHを、また燃料油の改質では許容残留水分量を測定の上それぞれを信号化して演算装置に入力しフィードバック制御により行うこととする。 In order to generate a stationary wave or a waveform close to it between the two plates, the reflector 7 is moved to adjust the separation distance between the two plates. Since the value divided by the frequency is the wavelength, in the case of the automatic type, the ultrasonic oscillator 11 for measurement and the ultrasonic receiver 12 for measurement are attached at opposite positions across the processing container 1, and the ultrasonic waves for measurement are transmitted and received. The velocity of the ultrasonic waves in the liquid to be processed is obtained from the time difference of the above, and the velocity signal indicating that, the signal indicating the frequency of the ultrasonic waves, the multiple signal indicating the multiple of the required wavelength, etc. The required separation distance between the vibration front plate 5 and the reflector 7 is calculated by inputting to an external calculation device, the motor 16 is driven through the motor drive and control wiring 17, and the reflection attached to the shaft 13 of the reflector. The plate 7 is moved so as to have the calculated separation distance, and the subsequent fine adjustment of the separation distance is to change the ORP indicating the oxidation-reduction potential and the pH indicating the acid alkalinity, and the fuel, in the modification of water. In oil reforming, the allowable residual water content is measured, and each signal is input to the arithmetic unit and controlled by feedback.

過酸化水素がラジカル性を帯びた物質に変化するのを抑制するには、前述の通り超音波キャビテーションを生じさせる超音波のパワー密度を発生に必要な最低限度に近いものとし余剰な超音波を排除することであるが、それと併せて処理対象液がほぼ均等に超音波照射を受けることであり、キャビテーションの発生に必要なパワー密度と周波数の関係は既に明らかにされているため、その関係曲線を参考にして任意に選べる周波数をまず決めることである。本願発明に於いては同じ超音波を用いて水の分解即ち水の改質と燃料油の分解も行うことにしているが、水に対してはキャビティ内が、また燃料油に対してはキャビティ近傍部が主たる反応場となっているため周波数の選定に於いてはキャビティ内外での反応を考慮する必要がある。 In order to suppress the transformation of hydrogen peroxide into a substance with radicality, as described above, the power density of the ultrasonic waves that cause ultrasonic cavitation should be close to the minimum required for generation, and excess ultrasonic waves should be used. It is to be excluded, but at the same time, the liquid to be treated is irradiated with ultrasonic waves almost evenly, and the relationship between the power density and frequency required for the occurrence of cavitation has already been clarified, so the relationship curve. First, determine the frequency that can be selected arbitrarily with reference to. In the present invention, the same ultrasonic waves are used to decompose water, that is, reform water and decompose fuel oil, but the cavity is for water and the cavity is for fuel oil. Since the vicinity is the main reaction field, it is necessary to consider the reaction inside and outside the cavity when selecting the frequency.

キャビティは変動する音圧の高低差に依って生じ、形成、膨張、収縮、膨張、そして圧壊の順に進行するのが通例であるが、反射波を利用して音圧の急激な変動を生じさせると形成後の膨張から圧壊に一挙に進むことになる。また、超音波振動の周波数即ち振動前面板の振動数を決めれば処理対象液中の超音波の速度から両板間に生じる波数が算出され、定在波の場合は波毎に1回の圧壊を引き起こすため両板間での最多圧壊回数を求めることができる。本願発明では、処理対象液が超音波に依る急激な音圧の高低差の部位を通過し圧壊を確実に受けるようにする目的で、処理対象液の流路を反射板の開口部から流入後両板間に発生している超音波振動部を複数回斜めに横断して進むように設定している。一方燃料油は前述の通りキャビティの圧壊により生じた高速流動や超音波の伝播に伴う局所的なずり応力等により分解されるが、そのことは油種によって異なる高分子の燃料油分子にはずり応力に対して脆弱箇所があることを示しており、そのことから超音波振動の周波数即ち振動前面板の振動数には油種に対して効果を発揮することができる振動数の幅が存在することが読み取れる。好結果を発揮した図3で示す装置で用いた20KHzは重油系に適した周波数の範囲内にあることが確認できるが、それは同時に振動に対する応答性の一般論から軽油等の軽中質油では主たる成分である直鎖炭化水素が重油のものより短いため20KHzより高い周波数が適していることを示している。 Cavities are created by the height difference of fluctuating sound pressure, and usually proceed in the order of formation, expansion, contraction, expansion, and crushing, but the reflected wave is used to cause abrupt fluctuation of sound pressure. From the expansion after formation to crushing, it will proceed at once. In addition, if the frequency of ultrasonic vibration, that is, the frequency of the vibration front plate, is determined, the wave number generated between the two plates is calculated from the speed of the ultrasonic waves in the liquid to be processed. The maximum number of crushing times between both plates can be obtained. In the present invention, for the purpose of ensuring that the liquid to be treated passes through a portion of a sudden difference in sound pressure due to ultrasonic waves and is surely crushed, after the flow path of the liquid to be treated flows in from the opening of the reflector. It is set to cross the ultrasonic vibration part generated between both plates multiple times diagonally. On the other hand, as mentioned above, the fuel oil is decomposed by the high-speed flow generated by the crushing of the cavity and the local shear stress caused by the propagation of sound waves. It indicates that there is a vulnerable part to stress, and therefore, the frequency of ultrasonic vibration, that is, the frequency of the vibration front plate, has a range of frequencies that can exert an effect on the oil type. Can be read. It can be confirmed that the 20 KHz used in the device shown in FIG. 3 which showed good results is within the frequency range suitable for heavy oil systems, but at the same time, it is possible to confirm that it is in the range of light and medium oils such as light oil from the general theory of responsiveness to vibration. Since the main component, linear hydrocarbon, is shorter than that of heavy oil, it shows that a frequency higher than 20 KHz is suitable.

周波数の選定後は処理対象液中の超音波の速度を基に振動前面板5と反射板7の標準的な離隔距離を決めることになるが、上述の通り圧壊の機会は定在波では一波に一回であるため処理対象液の流路が往還する超音波に対して斜めに横切る設定であれば、処理対象液に複数回の圧壊を生じさせるには離隔距離は超音波の波長の数倍とするのが適切である。 After selecting the frequency, the standard separation distance between the vibration front plate 5 and the reflector 7 will be determined based on the speed of the ultrasonic waves in the liquid to be processed, but as mentioned above, the chance of crushing is one for standing waves. If the setting is such that the flow path of the liquid to be treated crosses diagonally with respect to the ultrasonic waves that travel back and forth because it is once in a wave, the separation distance is the wavelength of the ultrasonic waves in order to cause multiple crushing of the liquid to be treated. It is appropriate to multiply it by several times.

両板間の離隔距離を決定する方法としては自動式若しくは手動式から選ぶことができる。自動式の場合は処理対象液を処理した後サンプリング用の液を細い管で抽出し、水の場合はORPとpHを自動計測して、また燃料油の場合は残留水分量を自動計測して反射板7の位置を制御している回路にフィードバックすることに依り離隔距離を最適なものとすることができる。手動式の場合は入手した各種の実験データを蓄積しておき、それを参照して離隔距離を手動で決めることになる他、特に水を一定の水温下で処理する場合は、最適な離隔距離が一度判明すれば、同型の別の処理装置に対して同じ離隔距離を手動で設定すればこと足りて、自動式とする必要はないことになる。 The method of determining the separation distance between the two plates can be selected from an automatic method and a manual method. In the case of the automatic type, after processing the liquid to be treated, the liquid for sampling is extracted with a thin tube, the ORP and pH are automatically measured in the case of water, and the residual water content is automatically measured in the case of fuel oil. The separation distance can be optimized by feeding back to the circuit controlling the position of the reflector 7. In the case of the manual type, various experimental data obtained are accumulated and the separation distance is determined manually by referring to it. In addition, especially when the water is treated under a constant water temperature, the optimum separation distance is used. Once it is known, it is sufficient to manually set the same separation distance for another processing device of the same type, and it is not necessary to make it automatic.

処理対象液中の超音波の速度は液体の種類、条件等により異なり、例えば水中の速度は温度により変化し、74℃をピークとする山状の曲線になり、また燃料油と水との混合液であれば混合割合は勿論、燃料油の種類、温度、或いは存在する気泡の割合等によって異なったものとなる。従って、離隔距離を自動若しくは手動のどちらで決定するにしても、処理対象液中の超音波速度を速度検出装置により検出しておくことは両板間に発生している超音波の波長を確認し、掌握しておく為には必要なことである。 The velocity of ultrasonic waves in the liquid to be treated differs depending on the type of liquid, conditions, etc. For example, the velocity in water changes depending on the temperature, forming a mountain-shaped curve with a peak of 74 ° C, and mixing of fuel oil and water. If it is a liquid, the mixing ratio will of course differ depending on the type and temperature of the fuel oil, the ratio of existing bubbles, and the like. Therefore, regardless of whether the separation distance is determined automatically or manually, detecting the ultrasonic velocity in the liquid to be processed by the velocity detector confirms the wavelength of the ultrasonic waves generated between the two plates. However, it is necessary to keep it in control.

燃料油改質装置としての機能の判定は、その機能が十分果たされていれば改質燃料に残存する水の量は極微量であり、分析による水分量の判定とは別に、一定時間静置後の目視によって燃料油改質装置としての機能の良否を判定することも油種によっては可能である。また、油種とその用途によっては水分の含有は許されないとするものがあるが、この場合には燃料油を改質の後許容範囲内に収まるよう油水分離装置にて残留水を分離することで対応が可能である。 In the judgment of the function as a fuel oil reformer, if the function is sufficiently fulfilled, the amount of water remaining in the reformed fuel is extremely small, and apart from the judgment of the water content by analysis, it is static for a certain period of time. Depending on the type of oil, it is possible to judge the quality of the function as a fuel oil reformer by visual inspection after installation. In addition, depending on the type of oil and its use, the content of water is not permitted. In this case, the residual water should be separated by an oil-water separator so that the fuel oil is within the allowable range after reforming. It is possible to deal with it.

使用する水は純水レベルにする必要はないものの塩素は勿論その他の不純物を除去する等必要な処置は適度に行っておくことが望ましいが、前述の通り水のクラスターは機会を捉えてどの段階であっても小さくしておくのがよく、超音波に依る処理の直前の段階で処理対象液がセラミックからの赤外線の照射を受け得るとしておくことは、当該セラミックが反射板の開口部を通過した超音波等の照射を受けて励起されるだけに効果的と云える。 Although the water used does not need to be at the level of pure water, it is desirable to take appropriate measures such as removing chlorine and other impurities, but as mentioned above, the water cluster seizes the opportunity and at what stage. Even if it is small, it is better to keep it small, and if the liquid to be treated can be irradiated with infrared rays from the ceramic at the stage immediately before the treatment by ultrasonic waves, the ceramic passes through the opening of the reflector. It can be said that it is effective only because it is excited by being irradiated with ultrasonic waves or the like.

重油等粘度の比較的高い燃料油を改質する場合には粘度の低い燃料油を改質する場合に比べて超音波振動子の出力を上げる必要があるが、それは過剰な超音波エネルギーの存在に繋がることになり過酸化水素の発生も多くなる。そのような状況下にあって過酸化水素を許容範囲内に抑えきれない場合には補助的な手段であるが処理対象液に直流のマイナス電極から電子を注入することであり、電子の注入処理は処理対象液を処理容器に流入させる前の段階で或いは処理容器に流入後反射板の上流側で行うことが望ましい。誘電体には電子等の電荷を保持する特徴があり、超音波照射により生じた過酸化水素は電子を受け取り水に戻ることになる。When reforming fuel oil with relatively high viscosity such as heavy oil, it is necessary to increase the output of the ultrasonic transducer compared to when reforming fuel oil with low viscosity, but it is due to the presence of excess ultrasonic energy. This will lead to increased generation of hydrogen peroxide. Under such circumstances, if hydrogen peroxide cannot be suppressed within the permissible range, it is an auxiliary means, but it is to inject electrons into the liquid to be treated from a direct current negative electrode, and the electron injection process. It is desirable to perform this at the stage before the liquid to be treated flows into the treatment container or on the upstream side of the reflector after flowing into the treatment container. Dielectrics have the characteristic of retaining electric charges such as electrons, and hydrogen peroxide generated by ultrasonic irradiation receives electrons and returns to water.

以下、本願発明に関連する実施例を記載し本願発明について詳述する。但しこれらの実施例は本願発明に基づく一実施態様を示すものであり、本願発明は下記の実施例に限定されない。 Hereinafter, the invention of the present application will be described in detail with reference to examples related to the invention of the present application. However, these examples show one embodiment based on the present invention, and the present invention is not limited to the following examples.

図1は図3の装置を用いて行った多数の試行結果と知見を基に図3を改良したものであり、次の様な特徴がある。即ち、反射板の移動により反射波の制御ができることと併せて処理対象液がほぼ均等に超音波キャビテーションの作用を受け得るようにしたことである。即ち、図1に於いて、超音波振動子4を2個連結した振動前面板5から発射される50KHzの超音波は反射板7によって反射した後振動前面板5に入射するが、その反射波と振動前面板5からの新たな超音波が合成されて反射板7に向かい、両板間で往還する超音波が生じることになる。処理対象液が水の場合、超音波の水中速度を毎秒1500mとすれば50KHzの超音波の波長は3.0cmとなり、両板間に7波長を入れるとすれば離隔距離は21.0cmとなる。また、処理対象液が燃料油と水との混合液の場合、超音波の速度が毎秒1350mであれば、50KHzの超音波の波長は2.7cmとなり、両板間に7波長を入れるならば離隔距離は18.9cmとなる。なお、超音波の振動数を50KHzとしているが、処理対象液の特性と処理装置の形状、寸法、流速等の状況に応じて好結果を齎すように選定し変更することが可能である。 FIG. 1 is an improvement of FIG. 3 based on the results and findings of a large number of trials performed using the apparatus of FIG. 3, and has the following features. That is, the reflected wave can be controlled by moving the reflector, and the liquid to be treated can be subjected to the action of ultrasonic cavitation almost evenly. That is, in FIG. 1, the 50 KHz ultrasonic wave emitted from the vibrating front plate 5 in which two ultrasonic transducers 4 are connected is reflected by the reflecting plate 7 and then incidents on the vibrating front plate 5, but the reflected wave thereof. A new ultrasonic wave from the vibration front plate 5 is synthesized and heads toward the reflector plate 7, and an ultrasonic wave that goes back and forth between the two plates is generated. When the liquid to be treated is water, if the underwater velocity of the ultrasonic wave is 1500 m / s, the wavelength of the ultrasonic wave of 50 KHz is 3.0 cm, and if 7 wavelengths are inserted between the two plates, the separation distance is 21.0 cm. .. Further, when the liquid to be treated is a mixed liquid of fuel oil and water, if the ultrasonic wave speed is 1350 m / s, the wavelength of the ultrasonic wave of 50 KHz is 2.7 cm, and if 7 wavelengths are inserted between the two plates. The separation distance is 18.9 cm. Although the frequency of the ultrasonic wave is set to 50 KHz, it can be selected and changed so as to give a good result according to the characteristics of the liquid to be treated and the shape, dimensions, flow velocity, etc. of the treatment device.

また図1は、振動前面板5に入射する反射板7からの反射波と振動前面板5からの新たな超音波との位相差を調整する目的で反射板7の移動を自動化により行うとした一例であり、処理対象液の入口2から流入した処理対象液が処理されて処理対象液の出口9から流出することは図3と同じであるが、反射板7を移動させる機構を具備しており、測定用超音波発振器11から発振した超音波を測定用超音波受信器12で受信してその時間差から処理対象液中の超音波の速度を求め、その速度を超音波の周波数50KHzで除すことで超音波の波長が得られるが、得られた波長に対して図1では7倍を乗じた距離を両板間の当面の離隔距離としている。なお、この場合の数字の7は両板間に存在する超音波キャビテーションの圧壊回数でもあるが、処理対象液が反射板7の開口部から流入して振動前面板5を行き過ぎるまでに受ける圧壊回数は流路からの推定で3~4回であり、この回数についても結果を見ながらの判断とし、離隔距離を変更するのが適切である。 Further, in FIG. 1, the movement of the reflector 7 is automated for the purpose of adjusting the phase difference between the reflected wave from the reflector 7 incident on the vibration front plate 5 and the new ultrasonic wave from the vibration front plate 5. As an example, it is the same as in FIG. 3 that the liquid to be treated that has flowed in from the inlet 2 of the liquid to be treated is treated and flows out from the outlet 9 of the liquid to be treated, but is provided with a mechanism for moving the reflector 7. The ultrasonic wave oscillated from the measurement ultrasonic oscillator 11 is received by the measurement ultrasonic receiver 12, the speed of the ultrasonic wave in the liquid to be processed is obtained from the time difference, and the speed is divided by the ultrasonic frequency of 50 KHz. The ultrasonic wave wavelength can be obtained by this, and in FIG. 1, the distance obtained by multiplying the obtained wavelength by 7 times is defined as the immediate separation distance between the two plates. In this case, the number 7 is also the number of times the ultrasonic cavitation existing between the two plates is crushed, but the number of times the liquid to be treated is crushed before it flows in from the opening of the reflector 7 and passes through the vibrating front plate 5. Is estimated to be 3 to 4 times from the flow path, and it is appropriate to make a judgment while looking at the result for this number of times and change the separation distance.

処理済処理対象液の出口9から得られた処理済処理対象液の一部を測定装置に導き水の改質であればORPとpHを、燃料油の改質であれば残留水分量を測定して判定基準と比較の上、両板間の離隔距離の微細な調整のために反射板の位置を前後に変化させて最適位置に合わせるべくフィードバック制御を掛けることにするが、得られた上記の各数値を電気信号に変換の上別途設置した演算装置に入力して両板間の離隔距離を算出し、制御信号によりモータ16を駆動して反射板のシャフト13に結合した反射板7の位置を確定させることになる。なお、用いるモータとしては直動型スッテピングモータが適当であり、精密な位置制御の関係上減速ギアを用いるのが望ましい。また、反射板7の移動に当たり位相差ゼロの位置を見つけやすくするために振動前面板5と反射板7の両方或いは一方の表面に段差を設けて両板間の距離を部位によって異なったものとすることも有効な手段の一つであるが、往還波の波長に幅を持たせることになり鋭さに欠けることにはなる。 A part of the treated liquid to be treated obtained from the outlet 9 of the treated liquid to be treated is guided to the measuring device, and the ORP and pH are measured if the water is reformed, and the residual water content is measured if the fuel oil is reformed. Then, after comparing with the judgment criteria, in order to finely adjust the separation distance between the two plates, the position of the reflector is changed back and forth and feedback control is applied to adjust to the optimum position. After converting each value of the above into an electric signal, it is input to a separately installed arithmetic device to calculate the separation distance between the two plates, and the motor 16 is driven by the control signal to connect the reflector 7 to the shaft 13 of the reflector. The position will be fixed. A direct-acting stepping motor is suitable as the motor to be used, and it is desirable to use a reduction gear in relation to precise position control. Further, in order to make it easier to find the position where the phase difference is zero when the reflector 7 is moved, a step is provided on the surface of both or one of the vibration front plate 5 and the reflector 7, and the distance between the two plates differs depending on the part. This is one of the effective means, but the wavelength of the back and forth wave is widened and lacks sharpness.

図3の装置によりA重油3000mL、水700mL(A重油比23.3%)を用いた油改質の例をA重油の代表例として示すと表1のようになり、またC重油系残渣油3000ml、水990ml(残渣油比33%)に対して行った油改質例は表2のようになる。

Figure 2022046394000002
Figure 2022046394000003
Table 1 shows an example of oil reforming using 3000 mL of A heavy oil and 700 mL of water (23.3% of A heavy oil ratio) using the apparatus shown in FIG. 3 as a representative example of A heavy oil, and C heavy oil-based residual oil. Table 2 shows an example of oil reforming performed on 3000 ml and 990 ml of water (residual oil ratio 33%).
Figure 2022046394000002
Figure 2022046394000003

表1及び表2に例示する分も含め、多数回行った試行に於いて得られた改質油の容積は加えた水の容積の約10%弱程度の減少が見られるが、その減容分を10%として計算をすれば、改質油の単位重量当たりの発熱量と重量の積である発熱総量はA重油では20.7%、C重油系残渣油では17.7%の増加となっており、燃料油の改質が確認できる。但し、表1のA重油の分析結果には比重が未測定で記載されていないため、A重油の処理前の比重を標準的な0.86、また処理後の比重も保守的に同じ値の0.86としている。また処理を通して水分他が蒸散している様子もなく処理前後の重量に特段の変化は見られなかった。 The volume of reformed oil obtained in many trials, including the amounts illustrated in Tables 1 and 2, is reduced by about 10% of the volume of added water, but the volume is reduced. If the minute is calculated as 10%, the total calorific value, which is the product of the calorific value per unit weight of the reformed oil and the weight, increases by 20.7% for heavy fuel oil A and 17.7% for heavy fuel oil C. It can be confirmed that the fuel oil has been reformed. However, since the specific gravity of A heavy oil in Table 1 has not been measured and is not described, the standard specific density of A heavy oil before treatment is 0.86, and the specific density after treatment is conservatively the same value. It is set to 0.86. In addition, there was no sign of evaporation of water and other substances during the treatment, and no particular change was observed in the weight before and after the treatment.

1 処理容器
2 処理対象液の入口
3 セラミック球
4 超音波振動子
5 振動前面板(図1、図2)
固定ホーン(図3)
6 仕切板(図1、図2)
仕切板兼超音波反射板(図3)
7 反射板(図1、図2)
8 超音波照射部
9 処理済処理対象液の出口
10 処理対象液の流れ
11 測定用超音波発振器(図1、図2)
12 測定用超音波受信器(図1、図2)
13 反射板のシャフト(図1、図2)
14 モータのシャフト(図1)
15 シャフトの接続部(図1)
16 モータ(図1)
17 モータ駆動、制御配線(図1)
18 インペラ(図2)
19 インペラ支持材(図2)
20 かさ歯車駆動軸(図2)
1 Treatment container 2 Inlet of liquid to be treated 3 Ceramic ball 4 Ultrasonic transducer 5 Vibration front plate (Figs. 1 and 2)
Fixed horn (Fig. 3)
6 Partition plate (Fig. 1, Fig. 2)
Partition plate and ultrasonic reflector (Fig. 3)
7 Reflector (Figs. 1 and 2)
8 Ultrasonic irradiation unit 9 Outlet of processed liquid to be processed 10 Flow of liquid to be processed 11 Ultrasonic oscillator for measurement (Figs. 1 and 2)
12 Measurement ultrasonic receiver (Figs. 1 and 2)
13 Reflector shaft (Figs. 1 and 2)
14 Motor shaft (Fig. 1)
15 Shaft connection (Fig. 1)
16 motor (Fig. 1)
17 Motor drive, control wiring (Fig. 1)
18 Impeller (Fig. 2)
19 Impeller support material (Fig. 2)
20 Bevel gear drive shaft (Fig. 2)

この改質油の特徴的な事象は、例えばC重油の場合元の燃料油に比べて得られた改質油はその容器を手に取ると常温に於いて流動性の向上が見られるが、測定値はそれとは逆に粘度が高く表示されることであり、これは改質油の構成分子が短くなっていることを示す一方、各種分解成分を組み込んで複雑な形状となっているために、JISに於ける重油の粘度測定時の50℃に温度が上昇すると複雑な構成分子間の絡み合いが増し、その結果粘度の測定値が高くなるものと推測される。この様な性状は、図3に示す油改質装置を用いて燃料油と水との混合液に対し超音波処理の繰返しを2~3回以内に留めた場合であり、それ以上の繰返しでは処理中の混合液に粘度の急激な上昇が見られる。The characteristic phenomenon of this reformed oil is that, for example, in the case of heavy fuel oil C, the reformed oil obtained compared to the original fuel oil shows an improvement in fluidity at room temperature when the container is picked up. On the contrary, the measured value is displayed as high viscosity, which indicates that the constituent molecules of the reformed oil are shortened, but on the other hand, it has a complicated shape by incorporating various decomposition components. It is presumed that when the temperature rises to 50 ° C. at the time of measuring the viscosity of heavy oil in JIS, the entanglement between complicated constituent molecules increases, and as a result, the measured value of the viscosity increases. Such properties are when the ultrasonic treatment of the mixed liquid of fuel oil and water is kept within 2 to 3 times by using the oil reformer shown in FIG. 3 , and the repetition is more than 2 times. A sharp increase in viscosity is seen in the mixed solution during treatment.

Claims (2)

水或いは燃料油と水を混合した液体を処理対象液として収納する処理容器の内部に超音波振動子を固定して設置の上、該超音波振動子の振動前面板の前方に反射板を配設し、振動前面板の前面から新たに発射される超音波と反射板での反射と処理対象液通過に伴う減衰を受けながら振動前面板の前面に入射する超音波との双方で構成される合成波を振動前面板と反射板との間で往還させ、且つ前記両板間の離隔距離を反射板を移動させることにより調節可能とする機構に於いて、反射板または振動前面板のどちらか一方に開口部を設け、前記処理容器内を通過する処理対象液の流路を前記開口部を経由し、かつ振動前面板と反射板間を往還する超音波を横切るようにすることを特徴とする水または燃料油改質装置。 An ultrasonic vibrator is fixed and installed inside a processing container that stores water or a liquid that is a mixture of fuel oil and water as a liquid to be treated, and a reflector is placed in front of the vibration front plate of the ultrasonic vibrator. It is composed of both ultrasonic waves newly emitted from the front surface of the vibrating front plate, reflection by the reflecting plate, and ultrasonic waves incident on the front surface of the vibrating front plate while receiving attenuation due to the passage of the liquid to be processed. Either the reflecting plate or the vibrating front plate is a mechanism that allows the synthetic wave to travel back and forth between the vibrating front plate and the reflecting plate, and the separation distance between the two plates can be adjusted by moving the reflecting plate. An opening is provided on one side so that the flow path of the liquid to be processed passing through the processing container passes through the opening and crosses the ultrasonic waves traveling back and forth between the vibration front plate and the reflection plate. Water or fuel oil reformer. 前記振動前面板または前記反射板のいずれにも開口部を設けず、処理容器内を通過する処理対象液の主たる流れが両板間では振動前面板或いは反射板に向かう旋回流となっていることを特徴とする請求項1に記載の水または燃料油改質装置。 No opening is provided in either the vibrating front plate or the reflector, and the main flow of the liquid to be processed passing through the processing container is a swirling flow toward the vibrating front plate or the reflector between the two plates. The water or fuel oil reforming apparatus according to claim 1.
JP2020166371A 2020-09-10 2020-09-10 Apparatus for reforming water or fuel oil Pending JP2022046394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020166371A JP2022046394A (en) 2020-09-10 2020-09-10 Apparatus for reforming water or fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020166371A JP2022046394A (en) 2020-09-10 2020-09-10 Apparatus for reforming water or fuel oil

Publications (1)

Publication Number Publication Date
JP2022046394A true JP2022046394A (en) 2022-03-23

Family

ID=80779912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020166371A Pending JP2022046394A (en) 2020-09-10 2020-09-10 Apparatus for reforming water or fuel oil

Country Status (1)

Country Link
JP (1) JP2022046394A (en)

Similar Documents

Publication Publication Date Title
JP4931001B2 (en) Method for accelerating cavitation reaction and method for producing metal nanoparticles using the same
Gogate et al. Hydrodynamic cavitation reactors: a state of the art review
US7504075B2 (en) Ultrasonic reactor and process for ultrasonic treatment of materials
Zheng et al. Recent developments in hydrodynamic cavitation reactors: Cavitation mechanism, reactor design, and applications
SUSlick Kirk-Othmer encyclopedia of chemical technology
Gogate et al. Cavitation: a technology on the horizon
JP6746081B2 (en) Liquid processing device
He et al. Application of ultrasonication in transesterification processes for biodiesel production
Stebeleva et al. Application of cavitation in oil processing: an overview of mechanisms and results of treatment
Dahlem et al. Direct sonication system suitable for medium‐scale sonochemical reactors
Suslick Encyclopedia of physical science and technology
Guoxiang et al. Pretreatment of crude oil by ultrasonic-electric united desalting and dewatering
Eshmetov et al. INFLUENCE OF ULTRASONIC IMPACT ON OIL PREPARATION PROCESSES.
JP2022046394A (en) Apparatus for reforming water or fuel oil
JP2009125684A (en) Water treatment apparatus
JP6146789B2 (en) Hydrolyzed fuel production method and production apparatus
JP6995373B2 (en) A method of producing a hydrocarbon-based synthetic fuel by adding water to a hydrocarbon-based fuel oil.
Vikulin et al. Influence of ultrasound on the concentration of hydrogen ions in water
CN103111223A (en) Ultrasonic wave industrial mixing homogenizing equipment and method
JP4775694B2 (en) Ultrasonic treatment apparatus and ultrasonic treatment method
JP2019189870A (en) Manufacturing method and manufacturing apparatus of water-added fuel
JP6128453B1 (en) Hydrolyzed fuel production method and production apparatus
JP2022019473A (en) Manufacturing method of hydro-fused fuel
Tuziuti et al. Correlation in spatial intensity distribution between volumetric bubble oscillations and sonochemiluminescence in a multibubble system
Vikulina et al. The effect of ultrasound on the process of water softening

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240402